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Abstract
Interaction mechanism of Eu(III) on magnetic biochar(MB) was investigated by batch, XPS, EXAFS and modeling

techniques. Maximum Eu(III) adsorption capacity on MB is 105.53 mg/g at pH 3.0, which was demonstrated to various

functional groups by XPS analysis. No effect of ionic strength revealed inner-sphere surface complexation. According to

EXAFS analysis, inner-sphere surface complexation and surface co-precipitation dominated the Eu(III) adsorption at low

and high pH, respectively. Eu(III) adsorption can be simulated by surface complexation modeling. These results indicated

that MB can be used a promising candidate for the highly effective adsorbent of radionuclides.
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Introduction

Immoderate discharge of radionuclides during mining and

processing processes has posed a serious threat to ecolog-

ical environment and human health [1]. Therefore, much

effort has been made to remove radionuclides before dis-

charged into environments. Adsorption approach is a

highly effective method to remove radionuclides from

wastewater due to easy-operation, low-cost and environ-

mentally friendly [2]. Eu(III) has been extensively used as

a chemical analogue of trivalent actinides in recent years.

The removal of Eu(III) on various adsorbents has been

widely investigated such as clay minerals [3–6], Fe/Al-

(hydr)oxides [7–10], and carbon-based materials [11–15].

Wang et al. elucidated the adsorption mechanism of Eu(III)

on carbon nanotubes using batch, spectroscopy and theo-

retical calculation [16].

Biochar as a common carbon-based adsorbent, generally

produced from the thermal or hydrothermal conversion of

biomass, could significantly increase the removal of envi-

ronmental pollutants through surface complexation due to

the occurrence of various functional groups [17, 18]. In

recent years, an alternative technology was developed to

use engineered biochars (such as magnetic biochar) to

remove various pollutants, including organics [19–23],

Cr(VI) [24–26], Pb(II) [27–29] and arsenic [30–32]. For

example, Yang et al. utilized magnetic biochar to remove

Hg0 from the simulated combustion flue gas [33]. Magnetic

biochar can be easily separated from liquid phase by a

magnet after adsorption experiments. In addition, mag-

netite of magnetic biochar presents the high redox potential

(2–5 eV) over wide pH range [34]. However, limited

investigation regarding adsorption mechanism of Eu(III) on

magnetic biochar by spectroscopic and modeling tech-

niques were reported by far.

In this study, magnetite nanoparticles anchored biochar

was synthesized by fast pyrolysis of FeCl2 pre-adsorbed

biomass under N2 conditions. The objectives of this study

were (1) to synthesize magnetic biochar by a facile method

and characterize them using SEM, TEM, FT-IR, XRD and

XPS techniques; (2) to investigate the effect of water

chemistry on Eu(III) adsorption on magnetic biochar by

batch techniques; and (3) to determine interaction mecha-

nism of Eu(III) on magnetic biochar by XPS, EXAFS and

modeling techniques. The highlight of this manuscript was

to apply biochar-based adsorbent in practical environ-

mental cleanup.
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Experimental

Materials

The rice straw is a common crop residue, which was col-

lected from a farm near the suburb of Shaoxing, China.

Ferrous chloride hexahydrate (FeCl2�6H2O) and europium

nitrate (Eu(NO3)3) of analytical grade were purchased from

Sinopharm Chemical Reagent Co., Ltd and used as

received. The deionized water (18.2 M, Nanopure water,

Barnsead) was utilized in this study.

Synthesis of magnetic biochar

In this study, magnetic biochar was synthesized via thermal

conversion of FeCl2 pre-adsorbed rice straw under N2

conditions. Briefly, the rice straw was firstly air-dried

(moisture\ 5%) and ground to 100 meshes. Then, 50 g of

FeCl2 and 100 g of biomass were added to 100 mL DI

water under vigorous stirring. After pre-adsorption equi-

librium (24 h), the mixture was centrifuged at 6000 rpm

for 10 min and then was dried at 70 �C for 6 h under

glovebox conditions. The Fe(II)-loaded biomass were

placed in lab-scale stainless-steel pyrolysis reactor and then

heated at a heating rate of 20 �C/min to achieve five settled

gradient temperatures (200, 300, 400, 500 and 600 �C)

under a N2 atmosphere. The heating time at each gradient

temperature was set 1 h to provide enough time for bio-

mass carbonization and minimize volatile organic decom-

positions [35]. After cool to room temperature, the

mixtures were gently crushed and sealed in a vacuum

container before use.

Characterization of magnetic biochar

The microscopic morphology of as-prepared magnetic

biochar was characterized by SEM (JEOL 6500F, Japan)

equipped with an energy-dispersive X-ray analyzer and

high resolution TEM (JEM-2010, Japan). FT-IR spec-

trometer (Thermo Nicolet IS10 Spectrometer, USA) was

also used to identify the chemical functional groups in the

range of 4000–400 cm-1 with a scan rate of 0.1 cm/s.

Briefly, the sample was primarily freeze-dried for 24 h, and

then ground with KBr powder (1:100) in an agate mortar.

The disc was obtained by compressing it in a hydraulic

press. The crystallographic mineralogy was identified by

D/Max-IIIA Powder X-ray Diffractomer (Rigaku Corp.,

Japan) equipped with a graphite monochromator in the

angular range from 5 to 60� with 0.02� of step size at

35 kV and 25 mA. Carbon, nitrogen, hydrogen content of

biochar was analyzed by an element analyzer (Vario ELIII,

Elementar, Germany). N2-BET and pore size of magnetic

biochar were measured by NOVA 4200e Surface area and

Pore size analyzer (Quantachrome, FL, USA). The zeta

potentials of magnetic biochar were conducted using

Malvern Zetasizer Nano ZS.

Batch adsorption experiments

The batch triple experiments of Eu(III) (10 mg/L)

adsorption on magnetic biochar (m/v = 1.2 g/L) were

conducted at 10 mL of polycarbonate centrifuge tube at

room temperature under glovebox conditions. Adsorption

kinetics and isotherms were examined at pH 3.0 under

different time (5–2880 min) and concentration in the range

of 10–50 mg/L, respectively. Briefly, 12 mg magnetic

biochar was added into 10 mL Eu(III) solution (60 mg/L)

with 0.01 mol/L NaCl electrolyte, and then pH values were

adjusted to 3.0 by adding neglected volume of NaOH/HCl

solutions (0.1–1.0 mol/L). Then suspensions were reacted

at ambient conditions at a 200 rpm thermostatic recipro-

cating shaker for 24 h. After adsorption, the solid phase

was separated by a magnet and supernatant was filtered

through 0.22 lm nylon membrane filters. The Fe concen-

tration in the supernatant was analyzed by Z-500 flame

atomic absorption spectrophotometer (FAAS, Hitachi,

Japan). The Eu(III) concentration in supernatant was

measured using inductively coupled plasma-mass spec-

trometry (ICP-MS, Perkin-Elmer Plasma 3200). The

adsorption amount of Eu(III) was calculated by the dif-

ference in the original and finial concentration after

adsorption equilibrium.

Preparation and analysis of XPS, EXAFS samples

The samples for XPS and EXAFS analysis were prepared

as the similar batch experiments. Briefly, 20 mg of mag-

netic biochar and 10 mL of 50 mg/L Eu(III) solutions was

added into 50 mL polycarbonate centrifuge in glovebox

conditions. The pH values and ionic strength were set to

3.0 and 0.01 mol/L, respectively. After reaction equilib-

rium, the dry solid and wet pastes were collected for the

analysis of XPS and EXAFS, respectively. The XPS sam-

ples were performed by ESCALAB250 X-ray photoelec-

tron spectrometer (Thermo-VG Scientific, UK) with an

Mg–Ka radiation source of 1253.6 eV at 15 kV and 10 mA

under 10-7 Pa. The binding energies were calibrated with

the reference of the C 1s peak at 284.6 eV. The deconvo-

lution of C 1s, O 1s and Eu 3d peaks was conducted using

XPSPEAK 41 software. Europium LIII-edge EXAFS

spectra were collected from BL14W of Shanghai Syn-

chrotron Radiation Facility by Si (111) double crystal

monochromator in fluorescence mode. The pre-treatment

of EXAFS data was done using Athena program of IFEF-

FIT 7.0 software, and then Fourier transformed EXAFS
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spectra was fitted by Artemis interfaces with an aid of

theoretical parameters [36, 37].

Surface complexation modeling

The pH-dependent adsorption and adsorption isotherms of

Eu(III) on magnetic biochar was simulated by diffuse layer

model of surface complexation modeling with an aid of

MINTEQL 2.6 mode [38]. The protonation and deproto-

nation reactions can be described as Eqs. (1) and (2),

respectively:

SOH þ Hþ¼ SOHþ
2 log Kþ¼ log SOHþ

2

� �
= SOH½ �� Hþ½ �ð Þ

� �

ð1Þ

SOH ¼ SO� þ Hþlog K� ¼ log SO�½ �� Hþ½ �ð Þ= SOH½ �ð Þ
ð2Þ

where SOH refers to the amphoteric reactive sites of

magnetic biochar. The values of log K? and log K- were

obtained by fitting the titration data of magnetic biochar in

the presence of NaCl solutions.

Results and discussion

Characterization

The morphology of magnetic biochar was illustrated by

SEM and TEM. As shown by SEM in Fig. 1a, magnetite

nanoparticles were uniformly aggregated on the surface of

biochar. The biochar networks can efficiently prevent the

magnetite nanoparticles from aggregations. The SEM

results indicated the improved the surface area and mass

transfer for Eu(III) adsorption. As shown by high resolution

TEM in Fig. 1b, the particle sizes of these nanoparticles

ranged from 50 to 100 nm. In addition, these octahedral

nanoparticles were achieved on the surface of biochar

matrix due to the porous structure. As shown by fast

Fourier transmission (FFT) analysis in Fig. 1b, the dis-

tances of main lattice lines were consistent with the dis-

tance of (311) plane of magnetite, indicating the formation

of as-prepared magnetite nanoparticle. The further evi-

dence was provided by XRD analysis. As shown in Fig. 1c,

the diffraction peaks at 2h = 30.2, 35.5, 43.2, 57.3 and

62.9� were indexed to (220), (311), (400), (511) and (440)

planes of magnetite, indicating that magnetic biochar was

successfully synthesized by one-step pyrolysis method

[33]. The FeCl2-biomass was initially pyrolysed to

Fe(OH)3/FeO(OH) and/or Fe3O4 at high temperature.

Alternatively, the FeO(OH) can be further reduced to

Fe3O4 by amorphous carbon during pyrolysis process.

These reactions could be described by Eqs. (3)–(6):

6FeCl2 þ 6H2O þ O2 ¼ 2Fe3O4 þ 12HCl ð3Þ
4FeCl2 þ 10H2O þ O2 ¼ 4Fe OHð Þ3þ 8HCl ð4Þ

Fe OHð Þ3¼ FeO OHð Þ þ H2O ð5Þ

12FeO OHð Þ þ C ¼ 4Fe3O4 þ CO2 þ 6H2O ð6Þ

Figure 1d shows the FT-IR spectra of magnetic biochar.

The FT-IR bands at 1735 and 1650 cm-1 were attributed to

the stretching vibration of carboxyl C=O and aromatic C=C

groups, respectively [39]. The FT-IR bands at 3400 and

3202 cm-1 were attributed to the vibrations of –OH groups

[40]. As expected, FT-IR peak at 585 cm-1 was corre-

sponded to the stretching vibration of Fe–O groups [41]. As

shown in Table 1, the BET-N2 surface area of magnetic

biochar (126.23 m2/g) was significantly higher than that of

magnetite (72.51 m2/g), which could be attributed the

release of small organic molecules and unconverted com-

positions of biomass at high pyrolysis temperature. The

main contents of biochar were C (59.4%) and O (37.7%),

whereas magnetic biochar presented the C (46.4%),

Fe(19.4%) and O (31.3%) (Table 1). The characteristic

results indicated the magnetic biochar was successfully

synthesized by one-step pyrolysis method. The as-prepared

magnetic biochar displayed the variety of oxygen-con-

taining functional groups.

Adsorption kinetics

As shown in Fig. 2a, the adsorption of Eu(III) on magnetic

biochar increased with increasing reaction time from 0 to

24 h, and then slightly increase of Eu(III) adsorption was

observed at reaction time more than 24 h. Additionally, the

adsorption of Eu(III) on magnetic biochar was slightly

higher than that Eu(III) adsorption on magnetite and bio-

char. The data of adsorption kinetics were fitted by pseudo-

first-order and pseudo-second-order kinetic models. The

linear forms of pseudo-first-order and pseudo-second-order

kinetic models can be described by Eqs. (7) and (8),

respectively:

ln Qe � Qtð Þ ¼ lnQe �k1t ð7Þ

t=Qt ¼ 1= k2Qe2
� �

þ t=Qe ð8Þ

where Qt and Qe (mg/g) refer to the amount of Eu(III)

adsorbed on the adsorbents at time t and equilibrium,

respectively. k1 and k2 are the corresponding adsorption

rate constants of pseudo-first-order and pseudo-second-

order model, respectively.

The fitted results and corresponding parameters were

showed in Fig. 2a and Table 2, respectively. It is observed

that the adsorption kinetics of Eu(III) on magnetite, biochar

and magnetic biochar can be satisfactorily simulated by

pseudo-second-order model with high correlation
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Fig. 1 Characterization of magnetic biochar, a SEM; b TEM, inset of FFT analysis; c XRD; d FT-IR

Table 1 The selected properties

of magnetic biochar
Contents (%) Biochar: C(59.4), H(2.3), N(1.4), O(37.7)

Magnetic biochar: C(46.4), H(1.6), N(1.06), O(31.3), Fe(19.4)

N2-BET (m2/g) Magnetite: 72.51; magnetic biochar: 126.23
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(B)Fig. 2 a Adsorption kinetics of

Eu(III) on magnetite, biochar

and magnetic biochar,

CEu(III) = 10 mg/L, pH 3.0, m/

v = 1.2 g/L, T = 293 K;

b effect of pH on Eu(III)

adsorption on magnetite,

biochar and magnetic biochar,

CEu(III) = 10 mg/L, m/v = 1.2 g/

L, T = 293 K
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coefficient (R2[ 0.99) compared to pseudo-first-order

model (R2\ 0.90), which were consistent with the previ-

ous studies [42–44].

pH effect

Figure 2b shows the effect of pH on Eu(III) adsorption on

magnetite, biochar and magnetic biochar. Eu(III) adsorp-

tion on three adsorbents significantly increased with

increasing pH from 2.0 to 7.0, and then high-level

adsorption was observed at pH[ 7.0. The increased

adsorption of Eu(III) at pH 2.0–7.0 and pH[ 7.0 could be

attributed to the surface complexation and electrostatic

attraction, respectively [13]. The adsorption of Eu(III) on

magnetite was significantly lower than that of biochar and

magnetic biochar. Eu(III) adsorption on magnetic biochar

at pH\ 4.0 and [ 7.0 was slightly higher than that of

biochar, whereas no change in Eu(III) adsorption on

magnetic biochar and biochar was observed at pH 4.5–7.0.

This results indicated that magnetic nanoparticles and

biochar play an important role in Eu(III) adsorption on

magnetic biochar at low and near neutral pH, respectively.

Adsorption isotherms and regeneration

Figure 3a shows the adsorption isotherms of Eu(III) on

magnetite, biochar and magnetic biochar at pH 3.0 and

293 K. The adsorption of Eu(III) on magnetic biochar was

significantly higher than that of magnetite. The data of

adsorption isotherms were fitted by Langmuir and Fre-

undlich models. The Langmuir and Freundlich model were

described as Eqs. (9) and (10), respectively:

qe ¼ K � qmax � Ceð Þ= 1 þ K � Ceð Þ ð9Þ
qe ¼ Kf � Cen ð10Þ

where qmax is the maximum adsorption amount of Eu(III)

on magnetic biochar. K (L/mg) and Kf (mg(1-n)Ln/g) are

the constants of Langmuir and Freundlich model, respec-

tively. The fitted results and corresponding parameters

were showed in Fig. 3a and Table 3, respectively. The

adsorption of Eu(III) on magnetic biochar, biochar and

magnetite can be satisfactorily simulated by Langmuir with

high correlation coefficient (R2[ 0.995) compared to

Freundlich model (R2\ 0.95). The maximum adsorption

capacities of magnetite, biochar and magnetic biochar

calculated from Langmuir model at pH 3.0 and 293 K were

88.45, 97.95 and 105.53 mg/g, respectively. These results

showed that magnetic biochar can be used as a promising

candidate in wastewater treatment to remove radionuclides

from aqueous solutions.

Figure 3b shows the regeneration experiments of Eu(III)

on magnetic biochar under five recycle times. The maxi-

mum adsorption capacities of magnetic biochar decreased

from 105.53 mg/g at first time to 91.63 mg/g at fifth time.

Table 2 Kinetics parameters of

pseudo-first-order and pseudo-

second-order model for Eu(III)

adsorption on magnetic biochar

(1), raw biochar (2) and

magnetite (3)

Pseudo-first-order model Pseudo-second-order model

Qe (mg/g) k1 (min-1) R2 Qe (mg/g) k2 (g/(mg min) R2

(1) 6.786 0.015 0.8524 4.83 0.0627 0.9947

(2) 6.487 0.0147 0.8421 4.89 0.0792 0.9955

(3) 6.212 0.0161 0.8417 5.21 0.084 0.9961
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Fig. 3 a Adsorption isotherms of Eu(III) on magnetite, biochar and magnetic biochar; b regeneration of Eu(III) on magnetic biochar, pH 3.0, m/

v = 1.2 g/L, T = 293 K
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The regeneration experiments indicated that the adsorption

efficiency of magnetic biochar maintained almost

unchanged for five recycle times, indicating that the mag-

netic biochar represented a favorable recycle performance

toward Eu(III) removal. The regeneration experiments

indicated that magnetic biochar presented the excellent

adsorption performance for Eu(III), recyclability and easy

recovery.

XPS analysis

Figure 4a and b show the total scans and Eu 3d XPS

spectra of magnetic biochar, respectively. As shown in

Fig. 4a, the magnetic biochar displayed the C 1s, O 1s and

Fe 2p peaks, whereas the Eu 3d peaks was observed for

magnetic biochar after Eu(III) adsorption. It is observed

that the change in the relative intensities and binding

energies of O 1s were observed for magnetic biochar after

Eu(III) adsorption, indicating that oxygen- containing

functional groups were responsible for highy effective

removal of Eu(III) on magnetic biochar [15]. In addition,

the relative intensity of Eu 3d at pH 6.5 was significantly

higher than that of Eu 3d at pH 3.0, suggesting that the high

adsorption of Eu(III) at pH 6.0 was observed, consistent

with the pH-dependent adsorption. As shown in Fig. 4b,

two peaks of Eu 3d at 1135 and 1165 eV can be attributed

to the Eu 3d5/2 and Eu 3d3/2, respectively. The results of

XPS analysis indicated that magnetic biochar had abundant

oxygen-containing functional groups, which was respon-

sible for the Eu(III) adsorption.

EXAFS analysis

Figure 5a and b showed the k3-weighted Eu(III) EXAFS

spectra and the corresponding Fourier transform (FT) data

of samples, respectively. The absorption position at

* 6984.1 eV revealed trivalent Eu in all samples [45]. As

shown in Fig. 5a, a single wave frequency of aqueous

Eu(III) monotonically decreased amplitude at k[ 3 Å-1,

whereas the evident frequencies of crystalline Eu(OH)3

was observed, which was ascribed to the ordered coordi-

nation shell [46]. These observations were attributed to the

multiple backscattering paths in the first coordination shell

and the higher atomic shells [47]. The broaden oscillation

at k * 6.0 Å-1 for magnetic biochar after Eu(III)

adsorption pH 3.0 and 6.5 indicated the formation of inner-

sphere surface complexes [45]. As shown in Fig. 5b, the

bond distances of Eu–O shell for magnetic biochar after

Eu(III) adsorption pH 3.0 (2.43 Å) and 6.5 (2.41 Å) were

shorter than that of Eu–O shell of aqueous Eu(III) (2.44 Å),

whereas these bond distances were slightly larger than that

of Eu(OH)3 (2.40 Å) (Table 4). In addition, the occurrence

of Eu–C shells for magnatic biochar at pH 3.0 and 6.5

indicated the formation of inner-sphere surface complexa-

tion [48]. The FT features at * 2.0 Å could be due to the

nearest coordination shell of oxygen atoms, which was

Table 3 The parameters of Langmuir and Freundlich model for

Eu(III) adsorption on magnetic biochar (1), raw biochar (2) and

magnetite (3)

Langmuir model Freundlich model

Qmax (mg/g) KL (L/mg) R2 Ln Qe KF R2

(1) 105.53 0.2532 0.9993 3. 374 0.5743 0.9053

(2) 97.95 0.22152 0.9992 3.285 0.6532 0.9056

(3) 88.45 0.1974 0.9997 3.1279 0.6956 0.91545
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Fig. 4 XPS spectra of magnetic biochar before and after Eu(III) adsorption, a total scans; b Eu 3d
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consistent with the adsorption of Eu(III) on calcium silicate

hydrates [47]. The coordination numbers of Eu–O shell for

magnetic biochar after Eu(III) adsorption at pH 3.0

(CN = 6.7) and 6.5 (CN = 6.0) were significantly lower

than that of aqueous Eu(III) (CN = 8.5), which further

evidenced the inner-sphere surface complexation. In addi-

tion, the occurrence of Eu–Eu shell for magnetic biochar

after Eu(III) adsorption at pH 6.5 was similar to the that of

Eu–Eu shell of Eu(OH)3 standard, indicating that the

adsorbed Eu(III) was gradually formed the surface co-

precipitation (e.g., Eu(OH)3 (s)) at high pH conditions.

EXAFS results indicated that the adsorption mechanism of

Eu(III) and magnetic biochar over wide pH range was

inner-sphere surface complexation, whereas the adsorbed

Eu(III) was gradually formed the surface co- precipitation

at high pH conditions.

Surface complexation modeling

Figure 6a and b show the surface complexation modeling

of Eu(III) removal on magnetic biochar at different pH and

Eu(III) concentration, respectively. In this study, the dou-

ble layer model was employed to simulate the adsorption

behaviors with an aid of visual MINTEQ mode. The

optimized parameters of Eu(III) on magnetic biochar can

were summarized in Table 5. As shown in Fig. 6a, the

adsorption of Eu(III) on magnetic biochar at different pH

conditions can be satisfactorily by double layer model with

two inner-sphere surface complexes (SOEu2? and

(SO)2Eu(OH)2
- species). It is observed that the main

adsorbed species was SOEu2? at pH\ 4.0, whereas the

(SO)2Eu(OH)2
- species dominated the Eu(III) adsorption at

pH[ 5.0. The same optimized parameters were utilized to

simulate the data of isothermal adsorption at pH 4.0

(Fig. 6b). Enough interested, the adsorption isotherms of

Eu(III) on magnetic biochar was successfully fitted by

these two inner-sphere surface complexes derived from the

pH-dependent adsorption. The main species was SOEu2?

species, which was consistent with the results of pH-de-

pendent adsorption. The results of surface complexation

modeling indicated that pH-dependent and isothermal

adsorption of Eu(III) on magnetic biochar can be satis-

factorily fitted by double layer model with two inner-

sphere surface complexes such as SOEu2? and

(SO)2Eu(OH)2
- species.
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Fig. 5 Eu LIII-edge EXAFS

spectra (a) and corresponding

Fourier transforms (b) of

reference samples and magnetic

biochar after Eu(III) adsorption

at pH 3.0 and 6.5,

CEu(III) = 10 mg/L, m/v = 1.2 g/

L, T = 293 K

Table 4 EXAFS analysis of reference samples and Eu(III) adsorbed

on magnetic biochar at Eu LIII-Edge, T = 293 K, I = 0.01 mol L-1

NaCl

Sample Shell R (Å) CN r2 (Å2)

Eu(OH)3 Eu–O 2.40 (5) 9.1 (0) 0.0023 (8)

Eu–Eu 3.65 (4) 1.9 (0) 0.0042 (3)

Eu(aq) Eu–O 2.44 (3) 8.5 (4) 0.0059 (7)

Magnetic biochar Eu–O 2.43 (7) 6.7 (0) 0.0024 (6)

pH 3.0 Eu–C 2.32 (8) 4.1 (9) 0.0029 (1)

Magnetic biochar Eu–O 2.41 (6) 6.0 (4) 0.0026 (8)

pH 6.5 Eu–C 2.311 (2) 4.4 (0) 0.0037 (9)

Eu–Eu 3.531 (6) 2.4 (8) 0.0032 (1)

R the bond distance, CN coordination numbers, r2 the Debye–Waller

factor
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Conclusions

Magnetic biochar was successfully synthesized by fast

pyrolysis of Fe(II)-preloaded biomass under N2 condition.

The batch adsorption experiments showed that magnetic

biochar was effective in enhancing adsorption performance

towards Eu(III) compared to magnetite and raw biochar.

According to XPS analysis, the high efficient adsorption of

Eu(III) on magnetic biochar was attributed to oxygen-

containing functional groups. The inner-sphere surface

complexation and surface co-precipitation dominated the

Eu(III) adsorption on magnetic biochar at low and high pH,

respectively. The pH-dependent and isothermal adsorption

of Eu(III) on magnetic biochar can be satisfactorily fitted

by two inner-sphere surface complexes. These findings

offer a new alternative to transform biomass waste into a

promising adsorbent for radionuclides removal and further

provide mechanistic insights of the interaction between

radionuclides and biochar-based nanomaterials.
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