

Adsorption and separation behavior of strontium and yttrium using a silica‑based CMPO adsorbent

Taiga Kawamura1,2 · Tatsuya Ito1 · Seong‑Yun Kim1

Received: 22 September 2018 / Published online: 25 February 2019 © Akadémiai Kiadó, Budapest, Hungary 2019

Abstract

To separate Y(III) from a Sr(II)–Y(II) mixture, two silica-based adsorbents, CMPO/SiO₂-P and (CMPO+Dodec)/SiO₂-P were prepared by impregnating octyl(phenyl)-*N*,*N*-diisobutylcarbamoyl methylphosphine oxide (CMPO) extractant and a molecule modifier (1-Dodecanol) into macroporous silica/polymer composite support $(SiO₂-P)$. The Adsorbents showed high adsorption affinity to Y(III) and weak adsorption affinity to $Sr(II)$ in $HNO₃$ solution. The amount of adsorbed Y(III) increased with the $HNO₃$ in the solution. The amount of adsorbed Y(III) increased with contact time and reached equilibrium within 30 min. The results showed that a pseudo-second-order kinetic model with a high correlation coefficient described the adsorption process better than other kinetic models. Successful Y(III) separation from Sr(II)–Y(III) mixture in HNO₃ solution was achieved.

Keywords CMPO-impregnated adsorbent · Strontium · Yttrium · Separation · Extraction chromatography

Introduction

The heat-generated nuclides, ⁹⁰Sr, with a half-life of approximately 28 years, exhibits high radioactivity and heat generation, and large quantities of Sr and Y isotopes $(-1.1 \text{ kg}/1 \text{ tHU}, 45 \text{ GWd/t})$ are present in high-level liquid waste (HLLW) generated by the spent nuclear fuel reprocessing $[1, 2]$ $[1, 2]$ $[1, 2]$. Thus, selective ⁹⁰Sr separation from HLLW is an important environmental issue in nuclear waste management. In our previous research, Sr(II), one of the heatgenerating elements in HLLW, was separated from simulated HLLW by extraction chromatography using distilled water as eluent $[1, 2]$ $[1, 2]$ $[1, 2]$ $[1, 2]$.

Moreover, $90Y$, a daughter nuclide of $90Sr$, is a useful isotope in radiopharmaceuticals for various therapeutic applications in nuclear medicine, and it must be separated from a 90 Sr⁻⁹⁰Y mixture for use in this field [[3](#page-4-2), [4](#page-5-0)]. In the 90 Sr decay system, the majority of $90Y$ is generated from beta decay of ⁹⁰Sr, and it has a short half-life ($T_{1/2}$ =64.1 h) to form stable daughter nuclide $90Zr$, mainly at 2.28 MeV [[5\]](#page-5-1). This is represented by the following reaction;

⁹⁰Sr
$$
\xrightarrow{\beta^{-}(0.54 \text{ MeV})}
$$
 90 Y $\xrightarrow{\beta^{-}(2.28 \text{ MeV})}$ 90 Zr(stable) (1)

As separation and purification of $90Y$ from $90Sr-90Y$ mixtures before use for radiotherapy are essential, numerous chemical methods for separating $90Y$, including precipitation $[6]$ $[6]$, solvent extraction $[7, 8]$ $[7, 8]$ $[7, 8]$ $[7, 8]$, ion exchange $[9]$ $[9]$, and extraction chromatography [[10](#page-5-6), [11](#page-5-7)], have been studied.

An impregnation method for extraction chromatography was recently proposed, involving immobilization of organic extractants in a macroporous silica/polymer composite support (SiO₂-P). SiO₂-P is an inorganic/organic hybrid material prepared by impregnating a macroporous $SiO₂$ substrate with a copolymer. Advantages of $SiO₂-P$ include strong acidity, radiation resistance, and mechanical strength, and it is easily separated from solids and liquids.

However, $90Y$ exists as a trivalent cation in solution; thus, it can be separated from a $90Sr-90Y$ mixture using impregnated octyl(phenyl)-*N*,*N*-diisobutylcarbamoyl methylphosphine oxide (CMPO), a known extractant for trivalent cations.

 \boxtimes Seong-Yun Kim kim@qse.tohoku.ac.jp

Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, 6-6-01-2 Aza-Aoba-Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan

² Japan Nuclear Fuel Limited, 4-108 Aza-Okitsuke, Oaza Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan

To understand the adsorption and separation behavior of Y(III), we investigated the effects of acid concentration, contact time, and temperature for two adsorbents, silica-based $CMPO/SiO₂-P$ and $(CMPO+Dodec)/SiO₂-P$. Moreover, it was verified that ⁹⁰Y could be separated continuously from $a^{90}Sr-^{90}Y$ mixture using a column. The adsorbents were prepared by impregnating CMPO extractant and a molecular modifer (1-dodecanol) into a macroporous silica/polymer composite support $(SiO₂-P)$, exploiting its high immobilizing capacity to separate Y(III) from a Sr(II)–Y(III) mixture. This article describes the preparation of a CMPO-impregnated adsorbent; kinetic modeling and adsorption thermodynamics for Y(III) adsorption by adsorbents were studied by batch and column experiments, respectively.

Experimental

Materials

 $Sr(NO₃)₂$ (98%) and $SrCl₂$ (95%) for experiments were obtained from Wako Pure Chemical Industries, Ltd. $Y(NO₃)₃·6H₂O$ (99.99%) and $YCl₃·6H₂O$ (99.99%) were obtained from Kanto Chemical Co.

Preparation of adsorbent

In this study, two silica-based adsorbents, $CMPO/SiO₂-P$ and $(CMPO + Dodec)/SiO₂-P$ were prepared. $CMPO/SiO₂-P$ was prepared by impregnating CMPO extractant into $SiO₂$ -P, and $(CMPO+Dodec)/SiO₂-P$ was prepared by impregnating CMPO extractant and 1-Dodecanol as a molecule modifer into SiO_2 -P.

The SiO_2 -P particles were washed thrice with about 300 cm^3 methanol and dried in a vacuum for approximately 1 day. CMPO (18 g) extractant was dissolved in 200 cm^3 dichloromethane, which was used as a diluent, with and without 1-Dodecanol (6 g) as a molecule modifer. The washed $SiO₂-P$ [36 g (with 1-dodecanol) or 42 g (without)] and dichloromethane were mixed, and the diluent was removed with rotary evaporator. The residue was dried under vacuum overnight at 313 K, and 60 g of the two adsorbents, $CMPO/SiO₂-P$ and $(CMPO+Dodec)/SiO₂-P$ were obtained [\[12\]](#page-5-8).

Batch method

In the batch method, the adsorption behaviors of $Sr(II)$ and Y(III) ions onto $CMPO/SiO₂-P$ and $(CMPO+Dodec)/P$ $SiO₂-P$ were examined. Dry adsorbent (0.2 g) was mixed with 4 cm³ liquid phase solution in a 13.5 cm³ glass vial under several contact times in a thermostatic shaking bath at 160 rpm. This solution contained 10 mM (M=mol dm⁻³) of

 $Sr(II)$ and $Y(III)$ ions with different concentrations of $HNO₃$ or HCl. Following phase separation of the mixture by fltration, the metal ions concentrations in the liquid phase were determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES, Shimadzu ICPE-9000). The distribution coefficients (K_d , cm³ g⁻¹) and uptake ratios (R , %) of Sr(II) and Y(III) ions were calculated as follows:

$$
K_{\rm d} = \frac{C_0 - C_{\rm e}}{C_{\rm e}} \times \frac{V}{m} \tag{2}
$$

$$
R = \frac{C_0 - C_t}{C_0} \times 100
$$
 (3)

where C_0 , C_t and C_e are the metal ion concentrations before adsorption, after adsorption at time *t*, and after reaching equilibrium in the liquid phase in ppm, respectively. *m* is the weight of dry adsorbent in g and *V* is the volume of the liquid phase in $cm³$.

Column method

The columns ware prepared by packing approximately 4 g $CMPO/SiO₂-P$ and $(CMPO + Dodec)/SiO₂-P$ adsorbents into glass column (8 mm inner diameter \times 120 mm length). Several elutions were passed through the column for the adsorption experiment. $HNO₃$ solution (2 M) containing 5 mM Sr(II) and Y(III) was fed into the column. $HNO₃$ solution (2 M) without metal ions was fed into the column continuously as washing solution. H_2O was also fed into the column continuously. The solutions were fed into the column at a flow rate of $0.3 \text{ cm}^3/\text{min}$ with a metering pump, and the column was maintained at 298 K with a thermostatic water jacket. Simultaneously, outfowing solution from the column was collected with a fraction collector in 2.5 ml per a tube. The concentration of metal ions in the fractions were determined by ICP-AES. Additionally, a pH meter (HORIBA pH meter D-52) was used to measure the pH of the fractions.

Results and discussion

Efect of acid concentration

The effect of the acid concentration was determined by a batch method. The result with $CMPO/SiO₂-P$ is shown in Fig. [1](#page-2-0) and that with $(CMPO + Dodec)/SiO₂-P$ is shown in Fig. [2.](#page-2-1) Y(III) showed a high adsorption affinity for CMPO/ SiO_2 -P and (CMPO + Dodec)/SiO₂-P, and this increased with the $HNO₃$ concentration. However, Y(III) showed weak adsorption on both adsorbents in HCl solution. Sr(II) showed weak adsorption on $CMPO/SiO₂-P$ and $(CMPO+Dodec)/P$ $SiO₂-P$ in $HNO₃$ and HCl solutions.

Fig. 1 Effects of acid concentration on $CMPO/SiO₂$ -P adsorbent

Fig. 2 Effects of acid concentration on $(CMPO + Dodec)/SiO₂-P$ adsorbent

CMPO has good selectively for the adsorption of trivalent Rare Earth (RE) and MA(III) [[13\]](#page-5-9). It is believed that Y(III), which is trivalent RE, forms a complex with $NO₃⁻$ and impregnated CMPO. The proposed complex formation is as follows:

$$
Y^{3+} + 3HNO_3 \leftrightarrow Y(NO_3)_3 + 3H^+ \tag{4}
$$

$$
Y^{3+} + 3HNO_3 + nCMPO/SiO_2 - P
$$

⇒ Y (NO₃)₃(CMPO/SiO₂ - P) + 3H⁺ (5)

$$
Y^{3+} + 3HNO_3 + n(CMPO + Dodec)/SiO_2 - P
$$

\n
$$
\leftrightarrow Y(NO_3)_{3}((CMPO + Dodec)/SiO_2 - P) + 3H^+
$$
 (6)

According to Eqs. ([4](#page-2-2))–[\(6](#page-2-3)), as the NO_3^- concentration increase, the chemical equilibrium shift to the right and $Y(NO_3)$ ₃ increases. In conjunction with this, $Y(NO_3)_{3}(CMD)$ SiO_2-P) and $Y(NO_3)_3((CMPO+Dodec)/SiO_2-P)$ increase.

Consequentry, $Y(III)$ showed strong adsorption in high $HNO₃$ concentration.

From another viewpoint, K_d for $(CMPO + Dodec)/SiO_2$ -P is lower than for $CMPO/SiO₂-P$. It was considered that $(CMPO + Dodec)/SiO₂-P contains 1-dodecanol and CMPO in$ the same microporous structure. Therefore, it is thought that 1-dodecanol inhibits the chelate complex formation between Y(III) and CMPO due to its geometrical arrangement and/or its hydrophobicity.

As it was verifed that Y(III) exhibited weak adsorption on both adsorbents in HCl, the remaining batch experiments were performed in $HNO₃$.

Efect of contact time

The effect of contact time in $HNO₃$ solution was assessed by a batch method. Figure [3](#page-2-4), shows plots of time versus Q_t fitted to the pseudo-second-order kinetic model, described later. The $Y(III)$ uptake on CMPO/SiO₂-P increased with the contact time and reached equilibrium within 30 min. However, the Y(III) uptake on $(CMPO + Dodec)/SiO₂-P$ reaches equilibrium almost immediately. Additionally, the uptake ratios on $CMPO/SiO₂-P$ and $(CMPO+Dodec)/SiO₂-P$ at equilibrium were approximately 56% and 69% respectively, at 298 K.

According to a report by Ho and Mckay [[14](#page-5-10)], a pseudo-second-order kinetic model for this adsorption system was developed. This assumes that the adsorption rate is controlled by chemical adsorption and that the adsorption capacity is proportional to the number of active sites on the adsorbent. To investigate the kinetic data of the adsorption, the rate constants for of Y(III) adsorption on CMPO/SiO₂-P and (CMPO+Dodec)/ $SiO₂-P$ were determined by the pseudo-second-order equation:

$$
\frac{t}{Q_t} = \frac{1}{kQ_e^2} + \frac{t}{Q_e} \tag{7}
$$

Fig. 3 Effects of contact time on $CMPO/SiO₂-P$ and $(CMPO + Dodec)/SiO₂-P$ adsorbents

where Q_t and Q_e are the amounts of Y(III) adsorbed at time *t* and at equilibrium (mg g^{-1}), respectively, and *k* is the rate constant of the pseudo-second-order adsorption $(g \text{ mg}^{-1} \text{ h}^{-1}).$

Plots of t/Q_t versus *t*, shown in Fig. [4,](#page-3-0) show straight lines with high correlation coefficients (R^2) of nearly 1. This indicated that the results ftted well with the pseudosecond-order model. Thus, chemisorption governs the rate-controlling step of this adsorption. The values of Q_e and *k* are determined as 13 mg g^{-1} and 4.9 g mg⁻¹ h⁻¹ for CMPO/SiO₂-P and 11 mg g⁻¹ and 37 g mg⁻¹ h⁻¹ for $(CMPO + Dodec)/SiO₂-P$ from the slopes of the straight lines. These results for Q_e were similar to the experimental values of 13 mg g^{-1} (CMPO/SiO₂-P, 5 h) and 11 mg g^{-1} $((CMPO + Dodec)/SiO₂-P, 5 h)$ at 298 K.

Efects of temperature

The effect of temperature in $HNO₃$ solution was evaluated by batch method. To investigate the thermodynamic nature of the adsorption on $CMPO/SiO₂-P$ and $(CMPO+Dodec)$ $SiO₂$ -P, several thermodynamic parameters were calculated using the Van't Hoff equation, as shown below:

$$
\Delta G^0 = \Delta H^0 - T\Delta S^0 \tag{8}
$$

$$
\ln K_{\rm d} = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT} \tag{9}
$$

where ΔG^0 is the change in Gibbs free energy (kJ mol⁻¹), which is the fundamental criterion of spontaneity; ΔH^0 is the change in standard enthalpy (kJ mol−1). Δ*S*⁰ is the change in standard entropy (J K⁻¹ mol⁻¹). *R* is the gas constant $(8.314 \text{ J mol}^{-1} \text{ K}^{-1})$, *T* is the temperature (K); and K_d is the distribution coefficient at an equilibrium defined in Eq. (2) (2) .

Fig. 4 Pseudo-second-order kinetic ftting for Y(III) adsorption on $CMPO/SiO₂-P$ and $(CMPO+Dodec)/SiO₂-P$ adsorbents

Plots of $ln(K_d)$ versus 1/*T*, shown in Fig. [5,](#page-3-1) show straight lines with correlation coefficients (R^2) of 1. The values of ΔH^0 and ΔS^0 were determined from the slope and intercept of the linear variation, and ΔG^0 was calculated for each tem-perature. Table [1](#page-3-2) summarizes these values. As ΔH^0 and ΔS^0 were negative for both adsorbents, the adsorption processes were exothermic, and the reaction progresses at a lower temperature with both adsorbent. Furthermore, since the ΔG^0 values were negative under all conditions, Y(III) adsorption on CMPO/SiO₂-P and (CMPO+Dodec)/SiO₂-P was spontaneous under the experimental condition.

Column separation

Figures [6](#page-4-3) and [7](#page-4-4) show the results for separating Y(III) from Sr(II)–Y(III) by extraction chromatography using CMPO/ SiO_2 -P and (CMPO + Dodec)/ SiO_2 -P. Sr(II) flowed out from the adsorbent-packed column immediately without adsorbing while feeding $HNO₃$ solution. However, Y(III) hardly flowed out while feeding $HNO₃$ solution. Subsequently, when H_2O began to feed into the column, the adsorbed Y(III) on the adsorbent eluted from the column. No elution

Fig. 5 Effects of temperature onto $CMPO/SiO₂-P$ and $(CMPO + Dodec)/SiO₂-P$ adsorbents

Table 1 Thermodynamic parameters for the Y(III) adsorption on $CMPO/SiO₂-P$ and $(CMPO+Dodec)/SiO₂-P$ adsorbents

	$CMPO/SiO2-P$	$(CMPO + Dodec)$ $SiO2-P$
ΔS^0 [kJ K ⁻¹ mol ⁻¹]	-1.4×10^{-3}	1.0×10^{-2}
ΔH^0 [kJ mol ⁻¹]	-8.6	-6.6
ΔG^0 [kJ mol ⁻¹]		
288.15(K)	-8.1	-9.5
298.15(K)	-8.1	-9.6
308.15(K)	-8.1	-9.7
223.15(K)	-8.1	-9.8

Fig. 6 Column separation results for Sr(II) and Y(III) using $HNO₃$ solution with the $CMPO/SiO₂-P$ adsorbent

Fig. 7 Column separation results for Sr(II) and Y(III) using $HNO₃$ solution with the $(CMPO + Dodec)/SiO₂-P$ adsorbent

tailing was observed in the elution curves, and the elution band was narrow, indicating that the elution kinetics of $CMPO/SiO₂-P$ and $(CMPO + Dodec)/SiO₂-P$ with $Y(III)$ were rapid. Concerning the material balance, the chemical yield of Y(III) was calculated as about 100 wt%. Satisfactory separation and recovery of $Y(III)$ from a $Sr(II)-Y(II)$ mixture with $CMPO/SiO_2-P$ and $(CMPO+Dodec)/SiO_2-P$ were achieved.

Conclusions

In this study, to separate $Y(III)$ from a $Sr(II)-Y(III)$ mixture, the silica-based CMPO/SiO₂-P and $(CMPO + Dodec)$ / $SiO₂$ -P adsorbents were prepared by impregnating CMPO extractant and a molecule modifer into the macroporous $SiO₂$ -P support. The adsorption behavior of Sr(II) and

Y(III) on both adsorbents was investigated by a batch method under various conditions involving diferent concentrations of acids $(HNO₃$ or HCl), contact times, and temperatures.

Regaring the efect of the acid concentration, the adsorbents showed a high adsorption affinity with $Y(III)$ and weak adsorption affinity with $Sr(II)$ in $HNO₃$ solution. Additionally, as the $HNO₃$ concentration increases, Y(III) showed strong adsorption on $CMPO/SiO₂-P$ and $(CMPO+Dodec)/P$ $SiO₂$ -P. K_d reached approximately 100 when using CMPO/ $SiO₂-P$ in 5 M HNO₃. However, Y(III) showed weak adsorption on both adsorbents in HCl. Sr(II) showed weak adsorption under all conditions. Concerning the efect of contact time, the Y(III) uptake on $CMPO/SiO₂-P$ reached equilibrium within 30 min and that on $(CMPO + Dodec)/SiO₂-P$ reached equilibrium immediately. Additionally, the uptake ratios on CMPO/SiO₂-P and (CMPO+Dodec)/SiO₂-P at an equilibrium were approximately 56% and 69%, respectively, at 298 K. This indicated that Y(III) adsorption on CMPO adsorbents ftted well with the pseudo-second-order model with a high correlation coefficient. The calculated Q_e values were similar to the experimental values of 13 mg g^{-1} (CMPO/SiO₂-P) and 11 mg g^{-1} ((CMPO + Dodec)/SiO₂-P). Regarding the effect of temperatue, ΔH^0 was -8.6 for CMPO/SiO₂-P and -6.6 for (CMPO + Dodec)/SiO₂-P. Therefor, Y(III) adsorption on CMPO adsorbents was spontaneous. Using the column method, successful separation of Y(III) from a $Sr(II)-Y(III)$ mixture was achieved using both adsorbents in 2 M HNO₃ and H₂O with a satisfactory recovery rate (almost 100%).

The above results show that both adsorbents have sufficient capacity to separate $Y(III)$ from a $Sr(II)-Y(III)$ mixture. However, it is considered that $CMPO/SiO₂-P$ is better from the viewpoint of K_d and the saturated adsorption amount because it works with a higher $90Y$ concentration.

Acknowledgements This work was supported by JSPS KAKENHI Grant Number 16H02444.

References

- 1. Zhamg A, Kuraoka E, Kumagai M (2007) Development of the chromatographic partitioning of cesium and strontium utilizing two macroporous silica-based calix[4]arene-crown and amide impregnated polymeric composites: PREC partitioning process. J Chromatogr A 1157(1):85–95
- 2. Wu Y, Kim SY, Tozawa D, Ito T, Tada T, Hitomi K, Kuraoka E, Yamazaki H, Ishii K (2012) Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBu-CH18C6 loaded resin. J Nucl Sci Technol 49(3):320–327
- 3. Chakravarty R, Pandey U, Manolkar RB, Dash A, Venkatesh M, Pillai MRA (2008) Development of an electrochemical $^{90}Sr-^{90}Y$ generator for separation of $90Y$ suitable for targeted therapy. Nucl Med Biol 35(2):245–253
- 4. Lee JS, Park UJ, Son KJ, Han HS (2009) One column operation for ${}^{90}Sr/{}^{90}Y$ separation by using a functionalized-silica. Appl Radiat Isot 67(7):1332–1335
- 5. Vanura P, Makrlik E (2002) Separation of microamounts of yttrium from strontium by using nitrobenzenesolution of sodium dicarbollylcobaltate in the presence of 18-crown-6. J Radioanal Nucl Chem 251(3):499–501
- 6. Schulz LA, Bray LA (1987) Solvent extraction recovery of byproduct ^{137}Cs and ^{90}Sr from HNO₃ solutions-A technology review and assessment. Sep Sci Technol 22(2-3):191–214
- 7. Horwitz EP, Dietz ML, Fisher DE (1991) SREX: a newprocess for the extraction and recovery of strontium from acidic nuclear waste streams. Solv Extr Ion Exch 9(1):1–25
- 8. Pais J, Selucky P, Kyrs M (1976) Extraction of alkali metals into nitrobenzene in the presence of univalent polyhedral borate anions. J Inorg Nucl Chem 38(7):1376–1378
- 9. Wheelwright EJ (1970) A generic ion-exchange process for the recovery and purifcation of valuable elements from the nuclear industry. In: Conference proceedings of ion exchange in the process industries, 16–18 July 1969, London, United Kingdom Society of Chemical Industry, pp 202–208
- 10. Horwitz EP, Dietz ML, Fisher DE (1991) Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal Chem 63(5):522–525
- 11. Lumetta GJ, Wester DW, Morrey JR, Wagner MJ (1993) Preliminary evaluation of chromatographic techniques for the separation of radionuclides from high-level radioactive waste. Solv Extr Ion Exch 11(4):663–682
- 12. Xu Y, Kim S-Y, Ito T, Nakazawa K, Funaki Y, Tada T, Hitomi K, Ishii K (2012) Adsorption and separation behavior of yttrium and strontium in nitric acid solution by extraction chromatography using a macroporous silica-based adsorbent. J Chromatogr A 1263:28–33
- 13. Turanov AN, Karandashev VK, Yarkevich AN, Safronova ZV, Kharitonov AV, Radygina NI, Fedoseev AM (2004) Extraction of U(VI), Th(IV), Pu(IV), Am(III), and rare-earth elements from nitric acid solutions with diphenyl-(dialkylcarbamoylmethyl)phosphine oxides substituted in the methylene bridge. Radiochemistry 46:461–467
- 14. Ho YS, Mckay G (1999) Pseudo-second order model for sorption process. Process Biochem 34(5):451–465

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.