
Vol.:(0123456789)1 3

Journal of Radioanalytical and Nuclear Chemistry (2021) 327:39–47 
https://doi.org/10.1007/s10967-020-07485-y

Removal of U(VI) from aqueous solution using AO‑artificial zeolite

Peng Liu1 · Qiang Yu1,2 · Xu Zhang3 · Jiaqi Chen1 · Yun Xue1 · Fuqiu Ma1

Received: 21 May 2020 / Accepted: 30 October 2020 / Published online: 19 November 2020 
© Akadémiai Kiadó, Budapest, Hungary 2020

Abstract
Amidoxime (AO) based adsorbents have been proposed as low cost and efficient adsorbent for U(VI). Herein, we present a 
simple strategy for preparing AO modified artificial zeolite. The composition and morphology of the materials have been 
confirmed via XRD, FT-IR, TGA and SEM. The AO-artificial zeolite was synthesised as an efficient adsorbent for adsorb-
ing U(VI). The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as pH, contact time, 
temperature and adsorbent dosage. This study reveals AO-artificial zeolite, along with a low-cost, environmentally friendly 
and facile synthesis, can be regarded as a promising material for uranium-containing wastewater treatment.
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Introduction

With the rapid development of human modernization, 
nuclear power is developed vigorously because of the low 
greenhouse gas emissions and high energy density [1]. Ura-
nium is the most major fuel for the generation of electricity 
in the nuclear power industry [2]. However, uranium also 
has chemical and radioactive toxicity, on condition that a 
large quantity of uranium discharged into our environment, 
it would be accumulated in human beings through the food 
chain and lead to health problems [3, 4]. Therefore, numer-
ous methods have been used to removal of U(VI) from aque-
ous solutions, such as extraction [5, 6], coprecipitation [7], 
flotation [8], membrane dialysis [9], adsorption [10, 11] and 
so on. Among these methods, adsorption has attracted much 
attention due to its easy operation and high efficiency.

Recently, various kinds of adsorbents, such as amine [12], 
carboxylates [13], carbon materials [14], polymers [15, 16], 
magnetic materials [17] and metal organic frame works 
[18], have been developed for the removal of U(VI) from 

aqueous solution. For most adsorbents, however, the defect 
of disperse in aqueous during adsorption process restrict 
their further industrial applications [19]. Thus, adsorbents 
suitable for commercialized need to be developed for ura-
nium adsorption. Artificial zeolite has attracted considerable 
attention because of its regular mesoporous pore structure 
and chemical and physical stabilities. Nevertheless, only 
a few functional groups can provide the adsorption active 
sites for uranium. Among them, amidoxime (AO) group 
has acidic oxime and amino groups, and the presence of the 
functional groups shown great potential to form complexes 
with U(VI) [20, 21]. Thus, it is important to modify artificial 
zeolite with AO group for U(VI) adsorption.

Hence, the AO functionalized artificial zeolite are pre-
pared. The X-ray diffraction (XRD), fourier transform 
infrared spectra (FT-IR), scanning electron microscopy 
(SEM), N2 adsorption–desorption, and thermogravimet-
ric analysis (TGA) are used to characterize the properties 
of AO-artificial zeolite. Additionally, the effects of water 
chemistry on the adsorption of U(VI) are investigated. It is 
expected that this research will provide a potential adsor-
bent for the removal of U(VI) from aqueous solutions in 
real applications. * Fuqiu Ma 
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Materials and methods

Materials

All the chemicals are analytical grade and used without 
any further purification. U(VI) stock solution is made from 
UO2(NO3)2 ∗ 6H2O (A.R. grade). Arsenazo-III (Aladdin, 
China) solution is prepared by dissolving 1 g Arsenazo-III 
in 1000 mL of deionized water. Artificial zeolite particle 
is purchased from Tianjin Fuchen Chemicals, China. Poly-
acrylonitrile power is purchased from Daqing Petrochemi-
cal Acrylic Plant, China. Dimethyl sulfoxide (DMSO) and 
polyvinylpyrrolidone (PVP) are purchased from Shanghai 
Houcheng Chemicals.

Adsorbent preparation

4.0 g of polyacrylonitrile power is dissolved by 200 ml of 
dimethyl sulfoxide (DMSO). After stirring for 1 d, 8.0 g 
of hydroxylamine hydrochloride is added. The mixture is 
stirred for 5 d at 25 °C. 2 g of polyvinylpyrrolidone (PVP) 
and artificial zeolite are dispersed into the mixture. Then the 
homogeneous solution is stirred for 1 d. The AO-artificial 
zeolite product is washed with ethyl alcohol and deionized 
water 3 times and dried under vacuum at 45 °C for 24 h [22].

Batch experiment

The batch experiments are conducted in a series of 50 mL 
polyethylene centrifuge tubes. AO-artificial zeolite, NaNO3 
solution, uranium stock solution and deionized water are 
added to the centrifuge tubes. HNO3 or NaOH solution is 
employed to adjust pH. The centrifuge tubes are shaken in 
a constant temperature oscillator for 3 days, after that the 
centrifuge tubes are centrifuged at 10000 r/min for 30 min. 
Supernatant is taken out to confirm the adsorption capac-
ity of uranium using the Arsenazo-III spectrophotometric 
method at 652 nm. The adsorption efficiency and capacity 
of U(VI) on AO-artificial zeolite is calculated as follows:

where C0 and Ce are the initial and final concentration of 
U(VI), respectively; m is the mass of the adsorbent.

All of the experimental data were the averages of dupli-
cate or triplicate experiments, and the relative errors of the 
data were less than 5%.

Characterization

TGA of the samples are recorded on a TA Q50 DTA/
TGA apparatus in the range of 25 to 700 °C (USA). XRD 
measurements are obtained on a Philips X’Pert Pro Pana-
lytical diffractometer equipped with Cu K � radiation (scan 
rate 0.02◦/s, 10◦ ≤ 2 � ≤ 90◦ ). FT-IR are obtained using a 
Thermo Nicolet 6700 FT-IR spectrometer (USA) using the 
KBr pressed disk method. SEM is obtained using an S-4800 
(Hitachi) microscope.

Results and discussion

Adsorption behavior studies

Effect of pH

The species of U(VI) and the surface charge of adsorbent 
in aqueous solutions can be affected by pH, thus the effect 
of pH is significant for U(VI) adsorption [23]. As shown 
in Fig. 1, it is clear that the amount of U(VI) adsorbed on 
artificial zeolite and AO-artificial zeolite increased with pH 
gradually changes from 2.5 to 6.0, whereas the adsorption 
percentage of U(VI) onto artificial zeolite and AO-artificial 
zeolite decrease with pH further increasing. Furthermore, 
the adsorption percentage of U(VI) onto AO-artificial zeolite 

(1)� =
(C0 − Ce)

C0

× 100%

(2)qe =
(C0 − Ce)

m
× V

Fig. 1  Effect of pH on the 
U(VI) adsorption onto AO-
artificial zeolite a; relative spe-
cies distribution of U(VI) in the 
presence of CO2 b. m/V = 3.6 
g/L, I = 0.01 M NaNO3 , 
T = 298 K, [U(VI)] = 20 mg/L, 
PCO2

= 3.8 × 10−4atm

a b
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is remarkably higher than that onto artificial zeolite. There 
are many unbonded N and O protons in AO-groups, and 
these atoms may be combine with U(VI) to form chelates, 
the experimental result suggesting that the formation of the 
chelate increased the adsorption of U(VI) [24]. At lower pH, 
the protonation of AO-artificial zeolite and the competition 
between H+ and U(VI) limited the adsorption of U(VI). With 
the pH increase, the protonation and the competition become 
weakened, it is easy to adsorb U(VI). Fig. 1b describes the 
species distribution of U(VI) depend on the pH values. At 
pH < 5.0, UO2+

2
 was the main existing species of U(VI). 

5.0 < pH < 7.0, the dominant species was (UO2)3(OH)
+
5
 . 

A further increase in pH value will generate negatively 
charged species, including UO2(CO3)

2−
2

 and UO2(CO3)
4−
3

 , 
the adsorbent is not easy to adsorb negatively charged ions, 
the adsorption capacity declines [25].

Effect of Contact time and adsorption kinetics

Equilibration time is one of the parameters that could reflect 
the adsorption efficiency. The result of the effect of contact 
time on the adsorption of U(VI) by AO-artificial zeolite is 
shown in Fig. 2. The adsorption percentage of U(VI) shows 
an upward tendency with the contact time goes on, and 
reaches the maximum value within 72 h. Three different 
kinetic models are employed to evaluate the rate control-
ling process.The descriptions of pseudo-first-order, pseudo-
second-order and Weber–Morris model are shown in Eqs. 
(3), (4) and (5), respectively:

where qe and qt are the adsorption capacity at equilib-
rium time and time t, respectively. k1 and k2 are the equi-
librium rate constant of pseudo-first-order adsorption and 
pseudo-second-order, respectively. K (mg ∗ g−1 ∗ min1∕2) 
and C are the rate constant and adsorption constants of the 
Weber–Morris modal. The fitted results are summarized in 
Tables 1 and 2. By comparing the correlation coefficient, 
the adsorption of U(VI) onto AO-artificial zeolite can be 
fitted by pseudo-second-order kinetic model. This result is 
consistent with many other adsorbents [26, 27], the chemi-
cal complexing reaction dominates the adsorption process 
of U(VI) [28].

The Weber–Morris model explains that the adsorption 
process includes three steps (Fig. 2d). The first steep slope 

(3)qt = qe(1 − e−K1t)

(4)qt =
qe

2k2t

1 + qek2t

(5)qt =Kt1∕2 + C

Fig. 2  a Effect of contact 
time on the adsorption of 
U(VI) onto AO-artificial 
zeolite; b the fitting plot of 
the pseudo-first-order equa-
tion; c the fitting plot of the 
pseudo-second-order equa-
tion; d Weber–Morris model. 
pH = 5.00, m/V = 3.6 g/L, 
I = 0.01 M NaNO3 , T = 298 K, 
[U(VI)] = 20 mg/L

a b

c d

Table 1  Kinetic parameters of pseudo-first-order and pseudo-second-
order models

Pseudo-first-order model Pseudo-second-order model

k1 (g/mg⋅min) 35.4407 k2 (g/mg⋅ min) 0.0175
qe (mg/g) 3.2751 qe (mg/g) 6.9623
R2 0.6889 R2 0.9830



42 Journal of Radioanalytical and Nuclear Chemistry (2021) 327:39–47

1 3

represents the external transfer step. The next stage is the 
intra-particle diffusion process, and the final step means the 
final equilibrium step [29]. The results suggest that the sec-
ond stage is the rate limiting step in the process of U(VI) 
adsorption onto AO-artificial zeolite.

Effect of initial U(VI) concentration

The initial concentration of U(VI) provides driving forces 
to proceed the adsorption process [30]. Figure 3 shows the 
influence of the initial U(VI) concentration on the adsorp-
tion of AO-artificial zeolite for U(VI). To better understand 
the adsorption processes of AO-artificial zeolite to U(VI), 
The adsorption data were fitted by three isotherms. The 
Langmuir isotherm supposes that adsorption is a monolayer 
adsorption, and can be expressed [31]:

The Freundlich isotherm is given as [32]:

where KF and n are the Freundlich constant. The Freundlich 
isotherm model assumes that the adsorption site is heteroge-
neous. The Dubinin–Radushkevich (D–R) isotherm assumes 
that the adsorption energy of adsorbent is nonuniform [33]. 
The model can be expressed [34]:

where B (mol2∕kJ2) is the D–R constant, qk (mol/g) is the 
D–R adsorption capacity, � is the Polanyi potential, T is the 
temperature (K), and E (kJ/mol) is the free energy change 
[35].

The calculated linear analysis results are summarized 
in Table 3. The adsorption of U(VI) onto the AO-artificial 
zeolite obeys the Freundlich isotherm model. Therefore, the 
adsorption process of AO-artificial zeolite for U(VI) was 
considered heterogeneous and a multilayer process.

From the fitting results, the free energy change of D–R 
isotherm model was about 8.5 kJ/mol, indicating that the 
adsorption of U(VI) onto AO-artificial zeolite is mainly 

(6)
Ce

qe
=

Ce

qm
+

1

KLqm

(7)lnqe = lnKF +
1

m
lnCe

(8)lnqe =lnqk − B�2

(9)� = RTln

(

1 +
1

ce

)

(10)E =
1

√

2B

Table 2  Kinetic parameters of 
the Weber–Morris model

First stage Second stage Third stage

kad1(g/mg⋅ min) 0.1141 kad2(g/mg⋅ min) 0.0866 kad3(g/mg⋅ min) 0.0031
C1 (μg/g) 0.4371 C2 (μg/g) 1.0107 C3 (μg/g) 6.5601
R2
1

0.9704 R2
2

0.9955 R2
3

0.8145

Fig. 3  Effect of initial concentration of U(VI) on the adsorption on 
AO-artificial zeolite. pH = 5.00, m/V = 3.6 g/L, I = 0.01 M NaNO3 , 
T = 298 K

Table 3  Adsorption isotherm 
parameters of U(VI) adsorption 
onto AO-artificial zeolite

Model Freundlich model Langmuir model D–R model

Parameter n 1.2561 qmax 47.7783 B 0.0069
(mg/g) (mol2/KJ2)

KF 0.5246 KL 7.1364 × 10−3 qk 1.0467 × 10−3

(L/g) (L/mg) (mg/g)
R2 0.9844 R2 0.6325 E 8.5126

(kJ/mol)
R2 0.5475
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chemical adsorption, the result is in agreement with other 
experimental results [36, 37].

Effect of adsorbent dosage

Adsorbent dosage determines the effective number of bind-
ing sites, so it is an important parameter in the adsorption 
process. The effect of adsorbent dose on U(VI) adsorption 
was investigated using dose range from 0.02 to 5 g/L of 
AO-artificial zeolite.

The data was represented in Fig.  4, the adsorption 
capacity of U(VI) increased from 6 to 70% at adsorbent 
dose from 0.02 to 5 g/L. This may be due to the increase 
of the available adsorption sites numbers on increasing 
AO-artificial zeolite dosage. However, as adsorbent dos-
age increases the adsorption capacity decreased. There 
are fewer adsorption sites on the surface of AO-artificial 
zeolite at lower concentration. The aggregation of particles 
takes place with the increase of adsorbent dosage, as a 
result the adsorption capacity qe decreases. This phenom-
enon is also present in other adsorption systems of differ-
ent adsorbents [38–40].

Characterization analysis

XRD analysis

XRD patterns of artificial zeolite and AO-artificial zeo-
lite are shown in Fig. 5. As evident, the XRD patterns 
of AO-artificial zeolite do not show obvious fresh peaks 

compared with artificial zeolite, indicate that the AO-arti-
ficial zeolite maintain the original structures of artificial 
zeolite.

N
2
 adsorption–desorption isotherm

The N2 adsorption–desorption isotherms of artificial 
zeolite and AO-artificial zeolite are shown in Fig. 6. The 
Brunauer–Emmett–Teller (BET) surface area of artificial 
zeolite and AO-artificial zeolite are calculated to be 31.91 
and 24.37 m2/g, respectively. And the pore diameters are 
calculated to be 11.74 and 9.77 nm, respectively. This 
suggests that the pores of AO-artificial zeolite are par-
tially blocked than that of artificial zeolite in the process 
of modification. Whereas the functional groups in AO-
artificial zeolite are in favour of binding U(VI) to form 
chelates, which causes the AO-artificial zeolite shows bet-
ter adsorption properties than artificial zeolite.

Thermogravimetric analysis

Thermogravimetric analysis is used to study the thermal 
behaviors of artificial zeolite and AO-artificial zeolite. As 
can be seen from Fig. 7, the first weight loss stage from 
25 to  200 °C attributes to the elimination of physically 
adsorbed moisture on the surface of the particles [41]. 
The second weight loss occurs from 200 to 550 °C, which 
can be assigned to thermal decomposition of organic 
components. As for U(VI)-loaded AO-artificial zeolite, 
the weight loss observed in the range from about 250 to 
600 °C may be assigned to the thermal decomposition of 
U(VI). Meanwhile, the weight residuals of artificial zeolite 
after thermal analysis is similar to that of AO-artificial 

Fig. 4  Effect of adsorbent dosage on the adsorption of U(VI) onto 
AO-artificial zeolite. pH  =  5.00, I  =  0.01  M NaNO3 , T  =  298  K, 
[U(VI)] = 20 mg/L

Fig. 5  XRD diffraction patterns of artificial zeolite and AO-artificial 
zeolite
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zeolite, the thermal stability is basically unchanged during 
the incorporation of AO functional groups process [42].

FT‑IR analysis

FT-IR analysis is further conducted to verify the conversion 
of functional group in the reaction process. As shown in 
Fig. 8, three characteristic peaks suggest that the functional 
groups are grafted onto artificial zeolite successfully. The 
peaks at 1657 cm−1 could be ascribed to the stretching vibra-
tion of the C = N, the peaks at 1386 cm−1 could be ascribed 
to the stretching vibration of NH2 , the peaks at 945 cm−1 
could be assigned to the bending vibration of N–O. This 
suggests that the amidoxime group ( HON = C − NH2 ) is 
covered the surface of AO-artificial zeolite. In the U(VI)-
loaded AO-artificial zeolite, the peak at 750 cm−1 confirms 
the binding of uranium to AO-modified zeolite. The changes 
in peak positions and intensity around 550–1000 cm−1 region 
can be assigned to asymmetric stretching vibration of ura-
nyl ion and stretching vibrations of weekly bonded oxygen 
ligands with uranium [43, 44].

SEM analysis

The surface morphologies changes before and after arti-
ficial zeolite modified by AO are analyzed via SEM. As 
shown in Fig. 9a–d, after modification, the surface of AO-
artificial is much rougher than artificial zeolite. Fig. 9e 
and f are the SEM image of AO-artificial zeolite after 
U(VI) adsorption. The surface of AO-artificial zeolite 
become rougher, a remarkable amount of particles are 
disposed on AO-artificial zeolite surface, which demon-
strated that U(VI) is adsorbed onto the surface of AO-
artificial zeolite.

Comparison with other adsorbents

The adsorption capacities of the composites for uranium 
were compared with other adsorbent materials reported 
from literature in Table 4. The comparison showed that the 
adsorption capacity of AO-artificial zeolite is not the best, 

Fig. 6  Nitrogen adsorption–des-
orption isotherm of artificial 
zeolite (a) and AO-artificial 
zeolite (b)

a b

Fig. 7  Thermogravimetric analysis of artificial zeolite and AO-artifi-
cial zeolite Fig. 8  FT-IR spectra of artificial zeolite, AO-artificial zeolite and 

U(VI)-loaded artificial zeolite
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nonetheless it is a relatively inexpensive material in all of 
them. It owns high cost performance, and can be used as an 
alternative material for commercial applications.

Conclusions

In this study, the adsorption of U(VI) onto AO-artificial 
zeolite is investigated. The consequence of adsorption 
indicated that AO-artificial zeolite had high removal 

Fig. 9  SEM images of a and b 
artificial zeolite; c and d AO-
artificial zeolite; e and f U(VI)-
loaded AO-artificial zeolite

Table 4  Comparison with 
different adsorbents from 
literature

Adsorbent Adsorption capacity 
(mg/g)

References

Methacryloxypropyltrimethoxysilane coated magnetic 1.1 [45]
Modified magnetic Fe3O4 12.33 [46]
Used tires 10.1 [47]
Natural clinoptilolite zeolite 2.12 [48]
CuO/NaX nanocomposite 6.77 [49]
�-cyclodextrin functionalized silica gel 6.45 [50]
Magnetite nanoparticles 4.76 [51]
Tendurek volcanic tuff 2.38 [52]
MnO coated sand 4.76 [53]
Amidoximated polyglycidyl methacrylate microbeads 1.07 [54]
AO-artificial zeolite 6.96 This work
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amount towards U(VI), which is much higher than that of 
artificial zeolite, adsorption capacity of U(VI) is signifi-
cantly enhanced. Furthermore, AO-artificial zeolite over-
come the defect of disperse in aqueous during adsorption 
process, which could offer a promising opportunities for 
further improvements in the removal of U(VI) from aque-
ous solution.
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