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Abstract
Reference materials (RMs) are very important for method development and validation. In order to quickly and reliably select 
the suitable RM for validating the determination of plutonium (Pu), we reviewed the RMs of Pu and prepared extensive Pu 
datasets in this study. After data treatment and a series of statistical analyses, we obtained the statistical values of 238−241Pu 
activity and Pu isotopic ratio for RMs. The statistical value of 239+240Pu activity is consistent with the certified value, indi-
cating these measured values are highly reliable. We anticipate that, after further independent work at different laboratories, 
the statistical values of the Pu isotopic ratios are very important to validate analysis methods and calibrate the mass bias for 
environmental Pu analysis.

Keywords Reference material · Plutonium · Pu isotopic ratios · Environmental samples · Statistical value

Introduction

Plutonium (Pu), an anthropogenic radionuclide, has been 
intentionally or accidentally introduced into the environ-
ment since the first nuclear weapons tests in the mid-1940s 
through various human activities including: releases in acci-
dents (e.g., Chernobyl and Fukushima [1, 2]); discharges 
from reprocessing plants [3–5]; and global fallout from 
above-ground nuclear weapons testing [6, 7]. Because of 
their high chemical toxicity, long half-lives and internal radi-
ation threat, the determination of concentrations of Pu iso-
topes in the environment is of great important. Meanwhile, 
Pu isotopes in the environment have been widely used as 

tracers to study environmental processes [8], such as water 
circulation and scavenging efficiency in the oceans [9–13]. 
All such investigations require highly sensitive analytical 
techniques to measure Pu isotopic compositions [14], pro-
ducing high quality data sets.

Initially, α-spectrometry was used as the main analyti-
cal tool to determine Pu concentration in the environment 
for the alpha emitting isotopes (238Pu, 239Pu and 240Pu) [15, 
16]. However, α-spectrometry is burdened with several 
disadvantages such as requiring a large volume of sample, 
laborious pretreatment and long counting time ranging from 
days to several weeks. Also, α-spectrometry has no ability 
to distinguish 239Pu and 240Pu due to their nearly identical 
α radiation energies (5.16 MeV and 5.17 MeV, respec-
tively). Thus, α-spectrometry cannot provide information 
on the 240Pu/239Pu atom ratio, which hampers Pu tracing 
studies of environmental processes. The 240Pu/239Pu atom 
ratio is related to the Pu contamination source because Pu 
isotopic ratios vary with reactor type, nuclear fuel burn-up 
time, neutron flux and energy, and for fallout from nuclear 
detonations, they vary with weapon type and yield [17]. 
The average 240Pu/239Pu atom ratio of global fallout is con-
sidered to be 0.180 ± 0.014 [18]. Weapons-grade Pu has a 
lower 240Pu/239Pu atom ratio (0.01–0.07) because of its high 
239Pu purity [19, 20]. Reported 240Pu/239Pu atom ratios of 
reactor-grade Pu vary from 0.2 to 1.0 depending on the fuel 
burn-up, for example, they are 0.30–0.38 from Fukushima 
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accident fuel [2, 21] and 0.42–0.52 from Chernobyl accident 
fuel [22–25].

In the past 30 years, thanks to the rapid development of 
mass spectrometry, various analytical methods for Pu deter-
mination have been established in environmental samples, 
such as thermal ionization mass spectrometry (TIMS [4, 
5, 26]), accelerator mass spectrometry (AMS [27]), induc-
tively coupled plasma mass spectrometry (ICP-MS [11, 
28–30]) and multi-collector inductively coupled plasma 
mass spectrometry (MC-ICP-MS [12, 13, 31]). Compared 
to α-spectrometry, mass spectrometry offers advantages for 
Pu determination, including high sensitivity, a small sam-
ple volume requirement and a capability to provide accu-
rate information about the 240Pu/239Pu atom ratio. Certainly, 
alpha spectrometry cannot be totally replaced by ICP-MS 
methods, for example, 238Pu can only be measure by alpha 
spectrometry at the present. The standards of Pu isotopes did 
not catch up with the developments in mass spectrometric 
instrumentation and measurement methodologies for the last 
30 years [32]. In order to produce consistent and reliable 
results, laboratories must implement an appropriate quality 
control/quality assurance (QC/QA) program in which their 
performance can be monitored. The use of reference materi-
als (RMs) is highly recommended for method development 
and validation. Meanwhile, confidence in comparability 
and reliability of measurement results in nuclear materials 
and environment sample analyses have been established via 
RMs. Isotopic ratios of Pu in the environment have been 
widely investigated to elucidate its source terms and to study 
its behavior and fate [5, 12, 13, 33].

According to the International Organization for Stand-
ardization (ISO), RMs have property values certified by 
technical validations from worldwide inter-comparison exer-
cises traceable to SI units. Pu-RMs, supplied by the National 
Institute of Standards and Technology (NIST), European 
Commission Directorate General Joint Research Centre and 
International Atomic Energy Agency (IAEA), are used in the 
assay and isotopic standard as the spike in the analysis of 
Pu by isotope dilution mass spectrometry. The Pu-RMs are 
designed for use in developing accurate methods of analy-
sis, calibrating measurement systems including determin-
ing performance characteristics or measuring a property at 
the state-of-the-art limit and ensuring long-term adequacy 
and integrity of measurement quality assurance programs 
[34]. The following should be considered when Pu-RMs are 
chosen: (1) the RMs should satisfy the user’s target; (2) the 
matrix and the concentration of Pu-RMs should be as close 
as possible to the test values of sample: (3) handling and 
storage should be done according to the certification docu-
ment; and (4) the Pu-RMs should be used within the validity 
period. Many matrices, such as sediment, seawater, biota and 
fallout, of Pu-RMs have been presented in the literature. The 
activity levels of Pu-RMs are usually certified by the IAEA 

or NIST. For any certified value and/or information value, 
one should refer to the original certification of the related 
RMs. However, the values of Pu isotopic ratio are not always 
simultaneously certified, for example, the certified 239+240Pu 
activities of IAEA-384 (Fangataufa Lagoon Sediment) and 
IAEA-385 (Irish Sea Sediment) were given as correspond-
ing to 103–110 Bq kg−1 and 2.89–3.00 Bq kg−1 at the 95% 
confidence interval by the IAEA, but their 240Pu/239Pu atom 
ratios were not provided by the agency. Nevertheless, the 
missing 240Pu/239Pu atom ratios of IAEA-384 and IAEA-385 
are usually able to be found in the literatures [31, 35–38].

Our objective here is to review the Pu-RMs covering 
sediment/soil, seawater, biota, and fallout and provide their 
statistical values of Pu isotopic ratios after statistical analy-
sis of Pu datasets. The certified activity of Pu and accurate 
information on isotopic ratio of Pu in RMs is important for 
QC/QA analyses and method validations of environmental 
Pu analysis, and for instrument calibration using these mate-
rials. There is a strong need for matrix matched isotopic 
standards for use as quality control materials [32]. Especially 
in mass spectrometric analyses, where the reproducibility 
on Pu isotope ratio measurements is found to be excellent, 
the pedigree of the materials used as standards has large 
implications on the accuracy of the result. With modern 
mass spectrometers precision of < 0.01% in the isotope 
ratio measurement is achievable for actinides [39–41]. Both 
accuracy and precision would have to be combined to appro-
priately estimate realistic uncertainties obtained in isotope 
ratio measurements [39–41]. Meanwhile, the certified Pu 
activity and statistical value of Pu isotopic ratio will also 
help in quickly establishing a suitable selection of RMs for 
Pu determination. Finally, we point out that the concurrent 
information on certified activity provided by RMs producer 
and statistical value of Pu isotopic ratio will also strengthen 
data quality in establishing a baseline for environmental 
Pu analysis and environmental risk assessment related to 
nuclear power plant operations that are seeing a dramatically 
rise in some countries.

Data sources and methods

Data sources

We collected over 600 data of Pu-RMs from more than 100 
publications (the original data see in Supporting Informa-
tion: spreadsheet S1), in which the matrices of the RMs 
included sediment/soil, seawater, biota and fallout. These Pu 
datasets were mainly extracted from data base websites such 
as the Web of Science, Google Scholar and Scopus when we 
input the keywords “plutonium and 240Pu/239Pu atom ratio” 
combined with the primary keyword “reference material 
and/or certified reference material”. Data of Pu-RMs from 
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geological and environmental reference materials (GeoReM) 
database are also included, which is download from http://
geore m.mpch-mainz .gwdg.de.

Data treatment

Assuming a non-parametric distribution of data for which 
distribution-free statistics are applicable, we recalculated 
the collected Pu data by statistical analyses. Each set of Pu 
data collected from the literature is assumed to have the 
same weight (i.e., weighted mean = arithmetic mean). The 
statistical values of Pu isotopic ratios were the arithmetic 
means with corresponding standard deviations when more 
than two results were reported or were weighted means with 
weighted uncertainties in the case of only two results being 
reported. The median values of Pu were calculated from 
all reported Pu results passing the following criterion of 
Z-score, rounded off to the most significant number of the 
uncertainty. Meanwhile, following the guidelines of the ISO 
[42] and NIST [43], we also calculated the expanded uncer-
tainty with a coverage factor of k = 1.96, corresponding to a 
level of confidence of about 95%. Confidence intervals were 
taken from a non-parametric sample population representing 
a two-sided interval at 95% confidence limits.

Following the recommendations from the ISO [44] 
and International Union of Pure and Applied Chemistry 
(IUPAC) [45], we calculated the statistical value along with 
the application of an appropriate target standard deviation, 
namely, a Z-score as suggested by the following equation:

where Xi is the reported Pu isotopic ratios or activities from 
the literature i,  Xa is a mean value of combined results and 
 Sb indicates the target standard deviation. In general, the 
relative bias in radioactive analysis is below 20%  (Sb< 10%). 
We included the uncertainty of the assigned value  (Stu) in 
the target value for bias [46].

The accuracy of the Pu isotopic ratio and the activity from 
different publications was expressed by the Z-score for each 
RM. We thought a result was acceptable when this relative 
difference between the average value and the assigned value 
was below or equal to 2, indicating about 95% of the data 
points were between a Z-score of − 2 and + 2. Otherwise, 
the acceptable result from the extreme of the distribution had 
about a 1 in 20 chance when the Z-score was outside |Z| > 2. 
Furthermore, the chance that the result was acceptable was 
only about 1 in 300 when the Z-score was outside |Z| > 3 
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[47]. In addition, the median absolute deviation (MAD) is a 
measure of statistical dispersion, which is in detail described 
in elsewhere [48]. In brief, assuming the data follows the 
Gaussian distribution, the outliers fall in 50% of the area 
on both sides and the normal values fall in 50% of the area 
in the middle [48]. The MAD is simultaneously used to test 
statistical dispersion and to get rid of the outliers in a data 
set in this study. The results show that the two methods are 
consistent, which is potentially due to the results of the same 
RM measured in each laboratory are relatively concentrated 
and they have no big deviation.

Results and discussion

We summarized 30 RMs for the environmental Pu analysis, 
thoroughly covering the matrices of sediment/soil, seawa-
ter, biota and fallout. We tested the performance of the Pu 
dataset for each RM through the Z-score distribution. Here, 
taking IAEA-135 and IAEA-368 as typical examples, we 
discuss in detail their Z-score distributions for 239+240Pu 
activity and 240Pu/239Pu atom ratio. As shown in Fig. 1, the 
Z-scores of 239+240Pu activity and 240Pu/239Pu atom ratio for 
IAEA-135 and IAEA-368 were between − 2 and + 2, and 
that indicated the Pu datasets from different publications 
were satisfactory. We excluded the data point if the Z-score 
outliers |Z| > 2 and recalculated until a satisfactory result was 
obtained. Finally, we calculated the statistical values for each 
RM and tabulated them (Table 1).

Pu‑RMs in sediment and soil

Activity level of Pu

The evaluation results in order of ascending activities, the 
distribution of medians and corresponding standard devia-
tion for four typical RMs (IAEA-135, IAEA-368, IAEA-384 
and NIST-4357) are shown in Fig. 2.

IAEA-135 (Irish Sea Sediment): the 239+240Pu activi-
ties showed a consistent result although they were sourced 
from the determination results of different instruments. For 
example, the 239+240Pu activity measured by ICP-MS ranged 
from 222 to 238 Bq kg−1 (average = 224 ± 10 Bq kg−1) 
[49] and that analyzed by semiconductor alpha-spectrom-
etry (SAS) was in the range of 216–228 Bq kg−1 (aver-
age = 222 ± 7 Bq kg−1) [49]. The 239+240Pu concentration 
determined by AMS was also in good agreement with the 
values of ICP-MS and SAS, being 221 ± 16 Bq kg−1 [49]. 
Through analyzing the published 239+240Pu activity of IAEA-
135 [31, 49–63], we found these Pu data showed good homo-
geneity, falling less than two standard deviations from the 
distribution mean (Fig. 2a). The statistical value of 239+240Pu 
activities for IAEA-135 was 218.2 ± 6.8 Bq kg−1 (n = 25, 

http://georem.mpch-mainz.gwdg.de
http://georem.mpch-mainz.gwdg.de
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the 95% confidence interval is 215.9–220.5 Bq kg−1). This 
statistical value was comparable to those certified by IAEA 
(205–226 Bq kg−1), indicating these measured values are 
highly reliable. The median given as the statistical value is 
219.9 Bq kg−1. Meanwhile, the statistical values of 238Pu and 
241Pu activities were 34.6 ± 1.7 Bq kg−1 (n = 12) and 890 
± 141 Bq kg−1 (n = 14) (corrected to January 1, 2020 for 
the convenience of reference and comparison in the future 
study), respectively. The 95% confidence level interval cor-
responds to be 33.8–35.4 Bq kg−1 and 828–952 Bq kg−1.

IAEA-368 (Ocean Sediment-Mururoa Atoll): the 
239+240Pu dataset was evaluated using more than ten 
international reports [17, 28, 31, 51, 55, 57, 58, 64–76], 
and they showed good homogeneity as suggested by the 
Z-scores (all below 2). As shown in Fig. 2b, the reported 
239+240Pu activities had a narrow range, falling within 
two standard deviations from the distribution mean. 
Our given statistical value of 239+240Pu activities was 
31.2 ± 1.4 Bq kg−1 (n = 22, the 95% confidence interval is 

30.7–31.7 Bq kg−1). This statistical value is highly consist-
ent with those certified by IAEA (29–34 Bq kg−1), indicat-
ing these measured values are highly reliable. The median 
given as the statistical value is 31.3 Bq kg−1. The statisti-
cal value of 238Pu and 241Pu activity was 7.0 ± 0.4 Bq kg−1 
(n = 2) and 4.21 ± 0.38 Bq kg−1 (n = 4) (the 95% confi-
dence level interval corresponds to be 6.6–7.4 Bq kg−1 and 
3.90–4.52 Bq kg−1), respectively.

IAEA-384 (Fangataufa Lagoon Sediment): the com-
bined 239+240Pu dataset from different international labo-
ratories showed good homogeneity as the Z-scores were 
less than 2 [12, 13, 31, 35, 37, 49, 53, 67, 76–84]. The 
reported Pu activity had a narrow range, falling within two 
standard deviations from the distribution mean (Fig. 2c). 
Our statistical value of 239+240Pu activities was 108.4 
± 2.7 Bq kg−1 (n = 19, the 95% confidence interval is 
107.0–109.8 Bq kg−1). This statistical value is highly con-
sistent with those certified by IAEA (103–110 Bq kg−1). 
The median given as the statistical value is 108.7 Bq kg−1. 
Meanwhile, we recommended the statistical values of 
238Pu and 241Pu activities to be 33.8± 1.7 Bq kg−1 (n = 8) 
and 21.5 ± 1.9 Bq  kg−1 (n = 7) (the 95% confidence 
level interval corresponds to be 32.8–34.8 Bq kg−1 and 
20.3–22.7 Bq  kg−1), respectively.

NIST-4357 (Ocean Sediment): the 239+240Pu data repre-
senting means obtained by different international laborato-
ries were used in the calculation process [17, 50, 61, 70, 73, 
74, 85–91]. These Pu data fell within less than two standard 
deviations from the distribution mean (Fig. 2d). The Z-scores 
were also between − 2 and + 2, showing good consistency in 
the Pu dataset. The statistical value of 239+240Pu activity was 
9.96 ± 0.47 Bq kg−1 (n = 13, the 95% confidence interval is 
9.74–10.18 Bq kg−1). This statistical value is highly consist-
ent with the certified values from IAEA (9.2–13.3 Bq kg−1), 
indicating these measured values are highly reliable. The 
median given as the statistical value is 9.90  Bq  kg−1. 
Meanwhile, the statistical value of 238Pu and 241Pu activ-
ity was 1.93 ± 0.01 Bq kg−1 (n = 2) and 45.0 ± 2.6 Bq kg−1 
(n = 4) (the 95% confidence level interval corresponds to be 
1.92–1.94 Bq kg−1 and 42.9–47.1 Bq kg−1), respectively.

Using the above method, we also analyzed 18 other Pu-
RMs, namely, IAEA-300, IAEA-306, IAEA-307, IAEA-315, 
IAEA-326, IAEA-327, IAEA-367, IAEA-375, IAEA-385, 
IAEA-410, IAEA-412, IAEA-447, IAEA-soil-6, NIST-
1646a, NIST-2702, NIST-4350b, NIST-4353 and NIST-
4354. The statistical values of 238−241Pu activities are pre-
sented in Table 1, which were comparable to their certified 
values. The Pu isotopic ratios of RMs are usually not certi-
fied by the approving agency such as the IAEA and NIST. 
However, these isotopic ratios of Pu are very important 
to trace Pu sources and calibrate measurement methods. 
Therefore, we further analyzed isotopic ratios of Pu-RMs 
and reported their statistical values.

Fig. 1  Distributions of Z-scores of 239+240Pu activity and 240Pu/239Pu 
atom ratio for IAEA-135 (a) and IAEA-368 (b)
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Table 1  Activity levels and isotopic ratios of Pu-RMs

Reference mate-
rial

238Pu activity 
(Bq kg−1)

239+240Pu activity 
(Bq kg−1)

241Pu activity 
(Bq kg−1)

238Pu/239+240Pu activity 
ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu atom ratio Literature

Sediment/soil
IAEA-135(Irish sea sediment)
 Statistical values (SV)a

  Mean ± SD 34.6 ± 1.7
(n = 12)c

218.2 ± 6.8
(n = 25)

890 ± 141
(n = 14)

0.153 ± 0.008
(n = 5)

0.209 ± 0.008
(n = 18)

0.0047 ± 0.0007
(n = 7)

[31, 49–63, 
92–98, 
121–124]  95% conf. 

int.b
33.8–35.4 215.9–220.5 828–952 0.147–0.159 0.206–0.212 0.0043–0.0051

  Median 34.5 219.9 885 0.152 0.210 0.0045
 Certified 

(information) 
values (95% 
conf. int.)

34.5
(33.3–36.1)

213
(205–225.8)

– – – – IAEA 
Certificate-
135d

IAEA-300 (Baltic sea sediment)
 SV

  Mean ± SD 0.141 ± 0.018
(n = 3)

3.50 ± 0.07
(n = 8)

4.04 ±0.60
(n = 1)

0.041 ± 0.005
(n = 1)

0.185 ± 0.009
(n = 6)

– [55, 60, 61, 
67, 86, 
95, 104, 
125–130]

  95% conf. int. 0.123–0.159 3.46–3.54 – – 0.179–0.191 –
  Median 0.132 3.49 – – 0.189 –

 Certified values – 3.43
(3.09–3.90)

– – – – IAEA Certifi-
cate-300

IAEA-306 (Baltic sea sediment)
 SV

  Mean ± SD – 5.90 ± 0.14
(n = 2)

– – 0.166 ± 0.010
(n = 1)

– [31, 131]

  95% conf. int. – 5.73–6.07 – – – –
  Median – 5.90 – – – –

 Certified values – 5.7
(5.5–6.3)

– – – – IAEA Certifi-
cate-306

IAEA-307 (Mediterranean sea sediment)
 SV

  Mean ± SD 0.019
(n = 1)

0.69 ± 0.05
(n = 2)

– – 0.219 ± 0.016
(n = 1)

– [31, 132]

  95% conf. int. – 0.63–0.75 – – – –
  Median – 0.69 – – – –

 Certified values – 0.71
(0.45–0.97)

– – – – IAEA Certifi-
cate-307

IAEA-315 (Marine sediment)
 SV

  Mean ± SD 8.6 ± 0.4
(n = 1)

66.3 ± 1.5
(n = 3)

– 0.1303 ± 0.0096(n = 1) 0.208 ± 0.003
(n = 1)

0.0068 ± 0.0002
(n = 1)

[133]

  95% conf. int. – 64.8–67.8 – – – –
  Median – 66.0 – – – –

 Certified values – – – – – – –
IAEA-326 (Kursk/Russia soil)
 SV

  Mean ± SD 0.0164 ± 0.0017
(n = 3)

0.492 ± 0.046
(n = 6)

1.2 ± 0.3
(n = 1)

0.032 ± 0.008
(n = 2)

0.185 ± 0.009
(n = 3)

– [61, 69, 76, 
96, 134, 
135]  95% conf. int. 0.0148–0.0180 0.461–0.523 – 0.023–0.041 0.176–0.194 –

  Median 0.0164 0.500 – 0.032 0.180 –
 Reference 

values
0.0140–0.0172 0.48–0.52 – – – – IAEA Certifi-

cate-326
IAEA-327
 SV

  Mean ± SD 0.018 ± 0.001
(n = 4)

0.585 ± 0.020
(n = 6)

0.66 ± 0.21
(n = 1)

0.030 ± 0.003
(n = 2)

0.189 ± 0.008
(n = 4)

– [60, 61, 76, 
96, 134, 
136, 137]  95% conf. int. 0.017–0.019 0.572–0.598 – 0.027–0.033 0.182–0.196 –

  Median 0.018 0.589 – 0.030 0.191 –
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Table 1  (continued)

Reference mate-
rial

238Pu activity 
(Bq kg−1)

239+240Pu activity 
(Bq kg−1)

241Pu activity 
(Bq kg−1)

238Pu/239+240Pu activity 
ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu atom ratio Literature

 Reference 
values

0.015–0.018 0.56–0.60 – – – – IAEA Certifi-
cate-327

IAEA-367 (Enewetak atoll sediment)
 SV

  Mean ± SD 0.063
(n = 1)

36.82 ± 1.13
(n = 10)

39.1 ± 1.4 (n = 3) – 0.297 ± 0.002
(n = 12)

0.00149 ± 0.00009
(n = 3)

[31, 37, 67, 
76, 81, 82, 
86, 92, 93, 
138–141]

  95% conf. int. – 36.23–37.41 37.8–40.4 – 0.296–0.298 0.00141–0.00157
  Median – 36.86 39.6 – 0.297 0.00147

 Certified values – 38
(34.4–39.8)

– – – – IAEA Certifi-
cate-367

IAEA-368 (Mururoa atoll sediment)
 SV

  Mean ± SD 7.0 ± 0.4
(n = 2)

31.2 ± 1.4
(n = 22)

4.21 ± 0.38
(n = 4)

0.232 ± 0.047
(n = 1)

0.0326 ± 0.0013
(n = 20)

0.000170 ±0.000121
(n = 7)

[17, 28, 31, 
51, 55, 57, 
58, 64–76, 
86, 92, 97, 
98, 100, 
101, 142]

  95% conf. int. 6.6–7.4 30.7–31.7 3.90–4.52 – 0.0321–0.0331 0.000095–0.000245
  Median 7.0 31.3 4.09 – 0.0326 0.000125

 Certified values – 31
(29–34)

– – – – IAEA Certifi-
cate-368

IAEA-375 (Chernobyl soil)
 SV

  Mean ± SD 0.056 ± 0.005
(n = 7)

0.290 ± 0.034
(n = 21)

1.56 ± 0.39
(n = 1)

0.173 ± 0.020
(n = 2)

0.278 ± 0.048
(n = 9)

– [55, 60–62, 
64, 67, 69, 
75, 76, 84, 
93, 109, 
127, 137, 
143–148]

  95%conf. int. 0.053-0.059 0.278–0.302 – 0.150–0.196 0.252–0.304 –
  Median 0.053 0.294 – 0.173 0.296 –

 Information 
values

0.057
(0.045–0.068)

0.30
(0.26–0.34)

– – – – IAEA Certifi-
cate-375

IAEA-384 (Fangataufa Lagoon sediment)
 SV

  Mean ± SD 33.8 ±1.7
(n = 8)

108.4 ± 2.7
(n = 19)

21.5 ± 1.9
(n = 7)

0.310 ± 0.009
(n = 5)

0.051 ± 0.001
(n = 13)

0.00017 ± 0.00002
(n = 1)

[12, 13, 31, 
35, 37, 49, 
53, 67, 
76–84, 100, 
102, 123, 
149]

  95%conf. int. 32.8–34.8 107.0–109.8 20.3–22.7 0.303–0.317 0.050–0.052 –
  Median 34.1 108.7 21.6 0.307 0.050 –

 Certified 35.2
(34.8–35.7)

107
(103–110)

– – – – IAEA Certifi-
cate-384

IAEA-385 (Irish sea sediment)
 SV

  Mean ± SD 0.411 ± 0.068
(n = 4)

2.90 ± 0.12
(n = 17)

9.7 ± 1.9
(n = 4)

0.127 ± 0.009
(n = 1)

0.184 ± 0.008
(n = 8)

0.00317 ± 0.00028
(n = 1)

[12, 13, 31, 
38, 78, 79, 
82, 87, 
91, 123, 
150–153]

  95%conf. int. 0.355–0467 2.85–2.95 8.1–11.3 – 0.179–0.189 –
  Median 0.380 2.94 9.2 – 0.185 –

 Certified 
(information) 
values

0.40
(0.38–0.43)

2.96
(2.89–3.00)

9.5
(8.2–10.1)
(inf. val.)

– – IAEA Certifi-
cate385

IAEA-410 (Bikini atoll sediment)
 SV

0.068 ± 0.019
(n = 1)

4.68 ± 0.48
(n = 1)

– 0.015 ± 0.004
(n = 1)

– [154]

 Certified 
(information) 
values

0.068
(0.050–0.086) (inf. 

val.)

4.68
(4.2–5.2)

– – – – IAEA Certifi-
cate-410

IAEA-412 (Pacific Ocean sediment)
 SV

0.0188 ± 0.0038
(n = 1)

0.596 ± 0.022 
(n = 2)

– 0.031 ± 0.007
(n = 1)

– – [153, 154]
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Table 1  (continued)

Reference mate-
rial

238Pu activity 
(Bq kg−1)

239+240Pu activity 
(Bq kg−1)

241Pu activity 
(Bq kg−1)

238Pu/239+240Pu activity 
ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu atom ratio Literature

 Certified 
(information) 
values

0.0188
(0.0015–0.0226) 

(inf. val.)

0.611
(0.58–0.64)

– – – – IAEA Certifi-
cate-412

IAEA-447 (Moss soil)
 SV

  Mean ± SD 0.138 ± 0.014
(n = 1)

5.22 ± 0.21
(n = 4)

4.92 ± 0.62 
(n = 1)

0.026 ± 0.003
(n = 1)

0.18 ± 0.01
(n = 1)

– [76, 155–157]

  95%conf. int. – 5.04–5.40 – – – –
  Median – 5.32 – – – –

 Certified values 0.138
(0.120–0.156)

5.3
(5.14–5.46)

4.94
(4.22–5.56)
(inf. val.)

– – – IAEA Certifi-
cate-447

IAEA-Soil-6 (Austrian soil)
 SV

  Mean ± SD 0.023 ± 0.005
(n = 3)

1.016 ± 0.027
(n = 20)

1.14 ± 0.20
(n = 3)

0.021 ± 0.004
(n = 3)

0.191 ± 0.003
(n = 11)

0.0075 ± 0.0008 (n = 1) [17, 51, 55, 
57, 61, 65, 
67, 74, 
84, 86, 93, 
97, 109, 
129, 141, 
147, 148, 
158–163]

  95%conf. int. 0.018–0.028 1.006–1.026 0.95–1.33 0.017–0.025 0.189–0.193 –
  Median 0.025 1.008 1.16 0.023 0.191 –

 Certified values – 1.04
(0.96–1.11)

– – – – IAEA 
Certificate-
Soil 6

NIST-1646a
 SV – 0.204 ± 0.006

(n = 2)
– – 0.173 ± 0.003

(n = 2)
– [90, 91]

 Certified values – – – – – – –
NIST-2702
 SV – 0.363 ± 0.021

(n = 2)
– – 0.178 ± 0.009

(n = 2)
– [90, 91]

 Certified values – – – – – – –
NIST-4350b (Columbia river sediment)
 SV

  Mean ± SD – 0.530 ± 0.033
(n = 4)

– – 0.112 ± 0.009
(n = 3)

– [55, 87, 133, 
164]

  95%conf. int. – 0.503–0.557 – – 0.103–0.121 –
  Median 0.537 – – 0.117 –

 Certified values 0.096
(0.080–0.112)

0.508
(0.48–0.54)

– – – – NIST 
Certificate-
4350b

NIST-4353 (Rocky flats soil)
 SV

  Mean ± SD – 8.68 ± 1.00
(n = 3)

– – 0.060 ± 0.002
(n = 2)

– [50, 87, 89]

  95%conf. int. – 7.73–9.63 – – 0.058–0.062 –
  Median – 8.30 – – 0.060 –

 Certified values – 8.10
(7.37–8.63)

– – – – NIST Certifi-
cate-4353

NIST-4354 (Freshwater lake sediment)
 SV

  Mean ± SD – 3.94 ± 0.12
(n = 5)

– – 0.162 ± 0.018
(n = 7)

0.0019 ± 0.0008 (n = 1) [61, 65, 68, 
72, 97, 101, 
133, 145, 
165]

  95%conf. int. – 3.85–4.03 – – 0.151–0.173 –
  Median – 3.94 – – 0.153 –

 Certified values 0.199
(0.180–0.218)

4.0
(3.28–4.16)

– – – – NIST Certifi-
cate-4354
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Table 1  (continued)

Reference mate-
rial

238Pu activity 
(Bq kg−1)

239+240Pu activity 
(Bq kg−1)

241Pu activity 
(Bq kg−1)

238Pu/239+240Pu activity 
ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu atom ratio Literature

NIST-4357 (Ocean sediment)
 SV

  Mean ± SD 1.93 ± 0.01
(n = 2)

9.96 ± 0.47
(n = 13)

45.0 ± 2.6
(n = 4)

0.192 ± 0.010
(n = 2)

0.233 ± 0.004
(n = 10)

0.00507 ± 0.00008
(n = 3)

[17, 50, 61, 
70, 73, 74, 
85–91]  95%conf. int. 1.92–1.94 9.74–10.18 42.9–47.1 0.180–0.204 0.231–0.235 0.00499–0.00515

  Median 1.93 9.90 44.4 0.192 0.233 0.00504
 Certified values 1.93

(1.80–1.98)
10.4
(9.2–13.3)

– – – – NIST Certifi-
cate-4357

Certified Reference 
material

238Pu activity 
(mBq kg−1)

239+240Pu activity 
(mBq kg−1)

241Pu activity 
(mBq kg−1)

238Pu/239+240Pu 
activity ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu atom ratio Literature

Liquid (seawater/water)
IAEA-381 (Irish sea water)
 SV

  Mean ± SD 2.61 ± 0.12
(n = 6)

14.7 ± 0.7
(n = 12)

83.3 ± 7.0
(n = 3)

0.182 ± 0.002
(n = 3)

0.236 ± 0.005
(n = 8)

– [49, 86, 104–112, 
116, 123, 166, 
167]  95%conf. int. 2.53–2.69 14.4–15.0 78.1–88.5 0.181–0.183 0.233–0.239 –

  Median 2.61 14.8 79.4 0.182 0.238 –
 Certified values 2.86

(2.80–3.16)
14.2
(13.2–15.2)

– – – – IAEA Certifi-
cate-381

IAEA-443 (Irish sea water)
 SV

  Mean ± SD 2.80 ± 0.09
(n = 1)

15.2 ± 0.7
(n = 7)

95.9 ± 13.3 (n = 4) 0.192 ± 0.008
(n = 1)

0.232 ± 0.003
(n = 7)

– [12, 13, 27, 
111–115, 117, 
118, 168]  95%conf. int. – 14.7–15.7 84.9–106.9 – 0.230–0.234 –

  Median – 14.7 94.1 – 0.233 –
 Certified (infor-

mation) values
2.80
(2.60–2.90)

14.7
(14.3–15.0)

86
(75–97)
(inf. val.)

– – – IAEA Certifi-
cate-443

CRM-NBL-122
 SV – – – – 0.1321 ± 0.0001

(n = 1)
– [169]

 Certified values – – – – 0.1320 – NBL Certifi-
cate-122

CRM-NBL-126
 SV – – – – 0.0204

(n = 1)
– [169]

 Certified values – – – – 0.0209 – Certificate-126
CRM-NBL-128
 SV – – – – 0.0007

(n = 1)
– [169]

 Certified values – – – – 0.0007 – NBL Certifi-
cate-128

CRM-NBL-137
 SV – – – – 0.2432 ± 0.0015

(n = 1)
0.00590 ± 0.00012
(n = 1)

[59]

 Certified values – – – – 0.2410 0.00574 NBL Certifi-
cate-137

Certified Reference 
material

238Pu activity 
(Bq kg−1 d.w.)

239+240Pu activity 
(Bq kg−1 d.w.)

241Pu activity (Bq kg−1 
d.w.)

238Pu/239+240Pu 
activity ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu 
atom ratio

Literature

Biota
IAEA-134 (Fish flesh from the Irish sea)
 SV

  Mean ± SD 2.53 ± 0.18
(n = 2)

15.6 ± 0.9
(n = 5)

59.8 ± 5.2
(n = 1)

0.153 ± 0.008
(n = 2)

0.208 ± 0.005
(n = 4)

– [31, 49–51, 92]

  95%conf. int. 2.32–2.74 14.9–16.3 – 0.144–0.162 0.203–0.213 –
  Median 2.53 15.4 – 0.153 0.210 –
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Isotopic ratio of Pu

The evaluation results in order of 240Pu/239Pu atom ratio, 
the distribution of medians and corresponding standard 
deviation for four typical RMs (namely, IAEA-135, IAEA-
368, IAEA-384 and NIST-4357) are presented in Fig. 3.

IAEA-135 (Irish Sea Sediment): the 240Pu/239Pu 
atom ratio showed a consistent result although they were 
sourced from the determination results of different instru-
ments. For example, the 240Pu/239Pu atom ratio measured 
by ICP-MS was 0.207 ± 0.006, which was consistent with 
the AMS result (0.219 ± 0.022) [49]. As shown in Fig. 3a, 
the 240Pu/239Pu atom ratio showed good homogeneity, fall-
ing less than two standard deviations from the distribution 
mean. After analyzing the published 240Pu/239Pu atom ratios 
[31, 49, 51, 54, 58, 61, 92–98], we recommended the sta-
tistical value of the 240Pu/239Pu atom ratio for IAEA-135 
to be 0.209 ± 0.008 (n = 18, the 95% confidence interval is 
0.206–0.212), with the variation of 240Pu/239Pu atom ratio 
below 4%. The median given as the statistical value is 0.210. 
Such a statistical value was higher than that of global fallout 

[18] because low-level liquid radioactive waste from BNFL 
Sellafield was discharged to the Irish Sea from 1952 to 1992 
[99]. Meanwhile, the statistical values of 238Pu/239+240Pu 
activity ratios and 241Pu/239Pu atom ratios were recom-
mended to be 0.153 ± 0.008 (n = 5) and 0.0047 ± 0.0007 
(n = 7) (the 95% confidence level interval corresponds to be 
0.147–0.159 and 0.0043–0.0051), respectively.

IAEA-368 (Ocean Sediment-Mururoa Atoll): we evalu-
ated the 240Pu/239Pu atom ratios using findings from more 
than ten international laboratories [17, 28, 31, 51, 58, 64, 65, 
68, 70–75, 86, 92, 97, 98, 100, 101]. The 240Pu/239Pu atom 
ratios showed good homogeneity because the Z-scores were 
below 2. As shown in Fig. 3b, the 240Pu/239Pu atom ratios 
fell within two standard deviations from the distribution 
mean. The statistical value of the 240Pu/239Pu atom ratios 
for IAEA-368 was reported to be 0.0326 ± 0.0013 (n = 20, 
the 95% confidence interval is 0.0321–0.0331), which was 
comparable to that obtained in weapons-grade Pu [20] and 
was significantly lower than that of global fallout [18]. The 
median given as the statistical value is 0.0326. Meanwhile, 
the 238Pu/239+240Pu activity ratios and 241Pu/239Pu atom ratios 

Table 1  (continued)

Certified Reference 
material

238Pu activity 
(Bq kg−1 d.w.)

239+240Pu activity 
(Bq kg−1 d.w.)

241Pu activity (Bq kg−1 
d.w.)

238Pu/239+240Pu 
activity ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu 
atom ratio

Literature

 Certified (refer-
ence) values

2.52–2.86
(reference values)

15
(13.8–16.2)

– – – – IAEA Certificate-134

IAEA-414 (Mixed fish flesh from the Irish sea and north sea)
 SV

  Mean ± SD 0.0193 ± 0.0009
(n = 5)

0.120 ± 0.008
(n = 7)

0.607 ± 0.123
(n = 2)

0.164 ± 0.006
(n = 3)

0.208 ± 0.018
(n = 1)

0.0064 ± 
0.0012

(n = 1)

[78, 80, 84, 123, 154, 
170, 171]

  95%conf. int. 0.0186–0.0200 0.115–0.125 0.463–0.751 0.158–0.170 – –
  Median 0.0192 0.120 0.607 0.162 – –

 Certified (refer-
ence) values

0.0191 (0.0184–
0.0208)

0.120
(0.116–0.123)

0.66
(0.60–0.76) (ref. val.)

– – – IAEA Certificate-414

IAEA-446 (Baltic sea seaweed)
 SV – 0.024 ± 0.002

(n = 1)
– – 0.222 ± 0.047

(n = 1)
– [172]

 Certified value – 0.024
(0.022–0.026)

– – – – IAEA Certificate-446

Reference material 238Pu activity 
(Bq kg−1 d.w.)

239+240Pu activity 
(Bq kg−1 d.w.)

241Pu activity 
(Bq kg−1 d.w.)

238Pu/239+240Pu 
activity ratio

240Pu/239Pu atom 
ratio

241Pu/239Pu atom ratio Literature

Fallout
Japanese fallout in 1963–1979
 SV – 6.68 ± 0.16

(n = 1)
4.74 ± 0.16
(n = 1)

– 0.191 ± 0.001
(n = 2)

0.00104 ± 0.00021
(n = 1)

[70, 101]

 Reference values 0.218 ± 0.089
(n = 1)

6.61 ± 0.42
(n = 1)

– 0.033 ± 0.012
(n = 1)

– – [120]

a We calculated the values from the literature as statistical value (SV) in this study. bThe certified (information/reference) values were from the 
approving agency (e.g., IAEA and NIST) and data in parentheses indicate the confidence interval of 95%. cn indicates the number of measured 
values in different method from the literatures. dThe IAEA and NIST certificates are available from https://nucleus.iaea.org/rpst/ReferenceProd-
ucts/ReferenceMaterials/Radionuclides/index.htm and https://www-s.nist.gov/srmors/browseMaterials.cfm?subkey=19&tableid=131
Reference date for reporting the Pu data (238−241Pu): January 1, 2020. “–” indicates no data
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were recommended to be 0.232 ± 0.047 (n = 1) and 0.000170 
± 0.000121 (n = 7), respectively.

IAEA-384 (Fangataufa Lagoon Sediment): we summa-
rized the published 240Pu/239Pu atom ratios from the lit-
erature [12, 13, 31, 35, 37, 49, 76, 81, 82, 102], and they 
showed good homogeneity as the Z-scores were below 2. As 
shown in Fig. 3c, the 240Pu/239Pu atom ratios had a narrow 
range, falling within two standard deviations from the distri-
bution mean. Our statistical value of 240Pu/239Pu atom ratio 
for IAEA-384 was 0.051 ± 0.001 (n = 13, the 95% confidence 
interval is 0.050–0.052), with the variation of 240Pu/239Pu 
atom ratio below 2%. The median given as the statistical 
value is 0.050. Such a statistical value was comparable to 
that obtained in weapons-grade Pu [20] and was reasonable 
considering the 193 French nuclear weapon tests (equivalent 
to 13.2 Mt TNT) conducted in the Mururoa and Fangataufa 
Atolls [103] resulted in 239Pu enrichment of IAEA-384. The 
statistical value of 238Pu/239+240Pu activity ratios was 0.310 ± 
0.009 (n = 5) (the 95% confidence interval is 0.303–0.317).

NIST-4357 (Ocean Sediment): we collected means 
from different international laboratories concerning the 
240Pu/239Pu atom ratios for our calculation [17, 61, 70, 73, 
74, 86–91]. The 240Pu/239Pu atom ratios fell within less 

than two standard deviations from the distribution mean 
(Fig. 3d). The Z-scores were also between − 2 and + 2, 
showing good consistency in the 240Pu/239Pu atom ratios. 
Our statistical value of 240Pu/239Pu atom ratios for NIST-
4357 was 0.233 ± 0.004 (n = 10, the 95% confidence inter-
val is 0.231–0.235), with the variation of 240Pu/239Pu atom 
ratio below 2%. The median given as the statistical value 
is 0.233. The statistical values of 238Pu/239+240Pu activity 
ratios and 241Pu/239Pu atom ratios were recommended to be 
0.192 ± 0.010 (n = 2) and 0.00507 ± 0.00008 (n = 3) (the 95% 
confidence level interval corresponds to be 0.180–0.204 and 
0.00499–0.00515), respectively.

Following the above method, the information values of 
Pu isotopic ratio from 18 other RMs (same as mentioned 
above) were also obtained and given in Table 1. Since the 
stocks of the existing primary standard are declining, the Pu 
standard with a certified isotopic ratio is not unable to meet 
the growing demands of Pu measurement. And the transport/
import of Pu standard is a greater hurdle compared to the 
RMs. These statistical values of Pu isotopic ratios will thus 
help in calibrating the mass bias, by quickly establishing a 
suitable selection of RMs for Pu determination.

Fig. 2  Data evaluation for 239+240Pu activity in IAEA-135 (a), IAEA-
368 (b), IAEA-384 (c) and NIST-4357 (d). The median (black solid 
line) and corresponding standard deviation (red dashed lines) are 

shown. The error bars correspond to the combined uncertainty 
reported in the literature. (Color figure online)
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Pu‑RMs in water

Activity levels of Pu

Two typical Pu-RMs in seawater, namely, IAEA-381 and 
IAEA-443, were analyzed using the Z-score and statistical 
evaluation.

IAEA-381 (Irish Sea Water): 239+240Pu activities used in 
our analyses were findings from multiple independent inter-
national laboratories [49, 104–112]. As shown in Fig. 4a, 
the Z-scores were less than 2, showing good consistency 
of the Pu dataset derived from findings of different labo-
ratories. The 239+240Pu activities fell within less than two 
standard deviations from the distribution mean (Fig. 5a). 
The statistical value of 239+240Pu activities for IAEA-381 
was calculated to be 14.7 ± 0.7 mBq kg−1 (n = 9, the 95% 
confidence interval is 14.4–15.0 mBq kg−1). This statisti-
cal value is highly consistent with those certified by IAEA 
(13.2–15.2 mBq kg−1), indicating these measured values are 
highly reliable. The median given as the statistical value is 
14.8 Bq kg−1. Meanwhile, the statistical values of 238Pu and 
241Pu activities were calculated to be 2.61 ± 0.12 mBq kg−1 

(n = 6) and 83.3 ± 7.0 mBq kg−1 (n = 3) (the 95% confidence 
level interval corresponds to be 2.53–2.69 mBq kg−1 and 
78.1–88.5 mBq kg−1), respectively.

IAEA-443 (Irish Sea Water): This RM has been recently 
provided by IAEA. We prepared our Pu dataset from the 
findings of multiple international laboratories [27, 111–115]. 
As shown in Fig. 4b, the Z-scores were below 2, showing 
good consistency of the Pu dataset from the findings of dif-
ferent laboratories. The 239+240Pu activities fell within less 
than two standard deviations from the distribution mean 
(Fig. 5c). Therefore, the statistical value of 239+240Pu activi-
ties for IAEA-443 was calculated to be 15.2 ± 0.7 mBq kg−1 
(n = 7, the 95% confidence interval is 14.7–15.7 mBq kg−1). 
This statistical value was comparable to those certified by 
IAEA (14.3–15.0 mBq kg−1), indicating these measured 
values are highly reliable. The median given as the sta-
tistical value is 14.7 mBq kg−1. Meanwhile, the statistical 
values of 238Pu and 241Pu activities were calculated to be 
2.80 ± 0.09 mBq kg−1 (n = 1) and 95.9 ± 13.3 mBq kg−1 
(n = 4), respectively.

Fig. 3  Data evaluation for 240Pu/239Pu atom ratio in IAEA-135 (a), 
IAEA-368 (b), IAEA-384 (c) and NIST-4357 (d). The median (black 
solid line) and corresponding standard deviation (red dashed lines) 

are shown. The error bars correspond to the combined uncertainty 
reported in the literature. (Color figure online)
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Isotopic ratio of Pu

Information on isotopic ratio of Pu in the RMs was not cer-
tified by the IAEA. Here, we combined Pu isotopic data 
from the literature and derived their recommended values 
by statistical analyses.

IAEA-381 (Irish Sea Water): 240Pu/239Pu atom ratios of 
IAEA-381 have been extensively reported [49, 86, 104, 106, 
108–110, 112, 116]. As shown in Fig. 4a, the Z-scores were 
below 2, showing good consistency of 240Pu/239Pu atom 
ratios provided by different laboratories. The 240Pu/239Pu 
atom ratios fell within less than two standard deviations 
from the distribution mean (Fig. 5b). The statistical value 
of 240Pu/239Pu atom ratios for IAEA-381 was calculated 
to be 0.236 ± 0.005 (n = 8, the 95% confidence interval 
is 0.233–0.239), a variation in the results of ± 3.4%. The 
median given as the statistical value is 0.238. This statis-
tical value was higher than that of global fallout because 
the radioactive waste from BNFL Sellafield was discharged 

to the Irish Sea from 1952 to 1992 [99]. In addition, the 
recommended value of 238Pu/239+240Pu activity ratios was 
calculated to be 0.182 ± 0.002 (n = 3) (the 95% confidence 
interval is 0.181–0.183).

IAEA-443 (Irish Sea Water): We summarized the 
reported 240Pu/239Pu atom ratios from several international 
laboratories [12, 13, 111–113, 115, 117, 118]. As shown in 
Fig. 4b, the Z-scores were below 2, showing good consist-
ency of 240Pu/239Pu atom ratios from different laboratories. 
The 240Pu/239Pu atom ratios fell within less than two stand-
ard deviations from the distribution mean (Fig. 5d). We rec-
ommended the statistical value of 240Pu/239Pu atom ratio for 
IAEA-443 to be 0.232 ± 0.003 (n = 7, the 95% confidence 
interval is 0.230–0.234), a variation in the results of ± 1.3%. 
The median given as the statistical value is 0.233. This sta-
tistical value was comparable to those obtained for IAEA-
381 and IAEA-135, which were also sampled from the Irish 
Sea. Meanwhile, the statistical value of 238Pu/239+240Pu 
activity ratio was recommended to be 0.192 ± 0.008 (n = 1).

It is well known that the mass bias correction is neces-
sary to obtain high quality data in the determination of Pu 
using ICP-MS [119]. However, the transport/import of Pu 
standard with a certified isotopic ratio presents the greatest 
hurdle at present for many laboratories working on envi-
ronmental Pu analysis. Hence, calibration of the mass bias 
in the determination of Pu ratio by mass spectrometry is a 
difficult issue. In the absent of any Pu isotope ratio standard, 
the purification of Pu from high Pu concentration seawater 
obtained from the IAEA could be regarded as an alternative 
approach for the mass bias correction in the determination 
of Pu isotopic ratio considering the precision required for 
environmental Pu analysis. Of course, for safeguards analy-
sis, which requires much higher precision for Pu isotope 
ratio analysis, certified Pu isotope ratio standards should be 
used, but this issue is beyond the scope of this study. Here, 
our statistical values of Pu isotopic ratios after the statistical 
analysis could be recommended to calibrate the mass bias 
(Table 1), which is very important for the validation of Pu 
measurement.

Pu‑RMs in biota

We discussed in detail the RM in biota for IAEA-134 
(sample matrix: fish flesh in Irish Sea) through combin-
ing the Pu data from literatures [31, 49–51, 92]. As shown 
in Fig. 6a, the Z-score values of 239+240Pu activity and 
240Pu/239Pu atom ratio were less than 2, showing good 
consistency of Pu dataset from the different laboratory. 
The 239+240Pu activities and 240Pu/239Pu atom ratios fell 
within less than two standard deviations from the distribu-
tion means (Fig. 6b, c). The statistical values of 238Pu and 
239+240Pu activities for IAEA-134 were calculated to be 
2.53 ± 0.18 Bq kg−1 d.w. (n = 2) and 15.6 ± 0.9 Bq kg−1 

Fig. 4  Distributions of Z-scores of 239+240Pu activity and 240Pu/239Pu 
atom ratio for IAEA-381 (a) and IAEA-443 (b)
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d.w. (n = 5) (the 95% confidence level interval corresponds 
to be 2.32–2.74 Bq kg−1 d.w. and 14.9–16.3 Bq kg−1 d.w.), 
respectively. The statistical values of 238Pu/239+240Pu activ-
ity ratios and 240Pu/239Pu atom ratios were also calculated 
to be 0.153 ± 0.008 (n = 2) and 0.208 ± 0.005 (n = 4) 
(the 95% confidence level interval corresponds to be 
0.144–0.162 and 0.203–0.213), respectively. The median 
given as the statistical value of 240Pu/239Pu atom ratio is 
0.210. In addition, the statistical values of Pu activities 
and isotopic ratios for IAEA-414 (sample matrix: fish 
flesh) and IAEA-446 (sample matrix: seaweed) are also 
presented in Table 1.

Pu reference fallout material

Reference fallout material of Pu is very important for QC of 
fallout Pu analysis in atmospheric studies. However, scarcely 
any reference fallout material has been certified by NIST or 
IAEA. Otsuji-Hatori et al. [120] tried to prepare the refer-
ence fallout material using deposition samples collected at 
14 Japanese meteorological stations during 1963–1979 and 

they measured the 238Pu activities (0.218 ± 0.089 Bq kg−1 
d.w.) and 239+240Pu activities (6.61 ± 0.42 Bq kg−1 d.w.) by 
α-spectrometry. The 238Pu/239+240Pu activity ratios were 
calculated to be 0.033 ± 0.012. Subsequently, Zhang et al. 
[70] measured the 241Pu activities (4.62 ± 0.84 Bq kg−1 d.w.) 
and 239+240Pu activities (6.68 ± 0.16 Bq kg−1 d.w.) of ref-
erence fallout material in Japan using SF-ICP-MS. Their 
measured 239+240Pu activities were in good agreement with 
the reference value provided by Otsuji-Hatori et al. [120]. 
Meanwhile, the 240Pu/239Pu atom ratios and 241Pu/239Pu 
atom ratios were calculated to be 0.1919 ± 0.0005 and 
0.00104 ± 0.00021, respectively. Recently, Ohtsuka et al. 
[101] measured the 240Pu/239Pu atom ratio of Japan fallout 
material to be 0.191 ± 0.003, which was in good agreement 
with Zhang et al.’s result [70]. Therefore, we analyzed these 
Pu datasets of reference fallout material in Japan and listed 
statistical values in Table 1. At present, only limited ref-
erence fallout materials have been referenced. It is a great 
challenge to collect enough fallout material to prepare the 
reference material since the activity levels are becoming 
extremely low and there is no long-term observation station 
to provide a collection place.

Fig. 5  Data evaluation for 239+240Pu activity and 240Pu/239Pu atom 
ratio in IAEA-381 (a, b) and IAEA-443 (c, d). The median (black 
solid line) and corresponding standard deviation (red dashed lines) 

are shown. The error bars correspond to the combined uncertainty 
reported in the literature. (Color figure online)
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Conclusions

We first reviewed over 30 Pu-RMs and prepared many Pu 
datasets. After statistical analyses, we compiled the statisti-
cal values of 238−241Pu activities and isotopic ratios of Pu 
(238Pu/239+240Pu activity ratios, 240Pu/239Pu atom ratios and 

241Pu/239Pu atom ratios) for the RMs. Especially, we expect 
the statistical values of the Pu isotopic ratios will come to 
fill the gaps in information provided for the RMs by their 
approval agencies such as IAEA and NIST. The statistical 
values of 239+240Pu activity are highly consistent with the 
certified values from the approval agencies (R2 = 0.9999, 
Fig. 7), indicating these measured values are highly reliable. 
Therefore, we expect that through further independent work 
at different laboratories, the statistical values of Pu isotopic 
ratios have high reliability. The statistical value of Pu iso-
topic ratio will also help in establishing a baseline for envi-
ronmental Pu analysis and provide a way to suitably select 
RMs. Finally, we point out that Pu isotopic ratios measured 
in the reference materials will not have the same creden-
tials as the certified values referring to ISO test method or 
ASTM test method. These statistical values can, at best, be 
consensus values. Therefore, it is very necessary to produce 
the matrix matched Pu isotopic standards for quality control 
of environmental Pu analysis.
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