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Abstract
To increase the bioaccumulation of Eu(III), low temperature plasma as a method of mutagenesis was introduced to mutate

Cladosporium sphaerospermum (C. sphaerospermum). Mycelia doses, pH, and ionic strength obviously affected the

Eu(III) immobilization on mycelia. The maximum immobilization capacities of Eu(III) on mutated C. sphaerospermum

was 278.8 mg/g at pH 6.5, which was approximately three times than that of raw C. sphaerospermum. Before and after

Eu(III) loaded mycelia were analyzed by XPS and FTIR, and intracellular structures of mycelia changed obviously under

Eu(III) stress by TEM analysis. The results suggested that low temperature plasma could be utilized as a valuable treatment

technology to improve fungi for the removal and immobilization of radionuclides in the environment.
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Introduction

Long-lived radionuclides posed serious threats to biologi-

cal systems and human health due to its potential toxic and

carcinogenic effects [1]. Europium (Eu(III)), one of the

fission products of uranium, was often used as a chemical

analogue for trivalent lanthanides/actinides in removal

studies because of their comparable physicochemical

properties and similar environmental behaviors [2–4].

Therefore, developing cost-effective and environment-

friendly materials to remove Eu(III) from environments are

of particular importance. There are lots of materials for

Eu(III) removal, such as carbon materials [5–9], metal

oxides [10–12] and clay minerals [13–15]. However,

removal of radionuclides or heavy metal by microorgan-

isms has been demonstrated to be more environmentally

friendly and cheaper than chemical and physical materials,

especially in the aspect of stimulating indigenous microbial

communities [16]. Among microorganisms, fungi have

advantages over bacteria for the bioremediation of con-

taminated sites owing to its mycelia network, biomass and

longer life-cycle [17]. Moreover, radionuclides or metals

tolerant fungi can compete with the native bacteria in

hostile situations and have developed different strategies to

protect themselves from oxidative stress caused by

radionuclides or metals [18–20]. However, as far as we

know studies about Eu(III) immobilization on fungi were

still little [16].

Low temperature plasma (LTP) generated free electrons

and ions, radicals and a variety of radiation ranging from

UV via visible to infrared [21]. Research showed that LTP

treatment could lead to intensively microbial DNA change,

suggesting that LTP was expected to be used for microbial

mutagenesis [22]. Therefore, LTP was successfully applied

in many microbial mutagenesis [23–26].

LTP as a method of mutagenesis was introduced to

mutate Cladosporium sphaerospermum (C. sphaerosper-

mum) in order to improve 152?154Eu(III) immobilization.
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was studied in different environmental conditions, and

characterization of Eu(III) immobilization on mycelia was

investigated by X-ray photoelectron spectroscopy (XPS),

Fourier transform infrared spectroscopy (FTIR), and

transmission electron microscopy (TEM). This study will

better understand the Eu(III) immobilization mechanism on

fungi and improve the bioremediation strategies of Eu(III)

pollution.

Materials and methods

Cultivation of resistant fungus

Resistant fungus used in this study was isolated from

radionuclide-contaminated soils, and the method of isola-

tion and identification had been shown in previous study

[16]. Cultivation of the fungus was carried out in 250 ml

Erlenmeyer flasks with 100 ml potato dextrose agar (PDA)

medium on a rotary shaker at 200 rpm and 28 �C. After
3 days’ cultivation, mycelia were harvested by centrifu-

gation, washed three times in deionized water and stored at

4 �C for batch experiments. Besides, mycelia were trapped

under glass using laetophcnol cotton lalue stain before

being examined, and observed under an Olympus IX71

inverted fluorescence microscope (Olympus, Tokyo,

Japan). All images were captured using a TH4-200 photo

system (Olympus, Tokyo, Japan) at 9200 magnification.

Characterization of fungal mycelia

Fungus was incubated in PDA medium containing 0 or

200 mg/l Eu(III) at 28 �C and 200 rpm for 3 days. The

samples for TEM were fixed in 5% glutaraldehyde for 3 h,

then post-fixed in 1.0% osmium tetraoxide for 2 h and

dehydrated in a graded ethanol series (50–100%) as pre-

viously described by El-Sayed [27]. The blocks were sec-

tioned, stained and observed using a TEM with an energy

dispersive X-ray analysis (EDS) (Hitachi HT-7700, Japan).

The method of XPS (Thermo ESCALAB 250, USA), and

FTIR (Perkin Elmer 100, USA) referred to related literature

[16].

Eu(III) immobilization by mycelia

Immobilization of Eu(III) by mycelia was studied under

ambient conditions. The different concentrations of

mycelia suspensions, Eu(III) and NaCl solution were added

into Erlenmeyer flasks, and pH of the solution was regu-

lated to 6.5. After immobilization equilibrium, the solution

was centrifuged at 8000 rpm for 10 min, and 152?154Eu(III)

concentration was analyzed by Liquid Scintillation count-

ing (Packard 3100 TR/AB Liquid Scintillation analyzer,

Perkin-Elmer) with the scintillation cocktail (ULTIMA

GOLD ABTM, Packard). The immobilization percentage

and amounts of Eu(III) immobilization capacity (Q, mg/g)

were described as Eqs. (1) and (2):

Immobilization % ¼ C0 � Ceð Þ � 100%=C0 ð1Þ
Qt ¼ C0 � Ceð Þ � V=m ð2Þ

where C0 and Ce (mg/l) were initial and equilibrium con-

centrations, respectively. V and m were volume of sus-

pension and the mass of mycelia, respectively. All tests

were conducted in triplicate.

Results and discussion

Isolate mutagenesis experiments

The LTP plasma was schematically illustrated in Fig. 1a,

which was described in previous studies [28–30]. The

reactor chamber has three poles, one air inlet and one air

outlet. In the experiment, we used helium (99.99% pure)

gas as work gas which flow rates was 80 l/h and injected

3 min before the experiment to expel air as much as pos-

sible from reactor chamber. Spores were collected, and

diluted spore samples were mutated by LTP for 6 min. LTP

was generated by voltage of 30 V and power of

42 W. Then, mutated spores were inoculated onto PDA

petriplates containing Eu(III). Then, the best mutant isolate

was selected from morphology and cultured for immobi-

lization experiments.

Identification of the isolate

The length of ITS sequence of the isolate was approxi-

mately 526 bp. It showed 99% similarity with C.

sphaerospermum in GenBank (KJ191437.1 and

HG530663.1). Combining with external morphologi-

cal features as shown in Fig. 1b, the isolate was identified

as C. sphaerospermum.

Effect of time

The amount of Eu(III) immobilization on C. sphaerosper-

mum increased linearly with time during the first 24 h, and

then remained almost constant within 84 h (Fig. 2a). The

initial observed immobilization rate of Eu(III) on mycelia

was very fast, whereas it became slow in the second phase,

which was in accordance with the previously Eu(III)

immobilization study [12]. That was because at initial

stages of the immobilization, the higher concentration of

Eu(III) provided the driving force to facilitate Eu(III) dif-

fusion from solution to the active sites of mycelia. As the
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process continued, the decrease of Eu(III) concentration

and the active sites of mycelia resulted in the decrease in

Eu(III) immobilization [31]. Data points were fitted better

with the pseudo-second-order kinetic model as compared

to pseudo-first-order kinetic model, and kinetic parameters

and equations from both models were listed in Table 1. The

results of kinetics indicated that C. sphaerospermum pos-

sessed high immobilization efficiency for Eu(III).

Effect of pH

Several factors caused changes in Eu(III) accumulation as

pH levels were modified. For example, Eu(III) species

changed with the increase of pH (Fig. 2b). Besides, chan-

ges in pH could produce modifications in the surface net

charge of mycelia. The immobilization Eu(III) on C.

sphaerospermum and mutated C. sphaerospermum

increased obviously as pH increased between 2.0 and 7.0,

and maintained high level at pH[ 7.0 (Fig. 3a). About

80% Eu(III) accumulated on mutated C. sphaerospermum

at pH 6.5, which was about 30% more than that of C.

sphaerospermum. The electrostatic interaction between

mutated C. sphaerospermum and Eu(III) resulted in lower

immobilization at pH\ 7.0. Higher immobilization of

Eu(III) at pH[ 7.0 could belong to electrostatic attraction

Fig. 1 The schematic of the plasma system and photograph of the reactor chamber (a), light microscopes images of C. sphaerospermum (b)
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Table 1 Parameters for

immobilization kinetic data

using different models

Models Pseudo-first-order Pseudo-second-order

Q(mg/g) K (1/h) R2 Q(mg/g) K0 (g/(mg h)) R2

Equations Qt = Q (1 - exp(- K)) t/Qt = 1/K0Q2 ? t/Q

C. sphaerospermum 41.607 0.27675 0.965 45.3195 0.01134 0.998

Mutated C. sphaerospermum 86.66 0.298 0.986 92.665 0.0108 0.999

C0 and Ce (mg/l) were initial and equilibrium concentrations, respectively. V and m were volume of

suspension and biomass of mycelia, respectively
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between Eu(III) and mycelia as well as the precipitates of

Eu(OH)3 [32].

Effect of mycelia doses

The influence of mycelia doses on capacity of mutated C.

sphaerospermum immobilization Eu(III) from aqueous

solution was studied by using different fungal doses in the

range of 0.05–0.7 g/l (Fig. 3b). The immobilization of

Eu(III) rapidly rised with the increase of mutated C.

sphaerospermum doses. It’s because more available sites

for immobilization as well as greater surface area for

immobilization ascended with the increase of mutated C.

sphaerospermum doses. Oppositely, Kd reduced with the

increase of mutated C. sphaerospermum doses, because the

aggregation of fungal mycelia and competition among

fungal mycelia reduced effective enrichment sites on

mutated C. sphaerospermum [33].

Effect of ionic strength

The immobilization of Eu(III) on mycelia as a function of

NaCl strength was shown in Fig. 4a. Eu(III) immobiliza-

tion onto C. sphaerospermum and mutated C. sphaeros-

permum percent decreased with the increase of NaCl

strength. The immobilization percent of Eu(III) on C.

sphaerospermum and mutated C. sphaerospermum

decreased 20 and 11% from 0.01 to 0.05 mol/l NaCl,

respectively. That might be ascribed to the decrease of

competing NaCl strength led to the formation of electrical

double layer complexes, which favored the accumulation

of Eu(III) on mycelia. The phenomenon was indicative of

an ion exchange mechanism. On the other hand, NaCl

strength of solution influenced the activity coefficient of

Eu(III), which limited their transfer to mycelia [34].

Immobilization isotherms

Eu(III) immobilization isotherms of C. sphaerospermum

and mutated C. sphaerospermum were illustrated in

Fig. 4b. At pH 6.5 and 295 K, the increase of Eu(III)

immobilization on C. sphaerospermum and mutated C.

sphaerospermum was observed distinctly with the increase

of Eu(III) doses. Two isotherms models (Langmuir and

Freundlich models) were used to simulate the experimental

data. From Fig. 4b and Table 2, Langmuir model simulated

the experimental data better than Freundlich, and the

maximum immobilization capacities (Cs max) of Eu(III) on

mutated C. sphaerospermum was 278.8 mg/g at pH 6.5,

which was approximately three times than that of raw C.
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sphaerospermum. Besides, Cs max of mutated C.

sphaerospermum was also higher than Eu(III) onto other

biomaterials, such as Mycobacterium smegmatis

(19.15 mg/g at pH 5.0), Pseudomonas aeruginosa

(44.1 mg/g at pH 5.0 and 293 K), and Sargassum sp.

[35–37]. These results indicated that mutated C.

sphaerospermum was a feasible and efficacious material to

control Eu(III) pollution in the environment.

XPS and FTIR analysis

XPS spectra demonstrated the sensitivity for identifying

elements on mycelia. Therefore, the XPS technique was

applied to investigate immobilization mechanism. The XPS

spectra of Eu(III) immobilized on mutated C. sphaeros-

permum was shown in Fig. 5a. After immobilization, peaks

at 1134.6 and 1164.4 eV were attributed to Eu 3d5/2 and Eu

3d3/2, respectively, which demonstrated the high absorba-

bility of mutated C. sphaerospermum for Eu(III). Com-

pared to mutated C. sphaerospermum, C, N, and O

percentage of mutated C. sphaerospermum- Eu(III) corre-

spondingly declined from XPS analysis (Table 3), which

indicated Eu(III) immobilization on mutated C. sphaeros-

permum was partially related to groups contained O and N

atoms on the surface of mycelia [38–40].

The FT-IR spectra of unloaded and Eu(III) loaded

mutated C. sphaerospermum were presented in Fig. 5b. It

showed some distinct peaks at 1034 cm-1 ([S=O),

1246 cm-1 (the amide III band, C–N stretch), 1332 cm-1

(C–O stretches), 1442 cm-1 (stretching of COO–),

1560 cm-1 (the amide II band, C–N stretching and N–H

bending vibration), 1656 cm-1 (the amide I band, C=O

stretching), 1748 cm-1 ([C=O stretching), 2926 cm-1 (–

CH stretching vibrations), and band at 3200–3500 cm-1

(O–H and N–H stretching vibrations) [41, 42]. After

Eu(III) immobilization, peaks of C–N stretching and car-

boxyl groups (C–O) shifted, which showed it contributed to

the complexation between Eu(III) and mutated C.

sphaerospermum [43]. XPS and FTIR analysis revealed

amino, hydroxyl, and carboxyl groups were responsible for

Eu(III) immobilization onto mutated C. sphaerospermum.

Changes of subcellular structure under Eu(III)
stress

TEM was used to investigate the changes of subcellular

structure of mutated C. sphaerospermum before and after

Eu(III) exposure in the same nutritional state. No obvious

change in extracellular structure of mutated C. sphaeros-

permum was observed before and after Eu(III) exposure

(Fig. 6). There were some electron-dense bodies in the

Table 2 Parameters for the Langmuir and Freundlich isotherm models

Biosorbent Langmuir model Freundlich model

Cs max (mg/g) b (l/mg) R2 KF (mg1-n ln/g) n R2

Equations Q = b9Qmax 9 Ce/(1 ? b 9 Ce) Q = KF 9 Ce
n

C. sphaerospermum 93.07 0.0301 0.998 14.352 0.3839 0.986

Mutated C. sphaerospermum 278.8 0.0316 0.998 31.334 0.4178 0.961

Cs max was theoretical maximum immobilization capacity per unit weight of mycelia. KF and b were immobilization constants of Freundlich and

Langmuir, respectively
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cells of mutated C. sphaerospermum after exposure Eu(III).

The EDS spectra derived from electron-dense bodies

indicated that they were consisted of carbon, oxygen,

phosphorus, europium and copper. The copper band was

from the grid used to support sections (Fig. 6b). The

detoxification of Eu(III) by mutated C. sphaerospermum

might be mediated through thiol compounds, which bound

intracellular free Eu(III) in order to reduce damage to the

metabolic process [44]. These changes might be part of the

adaptation mechanism of fungi to metal toxicity according

to previous results. The intracellular electron-dense area

was revealed by TEM, indicating chromate penetration into

the cell of Aspergillus niger [45]. TEM and EDS of

Pseudomonad (CRB5) also demonstrated U(VI) appeared

in the cell [46]. Besides, the analysis of TEM and EELS

indicated that excessive amounts of Cu(II) induced sub-

cellular changes of Allium sativum L. [47].

Conclusions

In this study, C. sphaerospermum was mutated by LTP to

enhance Eu(III) immobilization. The mutated C.

sphaerospermum presented higher adsorbability for Eu(III)

immobilization investigated by batch experiments, and

Langmuir model simulated the experimental data better

than Freundlich model. The results of XPS and FTIR

showed that carboxyl, hydroxyl and amino groups on

mycelia favored Eu(III) immobilization on mutated C.

sphaerospermum, and intracellular structures of mycelia

changed obviously under Eu(III) stress by TEM analysis.

These results were crucial for further understanding the

transportation and accumulation of radionuclides on fungi

in environmental cleanup.
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