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Abstract
An INAA method for measurement of Se, Hg, Fe, Cr, Zn, Mn, K, and Br in autopsy cerebellum, anterior putamen, white

matter, mid-frontal cortex, and inferior temporal lobe. Se, Hg, Fe, Cr, and Zn were measured autopsy samples collected

from participants of the Memory and Aging Project. The first study examined the association between seafood con-

sumption, brain Hg and Se, Apolipoprotein E (APOE-e4) status, and brain neuropathology. Following the initial study, the

samples were archived. A subsequent method was developed to measure Mn, K, and Br in the archived brain tissue

samples.
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Introduction

The causes of neurodegenerative diseases are complex and

multifactorial. Oxidative stress has been widely studied as

a factor in the progression of neurodegenerative diseases

[1]. Disruption of trace element homeostasis is observed in

the pathogenesis of progressive neurodegenerative dis-

eases, including Alzheimer’s (AD), Parkinson (PD) and

Lewy Body (LB) diseases [2, 3]. Instrumental neutron

activation analysis (INAA) is a useful analytical technique

to measure trace elements in autopsy brain samples to

study neurological diseases [4–6].

In this study we report on an INAA method to measure

trace elements in autopsy brain samples from the Rush

Memory and Aging Project (MAP), an epidemiological

neuropathological study involving resident of Chicago, IL

[7]. The primary aim of the original study was to determine

the association between AD and the levels of Hg, Se,

omega-3 fatty acids in brain tissues, and the Apolipoprotein

E (APOE-e4 gene) [8]. The method to measure Se and Hg

in brain tissue samples was adapted from work published

by Ehmann et al. [4], After the initial study was completed,

the brain tissue samples were archived for 4 years. This

work describes development and optimization of an INAA

method to measure Mn, K, and, Br in the same brain

samples already analyzed for Se and Hg. This work high-

lights the non-destructive advantages of INAA over con-

ventional multi-element techniques such as ICP-MS by

allowing re-analysis of archived biological specimens.

The association of Mn, K, and, Br in brain tissue sam-

ples with neurodegenerative diseases has not been well

studied. Mn is an essential trace element that is a compo-

nent of the metalloenzyme manganese superoxide dismu-

tase (MnSOD) that works in concert with copper and zinc

containing superoxide dismutase (Cu/ZnSOD) to remove

the radical super oxide species O��
2 [1]. Overexposure to
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Mn causes a parkinsonian-like disease [9]. The element K

is regulated by the cellular pump enzyme Na?/K?-ATPase.

This key enzyme pumps regulates intracellular Na? and

K? concentrations, preventing neuronal excitotoxicity [10].

Depressed Na?/K?-ATPase activity and increased levels of

cerebellar K? have been reported in brain samples of

patients with AD [11]. The element Br does not have a

known physiological role; however, Br is reported to

induce reactive species in the brain such as atomic Br,

HOBr, Br2, and BrCl [3]. Its widespread presence in the

environment, from its use in polybrominated diphenyl

ethers (PBDEs) in flame retardant materials, is conse-

quently a cause for concern [12].

Experimental

Instrumentation

Samples were irradiated using in the graphite reflector

region of the 10 MW research reactor at the University of

Missouri-Columbia (MURR). Gamma ray spectroscopy

measurements were made using 3 Canberra HPGe detec-

tors with matched relative efficiencies of 37–40% and

FWHM of 1.72–1.85 keV at 1.33 MeV. Samples with dead

times greater than 20% were recounted.

Materials

Samples and standards were encapsulated in high purity

Suprasil
TM

quartz tubes (ID = 6 mm) purchased from Her-

aeus (Kleinsotheim, Germany) and precleaned with aqua

regia. NIST 1577 bovine liver, NIST 1571 orchard leaves,

DOLT-4 dogfish liver, and NCS DC 73347 hair were used

as quality control materials. Comparator standards were

prepared from commercial ICP-MS standards (High Purity

Standards, Charleston, SC). Comparator standards, with the

exception of Au and Br, were prepared by freeze drying

with centrifugation then sealed. The Au and Br standards

were pipetted into the quartz (prepared in 1% v/v NaOH)

and sealed without freeze drying.

Brain tissue sample preparation

Autopsied brains analyzed in this work were from 10

deceased participants of the MAP. Five brain regions were

analyzed; the cerebellum, anterior putamen, white matter,

mid-frontal cortex, and inferior temporal lobe regions. The

mean age at death for the sample was 91.5 years. Among

the 10 brain cases, 5 had neuropathological-defined AD

according to the National Institute on Aging/Reagan

Institute of the Alzheimer Association Consensus recom-

mendation for the post mortem diagnosis of Alzheimer’s

disease [13]. The brain tissue collection protocol used in

MAP cohort is to loosely wrap tissue in a phosphate-buf-

fered saline (PBS) dampened towel to prevent adherence to

the container during transport. The brains were then

hemisected and one half of each brain was selected for

freezing without further wash or rinse. The hemispheres

were rapidly frozen and stored in a - 80 �C freezer. The

samples selected for this study were dissected using a

ceramic blade.

At the MURR, tissue samples were loaded into pre-

cleaned quartz vials using acid rinsed PTFE tools. Of the

50 samples (10 brains and 5 regions per brain) the 5 with

the highest mass were spilt and analyzed as duplicate pairs.

Samples were lyophilized until a stable mass was archived,

approximately 38 h. A wet and dry mass was recorded for

each sample.

Determination of the mass fraction by INAA

The mass fraction of an element determined by standard

comparator INAA is described by:

Cx ¼ Cz �
A0x

A0z

� Rh � Ru � Rr � Reff � B

� �
� mz

w � mx

ð1Þ

where Cx is the mass fraction of the unknown, mx is the

mass of the sample, Cz is the mass fraction of the primary

standard, mz is the mass of the standard, and w is the mass

correction factor (wet to dry ratio). The terms A0x and A0z

are the decay corrected counting rate for the standard (z)

and the unknown (x). The term B is the mass of analyte in

the quartz vial blank. The terms Rh;Ru;Rr; andReff are the

sample to standard ratio of the isotopic abundance (h),
neutron fluence (u), cross section (r), and detector effi-

ciency [14]. The term Ao is:

A0 ¼
N � k � ek�td
1� e�k�tc ð2Þ

where N is the number of counts in the gamma-ray photo

peak, k is the decay constant, td is the decay time, and tc is

the count time.

Se, Hg, Fe, Cr, and Zn INAA measurement

A ‘long’ INAA method, adapted from Ehmann et al., was

used to measure Se, Hg, Fe, Cr, and Zn in autopsy brain

samples using a 40 h irradiation, 30 day minimum decay

time, and 4 h count time [4]. The sample bundles were

rotated during irradiation in a thermal neutron flux of

5.5 9 1013 n cm-2 s-1. A sample bundle consisted of 50

samples, 5 duplicate sample, 6 comparator standards, 12

quality control materials, and 6 empty quartz vial. A Co/Al

flux wire was used to monitor variation in the axial neutron

flux (Ru). Following irradiation, quartz vials were cleaned
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in aqua regia and then loaded onto a sample changer for

measurement by HPGe detectors. Quartz vials were rotated

during the detector count time to minimize geometry dif-

ferences. The 203Hg contribution to the peak at 279 keV is

determined by subtracting the 75Se contribution using the

136/279 keV and 264/279 keV gamma rays measured in

single element Se standards. The 136 keV gamma ray from
75Se was corrected for small (\ 1%), direct interferences

from 181W and 181Hf. Samples with less than 1000 counts

in the corrected 203Hg peak at 279 keV were recounted for

6 h.

Mn and K INAA measurement

Following measurement of Se, Hg, Fe, Cr, and Zn the

samples were archived. After 4 years a decision was made

to re-measure the samples for Mn, K and Br. An INAA

method was developed to measure Mn, K, and Br using the

MURR pneumatic tube system. For Mn and K determina-

tion, a total of 7 quartz vials were loaded into a single high

density polyethylene rabbit. An analysis batch consisted of

3 rabbits irradiated sequentially for 20 s each. Each rabbit

contained Mn and K comparator standards, blank quartz

vials, samples, and quality control material NIST SRM

1577 bovine liver. The samples were clustered in the rabbit

as closely as possible to minimize neutron flux variation in

the rabbit. Following irradiation, the samples were decayed

for 1 h and counted for 10 min with an HPGe detector. The

neutron flux variation was measured across all sample

positions by irradiating 13 identical Mn and K standards in

a single rabbit. The coefficients of variation (CV) of the

measured activities were of 4 and 4%, respectively. Based

on this result, a correction was not made for positional flux

variation in the rabbit. Br was measured in a separate

INAA method with a 15 min pneumatic tube irradiation,

2.5 day decay, and 2 h count time. Br concentrations were

measured using Au as a standard comparator. The flux

variation and Au/Br ratio was measured in a single using a

set of 13 standards containing Au and Br. The measured

specific activity of the Au/Br ratio was 0.0218 ± 0.0003.

Results and discussion

The empty quartz vials used for the analytical method

blank determination in the original study were used for the

subsequent method blank determination of Mn, K, and Br.

The quartz vial method blank did not have measurable

levels of Se, Hg, Fe, Mn, K, or Br but it did contain Zn and

Cr. The samples were corrected for the quartz vial blank

(B) using Eq. 1. The sample correction for the Zn in the

quartz vials was insignificant compared to the level of Zn

in the samples. However, the sample correction for the Cr

in the quartz vials was significant. The average mass of Cr

measured in 5 blank quartz vials was 0.7 ± 0.7 ng and the

mass of Cr in the samples ranged from 1 ng to 60 ng. The

LODs for Se, Hg, Cr, Fe, and Zn were 0.03, 0.02, 0.06, 3,

and 0.2 lg g-1, respectively.

The challenge to develop the INAA method for K and

Mn was measurement of 56Mn (half-life = 2.58 h) over the
31S activity (half-life = 2.62 h) from the quartz vials.

Additional neutron capture reactions originating from the

quartz vial that add to the total activity include;
30Si(n,a)27Mg, 29Si(n,p)29Al, and 28Si(n,p)28Al. The 27Mg

(t1/2 = 9.45 min) produces gamma emissions at 843.8 keV

which can interfere with the 846.7 keV emission of 56Mn.

The irradiation and decay times for Mn and K were opti-

mized using NIST SRM 1577 bovine liver sealed in quartz

vials. Irradiation times of 20, 30, and 60 s and decay times

of 1–6 h were evaluated and resulted in Mn levels that

were in reasonable agreement (10.2, 9.7 and 10.7 lg g-1)

with the certified value of 10.3 ± 1 lg g-1. A 20 s irra-

diation time and 1 -3 h decay time was chosen to limit

production of 31Si and allow short live radionuclides to

decay. The LODs for Mn and K were 0.03 and

103.5 lg g-1, respectively. The Br was measured in the

samples at least 60 days after the Mn and K measurements

were completed. The Br LOD was 0.06 lg g-1.

The combined results of Se, Hg, Cr, Fe, Zn, Mn, K, and

Br measured in the quality control materials are reported in

Table 1. With the exception of Cr in NIST 1577 bovine

liver and Cr in NCS DC 73347 human hair, the trace ele-

ments measured in the quality control materials are in good

agreement with the certified values. The Cr levels in NIST

1571 orchard leaves and DOLT-4 dogfish liver were in

good agreement with the accepted values. The discrepancy

observed in the Cr measured in NIST 1577 bovine liver

likely reflects that the value is near the method LOD. The

discrepancy measured for Cr in NCS DC 73347 is not

understood.

The 25th, 50th, and 75th percentile of Se, Hg, Cr, Fe,

Zn, Mn, K, and Br levels in wet weight measured in

anterior putamen (n = 10), cerebellum (n = 10), mid-

frontal lobe (n = 10), inferior temporal (n = 10) and white

matter (n = 10) are reported in Table 2. A wet to dry ratio

was measured for each sample. The mean wet to dry ratios

for anterior putamen, cerebellum, mid-frontal lobe inferior

temporal, and white matter were 5.3 ± 1.8, 6.0 ± 0.5,

4.5 ± 1.2, 4.9 ± 0.8 and 2.6 ± 1.2, respectively.

The intra-sample variation of the brain tissues was

measured by preparation of 5 duplicate samples. The

duplicates included 2 inferior temporal, 2 anterior putamen,

and 1 mid frontal lobe sample and the results are summa-

rized in supplemental data Table 2. The CVs for elements

in the duplicate samples are often higher than the standard

deviation of the replicates reported in Table 1 suggesting

Journal of Radioanalytical and Nuclear Chemistry (2018) 318:43–48 45

123



that biological variation of the element is higher than the

analytical uncertainty. The levels of Se, Hg, Cr, Fe, Zn,

Mn, K, and Br reported in Table 2 are within the broad

ranges reported by Ehmann et al. [4]. Similar concentra-

tions have been reported for Se, Hg, Fe, Zn, K, and Br in

the amygdala, piriform cortex, and, olefactory bulb [15]. In

two studies of people from Sao Paulo, Brazil the dry weight

K levels in the hippocampus and frontal cortex ranged from

0.37 to 14.9 wt% and the Br levels ranged from 1.39 to

6.55 lg g-1 [16]. In another study of the same Brazilian

population, dry weight K levels ranged from 11.4 to

15.9 wt% and Br levels ranged from 2.57 to 3.66 lg g-1 in

tissue collected from the hippocampus, cerebellum, frontal,

parietal, temporal, and occipital cortex [17]. In brain

samples from the MRC Alzheimer’s Disease Brain Bank in

London, the wet weight Br and K levels in normal brain

were 1.23 ± 0.26 lg g-1 and 0.33 ± 0.06 wt%, respec-

tively [18]. The Br and K levels in AD cases were

1.52 ± 0.39 lg g-1 and 0.21 ± 0.06 wt%, respectively. In

the present study, the K and Br concentrations reported in

Table 2 and supplementary data table ST1 were consistent

Table 1 The concentration of Se, Hg, Cr, Fe, Zn, Se, Mn, K, and Br measured in the SRMs

NIST SRM 1577 bovine liver NIST SRM 1571 orchard leaves NCS DC 73347 hair DOLT-4 dogfish liver

Measured value Accepted value Measured

value

Accepted

value

Measured

value

Accepted

value

Measured

value

Accepted

value

Hg 0.0156 ± 0.006 0.016 ± 0.02 0.126 ± 0.004 0.155 ± 0.015 0.42 ± 0.01 0.36 ± 0.08 2.8 ± 0.1 2.58 ± 0.22

Cr 0.053 ± 0.04 0.088 ± 0.012 2.22 ± 0.16 2.6 ± 0.3 0.18 ± 0.03 0.37 ± 0.06 1.4 ± 0.4 1.4*

Fe 257 ± 9 268 ± 8 258 ± 16 300 ± 20 49 ± 2 54 ± 10 1800 ± 100 1833 ± 75

Zn 137 ± 1 130 ± 13 24.1 ± 0.1 25 ± 3 182 ± 4 190 ± 9 118 ± 2 116 ± 6

Se 1.18 ± 0.001 1.1 ± 0.1 0.11 ± 0.04 0.08 ± 0.02 0.62 ± 0.04 0.60 ± 0.04 8.8 ± 0.1 8.3 ± 1.3

Mn 10.2 ± 0.3 10.3 ± 1

K 1.02 ± 0.05 wt% 0.97 ± 0.06 wt%

Br 0.40 ± 0.03 0.36*

All concentration values are reported in lg g-1 except K which is reported in wt%. The uncertainty is the standard deviation of replicate

measurements. For Se, Hg, Cr, Fe, and Zn (n = 3). For Mn, K, and Br (n = 10). Blank values were not measured

*Informational value

Table 2 Dry weight concentrations of trace elements measured in anterior putamen (AP), cerebellum (CB), mid-frontal lobe (MFL), inferior

temporal (IT) and white matter (WM)

Percentile Se

(lg g-1)

Hg

(lg g-1)

Hg:Se (molar

ratio)

Cr

(lg g-1)

Fe

(lg g-1)

Zn

(lg g-1)

Mn

(lg g-1)

K

(wt%)

Br

(lg g-1)

AP 25% 1.18 0.014 0.006 0.15 687 58 2.5 1.3 4.3

50% 1.28 0.027 0.008 0.34 723 72 3.0 1.8 5.7

75% 1.39 0.034 0.011 0.47 1052 74 3.2 2.0 12.4

CB 25% 1.10 0.035 0.013 0.27 198 72 2.1 1.4 3.3

50% 1.16 0.058 0.020 0.61 230 75 2.2 1.6 4.9

75% 1.23 0.095 0.035 1.17 317 79 2.4 1.8 15.5

IT 25% 0.9 0.016 0.006 0.33 202 74 1.2 1.4 2.7

50% 1.1 0.032 0.013 0.56 231 81 1.3 1.5 3.9

75% 1.3 0.061 0.020 0.73 259 90 1.6 1.6 10.7

MFL 25% 0.8 0.022 0.009 0.29 216 56 1.3 1.1 3.0

50% 1.1 0.032 0.011 0.45 227 61 1.4 1.3 5.1

75% 1.3 0.040 0.016 0.70 251 72 1.6 1.4 10.5

WM 25% 0.4 0.005 0.007 0.12 102 17 0.6 0.5 1.8

50% 0.5 0.011 0.010 0.13 120 21 0.7 0.7 2.3

75% 0.5 0.018 0.013 0.23 151 26 1.1 0.9 4.1
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with levels reported in Sao Paulo, Brazil and London,

England.

The Hg to Se molar ratio is reported in Table 2. There

are few studies in the literature that report the Hg:Se molar

ratio in autopsy brains samples. Methylmercury (MeHg) is

a neurotoxin that is transported through the blood brain

barrier while Se is a known antagonist of MeHg toxicity.

One hypothesis is that optimal Se levels result in increased

antioxidant capacity, reducing the toxicity of MeHg [19].

Another hypothesis is that MeHg irreversibly binds with

selenoenzymes leading to localized deficiencies in sele-

noenzyme activity if Se levels are low [20, 21]. In an

autopsy study examining mercury miners and non-exposed

controls The Hg:Se molar ratio in cerebellum from the

miners was 0.33 ± 0.21 and from the controls was

0.019 ± 0.015 [22]. In this study, the median Hg:Se molar

ratio of 0.02 in cerebellum is consistent with non-occupa-

tionally exposed controls in a previous study [22].

The INAA method for brain tissue compares favorably

with convention multi-element analysis using ICP-MS. In

one ICP-MS analysis of brain tissue with microwave

digestion pretreatment the authors report LOD values for

Hg, Fe, Zn, and Mn of 0.006, 2, 0.006, and 0.008 lg g-1

[23]. The LODs for the INAA methods used in this study

were sufficient to measure Hg, Fe, Zn, and Mn in every

sample. The elements Se and Cr are challenging to measure

by ICP-MS because of formation of the isobaric interfer-

ences Ar2
? and ArC? polyatomic species in the Ar plasma.

The INAA method reported in this paper is particularly

valuable for measurement of Br in tissue samples. The

typical sample pretreatment for ICP-MS analysis is acid

digestion at high temperatures. Under these conditions, Br

is volatilized and lost from the sample.

The methods described in this paper have been used to

re-analyze 692 samples from the MAP study to measure

Mn, K, and Br. These results will be combined with other

participant data including clinical diagnosis of dementia

and AD, pathological featrues of dementia, AD, and

parkinsons disease, dietary information, occupation, and

genetic testing. The combined results have be used to study

the association of Mn, K, and Br with dementia, AD, or

Parkinsons disease in the MAP study.

Conclusion

This work highlights several advantages of INAA for

biological specimens in epidemiology studies. The non-

destructive INAA technique affords the possibility of

reanalyzing archived biological specimens for additional

trace elements. In this work, a high throughput INAA

method for measurement of Se, Hg, Cr, Fe, Zn, S, Mn, K

and Br in human brain tissue samples is reported. The

accuracy of the method was demonstrated by analysis of

standard reference materials. A set of 50 brain tissue

samples from 10 individuals in the MAP study were ana-

lyzed. The levels of trace elements in these tissues fall

within the expected range reported in the literature. The

unique advantages of INAA allowed re-analysis of the

invaluable MAP study samples four years after the original

measurement of Se, Hg, Fe, Zn, and Cr. INAA is still a

relaven analytical tool for biological samples, particularly

for Se, Hg, Br and other elements which are challenging to

measure by conventional multi-element analysis methods.
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