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Abstract
Mosses have been used for monitoring trace elements airborne pollution due to their ability to accumulate elements directly 
from wet and dry deposition. During the 2015/2016 European moss survey, ninety-five samples of Hypnum cupressiforme 
Hedw. were collected in Northern Greece. Mosses were analyzed to the content of Neutron Activation Analysis and the 
concentrations of thirty-three elements were determined. The contamination factors for the following elements Al, As, V, 
Ni, Fe, Cr, Zn were calculated. Information about air quality was provided through the study of atmospheric deposition of 
trace elements in mosses in the vicinity of Northern Greece.
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Introduction

Human activities have a great impact on atmospheric chem-
istry. Since industrial revolution and due to the increasing 
anthropogenic activities and urbanization, a lot of changes 
in atmosphere have occurred [1, 2]. Heavy metals can enter 
in all ecosystems while they are emitted to the atmosphere 
in different forms gas or particulate matter [3, 4]. There are 
different sources of the atmospheric emitted heavy metals 

such as housing and commercial properties, industrial pro-
cesses, road transportations and agriculture. Heavy metals 
can be transported over long distances and be deposited 
many kilometers away from their emitting sources, impact-
ing on human health and the environment [5]. Depending 
on their concentrations, they can be hazardous for plants, 
animals and humans affecting the whole food chain. The 
increase of atmospheric pollutants in urban and industrial 
areas and their influence in human health and environment 
represents one of the main European scientific concerns 
since the 1970’s [2, 6]. As a result, controlling the air qual-
ity is considered necessary.

During the last 20 years, different instructions (1999/30/
EC, 2002/3/EC, 2004/107/EC and 2008/50/EC) have been 
officially followed by European community for air quality 
assessments related to metals, nitrogen oxides and dioxides, 
Sulphur dioxide, and ozone concentrations in the atmos-
phere [6]. The international cooperation for the reduction of 
air pollution during this period, has significantly contributed 
to the decrease of trace elements emissions in Europe [5, 7]. 
For monitoring the quality of air, different complementary 
modelling techniques are used, and they are mostly based on 
physico-chemical measurements of different air pollutants 
[8, 9]. Monitoring the quality of ambient air is a complex 
procedure, as it requires expensive analytic instrumentations, 
large number of potentially dangerous substances and tem-
poral and spatial variations in the input rates of different 
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pollutants [2, 9–11]. Beyond all the previous, the conven-
tional methods that are used for the atmospheric deposi-
tion of heavy metals, require a big number of samples in 
frequent intervals, so the under investigation area can be 
pretty limited [4, 12–14]. Due to these difficulties, different 
alternatives were under investigation and finally the idea of 
biomonitoring became a reality in the late 1960’s.

Biomonitoring is a technique that gives the possibility 
to detect spatial and temporal variations in the atmospheric 
deposition of different pollutants and to define their possible 
sources [2, 9, 15–25]. This technique uses living organisms 
as biomonitors either passively or actively, based on their 
sensitivity to air pollution or their capacity of accumulat-
ing pollutants in their tissues [2, 26, 27]. During the recent 
decades and among the different living organisms (vascu-
lar plants, mosses and lichens) that can be used as bioac-
cumulators of airborne pollutants [2, 28–31], mosses and 
lichens have been systematically chosen for environmental 
monitoring. Mosses are special living organisms- one of the 
earliest land plants in evolutionary terms [32], and they have 
reasonably attracted the interest of the researchers as they 
present very unique characteristics that are not noted in the 
other plants [33].

Using mosses as bioindicators of atmospheric fallout, is 
based on the fact that elemental concentrations in mosses are 
closely related to atmospheric deposition [34–38]. Mosses 
are able to accumulate airborne pollutants such as heavy 
metals [19, 35, 37, 39–42] and organic compounds [25] 
due to their morphological and physiological characteris-
tics [2]. Mosses are non-vascular plants and they develop 
rhizoids while being in close contact to their substrate [43, 
44]. They have no rooting system and all the nutrients and 
the water are obtained mainly from precipitation and dry 
deposition. The uptake of trace elements from the ground 
is not significant [22]. Due to their slow growth rate they 
are able to accumulate trace elements over a large time 
period. Each annual growth segment of mosses reveals the 
elemental concentrations of each current year [45]. Some 
moss species are appropriate for assessing the quality of 
air on large geographic scale due to the fact that they com-
pose extensive populations [2, 20–24]. The concentrations 
of elements in mosses in a large geographic scale may vary 
because the accumulation of elements in moss tissues can 
be seriously influenced by local pollution sources and dif-
ferent environmental factors [2, 11, 19]. The moss analysis 
technique is an easy and less expensive method than the 
conventional deposition analysis as no special deposition 
collectors are required and a high sampling density can be 
carried out [22, 46, 47]. Mosses do not provide direct quanti-
tative measurements of elements deposition in mosses. How-
ever, relating the information from different moss surveys 
to deposition monitoring data for each country, information 
about elemental concentrations can be extracted [22, 48, 49]. 

More specifically, the measured concentrations of elements 
in mosses and in wet deposition can be compared by using 
linear regression analysis. Then the elemental moss concen-
trations can be transformed to absolute deposition rates by 
using the calculated regression equations [48].

Since 1990 the European moss survey takes place every 
5 years providing data for trace elements depositions from 
the atmosphere to naturally growing mosses [5, 7, 20, 22, 
25, 50–55]. This European survey is being coordinated by 
the ICP Vegetation (International Cooperative Program on 
Effects of Air Pollution on Natural Vegetation and Crops) 
Coordination Centre at the Centre for Ecology and Hydrol-
ogy, Bangor, UK [22]. Moss surveys provide spatial and 
temporal trends in trace elements concentration and the iden-
tification of local or transboundary sources [56, 57]. Greece 
provides for the first time data on concentrations of several 
moss monitored metals for the North part of the country. 
Hypnum cupressiforme is the most frequently moss species 
that can be found in the territory of Greece, due to the dry 
climate and the mountainous morphology in the biggest part 
of the country.

The objective of this study is to present the spatial atmos-
pheric deposition of trace elements in the province of North-
ern Greece for identification of possible sources, as well as 
the comparison of the obtained results with the results of the 
neighboring and other European countries and set up the first 
database of the country for future surveys.

Experimental

Study area and moss sampling

The study area was situated in the region of Northern Greece 
(Fig. 1). The sampling net included 95 sites in the Hellenic 
prefectures of West, Central, East Macedonia and Thrace, 
where the recommended moss species (Hypnum Cupressi-
forme Hedw., Pseudoscleropodium purum) could have been 
found in required quantities. More specifically sampling sites 
were located from 39.97° North to 41.65° North and from 
20.97° East to 26.26° East covering a grid of 30 m × 30 m. 
Moss samples were collected from different elevations from 
30 m to 1450 m above the mean sea level.

All samples of fresh plant material were collected dur-
ing the end of summer 2016. There was no rain during the 
sampling. Samples were taken from open regions in most 
of the sampling sites avoiding possible contact of mosses 
with surface water. The sampling sites were located at least 
300 m from main roads, 100 m from local roads and 200 m 
from populated areas. All samples were collected according 
to the requirements of the Protocol of the European Survey 
ICP Vegetation [50].
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Sample preparation and analysis

All the samples were analyzed by means of Neutron Activa-
tion Analysis (NAA) performed in the radio-analytical Frank 
Laboratory of Neutron Physics, Joint Institute for Nuclear 
Research (JINR) in Dubna, Russia.

After sampling and identification of the moss species, 
mosses were cleaned from impurities very carefully and 
were stored in deep frozen until further treatment. No chemi-
cal treatment was used and mosses were not washed. Before 
analysis mosses were air-dried at 40 °C for 3 h. After that, 
the dried material was well homogenized on an agate mor-
tar. From the homogenized material samples with weight of 
0.3 g were measured on a scale and formed into the shape of 
pills by means of a pneumatic press and ceramic matrices. 
The pills were then packed in two separate ways—in plastic 
bags for short irradiation and in aluminum foil cups for long 
term irradiation.

Using a pneumatic rabbit system, the prepared and packed 
samples were sent to two different irradiation channels of the 
pulsed fast IBR-2 reactor of the JINR for long and short 
term irradiation respectively. The plastic packed samples 
were irradiated for 180 s to determine the short lived iso-
topes (Na, Mg, Al, Cl, Ti, V, Mn, Ni, I, In, Ag), while the 
aluminum packed samples were irradiated for 4–5 days to 
determine long lived isotopes (K, Ca, Sc, Cr, Fe, Co, Zn, 
As, Se, Br, Rb, Sr, Zr, Mo, Sb, Ba, La, Sm, Gd, Au, Th, 
U). The irradiated samples were then measured on HPGe 
detectors with relative efficiency 40% and 1.74 keV FWHM 
at the 1332 keV line of 60Co. To determine the short lived 
isotopes, samples that were irradiated for a short period, 

were measured immediately for 15 min. For the determina-
tion of long lived isotopes, samples that were irradiated for 
a long term, were measured once 3 days after the irradiation 
for 5 h, and then a second time, 20 days after the irradiation 
for 20 h. For the analysis of the gamma spectra the Genie-
2000 software by Canberra was used. The elemental con-
centrations were calculated by means of a special software 
that was developed in FLNP, JINR [58]. Certified reference 
materials were used for the calculation of the elemental 
concentrations.

High quality certified reference materials (SRM) were 
used for the quality control of the NAA results, such as peach 
leaves-1547, coal fly ash-1633b and 1633c, coal-1632c, 
Montana soil-2710, San Joaquin Soil-2709 and Calcareous 
soil-ERM-CC690. All the reference materials were provided 
by the National Institute of Standards & Technology (NIST) 
and the Institute for Reference Materials and Measurements 
(ERM). The SRMs were packed and irradiated together with 
the moss samples under the same conditions in each trans-
port container. The results that were obtained were com-
pared with the certified values. The reference material that 
presented the least deviation between the measured and the 
certified values of each elemental concentration was chosen.

Results and discussion

The concentrations of thirty-three elements were determined 
using the NAA. The results of the descriptive statistical anal-
ysis of the elemental concentrations in moss samples (mean, 
median, min, max, and standard deviation) are presented in 

Fig. 1   Moss sampling net in 95 sites along the study area of Northern Greece
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Table 1. Spatial distributions of elemental concentrations 
(Fe, Ni, As, Zn, Cr) are shown in Figs. 2, 3, 4, 5 and 6.

This is the first attempt of studying the atmospheric depo-
sition of trace elements in mosses, in such a big territory 
in Greece. Some years earlier, in Athens, close to a highly 
polluted area, moss bags were used for investigating the 
elemental atmospheric deposition [59]. According to this 
previous study, the concentrations of the elements Al, Zn, 
Fe, Cr, Ni, V were higher in the sites that were closer to the 
industrial zone, but there was not clear association between 
the anthropogenic activities and the observed elements.

Furtheremore, there was one study of biomonitoring, 
concerning the transboundary transport of trace elements 
between Bulgaria and the Northeastern part of Greece [57]. 
According to this study [57], in the Greek territory, the rela-
tive high concentrations of the elements As, Cr, Fe, Ni and 
V were due to old mines, soil contamination by windblown 
dust and road transportation. The same study showed that, 
the Pb–Zn complex close to Kardzahali town (Bulgaria) was 
responsible for the rise of the concentrations of Cr, Fe, Ni 
and As in the territory of Bulgaria.

The current study verifies the results of the previous 
investigation regarding the pollutants’ chemical composi-
tion in the region of Northeastern part of Greece, next to 
the Bulgarian borders. Regions that are characterized by 
high concentrations of Al, As, Fe and V are observed in 
both of the studies, with some differences concerning the 
concentration levels of each element. More specifically, 
the concentration of As close to ‘Kerkini Lake’, presents a 
reduction of almost 30% from the previous study, while Al 
remains in similar levels. In specific regions close to Bul-
garian boarders, the concentrations of Zn, Cr, Fe, Ni and 
V are two to three times higher than the previous observed 
concentrations. The reasons of this rise, ten years after the 
previous study, can be partially clarified. It might be due to 
the windblown dust coming from manufacturing and metals 
industries (Fe and Zn), or from coal mining activities and 
even from the ophiolitic rocks (Cr and Ni) that are present in 
the Greek territory. However, it might be due to transbound-
ary transport from sources in Bulgarian boarders and further 
investigation needs to be done.

Moreover, in the areas that are close to the borders with 
F.Y.R. Macedonia, the elements Fe, V, Zn, As, Co, Ni and 
Cr show lower concentrations than in the Kavadarci region 
[56, 60] of F.Y.R. Macedonia, which is known for the fer-
ronickel mining and other metallurgical activities. These 
concentrations verify the correlation of the above elements 
with the ferronickel mining, and maybe indicate a possible 
transboundary transfer of elements from F.Y.R. Macedonia 
to the Greek territory.

Differences can be observed between the elemental con-
centrations of the current data and the data of the other 
countries that participated in the 2005/2006 and 2010/2011 Ta
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moss surveys (Table 2) [25, 50]. More specifically, data from 
countries that are close to the vicinity of Greece, as well as 
far from Greece were chosen to be compared with the data 
of the current study. Greece presents lower maximum con-
centrations of Zn, Mn, Co than Norway, in contrast to the 
max elemental concentrations of Bulgaria and Switzerland. 
Ni max concentrations are almost in the same levels like 
in Bulgaria, but lower than in Norway and Albania. The 
Greek median value of As is similar to the Serbian one, but 

higher than F.Y.R. Macedonia and Albania. V and Zn are in 
the same levels in the Greek, Serbian and Croatian territory 
according to the 2005/2006 moss survey results.

In this study, there are evidence that elevated concentra-
tions of trace elements are both observed in groundwater 
and mosses. More specifically, elevated concentration of Cr 
was observed in mosses as well as in groundwater in the 
central Macedonia, nearby the Anthemountas basin [71]. 
In Sarigiol basin, it has been reported the contribution of 

Fig. 2   Concentrations of As in (μg g−1) in moss samples in Northern Greece

Fig. 3   Concentrations of Cr in (μg g−1) in moss samples in the area of Northern Greece
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dispersed fly ash from the coal consumption to the pollution 
of groundwater [72] and soils and sediments [73], while Cr 
and Ni in mosses could also origin form the ophiolitic rocks 
in the study area. In literature, few studies have investigated 
linking between groundwater and mosses. Štechová et al. 
[74] studied the relationship of Hamatocaulis vernicosus 
with groundwater quality in Czech. Molchanov [75] stud-
ied the Gas exchange in sphagnum mosses nearby shallow 
groundwater.

There is no direct transfer of elements from the ground-
water to mosses, as the last ones do not have roots, and 
all the nutrients and water they need come from wet and 
dry deposition. Trace elements in groundwater are linked 
mainly with the geological background. Trace elements in 
mosses are linked mainly with their concentrations in air. 
Elevated concentrations of trace elements in both mosses 
and in groundwater might be an indicator of pollution 
transfer from the air to mosses as well as from the air 

Fig. 4   Concentrations of Fe in (μg g−1) in moss samples in the North part of Greece

Fig. 5   Concentrations of Ni in (μg g−1) in moss samples in Northern Greece
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Fig. 6   Concentrations of Zn in (μg g−1) in moss samples in the region of Northern Greece

Table 2   The concentrations of seven trace elements (As, Cr, Fe, Ni, V, Zn, Al) in moss samples (mg kg1) from the current survey and from other 
European countries derived from the 2005/2006 and 2010/2011 moss survey

As 
Median
(min–max)

Cr 
Median
(min–max)

Fe 
Median
(min–max)

Ni 
Median
(min–max)

V 
Median
(min–max)

Zn 
Median
(min–max)

Al 
Median
(min–max)

1.44 11.5 3770 7.26 8.17 37.6 5840 Current study
(0.52–17.9) (2.04–222) (1010–28,700) (1.72–90.2) (2.61–33.4) (14.6–282) (1350–46,100)
– 2.43 1399 2.99 3.88 27.9 1495 Bulgaria, 2005
– (0.79–57.8) (186–9493) (0.92–90) (0.77–24.3) (9.38–366) (426–10,394) [61]
0.63 2.06 1101 2.61 3.07 22.2 1245 Bulgaria, 2010
(0.15–10.8) (0.72–38.1) (307–8546) (0.84–82.1) (0.96–22.4) (8.22–286) (402–8886) [25]
0.68 6.79 2239 5.82 6.38 35.6 3600 F.Y.R. Macedonia, 2005
(0.18–4.32) (2.09–82) (999–8130) (1.8–43.1) (2.5–31.9) (16.4–91.3) (1466–25,860) [62]
0.48 6.46 1900 4.3 3.8 29 2400 F.Y.R. Macedonia, 2010
(0.23–1.9) (2.46–35) (890–5400) (1–55) (1.5–14) (13–94) (1100–6800) [63]
0.12 0.58 273 1.24 1.40 31.4 255 Norway, 2005
(0.004–4.61) (0.099–65.5) (50.4–9972) (0.055–1016) (0.25–22.1) (8.04–694) (58.3–12,121) [64]
0.13 0.59 278 1.16 1.41 30.7 283 Norway, 2010
(0.02–4.84) (0.16–47.9) (27–24,684) (0.15–857) (0.29–25.9) (7.4–368) (46–4581) [65]
1.41 6.44 2267 4.43 5.76 29.0 3946 Serbia, 2005
(0.22–21.6) (2–78.8) (670–16,100) (1.7–23.8) (1.94–32.7) (13.2–259) (117–31,180) [66]
0.305 4.75 1618 5.85 3.51 13.8 1638 Albania, 2010
(0.05–2.86) (1.62–31.8) (469–5488) (1.56–131) (1.15–16.9) (1–68.1) (535–6974) [67, 68]
0.37 2.8 1000 2.7 3.1 29 1350 Croatia, 2005
(0.1–6) (0.76–33) (320–12,140) (0.66–18) (0.91–32) (12–283) (398–21,460) [69]
0.36 1.94 789 3.16 2.55 24.8 878 Croatia, 2010
(0.05–1) (0.41–8.55) (85–4028) (1.04–14.66) (0.23–37.3) (11.6–77.1) (112–4493) [70]
0.15 1.2 261 1.59 0.67 31.4 – Switzerland, 2005
(0.053–1.07) (0.33–7.96) (95.4–2380) (0.5–7.77) (0.21–3.55) (10.1–179) – [61]
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through soil to groundwater. Obviously, the trace elements 
concentrations in mosses should be compared with nearby 
soil concentrations, linked with the geological formations. 
The aforementioned constitutes the next step of this study.

Another method for identifying the most affected areas 
by the atmospheric deposition of elements is the calcula-
tion of the contamination factor. The contamination factor 
shows the pollution status of the under study area [76–81]. 
The contamination factors (CF) for each sampling site for 
the elements Al, As, Fe, Ni, V, Cr, Zn were calculated 
according to the following formula (Eq. 1).

where the background level is considered to be the con-
centration of each element in a “clean- virgin” area in the 
territory of Greece, which is as less as possible affected 
by human activities and other local sources, such as metal 
industry, mining and agricultural activities, oil combustion 
and road transportation.

The dispersion of contaminants in the atmosphere can 
occur independently of the media or the organisms on 
which they are deposited [68–70]. Considering this, there 
are different contamination factor scales [77, 82] and each 
area can be characterized by different contamination lev-
els, according to the calculated CF values. According to 
Mouvet [83], who had studied the elemental concentra-
tions in aquatic mosses, areas with CF < 2 can be consid-
ered non polluted due to the natural variability that can be 
found into an ecosystem.

There is another scale of classification of the CF, which 
was established by Fernández et al. [78] based on specific 
approaches in terrestrial mosses:

•	 CF < 1, it’s a non-polluted area (natural origin of the 
element).

•	 1 < CF < 2, it’s a suspected area.
•	 2 < CF < 3.5 is a slightly polluted area.
•	 3.5 < CF < 8 it’s a moderately polluted area.
•	 8 < CF < 27 it’s a serious polluted area.
•	 CF > 27 it’s an extreme polluted area.

In the present study, more than 50% of the sampling 
sites have CF < 1, concerning the elements Al, As, V, 
Fe, Zn., while this percentage drops down to 30% con-
cerning Cr and Ni elements. This indicates that most of 
the above elements in mosses in these regions are not 
affected by any anthropogenic factor but they have natu-
ral origin. Around 30% of the areas are considered sus-
pected areas (1 < CF < 2) for almost all the elements, while 
less than 15% are characterized slightly polluted areas 
(2 < CF < 3.5). The rise of these elemental concentrations 

(1)CF =
Concentration of element (�g g−1)

Background level concentration (�g g−1)

is probably due to human activities and other local 
sources. Around 5% of the areas, (except of Cr and Ni 
that are around 20%), are described moderately polluted 
areas (3.5 < CF < 8) indicating that human activities have 
even stronger impact on these sites. These regions are 
mostly in the prefecture of Central Macedonia. Finally, 
around 5% of the regions (mostly those in the prefecture 
of West Macedonia)present high enough concentrations of 
Cr and Ni, in order to be marked as serious polluted areas 
(8 < CF < 27). The regions where Cr and Ni present high 
concentrations are in accordance with those regions whose 
CF > 1, indicating that they might be connected not only 
with ophiolitic rocks (geogenic source of origin) but also 
with human activities such as coal mining and industry.

The contamination factor was calculated in other stud-
ies too for the characterization of the areas. For example, 
Maxhumi et al. [84] mentions that in Kosovo the elements 
Fe, Ni and Zn are related with the first two categories of the 
contamination factor scale, indicating non polluted areas, 
while Cr is associated with the third and fourth level of 
contamination factor, the so called slightly and moderately 
polluted areas. According to Jiang et al. [81], in China, Cr 
is connected with regions that have experienced moderate 
contamination, while As, Ni, V and Zn characterize areas 
with low contamination level (first category of the CF scale). 
In Galicia (northwest Spain), according to Fernández and 
Carballeira [77], most of the areas concerning Al, Cr, Fe, Ni 
and Zn belong to the second category of CF, while there is a 
2% of areas with serious contamination level associated with 
Al and Fe elements. In Albania, Qarri et al. [67] reported 
that Zn is correlated with the first two levels of CF scale, 
while As is characterizing areas that are slightly polluted. 
The CF of the elements Fe, Ni, V and Al describe areas that 
are moderately and serious polluted in Albanian territory.

Conclusions

Moss biomonitoring is a really efficient and economical 
technique for the determination of the atmospheric deposi-
tion of trace elements. Ninety-five samples of mosses were 
collected from the vicinity of Northern Greece. They were 
analyzed using NAA and the concentrations of 33 elements 
were determined. A detailed spatial distribution of the ele-
ments was achieved.

The values of the present study were compared with the 
results of the previous EU moss surveys, and more precisely 
with those of the 2005/2006 and 2010/2011 moss survey. 
The regions with the higher concentrations of Al, As, Fe 
and V of this study are in accordance with the data of the 
previous study that was conducted in the same region by 
Yurukova et al. [57]. In specific sites close to Bulgarian 
boarders, the elements Zn, Cr, Fe, Ni and V are found in 
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higher concentrations than in the previous study. The rea-
sons of this rise, has not be defined yet. It might be due to 
transboundary transport or due to local sources in the Greek 
territory. Further research should be done for the definition 
of the sources that lead to this rise.

The relative higher concentrations of Cr and Ni in the 
territory of Greece are probably due to geogenic sources 
(ophiolitic rocks), and maybe due to coal mining activities. 
Al, Fe and Zn might be connected with metal and manufac-
turing activities. Future investigation about the determina-
tion of potential sources of the studied elements in mosses is 
required. Also the case of transboundary transfer of metals 
should be examined more carefully.

Elevated concentrations of trace elements are co—
observed in groundwater and mosses, indicating the pol-
lution transfer from the air to mosses and from the air 
through soil to groundwater.The elemental concentrations 
in mosses should be compared with nearby soil concentra-
tions, linked with the geological formations.Α further and 
more detailed analysis is necessary to understand potential 
process between mosses and groundwater.

The contamination profile of each area is also formed 
using the contamination factor. The CF results indicate that 
the elements Al, As, Fe, V, Zn are associated with the first 
category of the contamination scale—the unpolluted areas, 
revealing a pretty low pollution level of atmospheric depo-
sition of the above elements. The elements Cr and Ni are 
mostly related with the suspected areas—second category 
of the CF, emphasizing on the impact of human activities 
on their atmospheric deposition.

Finally, this study provides a baseline dataset for future 
studies, in order to evaluate the air quality of Greece and 
compare with data from other neighboring countries.
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