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Abstract
Measurement of natural radioactivity in surface soils in a gold mining area and surrounding regions in Bolikhamxay prov-
ince, Laos has been conducted using an HPGe detector. Soil samples were collected at 65 locations distributed widely in 
Bolikhamxay province, including 25 samples in the gold mining area in Khamkheut district. The average activity concen-
trations of 226Ra, 232 Th and 40 K are obtained as 44.4 ± 3.2 , 63.3 ± 5.2 and 523 ± 18Bq kg−1 , respectively. The calculated 
average radium equivalent activity is 175 ± 20Bq kg−1 . Radiological hazard indices in the gold mining area are higher than 
the average values in the province by 15–20%.
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Introduction

Primordial radionuclides incorporated in surface soils con-
tribute mostly to the natural terrestrial gamma exposure 
[1]. Soils are considered as the main sources to distribute 
radioactive nuclides to other environments such as water, 
air, sediments and biological systems. The radioactivity in 
food grains is also dependent on that in surface soils. Hence, 

surface soils are considered as essential sources to assess 
the radiological exposure, and to evaluate the environmen-
tal radiological contamination. For environmental protec-
tion purpose, measurement of radioactivity in surface soils 
is considerably important to assess the change of natural 
radioactivity and to evaluate the effect on environment in 
case of radioactive release [2].

The decay series of 238 U, 232 Th and 40 K contribute 
mostly to natural radioactivity in soils. 238 U decay series 
is also referred to as 226 Ra series because the contribution 
of 226 Ra subseries in the external gamma dose is about 
98.5% [3]. Radioactivity at mining areas is usually higher 
than surrounding regions because mining activities expose 
natural occurring radioactive materials (NORMs) to the 
earth’s surface, and therefore increasing the background 
gamma radiation levels [1]. Mining is a major technologi-
cal concern of the enhancement of NORM concentrations 
[1, 4]. Consequently, it is essential to measure the radio-
activity concentrations of the major primordial radionu-
clides in the soil mine tailings and assess the gamma radia-
tion exposure of humans and living systems. It is because 
long-term exposure to radiation can cause harmful health 
effects, such as chronic lung diseases, anemia and different 
cancers [1, 4, 5]. The high concentrations of natural radio-
activity and 226Ra/238 U disequilibrium were indicated as 
the main cause of cancers in Penang, Malaysia [5]. Thus, 
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many attempts have been done to assess the natural radio-
activity and radiation exposure in mining areas [4, 6–10]. 
It is noticed that in some places the activity concentrations 
of NORMs in mining areas are relatively high compared 
to the world average.

The world average radioactivity concentrations of 226
Ra, 232 Th and 40 K in soils are 35, 30 and 400 Bq kg−1 , 
respectively [1]. Though the values are relatively low, they 
may vary in a large range at different places. The varia-
tion of activity concentrations can be up to 1000, 360 and 
3200 Bq kg−1 for 238 U, 232 Th and 40 K, respectively [11]. 
There has been increasing interest in assessing and estab-
lishing baseline data of the natural activity concentrations 
and related radiological hazards in soils in many coun-
tries [2, 3, 12–17]. Many research activities on natural 
radioactivity levels have also been conducted in neigh-
boring countries of Laos in Southeast Asia such as Viet-
nam [17–19], Thailand [20–22], Malaysia [5, 10, 13, 23], 
and so on. It is noticed that the concentrations of natural 
radioactivity in soils in several places in Malaysia are in 
wide variation and relatively high compared to neighbor-
ing countries. In particular, the activity concentrations of 
main radioactive nuclides in soils in Kinta district in Perak 
state, Segamat district in Johor state and Penang state, 
Malaysia were reported about few times higher than the 
world average values [5, 10, 23]. This may be resulted 
from geological formations and soil types of the regions. 
In Laos, several attempts have been done to assess the 
activity concentrations of NORMs in surface soils and 
building materials, however the studies are still very lim-
ited until present [24, 25]. Therefore, it is of high impor-
tant to perform the measurement of natural radioactivity 
in surface soils, and to establish the baseline data in Laos 
for evaluating the radiological impact to population and 
for the purpose of environmental protection.

In the attempt for establishing the baseline data of the 
natural radioactivity in soils in the middle of Laos, a previ-
ous work conducted the measurement of the radioactivity 
concentrations and associated radiological hazard indices in 
surface soils in Savannakhet province, one of the three prov-
inces in the middle of Laos [24]. The present work presents 
the assessment of the natural radionuclide concentrations 
and radiological hazards in surface soils in a gold mining 
area and surrounding regions in Bolikhamxay province in 
continuation of the establishment of a baseline data in the 
middle of Laos. Moreover, the mining activities in Laos 
have just been officially recorded since 2003, and the min-
ing activity in the study region was started in 2015. This 
assessment would be of beneficial and can be considered as 
the first monitor of natural radioactivity levels in this min-
ing area. Comparison of the data obtained in Bolikhamxay 
province with neighboring and worldwide regions has also 
been presented.

Materials and methods

Study area and sample collection

Laos is a Southeast Asian country located on the lati-
tude of 14.117◦–23.684◦ N and the longitude of 100.413◦

–108.832◦ E. Bolikhamxay province locates in the mid-
dle of Laos on the latitude of 18.43◦ N and the longitude 
of 104.47◦ E. The area of Bolikhamxay province is about 
15,977 km2 , and the population is about 273,000. The 
altitude of the province is in the range of 140–1588 m. 
Bolikhamxay province has the same borders with Xiang-
khouang province to the northwest, Thailand to the west, 
Vietnam to the east, and Khammouan province to the 
south. Bolikhamxay province consists of seven administra-
tive districts of Pakxan, Thaphabat, Pakkading, Borikhan, 
Viengthong, Khamkheut, and Xaichamphon. Bolikhamxay 
is known as a rich place of natural and cultural resources 
with three national protected areas of PhouKhaoKhouay, 
Nam Ka Ding and a part of Theun-Nakai. The climate of 
Bolikhamxay is tropical monsoon with average tempera-
ture of 21–31◦ C. Rainy season lasts from May to Septem-
ber, and from October to April is the dry season. Kham-
kheut district is a mountainous region in the south of the 
province with average temperature of about 11◦ C during 
winter. A gold mining area locates in Khamkheut district, 
which is close to agricultural fields and about 3 km from 
Pakxan city. Therefore, it is of high important to assess 
the natural radioactivity around the gold mining area in 
comparison with other regions in the province.

Figure 1 displays the geological map of Bolikhamxay 
province with the sampling locations. The geological 
formations of Bolikhamxay province could be zoned in 
three parts from East North to South West (EN–SW). 
All formations have a similar tendency with the strike of 
West North–South East (WN–NS). The EN part includes 
intrusive and volcanic rocks which compose of granitoid 
gneiss, granite, mica gneiss, arenite, marble, and mafic 
volcanic rocks. This zone forms the gold mining area in 
Khamkheut district. The middle part is sedimentary rocks, 
which include red clyed arenite, gravel, and limestone with 
some clay, coal, silt, and conglomerate. The last one is 
dominated by arenite, limestone with some clay, coal, 
weathering rocks, and the south and north of this part exist 
some granite intrusive rocks.

Soil samples were collected at 65 locations (S1–S65) 
distributed widely in Bolikhamxay province, in which 
25 samples (S21–S45) were collected in the gold min-
ing area in Khamkheut district and 40 samples were col-
lected around populated areas and agricultural fields as 
shown in Fig. 1. In Khamkheut district, five other samples 
(S16–S20) were also collected outside the gold mining 
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area, and thus, the total number of samples collected in 
this district was 30. The soil samples were collected in 
January 2019. This time period was the dry season with 
the outdoor temperature of about 25–30◦ C. The soils 
were collected at the depth of 5–30 cm from the surface. 
At each location, a square of 60 cm × 60 cm was deter-
mined. The square surface was then flattened for collecting 
soils. Five topsoil samples, i.e., one at the center and four 
at the corners of the square, were collected and mixed 
up. An amount of about 1–2 kg was collected based on 
a quartile method to transport to the laboratory. At the 

laboratory, organic materials and pieces of stone in soils 
were removed, and the soils were air dried for 24–48 h. 
After that, the soils were dried at the temperature of 
110◦ C for about 10 h for obtaining unchanged mass. The 
soils were then crushed and served into 0.2 mm-diameter 
samples using a mesh. The samples were then put in a 
polyethylene cylinder with 75-mm diameter and 30-mm 
height. The samples were stored for a month to obtain 
secular equilibrium between 226 Ra with 214 Bi and 214 Pb 
before measurements.

Fig. 1   Geologic map of Bolikhamxay province and the locations of soil samples
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Calibration of detector efficiency

The radioactivity of the soil samples was measured using 
the Canberra low background gamma spectrometer with an 
HPGe detector (Model-BE6530) connected to a PC–based 
8192 channel analyzer. In the measurement of the gamma 
ray spectrum, the soil sample was put on the top of the 
detector. The spectra were then analyzed using Genie 2000 
software. Calibration of the detector for determining the effi-
ciency curve with gamma ray energy was performed using 
the IAEA RGU-1 and RGTh-1 reference materials. The 
reference materials RGU-1 and RGTh-1 was measured for 
about 60,000 s, while the standard sample IAEA–375 and 
the soil samples were measured during a period of 86,400 s 
to reduce the statistical errors. Background measurement 
was also conducted during a period of 160,000  s. The 
detector efficiency curve was constructed based on the effi-
ciency at the peaks of 46.5 keV of 210Pb, 63.3 keV of 232Th, 
186.2 keV of 226Ra, 295.22 keV and 351.93 keV photopeaks 
of 214Pb, 609.31 keV, 1120.29 keV and 1764.49 keV peaks 
of 214Bi, and 1460 keV peak of 40 K. The detector has a rela-
tive efficiency of 60% and resolution of 1.9 keV at 1333 keV 
photopeak of 60Co. Figure 2 shows the efficiency curve of 
the HPGe detector as a function of gamma ray energy.

To evaluate the detector efficiency curve, the detector 
was used to measure the radioactivity of the IAEA-375 
reference material and compared with the reported values. 
Table 1 shows the radioactivity concentrations of 228 U, 232
Th, 40 K and 137 Cs measured by the HPGe detector and the 
reported values of the IAEA-375 reference material. The 
deviations of the activity concentrations are within 3.4%, 
which is less than the uncertainty of the measurement and 
is acceptable for further use in the measurement of soil 
samples. Figure 3 displays a typical gamma spectrum of 

sample S53 collected in the gold mining area in Kham-
kheut district.

Radioactivity measurement

Measurement of gamma ray spectrum of a soil sample 
was conducted during 86,400  s to reduce the statistic 
errors ( 1� ) of important peaks within 5%. For instance, 
226 Ra activity concentration is evaluated via the 295.57 
keV (with the branching ratio of 0.1841) and 351.9 keV 
(0.3560) of 214Pb, and the 609.3  keV (0.4549) and 
1120.3 keV (0.1491) peaks of 214Bi. 232 Th activity con-
centration is evaluated from the 338.6 keV (0.1127) and 
911.1 keV (0.258) peaks of 228 Ac and the 583.19 keV 
(0.3055) peak of 208Tl. While, 40 K activity concentration is 
evaluated based on its gamma line of 1460 keV (0.1066). 
The branching ratios and their uncertainties were taken 
from Ref. [26]. The activity concentration of a radionu-
clide is denoted as A in Bq kg−1 unit, and is calculated as 
[27]:
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Fig. 2   Detector efficiency curve as a function of gamma ray energy

Fig. 3   Gamma ray spectrum of soil sample S53 measured by the 
HPGe detector

Table 1   Comparison of the radioactivity concentrations of 228 U, 232
Th, 40 K and 137 Cs of IAEA-375 reference material measured by the 
HPGe detector

Radionuclides This meas-
urement 
(Bq kg− 1)

Reference 
(Bq kg− 1)

Difference (%)

228U 19.6 ± 2.3 20 ± 2 − 2.0
232Th 19.8 ± 2.1 20.5 ± 2.7 − 3.4
40K 416.2 ± 20.9 424.2 ± 7.0 − 1.9
137Cs 2874 ± 198 2905.2 ± 187.4 − 1.1
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where n is the net counting rate (cps) for a peak at a specific 
energy; � is the detector efficiency; Ieff  is the gamma emis-
sion probability; and ms is the mass of soil sample. Together 
with the activity concentrations, 2� standard uncertainties 
are also evaluated based on the uncertainties of related quan-
tities such as the counting rate n, the detector efficiency � , 
the branching ratios and the mass of soil sample ms.

Calculation of radiological hazards

In order to evaluate the effect of natural activity concentrations 
of the radioactive nuclides, radiological hazard indices have 
been calculated, such as radium equivalent activity ( Raeq ), 
absorbed gamma dose rate (D), annual effective dose equiva-
lent (AEDE), and external and internal hazard indices ( Hex and 
Hin ). The formula of Raeq is written as [28, 29]:

where ARa , ATh and AK stand for the activity concentrations 
of 226Ra, 232 Th and 40 K, respectively.

The value of D at 1 m above the ground is calculated as 
[30]:

where the conversion factors of 0.46, 0.62, and 0.042 
nGy h−1 are used for 226Ra, 232 Th and 40 K, respectively.

The formula of AEDE is written as [1]:

where D (nGy  h−1 ) is obtained in Eq. (3); DCF = 0.7 
Sv  Gy−1 is the dose conversion factor; OF = 0.2 is the 

(1)A(Bq kg−1) =
n

� × Ieff × ms

,

(2)Raeq = ARa + 1.43ATh + 0.077AK

(3)D(nGy.h−1) = 0.46ARa + 0.62ATh + 0.042AK ,

(4)AEDE(mSv y−1) = D × DCF × OF × T

outdoor occupancy factor, and T = 8760 h is the time factor 
[1, 31].

The Hex and Hin are calculated as follows [29, 32]:

and

Results and discussion

Activity concentrations of 226Ra, 232 Th and 40K

Table 2 shows the activity concentrations of 226Ra, 232 Th 
and 40 K in the six districts of Bolikhamxay province. 
The activity concentration of 226 Ra are obtained in the 
range of 13.0–90.0  Bq  kg−1 with the average value of 
44.4 ± 4.6 Bq kg−1 . The 232 Th activity concentrations are 
within the range of 11.1–99.4 Bq kg−1 , and the average value 
is 63.2 ± 5.2Ḃq kg−1 . Whereas, the activity concentrations of 
40 K vary in the range of 37.5–999 Bq kg−1 with the average 
value of 523 ± 18Bq kg−1 . Compared to the world average 
values, the average activity concentrations in Bolikhamxay 
are higher by factors of 1.3–2.0 [1].

Khamkheut and Viengthong districts, where the geo-
logical formation is dominated by intrusive and volcanic 
rocks, are recorded with higher average activity concentra-
tions compared to the whole province. Some samples with 
higher activity concentrations are also found in Thaphabat 
and Bolikhan districts, where the geological formation of 
arenite, limestone with some clay, coal and weathering rocks 
is expected with high variation of radioactivity level. The 

(5)Hex =
ARa

370
+

ATh

259
+

AK

4810
,

(6)Hin =
ARa

185
+

ATh

259
+

AK

4810
.

Table 2   Activity concentrations of radionuclides in soil samples in Bolikhamxay province

District name Samples Activity concentration (Bq kg−1)

226Ra 232Th 40K Raeq

Average Range Average Range Average Range Average Range

Thaphabat S1–S5 47.4 ± 6.4 41.3–52.6 69.6 ± 9.6 51.3–85.3 505 ± 23 141–980 186 126–245
Bolikhan S6–S10 57.7 ± 6.5 31.8–90.0 58.9 ± 5.5 32.2–93.2 483 ± 33 164–730 179 90.6–279
Viengthong S11–S15 50.6 ± 5.7 36.9–65.4 66.1 ± 8.1 57.2–79.5 476 ± 25 339–602 183 145–224
Khamkheut S16–S45 48.8 ± 4.2 22.9–73.3 72.1 ± 4.2 38.6–99.4 617 ± 16 307–999 199 123–277
Pakxan S46–S49 29.3 ± 3.7 13.0–58.4 36.6 ± 4.9 11.1–73.9 206 ± 13 134–341 97.4 39.2–190
Pakkading S50–S65 33.1 ± 4.2 17.9–65.6 51.9 ± 4.7 32.4–95.7 455 ± 16 37.5–715 142 83.8–205
Gold mining area (S21–S45) 48.5 ± 3.6 22.9–71.8 72.6 ± 3.2 38.6–99.4 642 ± 14 339–999 202 145–277
Average 44.4 ± 3.2 13.0–90.0 63.2 ± 5.2 11.1–99.4 523 ± 18 37.5–999 175 39.2–279
World average 35 – 30 – 400 – 89 –
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highest 226 Ra activity concentration of 90.0 ± 12.8 Bq kg−1 
is found at sample S7 in Bolikhan. The highest 232 Th activity 
concentration of 99.4 ± 3.5 Bq kg−1 is determined at sample 
S40 in the gold mining area in Khamkheut district. Kham-
kheut also corresponds to the highest 40 K activity concentra-
tion of 999 ± 16Bq kg−1 . The average activity concentrations 
in the gold mining area are higher than that in the whole 
province by factors of 1.1–1.2 as shown in Table 2.

It is noticed that the activity concentrations are smaller in 
the soil samples in Pakxan and Pakkading districts, where 
the geological formation is dominated by arenite, limestone 
with some clay, coal and weathering rocks. For example, 
samples S46, S48 and S49 in Pakxan correspond to the low-
est 226 Ra and 232 Th activity concentrations. The values are 
about 13.0–24.0 Bq kg−1 for 226 Ra and 11.1–31.6 Bq kg−1 for 
232Th, respectively. Pakxan and Pakkading are also noticed 
with the lowest 40 K activity concentrations, e.g., the lowest 
value of 37.5 ± 2.7 Bq kg−1 is determined at sample S52 in 
Pakkading.

Table 3 compares the activity concentrations of NORMs 
in surface soils in Bolikhamxay province with that in 
neighboring and worldwide regions. Comparing with 

neighboring regions, the values obtained in Bolikhamxay 
province are about 2.0 times greater than that obtained in 
Savannakhet province and approximate and slightly higher 
than that in neighboring provinces in Viet Nam such as 
Nghe An, Ha Tinh, and Quang Binh [17, 24]. However, 
as reported in Ref. [17], only a few soil samples were col-
lected in each province in Viet Nam. As shown in Table 3, 
Bolikhamxay is among the regions with radioactivity 
concentrations at medium levels compared to worldwide 
regions, but still much lower compared to Penang, Perak 
and Johor states in Malaysia [5, 10, 23]. The high activity 
concentrations in surface soils in several states in Malaysia 
are ascribed to the geological formations of these regions. 
In particular, the high activity concentrations in Penang 
state correspond mainly to some areas underlain by granite 
bedrocks. It is worth mentioning that the data reported 
for Perak state were taken at an old tin mining region in 
Kinta district. Whereas, the highest activity concentrations 
of 226 Ra and 232 Th in Johor state correspond to the soil 
samples at the locations with the tertiary geological forma-
tion. The highest concentrations of 40 K was obtained at the 
locations with the triassic geological formation.

Table 3   Activity concentrations 
of radionuclides in 
Bolikhamxay province 
in comparison with other 
worldwide regions

a Average activity concentration
b Range of activity concentration

Region Activity concentration (Bq kg−1) References

226Ra 232Th 40K

Bolikhamxay, Laos 44a (13–90)b 63 (11–93) 523 (38–999) This work
Savannakhet, Laos 22a (7–74)b 31 (4–114) 212 (14–906) [24]
Nghe An, Vietnam 55 75 438 [17]
Ha Tinh, Vietnam 45 63 488 [17]
Quang Binh, Vietnam 39 48 319 [17]
Southern Thailand 29 (4–122) 44 (6–170) 344 (5–1422) [20]
Perak, Malaysia 112 (12–426) 246 (19–1377) 277 (19–2204) [10]
Johor, Malaysia 162 (12–968) 261 (11–1210) 300 (12–2450) [23]
Penang, Malaysia 396 165 (16–667) 835 (87–1827) [5]
Xi’an, China 36 (28–49) 51 (44–61) 733 (640–992) [36]
Japan 33 (6–98) 28 (2–88) 310 (15–990) [1]
India 29 (7–81) 64 (14–160) 400 (38–760) [1]
Iran 28 (8–55) 22 (5–42) 640 (250–980) [1]
Turkey 21 (10–44) 25 (9–37) 299 (144–401) [35]
Denmark 17 (9–29) 19 (8–30) 460 (240–610) [1]
Switzerland 40(10–900) 25(4–70) 370 (40–1000) [1]
Poland 26 (5–120) 21 (4–77) 410 (110–970) [1]
Greece 25 (1–240) 21 (1–190) 360 (12–1570) [1]
Romania 32 (8–60) 38 (11–75) 490 (250–1100) [1]
Spain 32 (6–250) 33 (2–210) 470 (25–1650) [1]
Niger Delta, Nigeria 18 (11–40) 22 (12–46) 210 (69–530) [34]
World average 32 45 412 [1]
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Radium equivalent activity, absorbed gamma dose 
rate, annual effective dose equivalent, and external 
and internal radiological hazard indices

Radium equivalent activity

Since NORMs are distributed non-uniformly in soils, the 
Raeq is used to quantify the total activity. Figure 4 shows 
the calculated Raeq of 65 soil samples in Bolikhamxay 
province. The Raeq values are obtained in a wide range of 
39–279 Bq kg−1 . The average value is 175 ± 20Bq kg−1 , 
which is higher than the world average value by a factor 
of 2.0. The contributions of the activity concentrations 
of 226Ra, 232 Th and 40 K in the Raeq are about 25, 52 and 
23%, respectively. Analysis of the relationship between 
the Raeq and the activity concentrations of the radioac-
tive nuclides shows strong correlation of the quantities as 
shown in Fig. 5. The correlation coefficients ( R2 ) of the 
Raeq and the activity concentrations of 226Ra, 232 Th and 40 K 
are 0.7718, 0.9036 and 0.6339, respectively. The average 
Raeq of Khamkheut district, where the gold mining area 
locates, is 199 ± 22Bq kg−1 . This value is higher than the 
average value in the whole province by 14%. The highest 
Raeq of 279 ± 19Bq kg−1 is still lower than the safety limit 
of 370 Bq kg−1 [1].

Absorbed gamma dose rate

Table 4 presents the average and range of the calculated 
radiological hazard indices. Figure 6 displays the calcu-
lated D (nGy h−1 ) of the terrestrial gamma radiation in 65 

soil samples in Bolikhamxay. The values are obtained in 
the range of 18.5–130.6 nGy h−1 with the highest value of 
130.6 nGy h−1 determined at sample S41 in the gold min-
ing area in Khamkheut district. The average value of D in 
Bolikhamxay province is 81.6 ± 6.1 nGy h−1 , which is about 
1.38 times greater than the world average value as shown in 
Table 4. It is also noticed that the D value in the gold min-
ing area is about 16% higher than the average value in the 
province. The contributions of 226Ra, 232 Th and 40 K to the 
calculated D are 25, 48 and 27%, respectively.

Annual effective dose equivalent

The calculated AEDE values associated with the soil sam-
ples are obtained in the range of 0.02–0.16 mSv y−1 as 
shown in Fig. 7 and Table 4. The activity concentrations of 
226Ra, 232 Th and 40 K contribute about 25, 48 and 27% to the 
calculated AEDE, respectively. The highest AEDE value of 
0.16 mSv y−1 is obtained in the gold mining area in Kham-
kheut district. The average AEDE in Bolikhamxay province 
is 0.10 mSv y−1 , while the average value in the gold mining 
area is 0.12 mSv y−1 . These values are smaller than the world 
average value [1], and are much lower than the safety limit 
of 1.0 mSv y−1 for humans living in the area [33].

External and internal radiological hazards

Calculated Hex and Hin of the soil samples in Bolikhamxay 
province show that the Hex varies from 0.10 to 0.76 with 
the average value of 0.47. Whereas, the Hin index varies 
from 0.14 to 1.00 with the average value of 0.59. The 

Fig. 4   Radium equivalent 
activity in soil samples in 
Bolikhamxay province
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contributions of 226Ra, 232 Th and 40 K to the Hex are about 
25, 52 and 23%, and the contributions to the Hin are 41, 
41 and 18%, respectively. The values of Hex and Hin in 
all soil samples are less than unity. The results imply no 
significant effect to human health.

Table 5 compares the radiological hazards in surface 
soils in Bolikhamxay province with that of neighboring 
and worldwide regions. The radium equivalent activity 
and other radiological hazards obtained in Bolikhamxay 
are almost two times greater than that of Savannakhet 
province, and are approximate the values of the neigh-
boring provinces in Viet Nam (Nghe An and Ha Tinh) 
as displayed in Table 5. The values are among medium 
group, but much smaller than that in Penang, Perak and 
Johor states in Malaysia [5, 10, 23].

Conclusions

Natural radioactivity measurement and radiological hazard 
evaluation in surface soils in the gold mining area and sur-
rounding regions in Bolikhamxay province, Laos have been 
performed for establishing the baseline data in the middle 
of Laos. Soil samples were collected at 65 locations distrib-
uted widely in Bolikhamxay province, including 25 sam-
ples in the gold mining area in Khamkheut district and 40 
samples around populated areas and agriculture fields. The 
average activity concentrations of 226Ra, 232 Th and 40 K in 
Bolikhamxay province vary are 44.4 ± 3.2 , 63.2 ± 5.2 and 
523 ± 18Bq kg−1 , respectively. Whereas, the values in the 
gold mining area underlain mainly by intrusive and volcanic 
rocks are about 20% greater than that of the whole province. 

Table 4   Calculated radiological hazard indices in soil samples in Bolikhamxay province

District name Samples D AEDE Hex Hin

Average Range Average Range Average Range Average Range

Thaphabat S1–S5 86.1 56.7–116.2 0.11 0.07–0.14 0.50 0.34–0.66 0.63 0.45–0.80
Bolikhan S6–S10 83.3 41.5–129.8 0.10 0.05–0.16 0.48 0.24–0.75 0.64 0.33–1.00
Viengthong S11–S15 84.7 66.7–103.9 0.10 0.08–0.13 0.49 0.39–0.60 0.63 0.49–0.78
Khamkheut S16–S45 93.0 56.7–130.6 0.11 0.07–0.16 0.54 0.33–0.75 0.67 0.40–0.94
Pakxan S46–S49 44.8 18.5–87.0 0.05 0.02–0.11 0.26 0.11–0.51 0.34 0.14–0.67
Pakkading S50–S65 66.5 37.9–91.1 0.08 0.05–0.11 0.38 0.23–0.55 0.47 0.31–0.73
Gold mining area (S21–S45) 94.3 69.2–130.6 0.12 0.08–0.16 0.55 0.39–0.75 0.68 0.45–0.94
Average 81.6 18.5–130.6 0.10 0.02–0.16 0.47 0.10–0.76 0.59 0.14–1.00
World average 59 – 0.7 – – – – –
Limit – – 1.0 – 1.0 – 1.0 –

Fig. 7   Annual external effective 
dose rate in soil samples in 
Bolikhamxay province
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Compared to the world average values, the average activity 
concentrations in Bolikhamxay province are greater by fac-
tors of 1.3–2.0. The average Raeq is 175 ± 20Bq kg−1 , which 
is greater than the world average value by a factor of 2.0. The 
contributions of 226Ra, 232 Th and 40 K in the Raeq are about 
25, 52 and 23%, respectively. Strong correlation between the 
Raeq and the activity concentrations of 226Ra, 232 Th and 40 K 
has also been obtained. Associated radiological hazard indices 
such as D, AEDE, Hex and Hin are calculated as 81.6 nGy h−1 , 
0.10 mSv y−1 , 0.47 and 0.59, respectively, of which the activ-
ity concentration of 232 Th contributes about 40–50%. These 
values are still less than the safety limits. This means that there 
is no significant effect to humans living in the area.
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