

Sequential analysis methodology for ²¹⁰Po and uranium analysis by extractive liquid scintillation spectrometry

Vandana Pulhani¹ · Priyanka J. Reddy² · Moushumi Chaudhury¹ · R. M. Tripathi¹

Received: 31 December 2018 / Published online: 28 March 2019 © Akadémiai Kiadó, Budapest, Hungary 2019

Abstract

A methodology for separation and purification of ²¹⁰Po from uranium, thorium and daughters has been studied. Solvent extraction coupled with liquid scintillation analysis using HDEHP (di-(2-ethylhexyl) phosphoric acid) and TOPO (trioc-tylphosphine oxide) in toluene as extractive scintillator was optimized. About 95% of ²¹⁰Po was extracted in the organic phase of TOPO as an extracting agent from an aqueous solution in 1 M HCl, compared to 1.6% extraction by HDEHP. The methodology was validated with uranium ore tailing sample, IAEA-385 sediment and IAEA-447 Moss-soil reference materials for application to environmental samples. A minimum detectable activity of 118 mBq kg⁻¹ was achieved.

Keywords 210 Po \cdot TOPO \cdot HDEHP \cdot Liquid scintillation spectrometry \cdot Solvent extraction

Introduction

 210 Po (t_{1/2}=138 days) is the decay product of 210 Pb (t_{1/2}=22.3 years) via 210 Bi (t_{1/2}=5 days) in the 238 U decay series and widely distributed in the earth's crust, rivers, oceans, and the atmosphere. It is considered to be the most radioactive and radiotoxic amongst the 'naturally occurring radionuclides' (NORMS). Natural concentration of polonium in environment can be enhanced due to human activity like industrial growth, mining, fossil fuel combustion, phosphate fertilizers in agriculture, domestic and industrial sewage [1]. The contribution of ²¹⁰Po towards internal dose to human from NORMS has been estimated to be around 8% [2]. It thus becomes important to estimate activity of ²¹⁰Po in different environmental matrices and its transfer through the human food chain. The most widely used technique for estimation is the spontaneous deposition of polonium on a silver disc [3–6]. This method is subject to interference from oxidants, organic materials, and matrix elements that also deposit on the silver plate. These interferences can be removed by coprecipitation and separation of polonium. The most preferred

Vandana Pulhani vanpulh@barc.gov.in method includes chemical separation of ²¹⁰Po from interfering radionuclides and matrix elements, prior to its deposition. Vajda et al. [7] simultaneously determined ²¹⁰Pb and ²¹⁰Po in a range of matrices including soils, sediments, and biological samples by solid phase extraction using Sr resin in hydrochloric acid solution. ²¹⁰Po activity was determined via LSS (liguid scintillation spectrometry) where the quench level of the sample was affected by the high acid concentration, however, if the quench is maintained low, the major advantage offered by liquid scintillation is the high counting efficiency. About 100% counting efficiencies are obtained for β emitters with energies above 100 keV and α emitters, such as ²¹⁰Bi and ²¹⁰Po respectively. Katzlberger et al. [8] determined ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po in natural drinking water by separating ²¹⁰Pb from water sample via sulphide precipitation and subsequent liquid-liquid extraction of bismuth and polonium using PolexTM, an extractive liquid scintillation cocktail, from a phosphoric acid with about 90% extraction yield. L. Jokelainen et., al, [9] reported the use of three extractive scintillation cocktails, POLEXTM, TOPO (trioctylphosphine oxide) and TNOA(Trioctylamine) for ²¹⁰Po analysis from groundwater samples. The main interfering nuclides were ²³⁴U and ²³⁸U, which led to incorrect results in ²¹⁰Po analysis, due to the co-extraction of uranium from real ground waters. In the present study, the condition for ²¹⁰Po recovery with 75 g L^{-1} HDEHP (di-(2-ethylhexyl) phosphoric acid) and TOPO (trioctylphosphine oxide) in toluene scintillator has been studied under varying HCl acidity conditions and optimized. The quality and reliability of

¹ Health Physics Division, Bhabha Atomic Research Centre, Trombay, India

² Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, India

analytical methods are of significance in the assessment of any validated analytical methods [10]. Studies for standardization of the methodology for ²¹⁰Po analysis using solvent extraction have been carried out using distilled water samples and validated using materials representing the different environmental matrices, like a uranium ore tailing site sample, IAEA certified reference materials viz., IAEA-385, Irish Sea sediment and IAEA-447, Moss-soil.

Materials and methods

The standard solution of uranium (30 Bq mL⁻¹) and ²¹⁰Pb in equilibrium with ²¹⁰Po (90 Bq mL⁻¹) used for spiked experiments were obtained from bureau international des Poids et mesures (BIPM), France. Working solutions were prepared by transferring a known weight of the standards followed by volumetric dilution to an appropriate working concentration. The extractant HDEHP, TOPO, naphthalene, 2,5-diphenyloxazole benzene (PPO), 1,4-bis (2,5-diphenyl-oxazole) benzene (POPOP), diethylenetriaminepentaacetic acid (DTPA) were obtained from Merck.

Ultra low level Quantulus 1220 LSS (Finland) was used for the measurement. It is equipped with pulse shape analysis (PSA) circuit for simultaneous quantization and discrimination of alpha and beta particles in the same sample depending on the decay time of the light pulses they produce in the liquid scintillator. Pulse shape discrimination is accomplished using a software adjustable parameter, PSA which can vary between 1 and 256 to categorize the pulses as either α events or β events and stores the events appropriately in separate multichannel analyzers (MCAs).

Preparation of extractive scintillator

Toluene based scintillator was prepared by dissolving 7 g PPO, 0.5 g POPOP and 200 g naphthalene in 1 L toluene. Extractive scintillator was prepared with two different extractants 75 g HDEHP and 75 g TOPO in toluene scintillator (7.5% V/V). Extraction recovery of ²¹⁰Po spiked in aqueous solutions (10 mL) with varying HCl concentrations (0.1-1.2 M) using two different extractants 0.75 M TOPO and HDEHP in toluene scintillator was studied as shown in Fig. 1. The sequential separation of $U_{(nat)}$ and ²¹⁰Po was carried out based on previous studies [9] and suitable extractant as observed from the current study.

Method

Standardisation of HCl concentrations for ²¹⁰Po extraction using TOPO and HDEHP extractant in toluene scintillator

Two sets, containing series of 10 mL distilled water were spiked with ²¹⁰Po standard solution (8 Bq) and they were

Fig. 1 Efficiency of 210 Po extraction by 0.75 M TOPO and HDEHP in toluene scintillator

adjusted to different concentrations of 0.1, 0.2, 0.5, 0.7, 1 and 1.2 M L⁻¹ of HCl. This was transferred to separating funnels and 10 mL TOPO as extractive scintillator were added to one set and 10 mL HDEHP extractive scintillator to the other. The funnels were shaken at room temperature for few minutes and the solutions were allowed to separate. Under this condition ²¹⁰Po is expected to get transferred to the organic phase [11]. Following phase separation, the organic phase was sparged with argon gas for ²²²Rn removal and reduction of chemical quenching by oxygen, for improving the pulse shape discrimination and energy resolution. Finally 5 mL aliquot of the organic phase containing ²¹⁰Po was counted in LSS for 1000 min at the optimized PSA [12]. Figure 1 shows the variation of ²¹⁰Po recovery under various HCl concentrations along with TOPO and HDEHP as extracting agents in toluene scintillator.

Effect of extractant concentration (TOPO) on recovery of ²¹⁰Po

Experiments were carried out using different concentrations of TOPO ranging from 15 to 100 g L^{-1} in toluene scintillator, to optimize its concentration in the extractant. Distilled water was spiked with 10 Bq ²¹⁰Po activity and the above mentioned extraction procedure was repeated. Figure 2 shows the extraction efficiency of Po under different TOPO concentrations.

Selective separation of ²¹⁰Po and Uranium (U)

Pilot experiments were conducted to examine the extraction of $U_{(nat)}$ in the presence of ²¹⁰Po in aqueous phase at 1 M L⁻¹

Fig. 2 ²¹⁰Po extraction recovery under various TOPO concentrations

HCl with TOPO as extracting agent. 10 mL of distilled water was spiked with $U_{(nat)}$ (3.17 Bq) and ²¹⁰Po (8 Bq) activity. 10 mL of the extractive scintillator was added and the procedure described above was repeated. An aliquot of the organic phase was counted in a LSS and spectrum is shown in Fig. 3 which is a composite spectrum of ²³⁸⁺²³⁵⁺²³⁴U and ²¹⁰Po as a result of solvent extraction indicating that $U_{(nat)}$ and ²¹⁰Po were transferred into the organic phase and that U also gets extracted along with ²¹⁰Po under the above mentioned conditions. Therefore, above mentioned solvent extraction procedure was modified to sequentially isolate $U_{(nat)}$ and ²¹⁰Po. To standardise this, 10 mL aqueous solution in 1 M HCl was spiked with $U_{(nat)}$ (3 Bq) and ²¹⁰Po (9 Bq) and subjected to solvent extraction with 10 mL toluene scintillator with HDEHP as an extracting agent with a few minutes

Fig. 3 Composite spectrum of U and $^{\rm 210}{\rm Po}$ with only TOPO extraction

Fig. 4 a U and b 210 Po individual spectra after sequential separation

equilibration time. Under this condition, U was expected to be transferred to the organic phase and ²¹⁰Po remain in the aqueous phase. 10 mL of the aqueous phase was decanted into another separating funnel and subjected to solvent extraction again 10 mL toluene scintillator with TOPO as an extracting agent for a few minutes.²¹⁰Po was expected to be transferred to the organic phase which was counted by LSS. Figure 4a, b shows the spectra when ²³⁸⁺²³⁵⁺²³⁴U and ²¹⁰Po are present individually and not interfering after sequential separation.

²¹⁰Po solvent extraction in the presence of ²²⁶Ra

²²⁶Ra is the decay product of naturally occurring radionuclide U which is present in almost all matrices of the environment along with ²¹⁰Po. Solvent extraction of ²¹⁰Po also quantitatively extracts ²²⁶Ra, an α emitter which causes interference in the estimation of ²¹⁰Po. An aliquot of 1 mL ²²⁶Ra standard (5.5 Bq) along with its daughters were evaporated to dryness with repeated addition of 1 mL concentrated HCl under an IR lamp. After complete

Fig.5 a 226 Ra spectrum with 222 Rn and its short lived daughters after solvent extraction. b 226 Ra spectrum after removal of short lived daughters by complete evaporation. c 210 Po spectrum after solvent extraction 226 Ra

evaporation, scintillation cocktail was added to one set and LSS measurement was carried out. Figure 5b depicts ²²⁶Ra spectrum after removing its short lived daughters by evaporation. Spectrum (a) is the case when radon is not purged from Ra and (c) is the case when ²²⁶Ra and ²¹⁰Po both are present together. DTPA has been reported to act as a masking agent and reduces interference of ²²⁶Ra in $U_{(nat)}$ [12] estimation and was used in the current studies to eliminate ²²⁶Ra interference in ²¹⁰Po measurement. In order to standardize method for removal of ²²⁶Ra interference an aliquot of 1 mL ²²⁶Ra standard (5.5 Bq) along with its daughters and ²¹⁰Po was evaporated repeatedly to dryness and made into 10 mL 1 M L⁻¹ HCl, followed by the addition of 1.5 mL 0.01 M DTPA as a masking agent. Solvent extraction was carried out using 10 mL TOPO based toluene extractive scintillator. After phase separation, 5 mL aqueous phase was collected in a 20 mL polyethylene vial for LSS measurement at optimized PSA and the spectrum was analysed to confirm complete removal of ²²⁶Ra and ²²²Rn. Figure 6 shows flow chart of the standardised methodology chalked out for sequential separation of $U_{(nat)}$ and ²¹⁰Po.

Validation of methodology

Certified reference materials including IAEA-385, Irish Sea sediment, IAEA-447, Moss-soil were analyzed for ²¹⁰Po using the optimized conditions. In addition, ore tailings sample from Jaduguda was also analyzed to validate the method. 1 g each of the samples was digested in Teflon beaker on a hot plate with concentrated mixture of 100 mL aquaregia. The procedure was repeated 3 times. The extracts from each leaching were collected and treated with perchloric acid for destroying the organic matter and volume of the samples were reduced by controlled heating on hot plate. The extracts were centrifuged at about 1500 rpm for 5 min and the supernatant was collected. The residual undissolved solid was washed 2–3 times, with 5 ml 0.1 M L^{-1} HCl and supernatant was added to the main extract. The cumulative supernatant was evaporated to near dryness at temperatures below 90 °C. The dry residue was dissolved and stock solution prepared in 1 M L⁻¹ HCl. 10 mL aliquot from the stock solution of each sample containing was transferred to a separating funnel. 1.5 mL 0.01 M DTPA was added and the procedure described as above was followed. The activity concentration of ²¹⁰Po in the certified reference materials and ore tailing and other samples are presented in Table 1. Sediment samples were analysed by the conventional radiochemical method and also by the standard method developed in the current study. Figure 7 shows a typical spectrum from LSS of separated ²¹⁰Po from an ore tailing pond sample.

Minimum detectable activity (MDA)

The Currie equation given below provides an estimate of the MDA which is proportional to the standard deviation of the background activity for a specific volume of analyte/sample. Background sample was prepared similar to the real samples. MDA was evaluated using [13],

$$MDA(BqmL^{-1}) = \frac{2.71 + 4.65\sqrt{C_B}}{VET}e^{\lambda\Delta t}$$
(1)

where $C_{\rm B}$ = Counts in ²¹⁰Po region of interest for blank when counted for time *T*, *T* = counting time (min); *V* = volume Fig. 6 Schematic procedure for

sequential separation of U and ²¹⁰Po

Table 1	Activity of ²¹⁰ Po
in certif	ied reference and
experim	ental materials

Sample	Certified Activity (95% confidence) (Bq kg^{-1})	Experimental	$\pm \sigma (Bq kg^{-1})$
IAEA-385, Irish Sea sediment	32.9 (31.2–35.3)	35.0 ± 1.6	
IAEA-447, Moss-soil	423 (413–433)	395.0 ± 7.8	
Ore Tailing, Jaduguda	15	14.3 ± 0.1	
Samples	α Spectrometry		LSS method
Sediment 1	31.8 ± 4.1		33.5±5.1
Sediment 2	43.6 ± 5.7		44.9 ± 6.7
Sediment 3	41.5 ± 5.4		43.1 ± 6.4
Sediment 4	45.5 ± 5.9		47.3 ± 7.1
Sediment 5	53.6 ± 6.9		55.2 ± 8.3
Sediment 6	53.1 ± 6.1		55.3 ± 8.3

(mL)/weight of sample analyzed, E = counting efficiency; $\Delta t =$ time delay between the ²¹⁰Po separation from its parent to the time of counting.

MDA of 118 mBq kg⁻¹ based on a background of 50 counts for 60,000 s counting time for α peak for about 1 g of sample.

Results and discussion

The possibility of using toluene based scintillator in combination with complexing extractants like TOPO and HDEHP for the separation and extraction of ²¹⁰Po from U and ²²⁶Ra has been studied.

Fig. 7 ²¹⁰Po spectrum for ore tailing, Jaduguda

Effect of HCl concentration on ²¹⁰Po using TOPO and HDEHP extractants

Figure 1 illustrates the recovery of 210 Po under various HCl concentrations using TOPO and HDEHP in toluene scintillator as extractants. It is clear that as the concentration of HCl is increased from 0.1 M to 1 M 210 Po recovery increases and falls at higher concentrations. It was observed that only about 1.6% of spiked 210 Po was extracted from the aqueous phase under same HCl concentrations with HDEHP as an extractant. Therefore, TOPO has superior extraction capability (95%) for 210 Po at 1 M HCl extraction than HDHEP.

Effect of extractant concentration

The extraction behaviour of Po under various TOPO extractant concentrations is illustrated in Fig. 2. ²¹⁰Po extraction efficiency in the organic phase increased from 75 to 95% for TOPO concentration from 15 to 75 g L⁻¹ and then decreased with further increase in the TOPO concentration from 85 to 100 g L⁻¹. Maximum extraction efficiency of about 95% is observed at 75 g L⁻¹ of TOPO and 1 M HCl. After that no further increase in the efficiency is observed.

This is because of two factors: the concentration gradient of ²¹⁰Po-complex and the viscosity of the organic phase. As reported by Dzygiel et al. [14], the flux (J) of the species through an interface layer of thickness (dl) is related to its diffusion coefficient D and concentration gradient (dc) by Ficks law:

$$J = -D\frac{dc}{dl} \tag{2}$$

From the above equation it is clear that high flux can be obtained when high concentration gradient and diffusion coefficient are maintained. But diffusion coefficient depends on viscosity of the extractant in the organic solvent (η) at temperature, T and the radius (r) of the migrated species according to Stokes–Einstein relation:

$$D = \frac{KT}{6\pi\eta r} \tag{3}$$

Using above two equations, the relation between viscosity and concentration gradient of TOPO is obtained as:

$$\frac{dc}{dl} = \left(\frac{-6\pi rJ}{KT}\right)\eta\tag{4}$$

Therefore an increase in TOPO concentration results in increase of the complex flux however at concentrations above, 75 g L⁻¹, the viscosity of the solution increases and might retard the transfer of Po-TOPO complex at the interface due to increase in layer thickness. Thus by increasing the concentration, the amount of ²¹⁰Po complex that could be extracted into the organic phase tends to increase only up to a certain extent [15].

Selective separation of ²¹⁰Po from U_(nat) and ²²⁶Ra

As uranium is ubiquitously present in natural environmental matrices it is expected to interfere in the measurement of ²¹⁰Po along with its daughters like ²²⁶Ra, ²¹⁰Pb, ²²²Rn etc. To confirm the selective separation and extraction of polonium in the presence of uranium and radium was conducted. TOPO based extractive scintillator at 1 M HCl was used for extraction and organic phase was counted. Radiochemical separation indicated that about 80% U was co-extracted along with ²¹⁰Po under this condition. Broader α peak in the spectrum also indicated the extraction of ²³⁸⁺²³⁵⁺²³⁴U with 210 Po. Figure 3 shows the spectrum of the organic phase having $^{238+235+234}$ U and 210 Po both. Based on the results from α measurement with LSS, the peak between channels 600 and 650 in the LSS spectrum was of $^{238+235+234}$ U isotopes and α peak, between 650-750 channels corresponded to ²¹⁰Po. As the peaks were close by they could not be resolved. Therefore, above mentioned solvent extraction procedure was modified to remove uranium and its daughters. The procedure illustrated in Fig. 6 was followed for sequential separation of ²³⁸⁺²³⁵⁺²³⁴U and ²¹⁰Po. The separation and extraction recovery for spiked ²¹⁰Po and ²³⁸⁺²³⁵⁺²³⁴U in TOPO in toluene organic phase was 95 and 0.4% respectively. Remaining $99.6\%^{238+235+234}$ U in the aqueous phase was recovered by extracting with HDEHP.

Figure 4a, b illustrates sequentially separated $^{238+235+234}$ U and 210 Po spectrum obtained from α measurement indicating successful isolation of 210 Po. The extraction process was repeated to ensure complete separation and good recovery. Mass balance of the spiked activity confirmed the efficient

recovery of individual elements and the purity of separated elements was confirmed by α spectrometry.

During the experiments it was observed that ²²⁶Ra was also getting co-extracted with ²¹⁰Po under the optimized conditions. Also sometimes ²²²Rn and its short-lived daughters if present in the sample or in radioactive equilibrium with ²²⁶Ra were interfering and their peaks were obtained in the LSS spectrum. An α peak observed between channels 700 and 780 (Fig. 5a), is from ²¹⁴Po, a daughter nuclide of ²²²Rn with an α energy greater than 7 MeV. In order to remove the interfering α nuclides, ²²²Rn and its daughters and to determine ²²⁶Ra interference, two aliquots of 1 mL ²²⁶Ra standard (5.5 Bq) in equilibrium with its daughters was evaporated to dryness with repeated addition of 1 mL concentrated HCl under a heat lamp. After complete evaporation, scintillation cocktail was added to one set and LSS measurement was carried out. Figure 5 b demonstrates spectrum obtained after α measurement of the first aliquot indicating that no other α radionuclide besides ²²⁶Ra. After ²²²Rn removal, no ²¹⁴Po peak was found in the spectrum, which confirmed the removal of ²²²Rn and its short lived daughters. Hence, to estimate ²²⁶Ra interference in ²¹⁰Po measurement, the second aliquot was spiked with ²¹⁰Po activity (5 Bg) after complete dryness containing only ²²⁶Ra. 10 mL.

1 M HCl was added followed by 1.5 mL 0.01 M DTPA as a masking agent. It was also subjected to solvent extraction by the addition of 10 mL TOPO based toluene extractive scintillator. After phase separation, 5 mL organic phase was measured. Based on the measurement 95% 210 Po and the spectrum it was confirmed that 226 Ra and 222 Rn was successfully separated from 210 Po (Fig. 5c).

Validation of method using Certified Reference Materials

Sequential extraction procedure as illustrated in Fig. 6 was followed to separate and extract polonium in the organic phase in the presence of interferences. The reliability of the optimized method has been checked by comparing the results of the ²¹⁰Po analysis, performed on samples containing known values of ²¹⁰Po with certified values.

The measured activity concentrations of the certified reference materials and sediment samples are shown in Table 1. The measured activity of ²¹⁰Po in IAEA-385, Irish Sea sediment and IAEA-447, Moss-soil was found to be 35.0 ± 1.6 and 395 ± 7.8 Bq kg⁻¹ respectively. While the certified values were 32.9 and 423 Bq kg⁻¹ respectively. The results show good agreement between the measured and certified values of IAEA-385 and IAEA-447 reference materials. Figure 7 shows ²¹⁰Po spectrum of ore tailing indicating no interference from U_(nat) and its daughters.

Ore tailing sample from Jaduguda was observed to contain markedly elevated activity of 210 Po 14.3 ± 0.1 Bq kg⁻¹. The ²¹⁰Po in the sediment samples measured by the conventional method and the current procedure of extractive LSS are comparable.

Conclusion

The present study reports the optimized condition for selective separation and extraction of ²¹⁰Po from environmental samples. TOPO proved to have superior extraction capability (95%) over HDEHP towards ²¹⁰Po under 1 M HCl concentration. About 0.4% interference of ²³⁸⁺²³⁵⁺²³⁴U and 1.43% of ²²⁶Ra was observed in estimating ²¹⁰Po by solvent extraction. The method was standardised by adopting two extractants, initial HDHEP step to separate uranium and a second extraction with TOPO to separate ²¹⁰Po and eliminate interferences due to naturally occurring radium isotopes, radon and daughters. The results indicate good agreement between the measured and certified values of IAEA certified materials and ore tailing, Jadugoda within 7% deviation. It was found to be suitable for estimation of uranium and ²¹⁰Po in matrices like sea water, sediment and biological samples.

References

- Daish SR, Dale AA, Dale CJ, May R, Rowe JE (2005) The temporal variations of ⁷Be, ²¹⁰Pb and ²¹⁰Po in air in England. J Environ Radioact 84:457–467
- Nassef M H, El-Tahawy M S, Gamal Y, Zaky L and Hamed A A (2008) Determination of α emitters in environmental samples of some Egyptian Industrial cities. In: Proceedings of the 3rd environmental physics conference, 19–23 Feb 2008, Aswan, Egypt
- Flynn WW (1968) The determination of low levels of ²¹⁰Po in environmental samples. Anal Chim Acta 43:221–227
- Hamilton TF, Smith JD (1986) Improved alpha energy resolution for the determination of polonium isotopes by alpha-spectrometry. Int J Radiat Appl Instrum Part A Appl Radiat Isot 37(7):628–630
- Cothern RC, Rebers PA (eds) (1990) Radon, radium and uranium in drinking water, Chelsea, Michigan. USA, Lewis Publishers, Inc, p 286
- Guogang J, Belli M, Blasi M, Marchetti A, Rosamilia S, Sansone U (2001) Determination of ²¹⁰Pb and ²¹⁰Po in mineral and biological environmental samples. J Radioanal Nucl Chem 247(3):491–499
- Vajda N, Larosa J, Zeisler R, Danesi P, Kis-Benedek GY (1997) A novel technique for the simultaneous determination of ²¹⁰Pb and ²¹⁰Po using crown ether. J Environ Radioact 37:355–372
- Katzlberger C, Wallenr G, Irlweck K (2001) Determination of ²¹⁰Pb, ²¹⁰Pb and ²¹⁰Po in natural drinking water. J Radio Anal Nucl Chem 249:191
- Jokelainen L, Vesterbacaka P, Lehtol J (2010) Method validation in solvent extraction for ²¹⁰Po determination of ground waters. Radiochim Acta 98:91–97
- Ikäheimonen T K, Klemola S, Vesterbacka P (2006) Towards quality excellence in radioanalytical laboratories at STUK, Finland. In: Radionuclides in the Environment. In: Povinec PP, Sanchez-Cabeza JA (eds) International conference on isotopes in environmental studies. Radioact Environ 8:629

- Laina S (2006) Alpha Spillover Depends On Alpha Energy: A New Finding In Alpha/Beta Liquid Scintillation Spectrometry' LSC (2005). In: Stanisaw C, Franz S, John N (eds) Advances in liquid scintillation spectrometry, pp 135–148
- 12. Reddy Priyanka J, Vandana Pulhani SD, Dhole SPD, Bhade S Anilkumar, Kolekar RV, Singh Rajvir (2017) Application of extractive liquid scintillation spectrometry for rapid determination of uranium. J Radio Anal Nucl Chem 311(3):1923–1927
- 13. Currie L (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593
- Dżygiel Paweł, Wieczorek Piotr (2000) Extraction of glyphosate by a supported liquid membrane technique. J Chromatogr A 889(1–2):93–98
- Borai EH, Lasheen YF, El-Sofany EA, Abdel-Rassoul AA (2000) Separation and subsequent determination of low radioactivity levels of radium by extraction scintillation. J Hazard Mater 156:123–128

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.