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Abstract
The silica gel functionalized tris(2-aminoethyl)amine moiety (SG-TAEA-NH2) has been successfully used for capturing 
aqueous uranium ion by batch sorption. Various sorption experiments are performed using several variables such as pH, 
initial concentration, contact time, and temperature. These variables enable us to study the thermodynamic and kinetic 
of sorption, which in turn, leads to know more about the interaction and behavior of the uranium ion on the surface. The 
equilibrium of sorption can be achieved within the first t = 5–10 min upon the study conditions (Ci = 1 mg L−1, T = 25 °C, 
80 rpm, pHi = 7, and dosage = 2 g L−1). The sorption of U(IV) ion onto the surface of SG-TAEA-NH2 material. The sorption 
of U(VI) ion follows the Freundlich isotherm model (R2 > 0.999). The motivation of sorption is due to the chemisorption of 
U(IV) ion onto an amino-active site forming a complex in the surface, which is proven through the values of (1) the Dubinin–
Kaganer–Radushkevich sorption energy (ca. E = − 24 to − 36), (2) the pseudo-second-order kinetic model (R2 > 0.999) and 
(3) the spectrum of the FTIR. The rate constant and sorption capacities are calculated. Based on these promising results, 
we recommend using SG-TAEA-NH2 as an effective adsorbent and filter to remove uranium ion from the water up to 99%.
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Introduction

Jordanian governments tend to build nuclear reactors for 
peaceful purposes such as research purposes and to gener-
ate electricity. Uranium is considered the main source for 
the operation of nuclear plants, as a nuclear fuel in nuclear 
water, to generate energy. However, it is possible to produce 
amounts of the nuclear power reactor effluents containing 
uranium ion [1, 2]. When conditions are available and suf-
ficient to oxidize uranium element turns into enriched ura-
nyl ion (UO2

2+) [3–5]. Generally, uranium exists in solution 
as soluble UO2

2+ ion in the form of carbonate complexes 
(UO2)2CO3(OH)3

−, UO2CO3
◦, UO2(CO3)2

2−, UO2(CO3)3
4− and 

possibly (UO2)3(CO3)6
6− [6] and hydrolysis ion such as 

[UO2(OH2)5]2+ [5, 7, 8]. However, uranium and uranium 
ion can cause a threat for both the human body and environ-
ment because it has chemical toxicity and radioactivity. The 
presence of a high concentration of UO2

2+ ion in drinking 
water can accumulate in some human body organs such as 
kidney, liver, lung, and bone, causing serious risks like can-
cer disease and renal frailer (kidney damage) [9–14]. The 
EPA has set the level of safe contamination of uranium ion 
to be lower than 30 μg L−1. Thus, the concentration of ura-
nium ion in water (e.g. UO2

2+ ion) must be reduced to the 
recommended limit as well as selectively capturing within a 
safe framework structure. This research work can help us to 
remove the toxic uranium ions from nuclear water effluents 
as well as to re-concentrates it for another use.

Various techniques are used to remove UO2
2+ ion from 

water, including solvent extraction [15, 16], coagulation-fil-
tration [17], lime softening [18], electrolytic reduction [19], 
ion exchange [20–22], chemical precipitation [23], reverse 
osmosis [24], altra-filtration [25], membrane and electrody-
alysis [26, 27], chromatographic extraction [28], flotation 
[29] and adsorption. Different adsorbents are widely utilized 
for uranium (VI) ion from water [30]. The importance of 
utilizing different type of adsorbents is due to the efficiently, 
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flexibility, safely, economical visibility, simplicity and lower 
environmental health impact. There are pieces of examples 
such as mesoporous silica [31], nanoporous silica [32], syn-
thetic resin [33], covalent organic framework [34], chitosan 
and cross-linked chitosan [35, 36], polypyrole [37], compos-
ite adsorbents [38],silicon dioxide nanopowder [39], inor-
ganic oxides nanosheets or nanofibers [40, 41], biomasses 
[42–44], hydroxyapatite [45, 46], activated carbon [47–49], 
carbon nanotubes [50], graphene oxide and its amine-func-
tionalized composite [51], zero-valent iron [52, 53], polyam-
idoxime-functionalized colloidal particles [54], amino-func-
tionalized urea–formaldehyde framework mesoporous silica 
[55], titania nanoparticles covalently functionalized with 
simple organic ligands [56], porous magnetic N-doped Fe/
Fe3C at carbon matrix and its highly efficient uranium(VI) 
remediation [57], and iron oxides [58–61], hematite [62] 
oxine functionalized magnetic Fe3O4 particles [63] and 
activated silica gel [64]. Uranium extraction by sulfonated 
mesoporous silica derived from blast furnace slag [65] mont-
morillonite, [66] hydroxide/graphene hybrid material [67] 
Manganese Oxide coated zeolite [68] amidoxime function-
ality within a mesoporous imprinted polymer material [69], 
Tendurek volcanic tuff [70].

These methods do not succeed in terms of selectivity and 
high cost, as well as are not easy to handle. From another 
direction, the natural adsorbents and their biomasses are 
economically effective and easy to handle. Nevertheless, in 
terms of selectivity, it is not. To achieve higher selectivity 
in capturing uranium ions from water, the silica gel func-
tionalized organic or inorganic entities could be the best 
choice. Recently, the removal of uranium(VI) from water 
has been reviewed [71]. In terms of selectivity, the removal 
of uranium(VI) ion was investigated using amidoxime silica 
[72]. Other recent pieces of works on the market deal with 
utilizing silica gel functionalized organic or inorganic enti-
ties for capturing uranium ion from water. For example, sili-
cate nanotubes [64, 73, 74], ethylene-di-amine-tri-acetate 
[75], amine-modified silica gel [76], murexide [77], silica 
gel or silica-gel-bound macrocycles [78, 79] and organic or 
inorganic polymeric ion exchangers [80–83].

Recently, Huang et al. have used tris(2-aminoethyl)amine 
ligand to modify the surface of silica gel. Wherein, it shows 
a high affinity for selective sorption Cr(III), Cd(II), and 
Pb(II) ions from water [84]. Besides, our group has found 
a highly efficient of such SG-TAEA-NH2 material for cap-
turing of a single ion phase of the ferric ion [85]. As the 
continuity of this recent work, we are still studying the effi-
ciency of this adsorbent to capture a single phase of metal 
and heavy metal ions from water. It is important to indicate 
that we have not found any study related to the utilization 
of silica gel particles functionalized tris(2-aminoethyl)
amine moiety (SG-TAEA-NH2) for the sorption of aqueous 
UO2

2+ ion. Herein, we are still studying the efficiency of this 

adsorbent to capture a single phase of U(VI) ion from water. 
The novelty of this study lies in understanding the mecha-
nism of adsorption and the bonding of uranium ion into the 
surface of SG-TAEA-NH2. This can provide us a complete 
knowledge and view regarding the selectivity capturing ura-
nium ion from water, which can help us to understand the 
sorption mechanism in case of the binary ions phase of the 
next study. In this contribution, we use SG-TAEA-NH2 solid 
particles for capturing and sorption the aqueous UO2

2+ ion 
from water. The distribution of uranium(VI) ion between the 
aqueous phase and the SG-TAEA-NH2 solid phase can be 
investigated. The adsorption data of the various experiments 
can be analyzed by adsorption kinetics and isotherm models.

Materials and methods

Preparation of silica gel functionalized tris(2‑aminoethyl)
amine moiety (SG‑TAEA‑NH2)

The silica gel functionalized tris(2-aminoethyl)amine moiety 
(SG-TAEA-NH2) was prepared according to the reported lit-
erature [84]. A summary of the preparation method has been 
recently published [85]. The surface proposed structure of 
the tris(2-aminoethyl) amine-functionalized silica gel (SG-
TAEA-NH2) is demonstrated in Scheme 1.

Reagents

The analytical grade uranyl acetate (UO2(CH3COO)2·2H2O) 
was provided from Polysciences GmbH. Other reagents, the 
preparation of the stock solution (100 mg L−1) of UO2

2+ 
ion, and the methodology of the experiments have been 
reported [85]. Arsenazo-III (3,6-bis[(2-arsonophenyl)azo]-
4,5-dihydroxy-2,7-naphthalenedisulfonic acid) (Fluka Che-
mie, Buchs, Switzerland). Perchloric acid (70%) purchased 
from Sigma-Aldrich.

Apparatus and instruments

All absorbance measurements of the electronic spectra 
were made on A Shimadzu UV/Vis-1800 spectrophotom-
eter (Shimadzu, Tokyo, Japan) with 1-cm quartz cells was 
used for measurement of the absorbance. The concentra-
tion of U was investigated by a spectrophotometric method 
using arsenazo(III) as a chromogenic reagent. Arsenazo III 
(Sigma-Aldrich): (0.07% w/v) solution was prepared in 3 M 
HClO4.

Uranium standard solution (1000  mg  L−1 U (w/v)): 
This solution can be prepared by dissolving uranyl nitrate 
hexahydrate (Riedel-de-Haen, Switzerland) in 3 M HClO4. 
In a 10 ml standard volumetric flask, 2 ml of the sample 
containing U(VI) and 3 ml of the 0.07% (w/v) arsenazo III 
solutions were mixed. The contents of the flask were made 
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up to the mark with 6 M HClO4 solution to ensure a final 
concentration of 3 M for HClO4. After shaking the sample, 
the absorption can be measured against the reagent blank at 
651 nm [86].

Equilibrium studies

The adsorbed amount of the UO2
2+ ion onto the SG-TAEA-

NH2 at equilibrium and in a specific t is qe and qt (mg g−1), 
which are calculated by Eqs. 1 and 2, respectively.

where Ci, Ce, and Ct are the initial, the equilibrium, and the 
final concentration at a specific time of UO2

2+ ion in the 
aqueous solution (mg L−1), respectively.

The dosage (S) of SG-TAEA-NH2 can be calculated by 
Eq. 3:

(1)qe =
(Ci − Ce)

S

(2)qt =
(Ci − Ct)

S

where ν and m are the initial volume of UO2
2+ ion solution 

and the mass of SG-TAEA-NH2 adsorbent, respectively.
The percentage removal of uranium ion can be calculated 

by Eq. 4:

The distribution ratio (Kd) can be clarified in Eq. 5:

wherein, the relationship between the adsorption percent-
ages and Kd (L g−1) is presented in Eq. 6:

(3)S =
m

v

(4)%Removal ofU(VI) ion =
Ci − Ce

Ci

× 100%.

(5)Kd =
Amount ofU(VI) ion in SG - TAEA - NH2

Amount ofU(VI)ion in solution
×
1

S
.

(6)% ofAdsorption =
1000Kd

Kd +
1

S

.

Scheme 1   The proposed struc-
ture of the tris(2-aminoethyl) 
amine-functionalized silica gel 
(SG-TAEA-NH2) [85]
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Batch sorption experiment

The sorption performance of SG-TAEA-NH2 material 
toward the sorption of the uranium (VI) ion was tested by 
using the batch system at specific T = 35 °C (± 1 °C) with 
changing in Ci (1, 5, 10, and 20 mg L−1) or at specific Ci = 10 
with changing T (25, 35, 45, and 55 °C). The closed sorption 
system containing 2 g L−1 of SG-TAEA-NH2 was shaken 
vigorously (rpm of the thermostatic mechanical shaker = 80) 
of up to 180 min. Afterward, the supernatant solution must 
be filtered by using filter paper (Whatman No. 41). The fil-
trate solutions can be analyzed by recording the average of 
at least triplicate measurements as mention in our reported 
experiment [85].

Result and discussion

FT‑IR spectra

The silica gel functionalized tris(2-aminoethyl)amine moi-
ety (SG-TAEA-NH2) are mainly composed of silica gel 
and organic entities, which contain a variety of functional 
groups. The main functional groups in the FTIR spectrum are 
Si–O–Si and CH2, primary and secondary NH2, which have 
been recently discussed [85]. After heavy uranium (VI) ion 
sorption, some changes can be observed in the FTIR spectrum 

of SG-TAEA-NH2 material. Therefore, the FTIR spectra can 
be also used as evidence of the chemisorption and complex 
formation in the surface by controlling the shift in the stretch-
ing frequency of the primary and secondary NH2. In par-
ticular, Fig. 8 shows the bending vibration of primary amine  
(δ N–H

primary) at 1594.4 cm−1, which is shifted by ∆δ = 69 cm−1 
in contrast to the SG-TAEA-NH2 (δNz–H

primary = 1525 cm−1) 
before adsorption. The stretching (νN–H

primary) is 3321 cm−1, 
which is cannot be observed due to the weakness of peak trans-
mittance. These changes and shifts in peak positions suggest 
the presence of the chemical interaction and a possible compl-
exation reaction between the uranium(VI) ion and NH2 moiety 
in the SG-TAEA-NH2 surface [87]. These results are consistent 
with the mechanisms proposed for the removal of iron ion [85] 
(Fig. 1).

Effect of pH

Figure 2 shows that the sorption of uranium (VI) ion by the 
SG-TAEA-NH2 matrix increase dramatically with increasing 
pH to the maximum 99% at pH = 7–8, as no further increase 
above this pH value. This result matches the reported one 
regarding the adsorption of uranium on the amidoxime res-
ins [88], modified carbon nanotubes [89], and polyacrylhy-
droxamic acid sorbent [90].

Fig. 1   ATR-IR spectrum for the SG-TAEA-NH2-U(VI) after 20 min of sorption Ci = 10 mg L−1 at 25 °C
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The pH has a significant role in the sorption and binding 
of U(VI) ion with amino-entity in the inorganic silica gel 
of the SG-TAEA-NH2 surface. Furthermore, the pH effects 
in both the stability of the U(VI) ion (complex species) and 
the SG-TAEA-NH2 surface morphology (protonation of the 
amino-entity). Therefore, to understand the effect of pH on 
the sorption behavior of U(VI) ion onto the SG-TAEA-NH2 
surface, we have studied the sorption using the basic, neu-
tral, and acidic medium.

In an acidic medium (pH < 7), there is a high concen-
tration of H+ cation, which competes UO2

2+ ion (pH < 5) 
for binding in the amino-entity active sites. However, the 
functional amino-entity is protonated to be –NH3+. This 
can block and shield the attraction of di-cationic UO2

2+ ion 
toward the positively charged surface. However, the com-
petition of proton (H+) cation for the amino-entity active 
sites decreases by increasing the pH (1 > pH > 7). Wherein, 
this can enhance the interaction and sorption of U(VI) ion 
onto the SG-TAEA-NH2 surface forming SG-TAEA-NH2…
U complex.

In a basic medium (pH > 7), uranium (VI) ion gradually 
hydrolyzed to form a mono-cationic complex of UO2(OH)+. 
The mono-cationic complex has less affinity of interaction 
with amino-entity on the surface than the di-cationic ura-
nyl ion (UO2

2+: pH < 5). Therefore, the sorption affinity of 
UO2(OH)+ cation with the SG-TAEA-NH2 matrix at basic 
is less than acidic and neutral medium. This agrees with the 
reported work regrading the sorption of uranium (VI) ion 
from nuclear industrial effluent by using nanoporous silica 
adsorbent [91]. At 7 ≤ pH ≤ 11, Uranium (VI) can be found 

in the form of UO2(OH)2·H2O neutral molecule [92], and 
wood powder and wheat straw [93].

The acidic medium can affect directly the SG-TAEA-
NH2 matrix forming a shield of positive charges against 
the sorption of di-cationic UO2

2+ ion. From another direc-
tion, the basic medium can decrease this positive shield on 
the SG-TAEA-NH2 matrix, but forming a mono-cationic 
UO2(OH)+The acidic medium can afect directly complex. 
These two opposite factors guiding us to conclude that the 
capturing of uranium (VI) is not favorable in both acidic and 
basic medium to achieve the maximum removal. Therefore, 
we have chosen pH = 7–8 as an optimum pH for capturing 
of uranium (VI) onto the SG-TAEA-NH2 matrix.

Effect of initial concentration

The batch sorption technique is used for all experi-
ments at 35 (± 1  °C). Different initial concentrations 
of UO2

2+ ion (Ci = 1, 5, 10, and 20 mg L−1) are used 
of up to 3.0 h. All other sorption parameters are kept 
constant (e.g. pHi = 7, T = 25 °C and 2 g L−1 dosage of 
SG-TAEA-NH2 materials). Figure 3 shows the effect of 
initial concentration, wherein the percentage of capturing 
uranium (VI) ion from solution decreases with increas-
ing the initial concentration of uranium (VI) ion in solu-
tion. For example, the maximum percentage of capturing 
uranium (VI) ion achieve 98% at Ci = 1 mg L−1, while it 
is 93% at Ci = 20 mg L−1. This is due to the availability 
the sufficient amino-active sites into the SG-TAEA-NH2 
matrix. For a given SG-TAEA-NH2 particle dose, the total 

Fig. 2   The effect of pH on the 
capture of uranium (VI) ion 
from water by using Silica Gel 
functionalized tris(2-aminoe-
thyl)amine moiety, T = 25  C, 
dosage = 2 g L−1, 80 rpm, and 
Ci = 10 mg L−1, t = 5 min
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number of amino-active sites available is fixed; wherein, 
the fixed amount adsorb almost the equal amount of ura-
nium (VI) ion. This results in a decrease in the removal 
of uranium (VI) ion inconsequent to an increase in the 
initial uranium (VI) ion concentration. Furthermore, due 
to the increasing of competing of U(VI) cation onto the 
active sites of the SG-TAEA-NH2 matrix. This agrees 
with what reported previously regarding the utilization 
of wood powder and wheat straw [93].

Effect of temperature

The effect of temperature is studied over a variant T = 25, 
35, 45, and 55 °C. Wherein, 50 mL of 10 mg L−1 of UO2

2+ 
ion and 2 g L−1 of TAEA-SiO2 solid materials were shaken 
vigorously and controlled through a period of up to 3 h 
and pHi = 7. The percentage of capturing uranium (VI) ion 
increase with the increase of temperature as shown in Fig. 4. 
The maximum percentage of capturing uranium (VI) ion is 
99% at T = 55 °C, while it is 93% at T = 25 °C. This is in line 

Fig. 3   The effect of initial con-
centration (Ci) on the capture of 
uranium (VI) ion from water by 
using Silica Gel functionalized 
tris(2-aminoethyl)amine moiety, 
T = 25 °C, dosage = 2 g L−1, 
80 rpm, and Ci = 1, 5, 10 and 
20 mg L−1, pH = 7, t = 5 min
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with what has been recently published regarding the sorp-
tion of uranium(VI) ion from aqueous solutions by using 
amidoxime-silica [72]. This indicates the endothermic sorp-
tion reaction and capturing process. We notice that no highly 
significant effect of temperature has appeared. Therefore, 
from the economic view, we use T = 25 °C for all experi-
ment batches.

Thermodynamic isotherm

The sorption isotherms is a function of the uranium (VI) ion 
amount adsorbed into the SG-TAEA-NH2 surface. To inves-
tigate the distribution of uranium(VI) ion between the aque-
ous phase and the SG-TAEA-NH2 solid phase, the adsorp-
tion data were analyzed by using the Langmuir [94] and the 
Freundlich [95] adsorption isotherms. The isotherm experi-
ments were conducted by using 1, 5, 10, and 20 mg L−1 of 
UO2

2+ ion solutions. All other sorption parameters are kept 
constant for each experiment (e.g. pHi = 7, T = 25 °C and 
2 g L−1 dosage of SG-TAEA-NH2 material.

The Langmuir isotherm model of the uniform monolayer 
adsorption onto a surface can be linearized as given by 
Eq. 7:

where qmax is the adsorption capacity and the maximum 
capturing of uranium (VI) ion per unit dosage of SG-TAEA-
NH2 material (mg g−1); and the energy of adsorption b is 
Langmuir constant (L g−1), which is exponentially propor-
tional to the heat of adsorption and the affinity of binding 
sites. The linear plot of (Ce/qe) versus the equilibrium con-
centration (Ce) gives a straight line. The slope of the plot 
gives 1

qmax

 , while the intercept of the plot gives 1

qmaxb
.

The Freundlich model represents the heterogeneous sorp-
tion of U(VI) ion on the surface of SG-TAEA-NH2 mate-
rial followed by a condensation effect resulting from strong 
U(VI)-U(VI) ions interaction. The linear form of the Freun-
dlich model is also given by Eq. 8:

Where qe represents the amount adsorbed U(VI) ion per 
amount of SG-TAEA-NH2 material at the equilibrium 
(mg  g−1), Ce represents the equilibrium concentration 
(mg L−1), Kf (mg g−1) and n is the sorption capacity of 
the SG-TAEA-NH2 material and the intensity of sorption, 
respectively. The plot of the ln qe versus lnCe gives the slope 
(= 1

n
 ) and intercept (= ln Kf ). The higher 1

n
 the value indicates 

the more favorable of the chemisorption. The Freundlich 
adsorption correlation coefficients (R2), Kf and n are pre-
sented in Table 1.

(7)
Ce

qe
=

1

qmaxb
+

1

qmax
Ce

(8)ln qe = lnKF +

(

1

n

)

lnCe

Figures 5 and 6 exhibit Freundlich and Langmuir plots, 
respectively, for the sorption of U(VI) cation into the SG-
TAEA-NH2 surface. The Langmuir sorption isotherm gives 
R2 < 0.800, which measure a bad goodness-of-fit for the 
experimental results. While the results reveal that the Freun-
dlich sorption isotherm is the best model (R2 > 0.99). From 
the chemical point of view regarding the behavior of the 
complex reaction system on the surface, it should behave like 
a monolayer behavior following the Langmuir sorption iso-
therm model. Nevertheless, what we found is the opposite. 
The suggestion reason is that the SG-TAEA-NH2 surface 
does not have complete coverage by TAEA-NH2 entities. 
With this visualization, there is a small part of (≡ Si‒O–H) 
on the surface of silica gel still active, wherein most of the 
surface is covered with TAEA-NH2 entities. Through the 
sorption process, part of the U(VI) ion is adsorbed by ≡ Si‒
O–H entities and other bulk ions captured by TAEA-NH2 
entities. For this, we find that adsorption is heterogeneous 
and follows Freundlich sorption isotherm. Nearly similar 
results have been reported [85, 96]. Wherein, the hetero-
geneous layer of uranium (VI) ion is formed on the surface 
of powdery aerobic activated sludge including carboxyl (‒
COOH), Hydroxyl (‒OH), Amino (‒NH2) achieving Fre-
undlich isotherm [96]. Besides, our results are not in good 
qualitatively agreement with those found from adsorption 
of the iron ion with the SG-TAEA-NH2 material [85]. The 
reason may be due to the interaction affinity of iron and ura-
nium with SG-TAEA-NH2 material and ≡ Si‒O–H entities 
in the acidic and neutral medium, respectively.

The thermal parameters ΔH and ΔS can be calculated by 
using Vant Hoff linear Eq. 9:

The linear plot of the Vant-Hoff ( ln kc vs 1
T
 ) gives the 

slope = H
o

R
 and the intercept = S

o

R
 (see Fig. 7 and Table 2).

T h e  p o s i t i ve  va l u e  o f  e n t h a l py  ch a n ge 
(ΔH = + 48.71422 kJ mol−1) suggests the possibility of a 
strong binding between the UO2

2+ ion and the active site on 
the surface of the SG-TAEA-NH2 as an endothermic pro-
cess. That means, the positive value of ∆H° further con-
firms the endothermic nature of the sorption. The positive 
value of entropy change (ΔS = + 0.1846623 kJ mol−1 K−1) 

(9)ln kc =
ΔSo

R
−

ΔHo

RT

Table 1   Freundlich constants of K
f
 and n 

T (°C) n Kf R2

25 0.49766 45.7641 0.9999
35 1.05274 21.1640 0.9947
45 0.31931 65.1635 0.9963
55 0.46034 55.4954 0.9987
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reflects a good affinity of uranium (VI) ion towards the 
SG-TAEA-NH2 surface and increases the randomness at 
the solid–liquid interface during the sorption. At high tem-
perature, the water molecules surrounded uranium (VI) 
ion decrease; this leads to increase the water molecules 
freedom. From other directions, less positive ΔS is due 
to the decreasing number of free molecules to add in on 
particle molecule of SG-TAEA-NH2-U6+, they were two 
fragments and be one fragment.

The spontaneity of sorption can be measured by the Gibbs 
free energy (ΔG). Based on obtaining isotherm results, the 
best choice to calculate ΔG is Eq. 10:

The calculated ΔG are found to be a negative in sign 
(ΔG < 0) based on the changing in temperature values (25, 
35, 45, and 55 °C, see Table 2). This indicates the sponta-
neous interaction of uranium ion into the SG-TAEA-NH2 
surface as shown in Fig. 8. Furthermore, ΔG° values are 

(10)G = ΔH − TΔS

Fig. 5   Frunedlich isotherm on 
the sorption of uranium (VI) 
ion by using Silica Gel particles 
functionalized tris(2-aminoe-
thyl)amine moiety T = 25, 35, 
45, and 55 °C, dosage = 2 g L−1, 
80 rpm, and Ci = 1, 5, 10, and 
20 mg L−1, t = 10 min, pH = 7.0
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Fig. 6   Langmuir isotherm on 
the capture of uranium (VI) ion 
from water by using Silica Gel 
functionalized tris(2-aminoe-
thyl)amine moiety, T = 25, 35, 
45, and 55 °C, dosage = 2 g L−1, 
80 rpm, and Ci = 1, 5, 10, and 
20 mg L−1, t = 10 min, pH = 7.0
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found more negative and higher than − 40 kJ/mol, which 
indicates a chemisorption process.

The DKR isotherm is reported to be more general than 
the Langmuir and Freundlich isotherms. It helps to deter-
mine the apparent energy of adsorption. The characteristic 
porosity of adsorbent toward the adsorbate and does not 
assume a homogenous surface or constant sorption potential 
[97]. The Dubinin–Kaganer–Radushkevich (DKR) model 
has the linear form as in Eq. 11:

Fig. 7   The plot of ln Kc versus 
I/T regarding the capturing of 
uranium (VI) ion by using Silica 
Gel particles functionalized 
tris(2-aminoethyl)amine moiety, 
t = 2 min, dosage = 2 g L−1, 
80 rpm, and Ci = 10 mg L−1, 
pH = 7.0
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Table 2   Thermodynamic parameters of capturing U(VI) ion by SG-
TAEA-NH2 material

T (C) ∆G (kJ mol−1) ∆H (kJ mol−1) ∆S (kJ mol−1 K−1)

25 − 63.4283 + 48.71422 + 0.1846623
35 − 81.8945
45 − 100.361
55 − 118.827

Fig. 8   Plot of The value of 
standard Gibbs free energy 
change ( G) versus temperatures 
(T = 25, 35, 45, and 55 °C) for 
capturing of uranium (VI) ion 
from water by using the SG-
TAEA-NH2
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wherein qe is DKR monolayer capacity (mg  g−1), β is 
adsorption energy constant, qmax is the amount of U(VI) 
ion adsorbed per unit weight of SG-TAEA-NH2 material 
(mg g−1), and ε is the Polanyi potential. The Polanyi poten-
tial can be calculated by using Eq. 12:

wherein Ce is the equilibrium concentration of U(VI) ion in 
aqueous solution (mg L−1), R is the gas constant, T is the 
temperature (K).

The sorption energy E can be calculated by Eq. 13:

wherein The Dubinin–Kaganer–Radushkevich sorption 
energy E can confirm the adsorption mechanism as follow 
[98]:

E (kJ mol−1) Indication

− 1 to − 8 Physisorption
− 8 to − 16 Ion-exchange
− 20 to − 40 Chemisorption

The slope of the plot of lnqe versus ε2 gives β (mol2 J−2) 
and the intercept yields the sorption capacity, qmax as shown 
in Fig. 9. The values of β and E, as a function of temperature, 

(11)ln qe = ln qmax − ��2

(12)� = RT ln

(

1 +
1

Ce

)

(13)E = −
1

√

−2�

are listed in Table 3 with their corresponding value of the 
correlation coefficient, R2. The E value obtained shows that 
the sorption follows the chemisorption mechanism.

Adsorption kinetic

Effect of contact time

To study the kinetic models of such a sorption system, it is 
worth describing the sorption rate of aqueous U(VI) ion as a 
function of time-based (1) changing the initial concentration 
or (2) changing the Temperature.

Figure 10a–c show the effect of contact time onto the 
sorption process that controlled by changing initial concen-
tration, temperatures, and pHi. In all cases, we find that the 
removal rate of uranium (VI) ion is high in the first 5 min. 
This is due to the availability of the uncovered surface area 
of the SG-TAEA-NH2 surface. During the next 5 min, the 
sorption equilibrium starts yielded a maximum removal of 
99% (approx.). This finding is found better than what has 
been recently published regarding the removal of the U(IV) 

Fig. 9   Dubinin–Kaganer–
Radushkevich isotherm on 
the capture of uranium (VI) 
ion from water by using Silica 
Gel particles functionalized 
tris(2-aminoethyl)amine moiety, 
T = 25, 35, 45, and 55 °C, 
dosage = 2 g L−1, 80 rpm, and 
Ci = 1, 5, 10, and 20 mg L−1, 
t = 10 min, pH = 7.0
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Table 3   Dubinin–Kaganer–Radushkevich sorption parameters

T β E R2

25 − 8.43 − 24.3541 0.9809
35 − 29.047 − 13.12 0.9803
45 − 3.7531 − 36.4998 0.9945
55 − 7.4985 − 25.8225 0.9913
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ion by using an NH2-functionalized ordered silica [99] and 
amidoxime silica [72].

Sorption kinetic model

The rate constant and rate-determining step of the reaction 
can be measured by using the sorption kinetic models. In this 
respect, two commonly kinetic models of the sorption are 
used. Wherein, the pseudo-first-order kinetic model and its 
integral can be expressed by Eq. 14 [100, 101]:

where qe and qt (mg g−1) are the amounts of adsorbed U(VI) 
ion at equilibrium and at the time (t), respectively, k1 (min−1) 
is the pseudo-first-order rate constant, and t (min) is contact 
time. The linear plot of ln(qe − qt) versus t provides the slop 
of the k1 and the intercept of ln qe.

Besides, the pseudo-second-order kinetic model and its 
integral form are expressed by Eq. 15 [102, 103]:

(14)ln(qe − qt) = ln qe − k1t

Fig. 10   a The effect of contact 
time controlled by changing 
initial concentration on the 
capture of uranium (VI) ion 
from water by using Silica Gel 
functionalized tris(2-aminoe-
thyl)amine moiety (T = 25 °C, 
dosage = 2 g L−1, 80 rpm, and 
Ci = 20, 10, 5, and 1 mg L−1, 
pH = 7). b The effect of contact 
time controlled by changing 
temperatures on the capture of 
uranium (VI) ion from water by 
using Silica Gel functionalized 
tris(2-aminoethyl)amine moiety 
(T = 25, 35, 45, and 55 °C, 
dosage = 2 g L−1, 80 rpm, and 
Ci = 10 mg L−1, pH = 7). c The 
effect of contact time controlled 
by changing pH on the capture 
of uranium (VI) ion from water 
by using Silica Gel func-
tionalized tris(2-aminoethyl)
amine moiety (T = 25 °C, 
dosage = 2 g L−1, 80 rpm, and 
Ci = 10 mg L−1) 0
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where k2 is the rate constant of the pseudo-second-order 
kinetic model (g mg−1 min−1). The value of k2 and qe can be 
determined from the intercept and slop that can be generated 
by a plot of t

qt
 versus t.

(15)
t

qt
=

1

k2q
2
e

+
t

qe

Firstly, the kinetics sorption describes the removal rate of 
aqueous U(VI) ion based on the changing of the initial con-
centration (Ci = 1, 5, 10, 20 mg L−1) at constant other param-
eters (pHi = 7, 80 rpm, dosage = 2 g L−1 of SG-TAEA-NH2 
surface and T = 25 °C). Figures 11 and 12 show the pseudo-
second-order kinetic and pseudo-first-order kinetic models, 
respectively. The pseudo-first-order kinetic model has the 
coefficient of determination value (R2), which is less than 
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Fig. 11   Pseudo-second order 
model related to the capture of 
uranium (VI) ion from water by 
using Silica Gel functionalized 
tris(2-aminoethyl)amine moiety, 
T = 25 °C, dosage = 2 g L−1, 
80 rpm, and Ci = 20, 10, 
5 mg L−1, pH = 7.0
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0.020. While, the pseudo-second-order kinetic model has a 
correlation coefficient R2 = 1.0, which approve the results.

Secondly, the kinetic sorption describes the removal 
rate of aqueous U(VI) ion as a function of changing the 
temperatures (T = 25, 35, 45 and 55 °C) at constant other 
parameters (pHi = 7, 80 rpm, dosage = 2 g L−1 of SG-TAEA-
NH2 surface and Ci = 10 mg L−1). The pseudo-second-order 
kinetic model has a linear plot with R2 > 0.995 as shown 

in Fig. 13. While the pseudo-first-order kinetic model has 
the coefficient of determination value R2 < 0.026. Therefore, 
the kinetic adsorption data were satisfactorily fitted to the 
pseudo-second-order model.

Based on kinetic adsorption experiments as a function of 
changing the temperatures or initial concentration vs. contact 
time, the kinetic sorption data indicate that the pseudo-sec-
ond-order kinetic model can perfectly describe the sorption 

Fig. 12   Pseudo-first order 
model related to the capture of 
uranium (VI) ion from water by 
using Silica Gel functionalized 
tris(2-aminoethyl)amine moiety, 
T = 25 °C, dosage = 2 g L−1, 
80 rpm, and Ci = 20, 10, 
5 mg L−1, pH = 7.0
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Fig. 13   Pseudo-second order 
model related to the capture of 
uranium (VI) ion from water by 
using Silica Gel functionalized 
tris(2-aminoethyl)amine moiety, 
T = 25, 35, 45 and 55 °C, 
dosage = 2 g L−1, 80 rpm, and 
Ci = 10 mg L−1, pH = 7.0
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reaction of uranium ion onto SG-TAEA-NH2 surface. This 
means that the U(VI) ion can be chemi-adsorbed by the 
sorption sites onto the SG-TAEA-NH2 surface as shown in 
Schemes 2 and 3. We use tow experiment functions to be 
further proof that adsorption exhibits chemisorption behav-
ior. The good matching between the experimental and the 
calculated (qexp and qcal) support the finding results of kinetic 
models as listed in Tables 4 and 5. This result was found 
matching with the reported one by utilizing amidoxime silica 
[72] and adsorbing iron by SG-TAEA-NH2 material [85].

Figure  14 shows the plot of the Arrhenius equation 
( ln k2 versus

1

T
 as in Eq. 16), which gives the slop (= −Ea

R
 ) 

and intercept ( lnA ). Wherein, the Ea and A is the activation 
energy and collision frequency, respectively.

T h e  c a l c u l a t e d  a c t i v a t i o n  e n e r g y 
(Ea = − 192.144854 kJ mol−1) has a negative sign. In this 
case, it is possible. There are attractive forces between the 
amino groups in the surface and uranium ion, there are no 

(16)ln k2 = lnA −
Ea

RT

barrier, or the barrier is submerged. This means that barrier-
less or there are complexes on the potential energy surfaces 
between the U(VI) ion and the surface of the adsorbent.

The Weber-Moris intraparticle diffusion model regarding 
the sorption of the U(VI) cation into the SG-TAEA-NH2 
surface can be discussed through the plot of the qt vs. 

√

t as 
mention in Eq. 17 [104]:

wherein kint is the intraparticle diffusion rate constant 
(mg g−1 min

1

2 ). The straight line of the plot confirms intra-
particle diffusion sorption. A plot presents multi-linearity, 
which indicates that three steps occur. These are the external 
surface adsorption (0–2 min), intraparticle diffusion (3 up 
to 20 min), and final equilibrium stage (t > 20 min). Herein, 
we could say that the intraparticle diffusion could be the 
rate-controlled (kint = 0.0479 mg g−1 min

1

2 and R2 = 0.8031, 
see Fig. 15). This finding matches our recent study related 
to using SG-TAEA-NH2 material for the sorption of iron ion 
from water [85].

(17)qt = kint

√

t + C

Scheme 2   Reaction progress of sorption uranium (VI) ion onto the SG-TAEA-NH2 surface
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Conclusion

Capturing of uranium (VI) ion from water by the silica 
gel functionalized tris(2-aminoethyl)amine moiety (SG-
TAEA-NH2) is effective in the pH range of 7–9. The 
capturing percentage increases by increasing the temper-
ature and decreasing the initial concentration. The maxi-
mum capturing is 99% based on the sorption parameters 

of T = 25 °C, dosage = 2 g L−1, 80 rpm, and low initial 
concentration, t = 5 min. The sorption equilibrium can 
be reached within 5–10 min in maximum. The obtained 
experimental data have excellent fits within the Freun-
dlich isotherm (R2 > 0.999) proving that the surface of SG-
TAEA-NH2 is un-uniform. The kinetic sorption data fits 
very well with the pseudo-second-order model indicating 
chemisorption behavior. Depending on the logic of coor-
dination chemistry, sorption isotherm, FTIR, and kinetic 
model, the metal complex spheres can be formed sponta-
neous, favorable on the surface through the chemical inter-
action between the primary amine active sites (–NH2) and 
U(VI) ion as heterogonous-layers. The new finding is the 
utilization of SG-TAEA-NH2 as a good potential material 
for the removal of uranium ion from water.
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Table 4   The parameters of the 
pseudo-Second order kinetic 
model

R2 qe, Calc (mg g−1) qe, Exp (mg g−1) k2 (g mg−1 min−1) Ci = mg L−1

1.00 0.490 0.500 833.3333 1
1.00 2.485 2.501 4.844608 5
1.00 4.999 5.000 2.631579 10
1.00 9.960 9.980 0.687679 20

Table 5   The parameters of the pseudo-second order kinetic model

R2 qe, Calc (mg g−1) qe, Exp (mg g−1) k2 
(g mg−1 min−1)

T (°C)

1.0000 4.995 5.000 2.631579 25
0.9954 4.980 5.079 0.11269 35
0.9997 4.980 5.020 0.492943 45

5.018 0.514506 55
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