

Temporal variation of ²¹⁰Pb concentration in the urban aerosols of Shanghai, China

 $Binbin \, Deng^1 \cdot Qiangqiang \, Zhong^1 \cdot Qiugui \, Wang^2 \cdot Jinzhou \, Du^1 \cdot Xiaocheng \, Zhang^3$

Received: 25 October 2019 / Published online: 23 January 2020 © Akadémiai Kiadó, Budapest, Hungary 2020

Abstract

This study monitored ²¹⁰Pb levels of the atmospheric aerosol in Shanghai from January 2016 to February 2017. ²¹⁰Pb levels were found to be low in non-haze weather events $(1.46 \pm 0.76 \text{ mBq/m}^3, n=8)$ and high in moderate pollution weather events $(2.34 \pm 1.43 \text{ mBq/m}^3, n=12)$. Similar to those of other East Asian regions, monthly averaged ²¹⁰Pb concentration showed a U-shaped distribution pattern, indicating that the East Asian monsoon has an impact on atmospheric ²¹⁰Pb. Particulate matters (PM) had a significant positive correlation with ²¹⁰Pb, indicating that there might occur an intensified ²¹⁰Pb scavenging processes. The linear correlation analysis revealed a clear link between ²¹⁰Pb and some gaseous pollutants, strong positive correlation between CO and ²¹⁰Pb (²¹⁰Pb/CO, R=0.63, P<0.01), and weak correlation between ²¹⁰Pb and O₃ (R=-0.35), NO₂ (R=0.42), and SO₂ (R=0.34). This phenomenon demonstrated that in haze weather, not only the general air pollutants concentrations have increased, but also the ²¹⁰Pb concentration. Radiation dosimetry of daily inhalation of ²¹⁰Pb through exposure to outdoor air is estimated to be relatively minor; children intake remains higher.

Keywords 210 Pb · Temporal variation · Haze events · Air pollutants · East Asian Monsoon

Introduction

The main source of ²¹⁰Pb (half-life = 22.4 years) is the radioactive decay of ²²²Rn (half-life = 3.8 days) emitted to atmosphere from the earth's crust; the other possible artificial sources in the air include, burning of fossil fuels (coal) [1, 2], use of phosphate fertilizers [3], iron and steel manufacture [4], biomass combustion [5], burning of leaded gasoline used for vehicle engines and so on [6, 7]. Since most of the ²¹⁰Pb is originated from the ²²²Rn emanated from terrestrial surface, its concentration in air can be expected to be influenced by the local meteorological conditions, such as temperature, atmospheric pressure, relative humidity,

- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- ² State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi Province, China
- ³ The First Battalion, Zhejiang Police College, Hangzhou 310051, China

precipitation or soil moisture, that affect the emanation rate of ²²²Rn from the land surface [7].

Once ²¹⁰Pb have been produced, they are immediately attached to sub-micron-sized aerosol particles and can be transported with atmospheric aerosols [8, 9]. When people directly inhaled aerosols with ²¹⁰Pb, which are collected by the respiratory tract of the body, and finally, it can be mainly accumulated in skeleton with a long-time radiation risk due to its long effective half-life. Haninger et al. [10] pointed out that in environments with enhanced radionuclides concentrations, direct inhalation of ²¹⁰Pb is an important source for ²¹⁰Pb accumulation in man. Therefore, its presence and activity levels in air is of the utmost concern in terms of radiation risk coupling with air pollutant which more and more seriously affecting public health via air inhalation.

With rapid economic development and urbanization for 40 years, China is experiencing severe haze pollution, especially in some important metropolis [11-15]. Shanghai is a mega-city with 24 million residents, ~4.3 million vehicles and nearly 60 million ton of standard coal per year, and there are many industrial facilities surrounding the city, including petrochemical factories, chemical plants, and solvent production facilities [15]. It is well known that Shanghai is still suffering from serious haze pollution though the number of

Qiangqiang Zhong qqzhong@stu.ecnu.edu.cn

haze day reduced from 124 in 2013 to 88 in 2017 [16]. The source of $PM_{2.5}$ in Shanghai has been reported to include coal burning, vehicle exhaust emission, biomass burning and suspended mineral dust [17].

Ambient air quality in Chinese cities is monitored and reported daily using the air quality index (AQI) that was calculated on the basis of ground-based monitoring of a 24-h average atmospheric PM (PM_{2.5} and PM₁₀ represent the particle aerodynamic diameter being equal or less than, 2.5 and 10 µm, respectively) [16, 18], carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂) and ozone (O_3) concentration. The air quality was defined into some levels with the following scale: 0-50: excellent, 51–100: good, 101–150: light pollution, 151–200: moderate pollution, 201–300: severe pollution and > 300: very serious pollution [18]. Based on the AQI values, the weather condition was divided into two categories: 0-100, non-haze day; > 100, haze day. Many studies focused on the investigation of deposition fluxes of ²¹⁰Pb and ⁷Be and used them as atmospheric tracers to characterize the sources of air masses, e.g. maritime versus continental air [19], but ignore the possible radiation risk in haze weather situation and the relationship between ²¹⁰Pb level and air quality. And there is limited investigation on level of air ²¹⁰Pb in China, especially in Shanghai [20]. Meanwhile, the variation of atmospheric ²¹⁰Pb and its major control parameter are still unclear in Shanghai.

The aims of the study were (1) to measure temporal variations of 210 Pb with changing air quality in a downtown area of Shanghai, (2) to analyze the correlation of 210 Pb with meteorological data such as temperature and relative humidity, and air pollutants, (3) to estimate the possible radiation risk in haze and non-haze periods due to inhalation of 210 Pb.

Materials and method

Materials and sampling

The sampling station was installed on the roof of the State Key Laboratory of Estuarine and Coastal Research (SKLEC) building at the East China Normal University at ~20 m above ground level ($31^{\circ}13'39''N$, $121^{\circ}23'56''E$), and ~ 50 km from the East China Sea coastline [21]. The aerosol samples were collected from January 2016 to February 2017 through a portable Staplex TF1A type (Clover Company, USA) high volume air sampler. The maximum sampling flow rate is 2 m³/min. Quartz microfiber filters of 0.2 mm pore (Whatman Company, UK) were used to collect particles in air. The collection efficiency of the membrane was larger than 99.995% for size of particles greater than 0.3 µm. Sampling usually lasted for 10-12 h, and in general the total sampled air volume was higher than 1000 m³. The air sampler was protected with a locked cover to avoid direct input of the rain. The location of sampling site is showed in Fig. 1.

The meteorological parameters (temperature and RH) and air pollutants (PM, SO_2 , NO_2 , CO, O_3) concentrations were obtained and recorded from the nearest official station (Putuo Station), which is within 1.5 km distance away from SKLEC building [22].

Measurement of ²¹⁰Pb by using alpha spectrometry

The aerosol samples were stored for 1.5 years to ensure the radioactive equilibrium between ²¹⁰Po and ²¹⁰Pb. Therefore, the activity of ²¹⁰Pb can be replaced by ²¹⁰Po. The analysis of ²¹⁰Po was referenced and modified from a previous

Fig. 1 Sampling location (black star) at site of Shanghai, eastern coast of China

method [2], which is described briefly here. For the determination of ²¹⁰Po activity, a quarter of the sample filter was acid-digested with a mixture of HNO₃, HF and H₂O₂ at a temperature of 150 °C in presence of ²⁰⁹Po spike (1–2 dpm) in a Teflon beaker. The certified reference material ²⁰⁹Po (1526-81-1) used in this work was purchased from the Eckert & Ziegler Isotope Products. The clear solution was taken to dryness followed by the addition of 2 ml of 2 N HCl acid and further diluted to ~0.2 N HCl with Milli-O water (resistivity = $18.2 \text{ M}\Omega \cdot \text{cm}$). Approximately 100 mg ascorbic acid powder, 1 ml of 20% hydroxylamine hydrochloride and 1 ml of 25% sodium citrate solution were added into the solution. Polonium (²⁰⁹Po and ²¹⁰Po) was automatically deposited on a silver disc while heating at 80-90 °C and stirring for 4 h. After that, the disc was taken out from the solution and rinsed with Milli-Q water and ethanol. Finally, the activities of ²¹⁰Po (E_{α} = 5.33 MeV) and ²⁰⁹Po (E_{α} = 4.9 MeV) were assayed by alpha spectrometer (Canberra 7200). This ultra-low background alpha spectrometer (purchased from CANBERRA EURISYS Lit., France) was equipped with 12 PIPS detectors (active area of 600 mm²). The warranted alpha resolution is 23 keV, and no ²¹⁰Po and ²⁰⁹Po peak overlapping was found for all the aerosol samples. The correction for decay of ²¹⁰Po from the time of plating to mid-counting was done for obtaining accurate ²¹⁰Pb activity. Blank filters were also analyzed for ²¹⁰Po and was subtracted from the sample. The overall recoveries of Po ranged from 74.4 to 104.4% with an average of $85.1 \pm 14.5\%$ (*n*=20). The error of the ²¹⁰Po activity was estimated on the basis of the statistical counting only.

Results and discussion

Variation of atmospheric ²¹⁰Pb activity concentration in Shanghai

The air quality parameters and concentrations of ²¹⁰Pb for 20 aerosol samples are given in Table 1. The temporal variation of ²¹⁰Pb activity concentration is shown in Fig. 2. ²¹⁰Pb had a range from 0.29 to 6.10 mBq/m³ and an overall average of 2.07 ± 1.28 mBq/m³ (n = 20). The average of ²¹⁰Pb in haze

Fig. 2 Temporal variation of ²¹⁰Pb concentration in the Shanghai air

Table 1 Concentrations of ²¹⁰Pb and meteorological and air quality parameters of Shanghai's air during 2016–2017

Sample	$T(^{\circ}\mathrm{C})$	RH (%)	AQI	$PM_{2.5} (\mu g/m^3)$	$PM_{10}(\mu g/m^3)$	$SO_2 (\mu g/m^3)$	$NO_2 (\mu g/m^3)$	$O_3(\mu g/m^3)$	CO (mg/m ³)	²¹⁰ Pb (mBq/m ³)
2016/1/7	6.5	49	112	84	105	33	67	72	1.1	2.11 ± 0.14
2016/1/13	4.0	55	190	144	168	46	96	64	1.8	1.76 ± 0.13
2016/2/2	2.5	52	112	77	90	27	65	85	1.2	3.18 ± 0.26
2016/2/7	7.5	47	98	73	114	24	47	121	1.0	1.94 ± 0.12
2016/3/3	17.5	72	101	47	82	20	62	97	0.7	3.21 ± 0.25
2016/3/26	11.5	49	126	95	124	26	65	140	0.9	1.11 ± 0.07
2016/4/8	18.0	79	82	51	70	15	61	96	0.6	1.25 ± 0.07
2016/5/16	22.0	54	104	39	61	14	40	164	0.6	0.90 ± 0.06
2016/7/8	27.5	88	26	10	26	9	16	50	0.5	0.29 ± 0.02
2016/8/19	30.5	83	73	24	40	11	23	125	0.7	0.59 ± 0.04
2016/9/22	23.5	76	102	22	33	14	44	101	0.6	1.61 ± 0.25
2016/10/17	23.0	83	52	26	40	14	36	95	0.7	1.41 ± 0.14
2016/11/5	22.5	75	85	56	68	16	68	97	0.8	2.00 ± 0.16
2016/11/14	17.5	84	79	40	58	15	54	71	0.8	2.61 ± 0.18
2016/11/19	21.5	87	101	76	81	18	65	43	1.4	2.75 ± 0.22
2016/12/5	14.5	71	159	121	159	25	94	72	1.5	2.56 ± 0.18
2016/12/23	8.0	67	175	132	126	26	63	62	1.8	6.10 ± 0.53
2017/1/3	13.0	81	109	74	81	20	73	73	1.1	1.89 ± 0.15
2017/1/12	8.5	73	112	77	91	24	72	51	1.2	1.40 ± 0.12
2017/2/23	6.5	66	102	76	49	14	37	93	0.9	1.12 ± 0.10

and non-haze day were $2.34 \pm 1.43 \text{ mBq/m}^3$ (n = 12) and 1.46 ± 0.76 (n = 8) mBq/m³, respectively.

And the 1-year average of ²¹⁰Pb activity level was compared with other sampling sites and summarized in Table 2. It could be found that the ²¹⁰Pb concentrations in most different cities of China were higher than those in districts of other countries. Most of these values have exceeded the world average ²¹⁰Pb value (0.5 mBq/m³) that reported by UNSCEAR [31]. The ²¹⁰Pb activity in ambient aerosols in Shanghai is similar to the reported values in Chinese metropolis (typically, $1-2 \text{ mBq/m}^3$), such as Hangzhou [30]. From Fig. 2, the ²¹⁰Pb activity was significantly high during September-February and relatively low during April-August. The maximum activity of 210 Pb, 6.10 ± 0.53 mBq/m³ was observed in the sample collected in 23, December (the AQI value = 175), which may be attributed to enhancement of anthropogenic emission in Shanghai in the winter. The potential artificial sources include coal fly ash, building dusts, street dusts and industrial or agricultural emissions, because these materials always have very high level of ²¹⁰Pb, for instance, coal fly ash (29.8–204 Bq/kg) [32], street dusts (high up to 344.7 Bg/kg) and industrial site top soils (66.4 Bq/kg) [33]. In addition, there are at least 33 units at 13 coal-fired power plants in Shanghai's 6340 km² area in 2017, and they consumed at least 27.6×10^6 kg coal per year [34]. Hence, the ²¹⁰Pb contribution from coal combustion should be high. The ²¹⁰Pb activity concentration in Shanghai exhibited a strong seasonal variability, nearly 3-5 times higher activity in autumn-winter season compared to that in spring-summer time (Fig. 2).

Factors controlling atmospheric concentration of ²¹⁰Pb in Shanghai and East Asian regions

In general, the ²¹⁰Pb concentrations in the urban air were controlled by its scavenging processes and by ²²²Rn production rate (source of ²¹⁰Pb), and easily be influenced by local

emission from some human activities and by meteorological conditions, such as temperature, atmospheric pressure, precipitation or soil moisture, that affect the scavenging strength of particle-reactive radionuclides and the emanation rate of ²²²Rn from ground [35].

From Fig. 2, the higher ²¹⁰Pb activity level in dry season's (September-February) atmosphere of Shanghai indicated that less clearing processes due to the low precipitation amount may partly contribute the higher ²¹⁰Pb in the air. It is also necessary to mention the low values found in spring-summer period (March-September), which might be due to the high levels of rainfall. About 40% of annual rain concentrated in summer of Shanghai [21]. The decrease of washout of ²¹⁰Pb from air by wet precipitation might promote the accumulation of ²¹⁰Pb in the airborne particulate materials. The lack of precipitation during autumn-winter season caused an increase of ²¹⁰Pb concentration due to both lack of scavenging of ²¹⁰Pb-laden aerosols by rain and lack of resuspension of particles from the soil and dust, meanwhile a decrease of precipitation would have facilitated the ²²²Rn emanation from soil.

Similar to other East Asian regions, the weather in Shanghai is also influenced by the Asian monsoon system, with the northeast-northwest wind in autumn and winter (continental air mass) from inland area (Fig. 3a) and the east-southeast wind, southeast wind in spring and summer (marine air mass) from the East China Sea, South China Sea and Pacific Ocean (Fig. 3b). In spring-summer period (from March to September), Shanghai is always covered by marine air masses, these situations would carry low atmospheric ²¹⁰Pb concentration due to a reduced supply of ²²²Rn associated with low ²²⁶Ra concentration in seawater, in contrast, the anticyclones would come to Shanghai from the continental Asia in which much higher atmospheric ²¹⁰Pb levels were obtained by an increased supply of ²²²Rn from the Asian continent surface. Hence, the U-shaped distribution patterns of atmospheric ²¹⁰Pb in

Table 2 Comparison of ²¹⁰ Pb
activity concentrations in air
with previous reports from
different sampling sites in the
world

Sites	Sampling period	Ν	Range (mBq/m ³)	Mean (mBq/m ³)	References
Michigan, USA	1999–2001	30	0.30-4.22	1.16±0.81	[23]
El-Minia, Egypt	Jan-Dec 2002	130	0.17-4.49	1.20 ± 0.15	[24]
Kanpur, India	Jan 2007–Apr 2009	99	0.50-4.8	1.8 ± 1.1	[2]
Lodz, Poland	2008-2009	38	0.167-1.847	0.556	[25]
Islamabad, Pakistan	2007-2009	184	0.056-0.761	0.284 ± 0.150	[26]
Malaga, Spain	2009-2011	36	0.40-0.95	0.55	[27]
Mt. Cimone, Italy	1998-2011	2184	0.05-2.30	0.46	[28]
Granada, Spain	Jan 2010–Dec 2014	60	0.16-1.31	0.62 ± 0.18	[29]
Hangzhou, China	Jan-Nov 2012	32	0.22-2.73	1.51 ± 0.64	[30]
Changbai, China	Jan 2016–Sep 2017	30	0.24-27.95	3.39	[20]
Hunchun, China		27	0.10-1.92	0.81	
Shanghai, China	Jan 2016–Feb 2017	20	0.29-6.10	2.07 ± 1.28	This study

Fig. 3 East Asian Monsoon in **a** summer and **b** winter and monthly variation of atmospheric ²¹⁰Pb in East Asian regions (**c**). The study sites in this figure include Okinawa-jima, Minamidaito-jima, Kume-jima, 2008–2010 [36]; Xiamen, 2016 [37]; Lanzhou, 2009–2012 [38]; Guanfengshan, 2002–2005 [39]; Beijing, 2013–2016 [40]; Guangzhou, 2014–2015 [41]; Hangzhou, 2012 [42]; Shenzhen,

1994–2002 [43]; Qingdao, 2015–2016 [44]; Bombay, 1985–1987 [45]; Rokkasho, 2000–2006 [46]; Kumamoto, 2001–2003 [47]; Sarufutsu, 2001 [48]; Tsukuba, 1988–1990 [49]; Beijing, 1989–1991 [50]; Chengdu, 1990–1992 [50]; Seoul, 1989–1991 [50]; Mangalore, 2014–2017 [51]; Kaiga, 2015–2017 [51]; Shanghai, 2016–2017 (this study)

many research sites of East Asian regions were observed (Fig. 3c). From the Fig. 3c, the results indicated that we can distinguish air masses from different sources by using ²¹⁰Pb as a tracer and even study the possible atmospheric air mass mixing processes. In addition, weak solar heating in winter and the subsidence in a lower tropospheric air column associated with the Asian winter monsoon favor a more stable atmospheric environment, resulting in the accumulation of aerosol particles containing ²¹⁰Pb [52].

Other anthropogenic sources, like coal burning and associated industrial emission (iron and steel factory) have become the predominant sources of ²¹⁰Pb in Shanghai ambient air, because the biomass burning (agricultural waste and use of wood-fuel for domestic heating) and the use of leaded gasoline had been prohibited by the Shanghai government.

Correlation between ²¹⁰Pb and meteorological parameters

Meteorological conditions, such as temperature, RH, atmospheric pressure and wind speed, are primary factors that can influence pollutant levels in the atmosphere [53]. In this study, Pearson correlation analysis was preferred after normality test for all the related parameters. The spring–summer season (with relatively high RH and temperature) of Shanghai always correspond to a fairly frequent precipitation period. An inverse relationship between air temperature and ²¹⁰Pb level (R = -0.40, P = 0.081) was observed in this study (Fig. 4). The explanation includes: (1) high temperature favors the dispersion of aerosol particles embedded with ²¹⁰Pb; (2) the rainfall dominates the removal of the atmospheric ²¹⁰Pb, although higher temperature facilitates

Fig.4 Linear-regression analysis between meteorological parameters (**a** temperature, **b** RH) and air pollution parameters (**c** AQI, **d** PM_{2.5}, **e** PM₁₀, **f** SO₂, **g** NO₂, **h** CO, **i** O₃) and the atmospheric ²¹⁰Pb concentrations in Shanghai (Pearson correlation analysis performed)

the radon emanation. A weaker relationship between ²¹⁰Pb concentration and RH was also found, which also demonstrated the significance of wet scavenging for ²¹⁰Pb [35]. The relatively high RH increases the condensation processes as well as coagulation between the attached aerosol particles. The correlation may also indicate low emission of ²²²Rn from soil in humid conditions in summer-time, as the finding reported by Li et al. [35], in which a negative correlation between RH and Rn concentration was proved.

The relations between ²¹⁰Pb and air quality parameters

The correlation coefficients between ²¹⁰Pb activity concentrations and AQI values, ²¹⁰Pb activity concentrations and PM_{2.5} concentrations, ²¹⁰Pb activity concentrations and PM₁₀ concentrations were 0.54 (P < 0.05), 0.52 (P < 0.05) and 0.44 (P = 0.055), respectively, which indicated that there were significant relationship between ²¹⁰Pb activity concentration and air quality parameters. The atmospheric ²¹⁰Pb concentrations increased with the decrease in air quality, which were also reported by others [20, 35], showing that levels of ²¹⁰Pb in air of Shanghai were higher in haze day (AQI value > 100) than levels in clean weather. One of the explanations

was that particle-relative ²¹⁰Pb could be strongly scavenged to the suspended both fine and coarse particulate matters. Figure 4 shows significant positive correlations between atmospheric ²¹⁰Pb concentrations with concentrations of gaseous pollutant CO, which suggested that this pollutant CO might share the same source regions and transported pathway with ²¹⁰Pb [28]. We boldly speculated that this relationship was caused by emission from burning, because high temperature can cause the discharge of ²¹⁰Po, ²¹⁰Pb, and other volatile radionuclides (the boiling point is 962 °C for ²¹⁰Po, and 1749 °C for ²¹⁰Pb [54]). Because of the good relation between ²¹⁰Pb and air pollutant CO, ²¹⁰Pb and these air pollutants could be used as indicators together to assess the health of the atmospheric environment. Interestingly, SO₂ and NO₂ showed weak positive correlations with ²¹⁰Pb, but O_3 showed a negative correlation with ²¹⁰Pb.

Radiological hazards assessment for inhaling ²¹⁰Pb in aerosols

The higher ²¹⁰Pb levels in air in haze days implied a greater human exposure to outdoor atmospheric ²¹⁰Pb in haze weather events. Due to long half-live and difficult to be removed, more attention should be paid to the long-term

Fig. 5 The radiation dose of ²¹⁰Pb through inhalation to outdoor air, stratified by different age groups under two air pollution levels (non-haze and haze)

internal radiation to peoples who work in outdoor (such as traffic police, building worker) during air polluted situation in Shanghai once the ²¹⁰Pb deposited in respiratory system. To evaluate corresponding annual effective dose of ²¹⁰Pb because of inhalation for inhabitants, the committed effective dose (E_i , μ Sv/a) was calculated by the following formula:

$$E_i = e(g)_{i,\text{inh}} \times R \times C_i \times T_f$$

where, $e(g)_{i,inh}$ is the ²¹⁰Pb dose conversion coefficient (Sv/ Bq) [31]; *R* is the inhalation rate (m³/day), values of *R* for infants, children and adults were 4.5, 7.6, 10.9, 14.0 and 13.3 m³/day, respectively [55]; *C_i* is the atmospheric ²¹⁰Pb concentration (Bq/m³); *T_f* is the exposure frequency, indicating the time spent outdoors by inhabitants of the study area, the value of *T_f* for the children was estimated at 0.21, whereas those for infants, teenagers and adults at 0.12 [55]. Different from oral exposure, not all ²¹⁰Pb in air, especially those attached to the large particles, may be captured and deposited in respiratory tract, therefore, it has to be recognized that the *E_i* value calculated by equation is a much more conservative estimation of the actual human radiation dosimetry of ²¹⁰Pb.

The estimated E_i values under two weather qualities (haze and non-haze) and different age groups are presented in Fig. 5. The results showed that internal dose through inhalation of the aerosol particles attached with ²¹⁰Pb was assessed to be 0.76–2.74 µSv/a. Furthermore, due to smaller body size, toddlers and children in general have higher committed effective dose values than teenagers and adults. The order of E_i value among different age group was children > toddlers > teenagers > infants > adults. This means that when being exposed to the same levels of atmospheric ²¹⁰Pb, kids may suffer from two times higher radiation dose than adults. However, the maximum annual effective dose is much lower than the worldwide average annual effective dose 2.4 mSv/a [31]. Considering the long half-life of ²¹⁰Pb (22.3 years), the organs affected by inhalation of ²¹⁰Pb are successively bone surface, lung tissue, kidney and external thoracic cavity. And once the ²¹⁰Pb deposits in the respiratory systems in the form of particulate state, especially the lung, it requires a much long time to be cleared. Besides, the potential harmfulness to human body that may be caused by the coupling effect of air pollutants and radionuclides in air (like ²¹⁰Po and ²¹⁰Pb) has not yet been assessed, which asks more people to pay more attention on this risk in the future.

Conclusion

Reports focused on ²¹⁰Pb's associations with different air quality weather events are relatively rare in Shanghai. Haze events that occurred frequently in the past decades are undoubtedly of great concern to people and government on economy, ecology, tourism and human health in China. Monitoring the pollutants and radionuclides (e.g. ²¹⁰Pb) simultaneously, in different air quality weather events can help in assessing the potential harmfulness to public. In this study, seasonal variation of ²¹⁰Pb was observed in the urban aerosols of Shanghai during 2016-2017. The U-shaped distribution pattern of atmospheric ²¹⁰Pb in the East Asian regions was influenced by the East Asian Monsoon and local weather condition. The important results in this study showed that atmospheric ²¹⁰Pb levels increase with decreasing air qualities and the good correlations between ²¹⁰Pb in aerosol particles and air pollutants indicated that ²¹⁰Pb cooperated with other air pollutants in atmosphere, which implied that ²¹⁰Pb could also be used as an indicator to evaluate the health of the atmospheric environment.

Radiation dosimetry of daily inhalation of ²¹⁰Pb through exposure to different air quality situations for different age groups were calculated to be much lower than the worldwide average annual effective dose. However, in the future, more research is needed to assess the coupling risks of air pollutants and radionuclides in air for human health.

Acknowledgments This research was supported by the Fundamental Research Funds for the Central Universities and the SKLEC Open Research Fund (Grant SKLEC-KF201806). We also acknowledge the students (Miss Lijun Zhao and Miss Juan Du) of the RIC group in ECNU for sampling and data analysis.

References

 Yan G, Cho HM, Lee I, Kim G (2012) Significant emissions of ²¹⁰Po by coal burning into the urban atmosphere of Seoul, Korea. Atmos Environ 54:80–85

- Ram K, Sarin MM (2012) Atmospheric ²¹⁰Pb, ²¹⁰Po and ²¹⁰Po/²¹⁰Pb activity ratio in urban aerosols: temporal variability and impact of biomass burning emission. Tellus Ser B Chem Phys Meteorol 64:1–11
- Kim KP, Wu CY, Birky B, Nall W, Bolch W (2006) Characterization of radioactive aerosols in Florida phosphate processing facilities. Aerosol Sci Technol 40(6):410–421
- Khater AE, Bakr WF (2011) Technologically enhanced ²¹⁰Pb and ²¹⁰Po in iron and steel industry. J Environ Radioact 102(5):527–530
- Paatero J, Vesterbacka K, Makkonen U, Kyllönen K, Hellen H, Hatakka J, Anttila P (2009) Resuspension of radionuclides into the atmosphere due to forest fires. J Radioanal Nucl Chem 282(2):473–476
- 6. Jia G, Torri G, Centioli D, Magro L (2013) A radiological survey and the impact of the elevated concentrations of ²¹⁰Pb and ²¹⁰Po released from the iron- and steel-making plant ILVA Taranto (Italy) on the environment and the public. Environ Sci Process Impacts 15(3):677–689
- Lozano RL, Hernández-Ceballos MA, Rodrigo JF, Miguel EG, Casas-Ruiz M, García-Tenorio R, Bolívar JP (2013) Mesoscale behavior of ⁷Be and ²¹⁰Pb in superficial air along the Gulf of Cadiz (south of Iberian Peninsula). Atmos Environ 80:75–84
- Papastefanou C, Ioannidou A (1995) Aerodynamic size association of ⁷Be in ambient aerosols. J Environ Radioact 26(3):273–282
- Tomarchio AGE (2018) An experimental search for a correlation between outdoor ²²²Rn concentration and ²¹⁰Pb activity in air particulate samples. Nucl Technol Radiat Prot 33(1):112–116
- Haninger T, Winkler R, Roth P, Trautmannsheimer M, Wahl W (2000) Indoor air as an important source for ²¹⁰Pb accumulation in man. Radiat Prot Dosim 87(3):187–191
- 11. Sun Y, Zhuang G, Tang A, Wang Y, An Z (2006) Chemical characteristics of $PM_{2.5}$ and PM_{10} in haze–fog episodes in Beijing. Environ Sci Technol 40(10):3148–3155
- Leng C, Duan J, Xu C, Zhang H, Wang Y, Wang Y, Li X, Kong L, Tao J, Zhang R, Cheng T, Zha S, Yu X (2016) Insights into a historic severe haze event in Shanghai: synoptic situation, boundary layer and pollutants. Atmos Chem Phys 16(14):9221–9234
- Qiao T, Zhao M, Xiu G, Yu J (2016) Simultaneous monitoring and compositions analysis of PM₁ and PM_{2.5} in Shanghai: implications for characterization of haze pollution and source apportionment. Sci Total Environ 557–558:386–394
- Wei N, Wang G, Zhouga D, Deng K, Feng J, Zhang Y, Xiao D, Liu W (2017) Source apportionment of carbonaceous particulate matter during haze days in Shanghai based on the radiocarbon. J Radioanal Nucl Chem 313(1):145–153
- Han D, Wang Z, Cheng J, Wang Q, Chen X, Wang H (2017) Volatile organic compounds (VOCs) during non-haze and haze days in Shanghai: characterization and secondary organic aerosol (SOA) formation. Environ Sci Pollut Res 24(22):18619–18629
 https://www.ifdeily.com/naws/datail?id=77020
- 16. https://www.jfdaily.com/news/detail?id=77020
- Huang D, Xiu G, Li M, Hua X, Long Y (2017) Surface components of PM_{2.5} during clear and hazy days in Shanghai by ToF-SIMS. Atmos Environ 148:175–181
- http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/ W020120410332725219541.pdf
- Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact 102(5):500–513
- 20. Tuo F, Pang C, Wang W, Zhang J, Zhou Q, Yao S, Li W, Li Z (2018) Level, distribution, variation and sources of Pb-210 in atmosphere in North China. J Radioanal Nucl Chem 318(3):1855–1862
- 21. Du J, Du J, Baskaran M, Bi Q, Huang D, Jiang Y (2015) Temporal variations of atmospheric depositional fluxes of 7Be and 210Pb

over 8 years (2006–2013) at Shanghai, China, and synthesis of global fallout data. J Geophys Res Atmos 120(9):4323–4339

- 22. http://www.semc.gov.cn/aqi/home/Index.aspx
- McNeary D, Baskaran M (2007) Residence times and temporal variations of ²¹⁰Po in aerosols and precipitation from southeastern Michigan, United States. J Geophys Res Atmos. https://doi. org/10.1029/2006JD007639
- Ahmed AA, Mohamed A, Ali AE, Barakat A, El-Hady MA, El-Hussein A (2004) Seasonal variations of aerosol residence time in the lower atmospheric boundary layer. J Environ Radioact 77(3):275–283. https://doi.org/10.1016/j.jenvrad.2004.03.011
- Długosz M, Grabowski P, Bem H (2010) ²¹⁰Pb and ²¹⁰Po radionuclides in the urban air of Lodz, Poland. J Radioanal Nucl Chem 283(3):719–725
- Ali N, Khan EU, Akhter P, Khattak NU, Khan F, Rana MA (2011) The effect of air mass origin on the ambient concentrations of ⁷Be and ²¹⁰Pb in Islamabad, Pakistan. J Environ Radioact 102(1):35– 42. https://doi.org/10.1016/j.jenvrad.2010.08.010
- 27. Gordo E, Liger E, Dueñas C, Fernández MC, Cañete S, Pérez M (2015) Study of ⁷Be and ²¹⁰Pb as radiotracers of African intrusions in Malaga (Spain). J Environ Radioact 148:141–153. https ://doi.org/10.1016/j.jenvrad.2015.06.028
- Tositti L, Brattich E, Cinelli G, Baldacci D (2014) 12 years of ⁷Be and ²¹⁰Pb in Mt. Cimone, and their correlation with meteorological parameters. Atmos Environ 87:108–122. https://doi. org/10.1016/j.atmosenv.2014.01.014
- Chham E, Piñero-García F, González-Rodelas P, Ferro-García MA (2017) Impact of air masses on the distribution of ²¹⁰Pb in the southeast of Iberian Peninsula air. J Environ Radioact 177:169–183
- Pan J, Wang F, Chen L, Ren X, Zhang J, Zhao S, Cao Z, Pan Z (2017) The preliminary analysis of ²¹⁰Pb and ²¹⁰Po activity concentration in main cities of China. Radiat Prot 37(6):433–437 (in Chinese)
- UNSCEAR (2000) Sources, effects and risk of ionizing radiation, vol 1. United Nations Scientific Committee on Effects of Atomic Radiation, New York
- Li J, Wang C, Pan Z, Jiang Z, Chen L, Zhang Y, Pan J, Wang C, Li J, Liu R (2019) Analysis of ²¹⁰Pb and ²¹⁰Po emissions from coal-fired power plants. Fuel 236:278–283. https://doi.org/10.1016/j. fuel.2018.08.075
- Howard J, Weyhrauch J, Loriaux G, Schultz B, Baskaran M (2019) Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain. Environ Pollut 255:113350. https://doi.org/10.1016/j.envpol.2019.113350
- 34. Chen X, Liu Q, Sheng T, Li F, Xu Z, Han D, Zhang X, Huang X, Fu Q, Cheng J (2019) A high temporal-spatial emission inventory and updated emission factors for coal-fired power plants in Shanghai, China. Sci Total Environ 688:94–102. https://doi. org/10.1016/j.scitotenv.2019.06.201
- Li Y, Fan C, Xiang M, Liu P, Mu F, Meng Q, Wang W (2018) Short-term variations of indoor and outdoor radon concentrations in a typical semi-arid city of Northwest China. J Radioanal Nucl Chem 317(1):297–306
- Tanahara A, Nakaema F, Zamami Y, Arakaki T (2014) Atmospheric concentrations of ²¹⁰Pb and ⁷Be observed in Okinawa Islands. Radioisotopes 63(4):175–181
- 37. Men W, Lin J, Wang F, Yin M (2016) Atmospheric processes studies and radiation dose assessment based on ⁷Be, ²¹⁰Pb and ²¹⁰Po around Xiamen Island. J Appl Oceanogr 35(2):266–274 (in Chinese)
- Wang Y, Wu J, Sun W, Luo W, Zhang B, Wang Y (2014) Monitoring the variation of ²¹⁰Pb concentration in aerosol of Lanzhou from 2009–2012. Nucl Electron Detect Technol 34(1):114–116 (in Chinese)

- 39. Wan GJ, Lee HN, Wan EY, Wang SL, Yang W, Wu FC, Chen JA, Wang CS (2008) Analyses of ²¹⁰Pb concentrations in surface air and in rain water at the central Guizhou, China. Tellus Ser B Chem Phys Meteorol 60(1):32–41
- Wu Y, Zeng Z, Ma H (2018) Radionuclide analysis of aerosol in Beijing (2013–2016). Radiat Prot 38(3):197–205 (in Chinese)
- Qin L, Li M, Jiang L, Song H (2016) Radioactivity characteristics of atmospheric aerosol samples in Guangzhou. Nucl Technol 39(9):1–7 (in Chinese)
- Cao Z, Yang Y, Wang L, Wang K (2018) The activity concentration of ²¹⁰Pb and ²¹⁰Po in Hangzhou atmosphere and induced public dose assessment. Radiat Prot 38(1):8–14 (in Chinese)
- 43. Song H, Li L, Li Q, Mo G, Huang N (2003) Atmospheric concentration of ²¹⁰Pb in Daya Bay, Guangdong Province. In: Compilation of papers from the national symposium on radioactive effluents and environmental monitoring and evaluation (in Chinese)
- 44. Shi H, Zhang Y, Dang A, Dong Z (2017) Variation in activity concentration of ²¹⁰Pb in atmospheric aerosol and its radiation dose assessment in Qingdao. Chin J Radiol Med Prot 37(5):372–375 (in Chinese)
- Anand SJS, Rangarajan C (1990) Studies on the activity ratios of polonium-210 to lead-210 and their dry-deposition velocities at Bombay in India. J Environ Radioact 11(3):235–250
- 46. Akata N, Kawabata H, Hasegawa H, Sato T, Chikuchi Y, Kondo K, Hisamatsu S, Inaba J (2008) Total deposition velocities and scavenging ratios of ⁷Be and ²¹⁰Pb at Rokkasho, Japan. J Radioanal Nucl Chem 277(2):347–355
- 47. Momoshima N, Nishio S, Kusano Y, Fukuda A, Ishimoto A (2006) Seasonal variations of atmospheric ²¹⁰Pb and ⁷Be concentrations at Kumamoto, Japan and their removal from the atmosphere as wet and dry depositions. J Radioanal Nucl Chem 268(2):297–304
- Sato S, Koike Y, Saito T, Sato J (2003) Atmospheric concentration of ²¹⁰Pb and ⁷Be at Sarufutsu, Hokkaido, Japan. J Radioanal Nucl Chem 255(2):351–353

- 49. Sato J, Doi T, Segawa T, Sugawara SI (1994) Seasonal variation of atmospheric concentrations of ²¹⁰Pb and ⁷Be at Tsukuba, Japan, with a possible observation of ²¹⁰Pb originating from the 1991 eruption of Pinatubo volcano. Geochem J 28(2):123–129
- Sato S, Sato J (2000) Atmospheric concentration of ²¹⁰Pb at Beijing and Chengdu, the People's Republic of China. Radioisotopes 49(9):439–446
- 51. Mohan MP, Dsouza RS, Nayak SR, Kamath SS, Shetty T, Kumara KS, Yashodhara I, Mayya YS, Karunakara N (2018) A study of temporal variations of ⁷Be and ²¹⁰Pb concentrations and their correlations with rainfall and other parameters in the South West Coast of India. J Environ Radioact 192:194–207
- Zheng X, Wan G, Chen Z, Tang J (2008) Measurement and meteorological analysis of ⁷Be and ²¹⁰Pb in aerosol at Waliguan Observatory. Adv Atmos Sci 25(3):404–416
- 53. He J, Yu Y, Xie Y, Mao H, Wu L, Liu N, Zhao S (2016) Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water Air Soil Pollut 227:235. https://doi.org/10.1007/s11270-016-2930-z
- Uğur A, Özden B, Saç M, Yener G (2003) Biomonitoring of ²¹⁰Po and ²¹⁰Pb using lichens and mosses around a uraniferous coal-fired power plant in western Turkey. Atmos Environ 37:2237–2245
- EPA (2002) Supplemental guidance for developing soil screening levels for superfund sites. Office of soild waste and emergency response. US Environmental Protection Agency, Washington DC, OSWER 9355.4-24

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.