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Abstract
This review study has been based on two main foundations as advances on the attainment of the risk radioactive fallouts 
levels, and the applications of methods for risk assessment to actual data and visual results, which are based on a 3-year 
study. A risk analysis model is developed with the animated simulations including the isotope distribution based on soil 
activity data, 131I measured at 19 stations after the Fukushima accident. Probability distribution functions of the risk levels 
are obtained in addition to the probability of occurrence (risk) and the probability of non-occurrence (reliability) of the 
activity risks concerning 131I. The results are used for prediction of 60-day radioactive fallout subsequence and animated 
(.mp4) through simulations.
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List of symbols
λ	� Radioactive decay constant
t1/2	� Radioactive half-life
t	� Time parameter
N0	� Number of initial radioactive nuclei
N(t)	� Number of radioactive nuclei at time t
Nr(t)	� The number of nuclei at time t of rth radioac-

tive nucleus
Nn(t)	� Number of nuclide in time t of stable nuclide
A0	� The initial activity
A(t)	� Activity in time t
xi	� ith independent parameter
f(xi)	� ith dependent parameter
g(x)	� Theoretical curve
εi	� ith error
E	� Square of the sum of errors
ai	� ith coefficient
x0	� Prediction point
wi(x0)	� Weight value indicating the contribution 

from the ith station for the prediction point

G	� Confidence
R	� Risk
s	� Sum of all cases
g	� Probability/event of non-occurrence
r	� Probability/event of occurrence
m	� Rank
gb	� Probability of non-occurrence for biggest 

activity value
mb	� The rank for biggest activity value
n	� The number of all activity events
A	� Activity event
P(A)	� Probability of occurrence of event A
As	� Small activity value event
Ab	� Great activity value event
α	� Scale parameter for Weibull distribution
β	� Shape parameter for Weibull distribution
µ	� Location parameters for the lognormal and 

generalized extreme-value distributions
σ	� Scale parameter for the lognormal and gener-

alized extreme-value distributions
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k	� Shape parameter for generalized extreme-
value distribution

f(x|k, µ, σ)	� Generalized extreme-value distribution 
function

F(x|k, µ, σ)	� Generalized extreme-value cumulative distri-
bution function

ggev	� Probability of non-occurrence for general-
ized extreme-value distribution

rgev	� Probability of occurrence for generalized 
extreme-value distribution

Introduction

Three Mile Island, Chernobyl, and the Fukushima Dai-
Ichi nuclear power plant (FDNPP) accidents took place 
in March 2011, which are important spots in the history 
of nuclear power accidents. The tsunami waves after the 
Tohoku earthquake of 8.9 magnitude broke out on the Hon-
shu Island openings on March 11, 2011 at 14:46, result-
ing in the FDNPP reactor accident. After the earthquake, 
the diesel generators started to supply power to the to the 
electricity circuit that was automatically interrupted. Tsu-
nami ripples caused electric supply to cease within a short 
time. Because of energy loss, the cooling systems were shut 
down and then the explosions came to fruition. Meanwhile, 
radioactive caesium and iodine emissions were mixed in the 
atmosphere. Subsequent to the occurrence of the accident, 
a safety circle of 20 km was built. Approximately 80,000 
people were removed from this area, and any non-authorized 
person was not taken to the area. In this study, radioactive 
fallout calculations are performed by taking into account the 
restriction region [1–7]. The FDNPP accident was classi-
fied as level 7 according to the International Nuclear Events 
Scale (INES) system [1, 8]. After FDNPPA, the effects of 
radioactive fallout were measured in many places. Accord-
ing to these measurements, almost all of the American and 
Asian continents were affected by the accident. In some East 
Asian countries, the dose levels have reached, in places, the 
limit values announced by the IAEA [9–21]. Other studies 
have shown how the accident affected western and northern 
western regions of Europe [22–25].

The follow-up radionuclides traces on ecosystems is cru-
cial both scientifically and in terms of viability in the rel-
evant ecosystem [26–28]. Radionuclide distribution affects 
not only humans, but also marine and terrestrial ecosystems 
[29]. The major reactor accident radionuclides, 137Cs and 
129I, have significant effects on air quality, and to see these 
effects, researchers have recently started to work on climate 
models [30–42]. Concurrently, new models [43–46], sim-
ulation techniques [41, 47–49] and risk analyses [50–70] 
are continuously employed for how to remove radioactive 
fallout products from nature [71]. In such studies, global 

radionuclides transport mechanisms [4, 72–79] are generally 
observed using systems of differential equations or statistical 
modeling approaches [80–83].

After the FDNPPA accident in March 2011, a serious 
radio-nuclear wave was delivered to the neighborhood. It 
is not possible to instantly monitor (or observe) all of the 
data related to the radionuclides emitted to the environment, 
which cause to data deficiencies that are generally a prob-
lem for similar investigations. For this reason, atmospheric 
dispersion model [84–86] approaches are used to partially 
compensate for errors in calculations [87]. The total amount 
of 131I released to the atmosphere after the FDNPP acci-
dent was measured as 120-380 PBq [10, 83, 87–97] fol-
lowing the accident, the 131I was first detected in Fukuoka, 
1000 km from the FDNPP, 3 days after the accident [16]. 
Detection of short half-life 131I is important for short expo-
sures. It causes global atmospheric oscillations despite short 
half-lives [98]. It was detected in Vietnam at 4500 km from 
Japan between March 27 and April 22 after the first detec-
tion [99]. On March 28, the presence of 131I was identified 
in the Republic of Korea about 1000 km from Japan [100]. 
On the other hand, the precipitation behavior of Iodine’s 
longer half-life isotope 129I (1.6 × 107 years) emissions were 
characterized as a result of detailed studies [101]. Since, 
131I has a relatively short half-life, it is, therefore, a difficult 
radionuclide for such long-term monitoring works. This 
makes it difficult to obtain its transport characterizations. 
For all these reasons, it was decided to work on 131I, and 
moving visual simulations were also made for an effective 
methodology leading to transport risk analysis and activ-
ity intensity maps. Five years after the accident (in 2016), 
a study by Arai [102] detected the presence of FDNPP-
originated radioactive particles in the natural environment. 
Similar findings were obtained through simulation program 
developments [21, 103–106]. This shows the importance of 
the simulation studies in large-scale areal researches. For 
example, by simulating Fukushima-derived radioactive fall-
out, it was possible to obtain meaningful conclusions about 
the behavior of radionuclides in the oceans [107]. As a result 
of various works on combining experimental and theoretical 
studies, the distribution of radioactive fallout was interpreted 
successfully [108], and hence, visual changes were easily 
visible. Apart from simulations, activity density maps also 
provide large-scale analysis [109].

After Fukushima NPPA, the presence of 131I in Europe 
has also been identified. The presence of these traces shows 
that the radioactive clouds move horizontally along with the 
vertical movement towards the troposphere. This horizon-
tal movement causes 131I to be present in the air near the 
ground level [110]. Especially, after the Chernobyl accident, 
it is possible to see this in the global assessments studies 
of radioactive contamination [54, 83, 111–115]. It is far 
more difficult to remove 131I from the water environment by 
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conventional methods such as coagulation, flocculation and 
sedimentation methods than 134C and 137Cs. Its short half-life 
(t1/2 = 8.05 days) makes its detection difficult, but increases 
the importance of its analysis, because it is an important 
pollutant [95]. After FDNPP, significant quantities of 131I, 
134Cs, and 137Cs were found to be deposited on the soil sur-
face in Japan on March 21-23, 2011 due to rains in Japan 
[10–15, 116–119]. Again, according to Unno et al. [10], Xu 
et al. [11–13], Yamaguchi et al. [14, 15] these radionuclides 
originating from the radioactive fallout had accumulated 
on the soil surface [120] and adhered to the dust particles 
resulting from agricultural activities [121] and remixed to 
the atmosphere. Indeed, the effects of climate change were 
as a result of anthropogenic radionuclides mixing into the 
atmosphere in the Asian dust-collecting zone, and radionu-
clides adhering to dust particles fold into long distances by 
mixing into the atmosphere [122]. These transports were 
examined spatio-temporally and the transport characteristics 
of radionuclides were determined over time [123–125].

The Fukushima accident brought to light the issues of 
public health, economy, international relations and the 
energy policies re-examination, the release of radioactivity 
and its distribution [126]. It is scientifically important to see 
the size of the fallout formed by the radionuclides, which 
radiate to the atmosphere during and after the FDNPPA. 
In addition to the long half-life radionuclide exposure that 
occurs immediately after the reactor accident, short exposure 
is also important. In this study, the risks and risk scenarios, 
pollutant and transport characteristics and partially health, 
sociological and psychological effects of radioactive fallout 
and especially short half-life 131I environmental exposures 
are reviewed, and a new “moving simulation method” is pro-
posed using the spatial analysis method [127]. With the pro-
posed simulation study, it is possible to visualize the behav-
iours and characteristics of the radioactive fallout clouds. 
In this study, the proposed simulation method was based on 
the Kriging methodology [128] and semivariogram concepts 
[129], which have an important place in geostatistics meth-
ods [130, 131]. Somewhat important updates were made on 
this method and concept and they are used sometimes in 
different disciplines [127, 132–149].

Risk analysis [150–154], modelling and simulation stud-
ies [155–161] are important in determining the effects of 
radioactive fallouts. Such studies could make important 
predictions on the study area at that or for a further time. 
These estimates are also important for the development of 
nuclear waste scenarios [162–165]. The creation of these 
scenarios is important for society and environmental health 
[166–168]. In this study, previous monitoring, simulation, 
and modeling studies are evaluated from a broad perspec-
tive and motion activity distribution simulations and activity 
risk analysis for 131I after FDNPPA is obtained. This arti-
cle contains two parts, review part (radionuclides and the 

risk assessments of the radioavtive fallouts, items 1–4) and 
model simulation part (simulation and risk assessment for 
the Fukushima Dai-Ichi accident area, item 5). Moreover, 
significant approaches and interpretations are obtained on 
the radioactive fallout risk levels. The effects of radioactive 
fallout in Fukushima are determined for 131I radionuclide. 
Both risk analysis and simulation studies are performed to 
predict the characterization and transport of the radioac-
tive fallout prospectively. The data for the risk analysis is 
obtained from Japan Ministry of Education, Culture, Sports, 
Science, and Technology (MEXT). The probability of 131I 
contamination (risk) formation up to a distance of 60 km 
from the site of the reactor accident and the probability of 
non-occurrence of contamination (confidence) are deter-
mined for the next 60 days. The simulation studies for risk 
and probability calculations in addition to the characteriza-
tion of contamination are obtained as .mp4 files in motion. 
These animated simulations provide considerable conveni-
ence in visualizing how the contamination evolution takes 
place by time. Radioactive particles transport simulation is 
important especially for the characterization of radioactive 
fallouts and for future predictions.

131Iodine

Despite the short half-life of 131I following FDNPP accident, 
it can be said that global transport [169–171] is serious. 
As a matter of fact, it is estimated that 11,000 km away in 
the accident region in the USA [172–174], in the Pacific 
Ocean [175, 176], in Canada [177], in Greece [22, 178], in 
France [179, 180] and in the other regions of Europa [23, 
181–184]. 131I reached Europe only 7 days after the accident 
[23, 185–188]. 131I and some other fission products were 
detected at distances from the troposphere layer [189–191] 
whereas, Matsui [192] theoretically calculated 131I based on 
the existing information from nuclear reactions and activity 
densities in the environment.

Radionuclides such as 95Zr, 103,106Ru, and 140Ba are 
detected in the Chernobyl reactor accident, and they differ 
from those in the Fukushima accident. In Fukushima, it is 
shown that the ones emitting terrestrial broadness are inert 
gases and volatile radionuclides of which 131I occupies an 
important place [19, 193, 194]. Some of the most effective 
physical mechanisms play a great role in the spread of 131I, 
which are wind and rain [195]. In this study, 131I data for the 
application of methodologies are taken by MEXT 3 days 
after the accident. In this period, MEXT reported that the 
global air circulation was not ineffective [196].

Removal of 131I from the water environment by coagula-
tion-flocculation-sedimentation methods did not yield the 
desired results. On the other hand, 134Cs and 137Cs coagu-
lation could be removed in the same medium [197]. Water 
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purification and filtration systems are recommended for 
removal of radionuclides from drinking water [197, 198]. 
“Nano-metallic Ca/PO4″ has been proposed to remove the 
above fission products from the surrounding environment 
or to reduce their mobile capability. This material was 
used by the ball milling method and reduced the mobi-
lization of the fission products in the soil by about 56% 
[199]. With the development of these new techniques, it 
is thought that serious progress can be achieved in the 
reduction of possible cancer cases [200].

Approximately 80% of 131I can be stopped at soil depths 
of 4-6  cm [201, 202]. Apart from soil-depth analyses 
[203–207], 131I determination analyses were performed 
on a large scale on the soil surface [208, 209]. The trans-
port characterization of 131I is also modeled, which then 
adheres to the dust particles [14, 80, 210]. This progres-
sion and distribution of 131I in the soil were modeled 
through numerical simulations [211]. In the atmospheric 
distribution [92, 212]; the Bayesian method [213], the 
Monte Carlo technique [214, 215], the time series analysis 
[12, 216], the mathematical modeling [217, 218] and in 
particular the inverse modeling methods [43, 55, 80–82, 
84, 91, 92, 212, 213, 219–231] have recently become quite 
popular at atmospheric contaminants [232–234] and fall-
out studies [230, 235]. These modeling techniques have 
brought a different perspective to the characterization 
of the atmospheric 131I transport and some other fission 
products [90, 92, 93, 219, 226, 236–240]. 131I and some 
other fission products have been also reported as signifi-
cant contamination indicators in the aquatic environments 
[13, 241, 242]. The environmental contamination of 131I 
necessitated the investigation of its effects on the lives of 
the living creatures [15, 243–250]. Examining the effects 
of her breastmilk, it was a pleasing situation that no feared 
results occurred [10, 251]. Apart from cancer research on 
thyroid [252], improvements and innovations in the field 
of engineering are also noteworthy. Utilizing the accu-
mulation of 131I on thyroid glands [253], ultra-sensitive 
biomonitors were also developed [254]. In a similar vein, 
from the thesis that “radioactive nuclei could be seen with 
the naked eye, could be controlled more easily”; high-
resolution molecular sensors have been proposed [255].

The answer given by the creature that received the radia-
tion dose is very important [256]. The decontamination map 
generated as a result of these responses is determined by the 
atmospheric monitoring results and the dose of radiation cal-
culated from the stations at the first period of the FDNPPA. 
The decontamination protocol advocates individuals’ reas-
sessment, who wish to live in these areas according to their 
individual doses and it is an improvement on the response of 
living things to the dose–response relationship [257, 258]. 
On the other hand, radiological investigations continue to 
predict the amount of 131I activity, which is difficult to detect 

using experimental methods, unlike the theoretical method-
ologies in this study [259].

Radioactive fallout risk analyses and risk 
assessments

Radioactive fallouts risk analysis and studies on nuclear 
scenarios began in 1992 by Harvey et  al. [260], which 
found practical applications. According to the studies con-
ducted 4–5 years after the Chernobyl accident on the Chely-
abinsk-65 population, in human organs and tissues 238Pu 
and 239,240Pu were found three-four times higher than global 
levels. These results also brought serious health problems 
like cancer [261–267]. In 2001, lessons on the radioactive 
fallout health effects began to be taught [52]. It has led to 
the development of interesting computational tools such as 
web-based and GIS-based on the determination of the risk 
levels of nuclear weapons trials radioactive fallout. The com-
putational techniques development revealed the necessity for 
eliminating statistical errors and uncertainties [268]. The 
environmental and health anomalies that appeared even after 
50 years of radioactive exposure seem to occupy the present 
world of science [269–272]. Indeed, research on radioac-
tive clouds global effects after major reactor accidents is 
an important step in determining risk levels [83, 111–113, 
273, 274]. Uncontrolled reactor discharges, which cause to 
local health and environmental effects, also disrupt atmos-
pheric C-14 equilibrium while Chernobyl’s effects are still 
discussed [275], although not globally as Chernobyl [276].

Fukushima risk analyses and risk assessments

After the Fukushima Dai-Ichi reactor accident, risk scenar-
ios were established by considering radionuclide fallouts 
around the area, posing possible health risks for living [3, 
277–279]. Apart from these scenarios, the radioactive fall-
out products’ effects on the food sector [280], other than 
the risks posed to living beings directly in the marine [281, 
282] and terrestrial environments, have been studied in a 
broad perspective [283–285]. Communication tools [286, 
287] were developed to present Fukushima risk analysis 
[288–291] and risk assessment results [238, 292–300]. 
On the other hand, important proposals were made on re-
observing the construction of reactors and central build-
ings on the grounds that nuclear reactors known to be very 
resistant to earthquakes and they were influenced by tsunami 
[154, 301–305]. FDNPPA, the sociological and psychologi-
cal effects of the incident have been on the agenda many 
times [305–314]. Particularly, health and more especially 
the cancer risk and its effects on humans have been one of 
the serious research topics [237, 238, 277, 315–323]. In the 
time frame from the 2011, Fukushima reactor accident to the 
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present day, risk assessments on the occurrence of reactor 
accidents and the distribution of radioactive fallouts [9, 83, 
99, 111–113, 227, 324–340] and determination of the risk 
of the effects of reactor accidents on health were the main 
research topics [200, 214, 341–364].

Simulation of radioactive fallout

Ability to simulate the radioactive fallouts propagation has 
opened a new door in this era [365]. The first simulation 
study is identified for iodine that belongs to Sorensen [366]. 
Later, the Japan Atomic Energy Agency obtained dynamic 
simulations for rice paddy fields and 137Cs deposited in rice 
[367, 368]. Simulation studies have been proposed as a result 
of the convenience for the spread of radioactive fallouts’ 
interpretation, and simulation studies for some other hazard-
ous materials [369, 370]. Radioactive fallouts were detected 
in fallout decay simulations that caused mutation in some 
flower pollen [371]. For instance, the detection of the 90Sr 
and 137Cs fallout products effects on soybean plants play 
directly a role in the development of the plant physiological 
development, which is another important consequence [372]. 
In 2008, Macedonio et al. [373] simulated the fallout, which 
was formed as a result of the volcanic activity of Vesuvius. 
Finally, motionless simulations of the reactor accident of 
Chernobyl were obtained [112]. It is also obtained in this 
study the propagation of the Fukushima reactor accident 
product 131I as moving simulations for a 60-day forward-
looking estimation.

On simulation of Fukushima radioactive fallout

Simulation models have been used quite often recently for 
prospectively predicting the characterization of the amount 
or behavior of the variables concerned. Simulation tech-
niques [85, 86, 374, 375] applicable from microscale to 
macro scales include new interpretations [376, 377] and 
new scientific advances [239, 378–382]. The destructive 
tsunami effects in the Fukushima reactor caused damage 
on the accident scenarios as little as possible from similar 
accidents [383]. In addition, after the reactor accident, alter-
native solutions to the problems that occurred in electricity 
generation and related problems came to mind [384] and in 
parallel with these workings, simulation studies on 134Cs and 
137Cs radionuclides were also made [385–389].

Two-dimensional radioactivity distribution maps were 
obtained by using numerical simulation techniques for the 
characterization of radioactive water emitted from FDNPP 
[156, 215, 390]. These maps give the researcher detailed 
information about the variable studied in large-scale areas. 
Takemura et al. [157], Danielache et al. [159] and Behrens 
et al. [158] modeled global atmospheric radionuclide trans-
port by performing numerical analysis on a global scale. 

After the Fukushima reactor accident, the radionuclides 
radiated to atmosphere travel far distances [391] over the 
ocean and through ocean currents [160, 161, 392–396]. 
Radioactive particles are under the influence of meteorologi-
cal variables when transported at these distances [397]. As a 
result of atmospheric transport, fission products that land on 
the ground can contaminate groundwater [89].

As mentioned above, the findings obtained by simulating 
the reactor to investigate the causes of the explosion in the 
Fukushima reactor and the radioactive fallout are bound to 
provide important clues for controlling similar accidents in 
the future [398–405].

Real‑time theoretical and practical 
researches for simulation, risk analysis 
and modeling of radioactive fallout

FDNPP was established near the Okuma Village in the 
Futaba district of Fukushima Prefecture in Japan and entered 
into operation in the 1970s as the first nuclear energy reac-
tors generation. This plant was then transformed into a sec-
ond-generation nuclear power plant with improvements. The 
plant has six boiling water reactors operated by the Tokyo 
Electric Power Company (TEPCO) [2, 8, 406].

In this research, since the risk analysis of 131I radionu-
clide is studied, first, the activity value at any time should 
be known in each station. Since, the measurements taken 
by MEXT are not synchronous, it is necessary to obtain the 
activity curves of the short-lived 131I in each station. For 
this, whenever the least squares method application to meas-
urements taken from each station, an activity curve can be 
obtained for each station. Theoretically, once the concurrent 
activity values are obtained, risk analysis can be performed 
according to the position. After FDNPPA, soil 131I activity 
measurements from 19 stations are taken by MEXT [196]. 
131I was first discovered in nuclear weapons tests, and this 
radioisotope is a dangerous radionuclide in NPP accidents. 
The 131I radioisotope turns into a stable nucleus of 131Xe 
after negative beta decay and gamma emissions [407, 408]. 
Information on the latitude, longitude and FDNPP distances 
of measurement stations are given in Table 1 [196]. 

Theory

Least squares method

Gauss (1795) originally proposed the least squares method 
and in 1801, and used this method to determine the orbit of 
the Ceres asteroid. This method was published in 1809 as the 
second edition of Gauss’ collective works [409]. The least 
squares method is a standard regression method [410–412], 
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which is used to write the mathematical relationship between 
two physical quantities that change in relation with each 
other.

Measurements taken from some stations by MEXT were 
not simultaneous. This is an obstacle for simulations and 
predictions. For this reason, the least squares method (LSM) 
is recommended for data optimization. The radioactivity val-
ues measured at stations in the LSM were determined at 
equal time intervals. The mathematics of the methodology 
can be summarized as follows:

In a study, let g(x) be a fitted model curve to the scat-
ter diagram from pairs of xi − fi (x; independent variable, f; 
dependent variable). Here, it is expected that any xi value 
corresponds to the values of fi and g(xi). The difference 
between them;

gives the ith error. For every xi, this error can be positive 
or negative in the calculation of errors sum, so in order to 
avoid zero sum each error is squared. Sum of squares errors 
is given by,

Suppose that the function g(x) depends on x and expressed 
in terms of coefficients ai (1 ≤ i ≤ n). Let us choose a function 
g(x) which yields the following condition.

(1)�i = (g(xi) − f
i
)

(2)E =
n

�
i=1

�2
i
=

n

�
i=1

(
g(xi) − fi

)2

If Eq. (3) is combined with Eq. (2), then one can obtain,

If i-equation systems are solved as given by equation Eq. (4) 
and have i-variables, coefficients ai should be solved for the 
best fit [411, 413]. Finally, the least squares method can be 
used to obtain synchronous activity curves, if samples are 
taken at different times in different stations. Thus, in calcula-
tions optimizations are provided.

Least squares method results

The time between the receipt of the 131I measurements and 
the date of the reactor accident was taken as parameter t. If 
the sought dependent parameter is activity, then it is neces-
sary to obtain an exponential curve as in Eq. (5), according 
to the classical radioactive decay law.

If natural logarithms are applied on both sides of Eq. (5), 
a linear equation is obtained as in Eq. (6).

(3)
�E

�ai
= 0

(4)
n

�
j=1

g(xj)
�g(xj)

�ai
=

n

�
j=1

fj

�g(xj)

�ai

(5)A(t) = A0e
−�t

(6)ln (A(t)) = ln
(
A0

)
− �t

Table 1   Some information 
for the stations where the 
measurements are taken

Station no. Distance 
to the plant 
(km)

Latitude Longitude Station name

1 40 37,601444 140,63667 Date, Kawamata Town Yamakiya
2 62 37,750472 140,46686 Fukushima, Sugitsuma Town
3 23 37,214403 140,99467 Futaba, Hirono Town Shimokitaba
4 31 37,511156 140,69791 Futaba, Katsurao Village Kaminogawa
5 25 37,503417 140,76447 Futaba, Katsurao Village
6 22 37,337889 140,80949 Futaba, Kawauchi Village Kamikawauchi
7 24 37,56055 140,82388 Futaba, Namie Town Akougi Kunugidaira
8 31 37,595 140,75402 Futaba, Namie Town Akougi Teshichiro
9 29 37,559156 140,75935 Futaba, Namie Town Shimotsushima Kayabuka
10 39 37,175842 140,72152 Iwaki, Miwa Town Saiso
11 34 37,121783 140,95107 Iwaki, Yotsukura Town
12 23 37,608722 140,92675 Minami Soma, Haramachi Ward Baba
13 29 37,662889 140,89856 Minami Soma, Haramachi Ward Ohara Daihata
14 24 37,638739 140,98684 Minami Soma, Haramachi Ward Takami town
15 32 37,70015 140,96265 Minami Soma, Kashima Ward Terauchi Motoyashiki
16 32 37,690103 140,88981 Minami Soma, Kashima ward Jisabara Aza Kamabai
17 41 37,767864 140,8599 Soma, Yamakami Kaminamik
18 33 37,612803 140,74911 Soma, Iitate Village Nagadoro
19 32 37,451964 140,6779 Tamura, Tokiwa Town Yamane
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If the equation g(x) in Eq. (4) is written as in Eq. (7), then 
one can obtain,

Equation (4) can be rewritten as follows,

This is a linear form and has two coefficients as,

After differential operations, Eq. (8) becomes a system of 
two linear equations with two unknowns (λ and ln(A0)), in 
the form of Eq. (10). With the aid of MATLAB® software 
program, the system of Eq. (10) is solved to yield activity 
values given in Table 2 and the other tables in Appendix A 
(supplementary material) and the coefficients a1 and a2 are 
obtained as in Table 3 for each station. This table shows the 
station numbers in the first column, the decay constant (λ) 

(7)g(x) = g(t) = ln (A(t)) = ln
(
A0

)
− �t

(8)
n

�
j=1

g(tj)
�g(tj)

�ai
=

n

�
j=1

fj

�g(tj)

�ai

(9)a1 = � and a2 = ln(A0)

in the second column, the initial activity value (t = 0) in the 
third column and the square of the correlation coefficients 
(R2) of the curves obtained with these constants in the fourth 
column.

The half-life of 131I is t1/2 = 193.68 ± 0.216 h. Again, the 
decay constant in hours is theoretically,

The differences in activity values in Table 3 are thought 
to be due to geographical and meteorological situations, 
which indicate that the activity is stochastic relative to the 
position. Due to randomness, statistical considerations and 

(10)

ln
(
A0

) n∑

j=1

t2
j
+ �

n∑

j=1

tj = −

n∑

j=1

fjtj

ln
(
A0

) n∑

j=1

tj + �n = −

n∑

j=1

fj

(11)� ≅ 0.00357883 h−1

Table 2   Activity values measured and calculated versus time for station 1. For example, here “337th term” describes the 337 h after the reactor 
accident

Time (h) Experimental (measured) 
activity (Bq/kg)

Theoretical (calculated) 
activity (Bq/kg)

Time (h) Experimental (measured) 
activity (Bq/kg)

Theoretical (calcu-
lated) activity (Bq/
kg)

337th 73,000 79,698.910 1171st 2400 3011.989
364th 49,000 71,679.840 1196th 2200 2730.294
403rd 65,000 61,499.650 1219th 2600 2494.463
427th 63,000 55,967.320 1243nd 2800 2270.069
452nd 71,000 50,733.010 1267th 2400 2065.860
476th 59,000 46,169.220 1292nd 2600 1872.652
500th 54,000 42,015.980 1315th 2000 1710.900
525th 54,000 38,086.460 1339th 2200 1556.993
572nd 6600 31,666.510 1367th 1700 1394.844
596th 31,000 28,817.880 1387th 1900 1289.468
621st 41,000 26,122.710 1411st 1700 1173.471
644th 39,000 23,866.340 1435st 1100 1067.909
668th 27,000 21,719.400 1459st 1100 971.843
715th 14,000 18,058.320 1483rd 220 884.419
740th 22,000 16,369.430 1507th 640 804.859
790th 15,000 13,450.730 1531st 1300 732.456
811st 17,000 12,385.820 1556th 1100 663.954
835th 5600 11,271.630 1579th 330 606.605
859th 6000 10,257.670 1604th 400 549.872
883rd 9900 9334.919 1774th 570 282.022
907th 17,000 8495.178 1945th 85 144.079
957th 4600 6980.471 1946th 110 143.514
979th 9100 6402.626 1947th 170 142.951
1004th 4300 5803.825 1947.5th 160 142.671
1051st 3800 4825.517 1948th 180 142.391
1147th 1500 3309.721
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calculations should be introduced after this phase. As an 
example, the experimental (measured) and theoretical (cal-
culated) activity values for Station 1 are given in Table 2. 
These operations are performed for 19 stations and the theo-
retical calculations for all other stations are given in Appen-
dix A (supplementary material).

In Table 3, the equation of the curve for Station 1 is.

The value at the time given by the least squares method in 
columns three and six is calculated from Eq. (5).

The result of these calculations is shown in Fig.  1, 
which shows the output of the computer program written 
in MATLAB® language to obtain the Activity = f(t) graph 
for station 1. In this figure, the curve in red line is the most 
suitable one for station 1 as a result of the LSM. The graphs 
obtained from all other stations are given in Appendix B 
(supplementary material). 

Risk analysis and probability distribution functions 
(PDFs)

Risk can be defined as the percentage of adverse events 
occurrences. Herein, it is defined as the process of scal-
ing the risks that radioactive fallout will form and the areal 
determination, where measurements need to be taken. When 
a risk is determined for an event, the given data sets are 

(12)A(t) = 299427.434e −0.00392764t

considered individually and the states for each data are 
calculated.

In this part of the research, risk values are obtained with 
an experimenter approach. If R denotes the probability of 
occurrence (i.e., the occurrence of activity) and G denotes 
the probability of non-occurrence of an event, then the sum 
of the probability and absence of an event (G + R) is always 
fixed.

The constant s is the sum of the probability of occur-
rence and the probability of non-occurrence of 131I fallout. 
By dividing both sides of Eq. (13) by the constant s, the 
probability of non-occurrence and probability of occurrence 
ratios are obtained.

At any given moment, the activity values from a location 
are sorted from small to big values, and hence, any activity 
value event (Ab) will itself include small activity events (As). 
One can express this event with A,

As the expression in Eq. (15) implies the probability of 
the given activities will increase steadily to one. This means 
that the probability functions are cumulative [133, 414–416].

where gb is probability of non-occurrence for biggest activity 
value, mb is the rank for biggest activity value, and n is the 
number of all activity events. However, this is not realistic 

(13)G + R = s

(14)g + r = 1

(15)P
(
A ≤ Ab

)
= P

(
A ≤ As

)
+ P

(
As < A ≤ Ab

)

(16)gb =
mb

n

Table 3   Coefficients and correlation coefficients obtained by least 
squares method

Station λ (1/h) Ao (Bq/kg) R2

1 0.00392764 299,427.434 0.94188
2 0.00368719 59,981.314 0.92728
3 0.00367660 154,352.189 0.80427
4 0.00351894 123,625.373 0.87599
5 0.00327673 105,136.900 0.89842
6 0.00344032 33,636.099 0.91790
7 0.00340739 1,961,742.037 0.97333
8 0.00388169 1,239,414.465 0.90204
9 0.00350144 671,291.719 0.89085
10 0.00420333 34,583.151 0.88103
11 0.00356767 141,672.615 0.91622
12 0.00376052 104,126.364 0.88164
13 0.00356378 48,055.164 0.90667
14 0.00367816 27,845.916 0.87996
15 0.00340255 37,610.889 0.93641
16 0.00372990 43,316.681 0.89384
17 0.00382736 51,806.960 0.94033
18 0.00351501 64,909.409 0.94780
19 0.00354769 37,852.631 0.90886

Fig. 1   Measured (experimental) activity values versus time for station 
1. The curve on the graph was obtained by the least squares method. 
(Color figure online)
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in practice. The greatest activity for this is not 1, it should be 
very close to 1. Instead of Eq. (16), it is preferable to write,

Thus, the bigger active area in Eq. (17) is acceptable. 
The most general form of Eq. (17) for each rank is given as

And from Eq. (14) one can obtain,

Equation (19) is the probability of occurrence for each 
rank. The order given by m is also the order of harm caused 
by radioactive fallout [133].

This study also considered the harmonization of the 
important pdfs in the literature with the changes of 131I in 
order to be able to make risk analyses and to find out the 
possibility of the occurrence of 131I’s activity in the research 
field and to find out the spatial transformations of these vari-
ables with the results obtained later. The calculations took 
into consideration three pdfs, which have the highest R2.

Generalized extreme‑value distribution

The generalized extreme-value distribution is based on the 
combination of Gumbel, Fréchet, and Weibull distributions 
and the continuous probability distributions developed 
within the extreme-value theory. The generalized extreme-
value distribution can be used as an approach to model the 
maxima (or minima) of long (end) random sequences. As 
different from other distribution, it is represented by three 
parameters, namely, σ; scalar parameter, μ; location param-
eter and k; shape parameter.

The generalized extreme-value distribution is given by 
the following expression

with k ≠ 0 and 
(
1 + k

(x−𝜇)

𝜎

)
> 0 . The cumulative distribution 

function is then appears as follows.

with k ≠0 and 
(
1 + k

(x−𝜇)

𝜎

)
> 0.

The distribution has three alternatives according to the 
state of the k parameter: type 1 for k = 0, type 2 for k > 0 
and type 3 for k < 0, which resemble Gumbel, Fréchet, 
and Weibull distributions, respectively [417–420]. The 

(17)gb =
mb

n + 1
=

n

n + 1

(18)g =
m

n + 1

(19)r = 1 − g = 1 −
m

n + 1

(20)f ( x|k,�, �) =
(
1

�

)(
1 + k

(x − �)

�

)−1−
1

k

exp

(
−

(
1 + k

(x − �)

�

)−
1

k

)

(21)F(x|k,�, �) = exp

(
−

(
1 + k

(x − �)

�

)−
1

k

)

probability of non-occurrence for the generalized extreme-
value distribution from Eq. (21) is given as,

Again, from Eq.  (14), the probability of occurrence 
becomes as,

Lognormal probability distribution

The lognormal distribution is a probability distribution for 
random variables, whose logarithm is normally distributed. 
If x shows lognormal distribution, then log(x) shows normal 
distribution. It does not matter what the basis for the loga-
rithm function is. If loga(x) shows the normal distribution 
for any two positive numbers a, b ≠ 1, logb(x) also implies 
normal distribution. Probability density function for lognor-
mal distribution (μ; position parameter, σ; scale parameter 
and for x > 0) is

The cumulative distribution function is given as

Lognormal pdf is a distribution function used to model ran-
domly varying states [411].

Weibull probability distribution

The Weibull distribution is a probability distribution for 
random variables and its mathematical form is as follows.

where α is the shape parameter, and β is the scale parameter, 
and x ≥ 0. The cumulative distribution function is then,

 [411].

(22)ggev = F(x | k, �, �)

(23)

rgev = 1 − ggev = 1 − F( x | k, �, �) = 1 − exp

(
−

(
1 + k

(x − �)

�

)−
1

k

)

(24)

f (x � �, �) =
�

1

x ln(�)
√
2�

�
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�
−
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2 ln(�)2
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(25)F(x � �, �) = 1

ln(�)
√
2�

x

∫
0

exp
�
−

(ln(t)−ln(�))2

2 ln(�)2

�

t
dt
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(27)F(x | �, �) = 1 − exp
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Risk analysis and PDFs results

The activity values of the 131I radioisotope, released after 
the Fukushima accident are not statistically discrete events; 
therefore, the probability curve for these activity values is 
the cumulative probability function. Equation (15) can be 
applied with the values in Table 4. For example, if the occur-
rence likelihood of activity value belonging to 10 stations is 
calculated, this probability value is equal to the sum of the 
occurrence likelihood of the activity value belonging to sta-
tion 14 and the probability of occurrence between activity 
values of 2 stations. If this event is expressed with A, then 
from Eq. (15) the following expression is obtained.

As can be understood from this equation, the probability 
functions are in cumulative form.

Sample risk calculations are given in Table 4, taking into 
account the 240th hour after the accident. In this table, the 
g probability of non-occurrence values are obtained from 
Eq. 17 and given in column 6, and the risk values from in 
Eq. 19 in column 7. The probabilities other hours are pre-
sented in Appendix C (supplementary material). The data 
are tested with important pdfs in the literature to see the 
probability of occurrence values for 19 stations. Accord-
ing to R2 values, the most suitable pdfs are Weibull, Log-
normal and Generalized Extreme-Value pdfs (Table 5), and 

(28)
P(A ≤ 12610.98) = P(A ≤ 11518.14)

+ P(11518.14 < A ≤ 12610.98)

pdfs with lower R2 values from these three distributions are 
excluded from the calculations. The variables of the three 
distributions are calculated as in Table 6 with an illustration 
graph in Fig. 2 for the 240th hour. At all other times, the 
risk variance against radioactivity can be seen in Appendix 
D (supplementary material).

As for the R2 values in Table 5, the generalized extreme-
value distribution for all times is the most appropriate 
one. Another point to note is that the R2 value of the gen-
eralized extreme-value distribution decreases with time. 

Table 4   The probability of occurrence and probability of non-occurrence at 240th hour

Stations Activity (Bq/kg) Stations Sorted activity (Bq/kg) Rank (m) Probability of nonoc-
currence (g)

Probability of 
occurrence (r)

1 116,656.900 14 11,518.140 1 0.05 0.95
2 24,757.000 10 12,610.980 2 0.10 0.90
3 63,870.150 6 14,730.550 3 0.15 0.85
4 53,128.320 19 16,155.420 4 0.20 0.80
5 47,887.160 15 16,621.260 5 0.25 0.75
6 14,730.550 16 17,696.390 6 0.30 0.70
7 865,939.700 17 20,675.690 7 0.35 0.65
8 488,231.100 2 24,757.000 8 0.40 0.60
9 289,703.600 13 33,185.350 9 0.45 0.55
10 12,610.980 12 42,227.860 10 0.50 0.50
11 60,176.240 5 47,887.160 11 0.55 0.45
12 42,227.860 4 53,128.320 12 0.60 0.40
13 33,185.350 11 60,176.240 13 0.65 0.35
14 11,518.140 3 63,870.150 14 0.70 0.30
15 16,621.260 1 116,656.900 15 0.75 0.25
16 17,696.390 18 279,212.800 16 0.80 0.20
17 20,675.690 9 289,703.600 17 0.85 0.15
18 279,212.800 8 488,231.100 18 0.90 0.10
19 16,155.420 7 865,939.700 19 0.95 0.05

Table 5   Correlation coefficients (R2) of probability distribution func-
tions

Time (h) Weibull Lognormal Generalized 
extreme-value

240th 0.888712 0.940069 0.986169
360th 0.889536 0.940809 0.983607
480th 0.890289 0.941416 0.982529
600th 0.890981 0.941914 0.981845
720th 0.891347 0.941951 0.979861
840th 0.892154 0.942522 0.978637
960th 0.893021 0.943168 0.977732
1080th 0.894562 0.944512 0.977316
1200th 0.896613 0.946485 0.978036
1320th 0.898463 0.948219 0.978693
1440th 0.899907 0.949435 0.978789
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Furthermore, as time progresses, the risk caused by the fall-
out decreases.

A graph of the occurrence probability versus activity at 
240th hour as an example is given in Fig. 2. One can see 
that the generalized extreme-value distribution explains the 
experimental data better than the other pdfs. For this rea-
son, in the advanced risk analysis calculations, operations 
and interpretations are made by considering the generalized 
extreme value pdf. In Table 7, the risk, probability of occur-
rence and probability of non-occurrence values are calcu-
lated according to the generalized end-value distribution at 
the 240th hour and the station numbers are also given.

For instance, if the k, μ and σ parameters at 240th hour 
of generalized extreme-value distribution in Table 5 and the 
activity value (11,518.14 Bq/kg) at 14th station in Table 7 

are substituted into Eq.  (23), then rgev is obtained from 
Eq. (29) (please refer to 4th column in Table 7). All the 
changes in other times are given in Appendix E (supple-
mentary material).

Kriging methodology

The Kriging is an interpolation method developed by 
South African mining engineer Krige in the early 1960s 
and it is a local estimation technique in a region that pro-
vides the best linear objective estimate of the unknown 
characteristics. If one desires to make an estimate at 
point x0 for f(x) measurements taken against a value x in a 
region, it can be expressed as follows.

In this equation, x0 is the estimation point, f(x0) is the 
estimation value, and wi(x0) are the weights, which are 
obtained from one of the covariance or variogram tech-
niques [421]. The reason why Kriging differs from the 
classical linear regression is that the changes are not 
independent, and observations for the Kriging technique 
assume random sampling [422]. In this study, the Kriging 
method is used to obtain the surface maps of the 131I radio-
activity, probability of occurrence and non-occurrence of 
the activity.

(29)

rgud = 1 − F(11518.14 | 1.552193, 22590.07, 19336.03)

rgev = 1 − exp

(
−

(
1 + 1.552193

(11518.14 − 22590.07)

19336.03

)−
1

1.552193

)

rgev = 0.983700

(30)f
(
x0
)
=

n∑

i=1

wi

(
x0
)
f
(
xi
)

Table 6   Distribution functions 
of radioactivity with respect to 
the calculated hours and their 
parameters

Time (h) Weibull Lognormal Generalized extreme-value

α β μ σ k μ σ

240th 0.723552 100,805.64 51,063.49 3.696306 1.552193 22,590.07 19,336.03
360th 0.720792 65,285.54 33,001.75 3.712866 1.565860 14,509.79 12,673.46
480th 0.717849 42,289.84 21,328.66 3.731421 1.501146 9576.53 8621.97
600th 0.714735 27,399.39 13,784.40 3.751977 1.413320 6385.04 5929.08
720th 0.711463 17,755.40 8908.748 3.774546 1.343775 4236.60 4043.69
840th 0.708046 11,508.10 5757.623 3.799133 1.290022 2797.48 2735.51
960th 0.704493 7460.350 3721.087 3.825752 1.247467 1840.53 1838.85
1080th 0.700818 4837.220 2404.896 3.854414 1.213026 1207.65 1230.01
1200th 0.697031 3136.990 1554.257 3.885124 1.184698 790.730 819.540
1320th 0.693143 2034.740 1004.499 3.917905 1.161139 516.890 544.310
1440th 0.689164 1320.020 649.1962 3.952764 1.141411 337.420 360.560

Fig. 2   The probability of occurrence (risk) graph against the 240th-
hour activity
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Kriging method results

The activity distribution map for 131I after 240 h from the 
Fukushima accident using the Kriging method [423] is given 
in Fig. 3. The activity is in exponential decay with time, and 
hence, the simulation change is better observed at each hour.

In this study the half-circle area at sea is banned. Entrance 
and exit to this area are closed immediately after the accident. 
The data from MEXT correspond to the time when this region 
is forbidden (restricted). After the accident, only dose meas-
urements are made with no activity measurements. The activ-
ity prediction maps obtained for all other prospective times are 
given in Appendix F (supplementary material). In addition, 
motion simulations of 60 days of activity change in 131I are 
given in .mp4 format, Iodine131_Activity_Animated_Simula-
tion_1.mp4 (Appendix G, supplementary material) file. When 
all of the maps in Fig. 3 and Appendix F (supplementary mate-
rial) are examined, it is seen that 131I activity values are high 
in the north-west and south part of Fukushima. In this case, it 
can be said that the 131I core is moved north-west and south-
ward after the accident. The map and animated simulations are 
available for 1440 h, or 60 days. Due to the short 131I half-life, 
the activity value after 60 days has dropped to very low levels 
and experts have not been able to measure 131I after the 60th 
day. As seen in the simulations, the activity values decrease 
rapidly with time progression.

The probability of occurrence according to the generalized 
extreme-value distribution, using activity values 240 h after 
the Fukushima accident is shown in Fig. 4 and the probability 
of absence in Fig. 5. The maps of these possibilities for all 
other times are given in Appendices H and I (supplementary 
material). The motion simulation files, in which the change of 
the event (activity concentration) and the absence of change 
after 60 days are estimated, are also given in .mp4 format in 
the form of Probability of Occurrence.mp4 (Appendix J, sup-
plementary material) and Probability of Nonoccurrence.mp4 
(Appendix K, supplementary material) files. These simulations 
allow seeing radioactive fallout as a whole for given hours.

Looking at Fig. 4 and all of the maps in Appendix H (sup-
plementary material), the probability of occurrence value is 
close to 1 in the north and south-west part of Fukushima. In 
other words, it defines the probability of occurrence in regions 
with low activity and where repetition of these possibilities 
is the greatest. On the other hand, regions with high activ-
ity seem to protect these conditions. This is also radioactive 
emissions reporter from the reactor on a continuous basis 
during the period studied. In motion simulations that change 
the probability of occurrence (Probability of Occurrence.
mp4, Appendix J, supplementary material), the areas where 
activity decreases as time elapses in the accident area can be 
seen clearly. These simulations allow one to see prospectively 
whether or not radioactivity is in an environment.

Table 7   The probability of occurrence (risk) and probability of non-occurrence (confidence) according to the generalized extreme-value distri-
bution at 240th hour

Stations Activity (Bq/kg) Probability of occurrence 
(risk) (r)

Generalized extreme-values, prob-
ability of occurrence (rgev)

Generalized extreme-values, 
probability of non-occurrence 
(ggev)

14 11,518.140 0.95 0.983700 0.016300
10 12,610.980 0.90 0.940996 0.059004
6 14,730.550 0.85 0.850516 0.149484
19 16,155.420 0.80 0.797531 0.202469
15 16,621.260 0.75 0.781794 0.218206
16 17,696.390 0.70 0.748203 0.251797
17 20,675.690 0.65 0.671588 0.328412
2 24,757.000 0.60 0.594177 0.405823
13 33,185.350 0.55 0.489650 0.510350
12 42,227.860 0.50 0.419290 0.580710
5 47,887.160 0.45 0.387075 0.612925
4 53,128.320 0.40 0.362491 0.637509
11 60,176.240 0.35 0.335184 0.664816
3 63,870.150 0.30 0.322901 0.677099
1 116,656.900 0.25 0.221919 0.778081
18 279,212.800 0.20 0.129011 0.870989
9 289,703.600 0.15 0.126078 0.873922
8 488,231.100 0.10 0.090970 0.909030
7 865,939.700 0.05 0.063444 0.936556
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Fig. 3   131I radioactive fallout 
map at the 240th-hour

Fig. 4   Spatial variation of 
probability of occurrence (risk) 
according to the generalized 
extreme-value distribution cor-
responding to the activity values 
at 240th-hour
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Looking at the whole of the maps in Fig. 5 and Appendix 
I (supplementary material), the probability of non-occur-
rence of the activity in the north-eastern and south-western 
part of Fukushima is close to 0. This is in line with the 
assessment made for the activity maps. Since the activity 
values in these regions are close to 0, the probability of non-
occurrence values approaches 0. The probability of non-
occurrence decreases with time as it can be seen in moving 
simulation (Probability of Nonoccurrence.mp4, Appendix 
K, supplementary material).

Conclusions

Nuclear energy is one of the world’s important energy 
sources, and its production is relatively cheap provided 
that the energy needs of nuclear power plants are supplied 
properly. Such a supply reduces the capital spent on energy 
production and increases purchasing power. This leads to an 
increase in the welfare level of any country, where nuclear 
energy investments exist. On the other hand, nuclear energy 
brings some risks in the event of a possible accident. How-
ever, it is possible to reduce the effects and risks that arise 
as a result of nuclear power plant accidents by employing 
scientific methodologies. Nonetheless, it can be said that 
nuclear energy is one of the sources with the lowest risk 
ratio in terms of both clean energy production and profit/
loss balance, compared to other energy alternatives and the 

risks inherent in people’s daily life. Through “Radioactive 
Waste Management”, the possible risks that may arise are 
reduced to a minimum level. Nowadays, “Radioactive Waste 
Management” enables people to be affected radioactively 
at the minimum level through audits conducted by many 
organizations, especially by the International Atomic Energy 
Agency (IAEA). About 151 countries belonging to IAEA 
carry out Radioactive Waste Management, published by 
IAEA. At this point, countries are affected in their daily 
lives at a lower level of radiation. In addition, it is aimed to 
minimizing damage for the case of possible accidents. There 
are many studies for each stage of Radioactive Waste Man-
agement. Particularly after the Chernobyl accident, countries 
have begun to take strict measures, seeking answers to the 
questions “How should radioactive waste management done 
in the case of chaos?” Models have been proposed for radio-
isotope distributions in air, groundwater, sea, river, and soil. 
A realistic risk analysis model for radioactive fallout to be 
released after a possible accident will keep radioactive waste 
harms at the optimum level. On the other hand, this research 
also contributes considerably to Radioactive Waste Manage-
ment and Radioactive Pollution Prevention Scenarios.

When FDNPPA was examined, it was observed that the 
results were generally non-linear, because radioactive mate-
rials that are emitted by atmospheres and other environmen-
tal systems are influenced in many ways from atmospheric 
pressure to the humidity of the environment. Artificial intel-
ligence techniques such as artificial neural networks and 

Fig. 5   Spatial variation of the 
probability of non-occurrence 
(confidence) values according to 
the generalized extreme-value 
distribution corresponding to 
the activity values at 240th-hour
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fuzzy logic can be used in future models for similar stud-
ies. In other respects, chaotic calculations provide effective 
results for non-linear studies and they can be applied as other 
different steps for this and similar studies. After FDNPPA, 
the activity of the short half-life 131I isotope was taken at 
19 different stations at different times. The fact that activ-
ity measurements are not synchronous in a research area 
is the main reason why the distribution of radioactivity in 
that area cannot be determined as a whole. If this research 
is to be carried out with a long half-life radioisotope, such 
as 134Cs or 137Cs, the daily, weekly or even monthly change 
in activity would be almost constant or would show a lin-
ear change. In this case, a single scattering graph coupled 
with risk assessment is sufficient for long-life radioisotopes. 
The change in activity values ​​for the short half-life of 131I 
(approx. 8 days) is shorter, but at some stations (stations 
3, 6, 7, 16, and 19), measurements take long intervals, as 
simultaneous measurements are not taken from the stations. 
In this case, model curves are recommended to each station 
for accurate results in a risk assessment at a given time. 
The studied parameter is activity and the variation is vis-
ibly exponential, and hence, this model is obtained by the 
least squares method. In this study, a risk analysis method is 
developed to determine the risk levels of non-asynchronous 
radioactivity data. The power of Least Squares Method in 
obtaining simultaneous data is percieved. After getting the 
risk values of the simultaneous data, it is decided that the 
pdf, which best describes these risk values, is the General-
ized Extreme-Value Distribution (GEVD). In the literature, 
GEVD is a type of distribution proposed for the data under 
a sudden development of chaotic conditions. The activity a 
value of the 131I radioisotope is released after the FDNPP 
accident, which is a chaotic situation, and they are expected 
to comply with GEVD. As the time progresses, the activity 
values of the stations change, but the suitability of GEVD 
remains unchanged. Hence, the activity risk values in the 
GEVD are equivalent to saying that the GEVD is a char-
acteristic of the activities in this region. It is then expected 
that as the value of activity decreases, the appropriateness of 
the GEVD decreases. As a result, for Fukushima, it can be 
said, “the risk distribution according to the position of 131I 
corresponds to the GEVD”.

Changes in the 131I contamination probability to occur 
and not to arrive are determined for the next 60 days after 
the accident. These possibilities are shown on maps and as 
simulation animations, which prospectively made it possible 
to glimpse the possibility of radioactivity being in an envi-
ronment or not. The simulation method gives instant infor-
mation for the risk levels that the corresponding radionuclide 
generates leading to a strong belief that it can be easily used 
in other similar studies.

With the methodologies proposed in this study, if the 
examined radionuclide has a long half-life, it can display 

moving or still simulation images; sampling areas can be 
expanded to reach global measurements in terms of both 
distance and duration. Especially, moving simulations help 
to facilitate the interpretation of the case/event of the sci-
entists, who can work on the advanced subject. With this 
simulation method, it is possible to observe the spread of 
radioactivity over ground layers, as well as the propagation 
of atmospheric radioactive fallout.
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