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Abstract Research carried out by me and my group over

the last almost four decades are summarized here. The

main emphasis of my work was and continues to be on

plant physiology using radiation and radioisotopes. Plants

live on water and inorganic elements. In the case of

water, we developed neutron imaging methods and pro-

duced 15O-labeled water (half-life 2 min) and applied them

to understand water circulation pattern in the plant. In the

case of elements, we developed neutron activation analysis

methods to analyze a large number of plant tissues to fol-

low element specific distribution. Then, we developed real-

time imaging system using conventional radioisotopes for

the macroscopic and microscopic observation of element

movement. After the accident in Fukushima Daiichi

nuclear power plant, we, the academic staff of Graduate

School, have been studying agricultural effects of

radioactive fallout; the main results are summarized in two

books published by Springer.

Keywords Neutron imaging � Water imaging and

measurement � Radioisotope � Real-time radioisotope

imaging system � Plant physiology � Fukushima nuclear

accident � Agricultural impact of contamination

Introduction

First of all, I would like to express my sincere thanks to the

members of Hevesy Medal Award Selection Panel 2016 as

well as to all the people who supported me for the Hevesy

Medal Award. I would like to summarize in this paper the

kind of research I have been doing in my life.

After determining the half-lives of long-lived nuclides,

namely 91Nb and 92Nb for my PhD thesis, I have been

targeting plant physiology for many years and applying

radiochemical approaches. Though plants live on only

inorganic elements and water, little is known about the

distribution or movement of these and water in a living

plant. For example, photosynthesis is known to produce

sucrose out of CO2 and water but water itself has not been

gathering the attention. Water was simply granted to exist

there but is playing an important role for the chemical

process of the energy conversion, form light to chemical

energy. However, we do not know how water is absorbed

and transferred in the plant.

Therefore, my first interest was water, in particular how

water is distributed and move within a living plant as well

as its absorption from roots. To study water distribution in

plants, neutron beam was applied which produced water-

specific image of the plant. The neutron beam allowed

imaging not only water itself but also the morphological

development of the plant tissue which was not visualized

earlier, such as seed formation in pods or roots imbedded in

soil. Then, 15O labeled water was used to trace the water

movement in detail and we found that tremendous amount

of water was always flowing out from xylem and re-entered

the xylem again, indicating that there is a circulation of

water flow in the stem of a soybean plant.

Element was another target of my research. There are 17

essential elements for plant growth, but little is known
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about the overall accumulation or movement manner of the

elements. Activation analysis was performed for a large

number of plant tissues and the element-specific accumu-

lation pattern in the plant was found; and this pattern was

maintained in the same way throughout the developmental

stage. When flowering was induced, Mg-specific distribu-

tion pattern disappeared which led later to develop the

production of the radioactive magnesium tracer, 28Mg

(half-life: 21 h).

Since each element showed its specific distribution

pattern in a plant, next step was the development of real-

time imaging of the elements. Though imaging using

positron emitters has been developed especially in medical

field known as PET (Positron Emission Tomography), its

resolution cannot be less than mm because of the relatively

high positron energy. In the case of fluorescence imaging,

imaging under light condition is not possible and the

amount of the element in the image could not be measured.

Therefore, the real-time RI imaging system was developed

by us using not only gamma-ray but also beta emitters

which are commercially available so that other people can

also use them. We have been successful in developing the

systems both for macroscopic and microscopic imaging.

The real-time movement of the elements can now be

visualized and analyzed using 14C, 22Na, 28Mg, 32P, 33P,
35S, 42K, 45Ca, 54Mn, 55Fe, 59Fe,65Zn, 86Rb, 109Cd, 137Cs,

etc. The image of 14CO2 gas fixation provided that the

photosynthate was moved quickly to produce the meristem

of the root tip.

After Fukushima nuclear accident, our group studied the

agricultural consequences of radioactive contamination

from the Fukushima Daiichi reactors. I was able to edit two

English books summarizing our data, published by

Springer. The on-line version of the first book was accessed

more than 50,000 times a year and the third book is now

going to be published next year.

A brief survey of many research projects carried out

over the years by me and my group is given below.

Research topics: methodology, results
and discussion

Since plants live on water and inorganic elements, the

applied radiation or radioisotope method used in presented

in Fig. 1.

Neutron beam imaging: water distribution [1–27]

Flower, wood disk and seeds

Neutron beam was applied to observe water-specific image

in a living plant, since neutron imaging provided the

highest resolution yet attainable for water in tissue. With

high specificity for water, neutron beam could image water

movement in seeds or in roots imbedded in soil as well as

in wood disks and meristems during the development.

Through neutron image analysis, we were able to analyze

the activity of intact cells or tissue.

Since more than 80% of the living plant is consisted of

water, water image indicates the tissue image itself.

Figure 2 is one of the examples of the water-specific image

of lily and from this image we can estimate how the pistil

and stamen inside the bud are developing. Similar to the

flower bud, the seed formation inside the pod became

visible. In the case of agricultural industry, to create the

sterile plant which does not develop the seed, is one of the

important feature to be able to provide the seeds every

year. (not clear what the author wants to say in the last

sentence).

Another requirement from flower industry is to keep the

flowering time of the cult flowers longer. One of the

Fig. 1 Application of radiation or radioisotopes to plant study

Fig. 2 Water image of lily flower and bud by neutron beam. Note

The degree of penetration of the neutron beam is highly dependent on

the amount of water in the sample. The whiter part is the place where

water content is higher; so the neutron beam could not penetrate the

sample well; therefore, the exposure of the X-ray film behind the

plants was low, which resulted in whiter image. Through calculation,

the amount of water in tissue can be obtained
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solutions is to change the viscosity of water supplied to the

cut flowers. When the xenon gas was dissolved in water

under pressure and supplied to the cut flowers, it was found

to slower the senescence, which was studied using a car-

nation flower. To analyze the effect of the water prepared,

spatial distribution of the water within the flower was

constructed (Fig. 3). When the water decreasing part in

flower was visualized, keeping water around the ovule was

crucial and applying water with high viscosity, such as Xe

gas dissolved water, was found to be effective. In the case

of roses, there was a specific problem called ‘‘bent neck’’

phenomenon. When the flower is bent, it never comes back

again to the straight position even with fresh supply of

plenty of water. The neutron beam imaging suggested that

there are two types of tissues in the stem below the flower,

which allows water absorption after draught condition.

Several kinds of tree were downed and water distribu-

tion within the bark disk was investigated. The water in the

bark is liable to evaporate fast from the cut surface,

therefore, the trees were cut down as a log on the day of

neutron irradiation and was further cut to the wood disk

just before the imaging. In the case of acacia, although the

heartwood formation was not observed from outside, water

distribution showed as if heartwood was developed where

water amount was very low. The color of the Japanese

cypress did not show any heartwood formation like acacia,

from the water distribution image of the disk (Fig. 4).

Lumber of cedar trees are very popular materials in Japan

for constructing houses or making furniture but water

amount at heartwood cannot be known until downed. Even

the same kind of the trees growing in the neighbor, the

amount of the water at heartwood is different. When the

water amount in the heartwood is high, it is hardly possible

to remove all of the water from the log by drying process

and remaining water causes distortion or cracks after

construction. When neutron beam was applied, water was

found to distribute according to the annual ring inside the

cedar disk. Neutron images were taken periodically during

the drying process and water amount and distribution of the

disk were analyzed (Fig. 5).

The water absorption in seeds is still not known well,

though it was estimated that the seeds do not absorb and

accumulate water homogeneously. Neutron beam imaging

provided some clue to this question. Figure 6 shows the

water image in 5 different seeds, broad bean, corn, morn-

ing-glory, wheat and rice. They were put in water container

and they were taken out every 2 h to take water images. It

was shown that water was accumulated to the embryo,

meristem part, after absorption. The specific accumulation

of water in the seed was well visualized for the corn seed,

where water was hardly accumulated to the other parts but

to embryo (Fig. 6).

Roots imbedded in soil

When a thin container packed with soil was prepared to

grow the plants, neutron image provided not only water

movement in soil but also morphological development of

the roots, nondestructively (Fig. 7). Therefore, at first a

thin Al container (3–5 mm in thickness) was prepared to

analyze how the roots are absorbing water from the soil,

since there was not any report about water movement

within 1 mm form the surface of the roots. Then we pre-

pared two kinds of water absorbing polymers, namely poly-

vinyl alcohol polymer and poly-acrylic polymer, and

compared the water supplying activity to the roots (Fig. 8).

When the soybean was grown in the soil mixed with the

Fig. 3 Three dimensional water image of carnation flower. Note

Carnation flower was wrapped with an aluminum foil and was rotated

during the neutron beam irradiation. One degree by one degree the

sample was rotated and at each angle the neutron projection image

was taken. In this case, 180 projection images were taken while

rotating the sample till 180�. Out of 180 projection images, one line at

the same height of the images were taken out and the transverse

section image was constructed by computer. When all the cross

section images constructed every 50 lm interval at height were

obtained, they were piled up to construct the three dimensional water

image. An example of the spatial image of the lower part of the flower

(2 cm) is shown. Lower part was selected so that the inner part could

be clearly distinguished
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polymers, the roots grown in poly-acrylic polymer did not

grow well and changed the color, since the roots could not

absorb water from the polymer. The size of the polymer did

not change during the week and the color of the soil turned

darker, indicating that most of the water in soil was

absorbed by the plant. On the other hand, the size of the

poly-vinyl alcohol polymer decreased, indicating that the

water in the polymer was supplied to the roots. The study

of the polymer function was further developed to apply

these polymers in semiarid area to maintain water in soil of

farming land.

The neutron imaging method was developed from two

dimensional to spatial one. To get the spatial image, the

plant was grown in a pipe containing soil and was rotated

to get neutron images from different angles. The 180

projection images were taken while rotating the sample

from 0� to 180�, and the one line image at the same height

was taken out of 180 images to construct one dissection

image. Then the dissection images constructed every

50 lm were piled up to produce the spatial image

(Figs. 9, 10). To our great surprise, most of the adjacent

place of the root in soil was an empty space (Fig. 10),

which suggested that water was not absorbed from the

root as solution but as vapor. There has been a long

discrepancy between the soil scientist and plant physiol-

ogist for the plant growth in soil. It was suggested that the

case of the water culture, which was the base of the plant

physiology, might be different from that of soil culture, at

least in the way, how to absorb water. The spatial image

of the plant root growing in a pipe provided much

information on not only water absorption movement but

also the relationship between the water absorption site

and side root emerging site. The application of the neu-

tron imaging provided the way to develop the in situ

physiology of the plant. Especially, the morphological

development of the roots shown by neutron imaging

provided the fundamental data for soil condition including

the effect of fertilizer.

Fig. 4 Water distribution of acacia and Japanese cypress. Note The

upper two images are pictures and the lower two images are neutron

beam images. Left acacia, right Japanese cypress. Wood discs, 1 cm

in width, were prepared just before neutron beam irradiation. The

whiteness of the image obtained in an X-ray film after irradiation

corresponded to the water image; therefore, the 2-dimensional image

was converted to a spatial one where the height was the degree of the

whiteness representing the water content. In the case of acacia,

heartwood formation could not be confirmed form the picture because

it did not change any color. However, the lower picture showed clear

difference of the water distribution between heartwood and sapwood

parts. Water image of the Japanese cypress showed high amount of

water in only outer part of the wood and small amount of water was

distributed along the annual ring in inner part
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Water movement using RI: water movement [28–35]

The first trial to analyze water absorption manner was

studied using the cowpea plant supplied with 18F (half-life:

110 min) containing water, which was produced by irra-

diation of water with He? beam. Cowpea plant was

selected, since this is a draught tolerant plant and is an

important crop among Asian and African countries. The

plant developed a special tissue in the stem, which was

suggested to function as water storage tissue but was not

studied well. The water supplying function of the specific

tissue under draught condition was shown using both

neutron imaging and 18F tracer.

Then, two kinds of the cowpea plants selected in Africa

were used. When water absorption manner of naturally

divested cowpea plants, draught tolerant and sensitive one,

were compared, it was very interesting to note that the

amount of water absorbed by the draught tolerant cowpea,

under normal condition, was far less than that of the sen-

sitive one. But under draught condition, the tolerant one

began to absorb much more water while the sensitive one

could not absorb water. We take it as granted that the water

absorption activity is very strong in draught tolerant plant

so that it can survive under less amount of water in soil.

Therefore, in the laboratory when we try to produce

draught tolerant plant, we apt to add the water absorbing

ability of the tolerant one to the sensitive one to convert the

nature of the weak plant. However, naturally diverted

cowpea plant showed that in usual case, water absorbing

activity of the tolerant one is far behind to the sensitive

Fig. 5 Water image of cedar

tree during drying process. Note

Wood disks of cedar tree, 1 cm

in thickness, were taken out

every 2 h during the drying

process and neutron image was

obtained. Left high water

content in heartwood; right low

water content in heartwood.

When the initial water content

at heartwood is high, it takes

longer time to reduce the

amount of water compared that

with lower water content
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one. It seems that they are saving the energy for the

emergency.

Applying 18F-labeled water, water storage function of

the tissue in the draught resistant cowpea plant was

demonstrated. However, the different movement of 18F in

water from that of 15O-labeled water was shown. There-

fore, 15O-labeled water (half-life: 2 min) was used to

measure trace amount of water movement. The measuring

system was prepared and the performance of the system

was developed so that the trace amount of the water

moving in the soybean could be measured. Since 15O is a

positron emitter, a pair of BGO detector was used and their

performance was studied. Using the system, circulation of

water movement within the stem was found for the first

time. That is, tremendous amount of water was leaking out

horizontally form the xylem tissue, which has been regar-

ded as a mere pipe to transport water from root to the up-

ground part (Fig. 11). After examining every possibility of

the route for the water flowing out from the xylem, it was

found that the leaked water from the xylem entered the

xylem tissue again and then transferred to the upper part

(Fig. 12). Because of the constant returning manner of the

leaked water to the xylem, the water velocity in the xylem

tissue was kept constant. The constant flow rate of the

water in xylem tissue was measured by preparing three

pairs of BGO detectors. From the known distance between

the detectors and from the time when they first detected the

radiation from 15O-labeled water coming up from the root,

the flow rate between the detectors was found to be

constant.

This water movement was also confirmed using 3H-

labeled water (Fig. 13). In the case of 3H, the beta-ray

energy from 3H was too low to be detected from outside the

plant. Therefore, 3H-water was supplied for 5 s and the

stem was cut after, 0, 10 and 20 s, 1 and 2 min and

autoradiography was taken by an imaging plate. As is

shown in the figure, the flowing out water from xylem

tissue was spread out to all of the stem tissue after 20 s and

gradually returning to the xylem. Through simulation, the

newly absorbed water from the root replaced half of the

water already existed in the stem within 20 min. This water

circulation movement was also found even under high

humidity when the transpiration, water loss from leaves,

was hardly expected.

Fig. 6 Water absorption process of seeds. Five kinds of seeds, broad

bean, corn, morning-glory, wheat and rice were placed in water and

every 2 h they were taken out from the water and neutron imaging

was performed. Upper left picture of five seeds. Bar 5 mm. The

distribution of water after absorption was not uniform in all the seeds.

Water was preferentially accumulated at embryo site in seeds
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Neutron activation analysis (NAA): inorganic

element distribution [36–60]

NAA was performed for many kinds of plant tissues. An

element specific distribution profile was found in barley

leaves. Each leaf showed gradient of the elemental concen-

tration and the profile hardly changed throughout the

developmental stage. Similarly, when morning-glory was

analyzed from germination to seed formation by NAA,

specific distribution pattern was found for each inorganic

element and the tendency was confirmed in a 7-day seedling

(Fig. 14). The result showed that K concentration in the leaf

stem was always high and meristems are free from toxic

elements. In the case of Cl and Br, their concentrations in the

plant decreased during the developmental stage, suggesting

that these elements evaporated and lost from the plant. Most

of the heavy elements tended to accumulate in roots except

for Cr and Mn (Fig. 15), suggesting that the element which

has many chemical valences can easily move. Cobalt con-

centration in stem was higher compared to those of the other

tissues in above-ground parts of the plant. Although the

concentration of the Co is important to grow excellent grass

in meadows, the reason is still not clear.

Sensitivity of Al in NAA is extremely high making it

easy to detect in any sample. The Al concentration in root

tip was measured in a morning-glory plant after 4 and

5 days of germination. The light period lasted during

07:00–19:00 for 4 days but on day 5 it ended at 15:00.

There was a high fluctuation of Al concentration in root tip

and was highest just before the end of the dark period,

though the total amount of Al decreased gradually

(Fig. 16). The fluctuation of Al indicates absorption and

secretion of the Al from roots. Though the absorption and

secretion of other elements such as K are known, Al has not

been studied well since there are not any suitable and easily

available radioisotopes for Al.

Using a large set of data on elemental profile of a whole

plant, attempts were made to construct an element recy-

cling scenario in soil–plant system since it is known that

more than half of the N contained in a leaf was recovered

by the plant before falling off to the ground. Before 28Mg

tracer was available, Mg content in plant tissue was ana-

lyzed mainly by NAA. It was found that the amount of Mg

absorption increased during the day time and drastic

change in Mg concentration at the center cells of meristem

appeared when flowering was induced; these results

prompted further study to prepare 28Mg tracer.

NAA as well as prompt gamma-ray analysis was applied

to food samples too, such as onions and beefs produced at

different places, to measure levels of as many elements as

Fig. 7 Neutron image of

soybean root imbedded in soil.

Note A soybean plant was

grown in a thin (3 mm)

aluminum box packed with soil

containing 15% water. After 8

and 15 days, neutron images

were taken. Since the water

concentration in root was higher

than that in the soil,

morphological development of

the root as well as water

movement was analyzed from

the image. Upper right

magnification of the root when

side root emerged to develop;

lower right conversion of the

upper image to 3 dimensional

one, where the water amount

was employed as height
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possible. The elemental profile of the food showed specific

features of elemental ratios, representing the production

sites of the vegetables and cows.

Development of radioisotope imaging (RI) systems

[61–80]

Two types of the real-time RI imaging system, namely

macroscopic and microscopic, were developed. Both sys-

tems are designed to use conventional RI so that it is

possible to perform imaging in our laboratory and not at

special laboratory with special facilities. Although it is

possible to produce RIs by an accelerator and use the RI at

special facilities, the frequency of doing experiment is

limited and the environment for plant research including

growth chamber has to be installed. Therefore, it was much

preferable and efficient to develop the imaging system if

we could use the conventionally available RI. Plant sample

has another problem: the up-ground part requires light and

the root does not. To perform imaging from root in dark to

up-ground part in light, fluorescent imaging method cannot

be employed since it requires dark condition only. It was

Fig. 8 Soybean root development with water absorbing polymer in

soil. Two kinds of polymers, polyvinyl-alcohol polymer (top) and

poly-acrylic polymer (bottom) were swelled in water solution and

mixed to the soil where soybean plants were grown. Samples were

periodically taken out from phytotron and neutron image was taken.

In the case of poly-acrylic polymer, the water absorbed by the

polymer was not supplied to the plant and the color of the soil

darkened with time indicating that the plant was absorbing the water

only from the soil. While the polyvinyl-alcohol polymer supplied

water to the plants and the image was gradually decreasing. Left

pictures of the roots grown in the container for 1 week
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our first trial to develop real-time imaging system using

conventional RI.

Macroscopic real-time RI imaging

The principle of RI imaging is shown in Fig. 17.

Radioisotopes were supplied to the plant sample and the

radiation emitted from the plant was converted to weak

light by Cs(Tl)I scintillator deposited on a fiber optic plate

(FOS). The light image was then collected by a highly

sensitive CCD camera and processed through computer.

The kind and thickness of the scintillator was studied and

100 lm deposition of Cs(Tl)I on FOS surface and was

found to be suitable for this study. The sensitivity was more

than ten times higher than that of an imaging plate (IP)

which is now widely used for autoradiography. The higher

Fig. 9 Spatial image construction of a soybean root imbedded in soil.

Note A soybean plant grown in a pipe (3 cm in diameter) containing

soil was rotated one degree by one degree till 180� and at each angle,

neutron imaging was performed. Out of 180 projection images, a

spatial image was constructed

Fig. 10 Dissection and spatial

image of the soybean root

imbedded in soil. Note

Dissection images were taken

every 50 lm of the height and

examples of the dissection

images from top to bottom (1–9)

are shown. The white dot in the

middle is the main root image

and the side roots are shown to

develop in radial direction and

stops at the wall of the

container. It was noted that in

most of the images, the

neighboring site of the main

root is a space shown in black,

suggesting that the root was

absorbing water vapor, not

water solution. Right image is

the spatial image of the upper

root and soil
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sensitivity of the imaging means the accumulation time to

get imaging is short, indicating that the successive images

can be recorded smoothly and made to a movie.

The 3rd generation (Fig. 18) macroscopic imaging sys-

tem has now been developed. Everything had to be kept in

dark in the 1st generation; then the plant box was intro-

duced in the 2nd generation where only the upper part of

the plant was irradiated with light. Finally, the light was off

only when camera was on in the 3rd generation so that

weak radiation energy from radioisotopes such as 14C, 35S

and 45Ca, etc. could be easily detected. With the 3rd gen-

eration system, it is possible to image relatively large

plants which cannot grow in a plant box. Now we are able

to image how CO2 gas is fixed by the plant by introducing
14CO2 gas to the plant.

The first trial was to image 32P-phosphate uptake

movement in a soybean plant using the 1st generation

system, since phosphate is reported to move fast in a

plant and it sometimes represent the movement of

water. When phosphate was supplied, it was transferred

fast to the youngest leaves and then gradually trans-

ferred to the older tissue. It was interesting that the

accumulation pattern of 32P-phosphate was different

among the leaves and there was high accumulation of

phosphate between the vain, shown as dots, in one kind

of the leaf (Fig. 19). Since the image is based on

radiation counts, we could treat the image numerically.

For example how 32P was accumulated in seeds in pod

was analyzed, and found that there was no difference of

the transferring speed as well as the phosphate delivery

between the two seeds (Fig. 20 bottom right). The lap-

time images shown in Fig. 20 was treated with pseudo

color. From the radiation image, we could not know the

chemical form of the 32P. Therefore, we performed a

chemical separation of the phosphate in the tissue and

found that the chemical form of 32P was maintained as

phosphate at least during the first 30 min after the

treatment. Birdsfoot trefoil or Arabidopsis were used to

Fig. 11 Water absorption curve of a soybean plant using 15O-labeled

water. Note 15O-labeled water (half-life 2 min) was supplied from the

root of a soybean plant. Since 15O is a positron emitter, the amount of

water in 1 cm stem above the root was measured by a pair of BGO

detectors. The measuring system was calibrated well to measure the

small amount of water correctly using a phantom of the stem and

harvesting the targeting 1 cm stem and measured a Ge counter.

Because of extremely short half-life of 15O, the measurement was

able to perform until about 1000 s. The half-life correction was

performed to the absorption curve. The volume of 1 cm stem was

45–45 lL, and the volume of xylem tissue in 1 cm stem was 2 lL.
The water absorption curve indicated that a tremendous amount of

water was leaking out from xylem tissue and after about 1000 s the

volume of the leaked water was close to the whole volume of the

1 cm stem

Fig. 12 The route of the water after leaking out from xylem tissue.

Note There are four routes for the water to leak out from xylem tissue,

namely go upward through the tissue other than xylem, lose from the

surface of the stem, go downward through the connected part from

xylem to phloem, and return to the xylem tissue and go upward. All

the possibilities of the route were investigated and the route was

found to be the last one returning to the xylem, which is also evident

from Fig. 13
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Fig. 13 Water leakage imaging using 3H-labeled water. The beta-ray energy emitted from 3H was too low to detect from outside the stem; the

stem had to be harvested each time for imaging; therefore all samples were derived from different plants

Fig. 14 Neutron activation analysis of morning-glory (1). Note

Tissues of morning-glory was separated and NAA was performed.

Top 1 week seedling; bottom from germination to seed formation.

The pseudo-color was employed according to the concentration of the

element. About ten elements were measured in each tissue but only

representative elements were are shown
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image 32P-phosphate movement, which led to the

phosphate transporter research in root tips using both

macroscopic and microscopic imaging system (Fig. 21).

In order to show the difference between water and soil

cultures, 32P-phosphate was supplied to rice seedlings and

the movement of 32P was traced for 60 h. The uptake

amount of 32P-phosphate was more than ten times higher

for the plants grown in water culture compared to that in

the soil culture. The growth of the plant is much faster

when grown in water culture. Phosphate is known to adsorb

on to the soil and plant root was able to take up the

phosphate from the soil in the vicinity of the root which is

shown as remaining root shape in the soil (Fig. 22).

However, the yield of the rice grown in water culture is low

compared to that grown in soil, which might suggest that

when the nutrient was supplied in ion form it was easy to

absorb and the plants become rather inactive in generating

the next generation under too comfortable condition.

Tracer production (28Mg, 42K) [81–98]

28Mg (half-life: 21 h) and 42K (half-life: 12 h) were pro-

duced and applied for the first time in plant study. Alu-

minum film target was irradiated with He? beam and
28Mg produced in the target was radiochemically sepa-

rated (Fig. 23). Magnesium is a very rare element among

Fig. 16 Al concentration in root tip by activation analysis. The Al

concentration in the root tip of the morning-glory was measured after

4 and 5 days of germination. The light period was from 7:00 to 19:00

during the day but on day 5, daytime was reduced and dark period

began at 15:00. The overall Al concentration decreased in the root tip,

at the same time a fluctuation of the Al concentration was observed.

At the end of the dark period, Al concentration increased and then

decreased, suggesting the secretion and absorption of Al in the root tip

Fig. 17 The principle of real-time RI imaging system. RI was

supplied to the plant, the emitted radiation was converted to weak

light by the Cs(Tl)I scintillator deposited on the surface of the fiber

optic plate (FOS). Then the light was collected by a highly sensitive

CCD camera

Fig. 15 Neutron activation

analysis of morning-glory (2).

Note The heavy element

distribution after 78 day of

germination is shown. Heavy

elements tend to accumulate in

roots except for Mn and Cr.

Pseudo-color was employed

according to the concentration

of the element
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Fig. 18 Development of the

real-time RI imaging system.

Note Since the CCD camera

employed to image the light

from the scintillator is highly

sensitive to light, everything

was kept in dark in 1st

generation to protect the

camera. Then the light shielded

plant box was prepared and light

could be irradiated to the up-

ground part of the plant in the

2nd generation. In the 3rd

generation light was off when

imaging was performed so that

weak radiation energy could be

detected

Fig. 19 Real-time imaging of 32P-phosphate taken up in a soybean

plant. Note 32P-phosphate was supplied from the root and the

accumulation pattern of 32P was recorded. 32P-phosphate first moved

up to the youngest tissue and then to the relatively older tissue.

Among the leaves, 32P was found to be highly accumulated between

the vain shown as dots (bottom left image)
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the other inorganic elements, keeping constant concen-

tration in the plant species, suggesting that the role of Mg

is to keep the homeostasis of the plant activity. Some-

times it has been reported that the behavior of Mg is

similar to that of Ca because of they belong to the same

group in the periodic table. However, because of the

overwhelming amount of Ca compared to that of Mg in

plants, popular fluorescence staining method could not

distinguish Mg from Ca for any meaningful conclusion.

Using 28Mg tracer, basic properties of Mg movement in

plants were clarified and the trial to find Mg specific

transporter is now being developed.
42K is another nuclide applied to plant study for the first

time. It was prepared from 42Ar (half-life: 30 a) gas by a

milking method (Fig. 24). Potassium study was rather

behind in plant research because of the lack of suit-

able tracers. Instead of K tracers, 86Rb was used to trace the

K movement but there was a difference in movement.

When all the K in the plant was replaced with Rb, the

plants could not grow further. 42K tracer was useful, after

Fukushima Daiichi nuclear accident, to study the

relationship between the behavior of K and Cs, such as to

analyze the reduction mechanism of 137Cs absorption by

applying K to the plants.

Imaging the movement of various RI tracers including
14CO2 gas

As mentioned earlier, some of the radioactive nuclides

applied to our systems were: 14C, 22Na, 28Mg, 32P, 33P, 35S,
42K, 45Ca, 54Mn, 55 Fe, 59Fe, 65Zn, 86Rb, 109Cd, 137Cs, etc.

In the case of macroscopic system, tracer movement from

root to up-ground part of Arabidopsis was visualized using

various radioactive nuclides. Figure 25 shows how the

inorganic elements, namely 22Na, 28Mg, 32P, 35S, 42K,
45Ca, 54Mn, and 137Cs, absorbed from roots were trans-

ferred to the up-ground part of Arabidopsis within 24 h.

Among the nuclides, 28Mg, 45Ca, and 54Mn were very slow

to move up-ground part from the root.

We were even able to image 14CO2 gas fixation man-

ner. Figure 26 shows the 14CO2 gas application from

different sites of the plant. When 14CO2 gas was supplied

Fig. 20 Image analysis of the 32P-phosphate movement in plant

tissue. The lap-time images shown in Fig. 19 were recolored based on

the counts in the pixels. While analyzing 32P accumulation in seeds in

the pod, no difference was found in the transferring speed, or in the

amounts of the two seeds (bottom right)
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Fig. 21 Real-time imaging of 32P-phosphate taken up in a Birdsfoot trefoil plant. Note 32P-phosphate was supplied to a Birdsfoot trefoil plant in

a plant box and successive images of 32P-phosphate movement were taken. Pseudo-color was employed to show the amount of 32P in the image

Fig. 22 Real-time imaging of
32P-phosphate taken up in a rice

plant grown in soil and water. A

rice plant was used to compare

the 32P-phosphate absorption in

soil and in water culture. Since

phosphate was adsorbed to the

soil, rice roots eluted the

phosphate from the soil and then

absorbed the 32P-phosphate

while growing which was

shown by the increasing shade

of the root in the soil. Therefore,

the 32P-phosphate uptake was

very low compared to that in

water culture and grows slowly.

Whereas in water culture, the

amount of the 32P-phosphate

absorbed to the plant was more

than ten times higher than that

in soil culture. But generally,

the yield, amount of seed, in

water culture is much lower

than in soil culture
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to the rosette of the Arabidopsis, the photosynthate was

moved swiftly to the meristem of the main stem and

roots, whereas when applied from the other part of the

plant, the photosynthate moved to the meristem of the

branch stem only and was not transferred to the roots.

What derives the different route of the photosynthate is

not presently known.

The 4-h application of 14CO2 gas to the up-ground part

of the Arabidopsis seedling showed that the photosythate

went downward and accumulated to the certain part of the

root tip, indicating that the photosythate produced from this

4-h application of 14CO2 gas actually produced certain part

of the root tissue. Besides 14CO2 gas, downward move-

ments of the inorganic elements were observed. Among the

elements, 32P or 35S moved toward the root tip when

supplied from the leaf, whereas most of 59Fe or 45Ca stayed

on the leaf. Figure 27 shows the movement of the two

representative nuclides, namely 32P and 59Fe supplied from

Fig. 23 Production of 28Mg for

tracer use. Note Ten sheets of an

Al foil (1 cm 9 1 cm) were

irradiated with He? beam to

produce 28Mg (half-life: 21 h).

After purification of 28Mg from

the target by eliminating by-

products, such as 7Be, 24Na etc.,
28Mg was used as a radioactive

tracer for imaging and tracer

work

Fig. 24 Preparation of 42K

from 42Ar. Note 42K (half-life:

12 h) was prepared from 42K

generator, where 42Ar (half-life:

30 a) gas was sealed in a

cylinder. The electrode was

inserted in the cylinder and

65 V was applied. After

3–4 days, the electrode was

taken out and washed in water

solution where 42K, decay

product of 42Ar, collected to the

electrode was dissolved as a

carrier free 42K? ion
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the leaf during 24 h with the microscopic image of 32P in

root tips.

Microscopic real-time RI imaging system

The microscopic system was prepared by modifying a

fluorescence microscope so that three kinds of images,

namely light image, radiation image and fluorescence

image, could be obtained at the same time (Fig. 28). The

representative images of Arabidopsis applying 32P, 35S,
45Ca and 59Fe are shown in Fig. 29. In the case of Ara-

bidopsis root, 32P movement even in a fine root of diameter

of about 100 lm was analyzed.

There were many mutants created in Arabidopsis plants

which limit the expression site of the transporter gene,

such as phosphate. A mutant (C) was produced to express

the transporter gene only at root tip. The gene expression

of the mutant (C) was shown by fluorescent staining

method. But at the same time, it is important to know

whether phosphate is also transported at the same site or

not. Therefore, 32P-phosphate image was taken for the

mutant (C), and was shown that the site where transporter

was expressed was also the site transporting the 32P-

phosphate (Fig. 29). Though the expression of element

specific transporter gene is gathering attention, gene

expression shows only the gene activity and does not

necessarily mean the element movement itself; therefore

radioactive tracer imaging could provide the direct evi-

dence of gene function.

Fukushima accident related work [99–133]

Immediately after the accident, a faculty specialist team

was organized in a wide variety of areas including soil,

vegetation, animal life, fishery, forestry, etc. to carry out

the research studies, where my role was making up the

team and the research projects. It was important that the

results of these studies were useful for the recovery of the

affected area; so my other role was to work for official

announcement of the results. Twelve meetings were held to

report research results since November 2011 and an easy-

to-understand book was published in Japanese (Nakanishi,

Fig. 25 Real-time imaging of eight inorganic elements in an

Arabidopsis plant. Note The absorption and distribution images of

radioisotopes of eight inorganic elements, namely 22Na, 28Mg, 32P,

35S, 42K, 45Ca, 54Mn, 137Cs, in the up-ground part of Arabidopsis

during 24 h are shown. Pseudo-color was employed
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Fig. 26 Real-time imaging of
14CO2 gas fixation. Note 14CO2

gas was generated by the

addition of lactic acid to

NaH14CO3. Then the 14CO2 gas

was supplied to the rosette or

other part of the up-ground

tissue of the Arabidopsis to

investigate whether there is a

preference of the transfer route

between the photosynthate

produced in different tissue

(left). 14CO2 gas was supplied

for 15 min from the leaf of the

seedling and the accumulation

of photosynthate is shown

(right)

Fig. 27 Real-time imaging of

inorganic elements from root.

Downward movement of the

inorganic elements in

Arabidopsis was visualized.

When applied to the leaf of the

seedling, downward movement

of 32P was fast and was

accumulated in the root tip. The

root tip image accumulating 32P

is shown at the bottom left

figure. In the case of 59Fe,

downward movement was not

observed during the first 24 h

and a large fraction of it

remained in the leaf
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2013). This book was published to allow a wide range of

ordinary people to have a correct understanding of the

impact of radioactive materials on agriculture. In addition,

a collection of papers was published as a series of book

(titled Agricultural implications of Fukushima nuclear

accident) by Springer in 2013 and in 2016 and they were

made available for free download on the web so that the

results of the research and studies could be widely shared

with foreign and domestic researchers. A follow-up 3rd

book is going to be published early in 2017 by Springer.

Radioactive cesium distribution in a rice plant

The gaseous fission products released from Fukushima

Daiichi nuclear accident was adsorbed on anything when

they first touched, which was exposed to the air at the time

of the accident. In the case of soil, the soil surface was the

most contaminated part and the depth movement of the

radioactivity is now about 1–2 mm/year which is the

similar to that of the Chernobyl accident. About a month

later, radioactive cesium (137Cs ? 134Cs) was found to be

the main radioactive nuclides remained in the environment.

Therefore, the study was focused on the movement of

radiocesium.

Since a lot of rice is produced in the Fukushima Pre-

fecture, one of the main concerns of the people was how

much radiocesium is absorbed by the rice plant. Applying

K to the farming land was an excellent measure to reduce

the absorption of radiocesium by the plant. Since Cs and K

can behave in a similar fashion, any possible difference

was studied in detail using 137Cs and 42K produced from

the 42Ar generator. Real-time RI imaging system showed

that when the rice is grown in contaminated soil, most of

the radiocesium adsorbed on the soil was not picked up by

the rice plants; this was different from the result of water

culture where most of the radiocesium in culture medium

was absorbed by the plant. Figure 30 shows the difference

between the radiocesium uptake manner between water and

soil cultures.

Fig. 28 Microscopic imaging system. Note Light image, fluorescent

image and radiation image of Ca in the stem of a soybean plant are

shown

Fig. 29 Real-time microscopic RI image. Note RI images taken by

the microscopic imaging system are presented. Arabidopsis was

employed in all cases. 35S and 45Ca images are the in leaves when

they are transferred from roots. 55Fe was supplied to the root and the

accumulation images were taken successively. 32P distribution in the

root in the middle was the superposed image of 32P to the light image.

Right figure shows how 32P are distributed in wild type (WT) and in a

mutant (C). The phosphate transporter gene expression of the mutant

root tip, shown at the bottom, was found to be the same as that of the
32P distribution
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Micro-autography (MAR)

One of the important objectives of our study was to find out

how and at what site the radioactive cesium was accumu-

lated in the rice grain using radioactive tracer 137Cs. After

supplying the 137Cs, the rice grain during the develop-

mental stage was harvested and the distribution of 137Cs

was recorded. Figure 31 shows the trial to construct a three

dimensional image of 137Cs in a brown rice gain 15 days

after flowering. Sliced grain was placed on an imaging

plate for exposure and a three dimensional image was

constructed from all these images. It is evident from the

figure that 137Cs was distributed in the embryo and the

periphery of endosperm; outer skin of the grain was

removed as bran when milled.

To examine the 137Cs accumulated part in more detail, a

micro-autoradiography (MAR) method was developed,

where nuclear emulsion film was prepared and attached to

the thin section of the sample (Fig. 32). The figures in the

middle show the comparison of 109Cd distribution image

obtained by an imaging plate (IP) to that by MAR at the

connection part of the root and up-ground part in a rice

plant demonstrating that MAR provides an image with

higher resolution. In the case of 137Cs distribution of the

rice grain, the accumulation site was also studied. Although
137Cs was accumulated at embryo indicated by an IP, 137Cs

concentration was low at the specific site of plumule and

radicle, and the surrounding part of these tissue contained

higher amount of 137Cs.

Conclusions

Application of radiation and radioisotopes provide new

findings what no other methods could do. Especially, in the

case of water, only neutron beam provides the water

Fig. 30 Real-time imaging of
137Cs in a rice plant. Note Rice

plants were grown separately in

water and soil cultures. Left

picture; right RI image. After 24

h, the 137Cs dissolved in water

was taken up by the plant

whereas in presence of soil
137Cs was firmly adsorbed on to

the soil and plants could not

absorb much amount of 137Cs.

Especially, at up-ground part of

the plant grown in soil, hardly

any 137Cs distribution was

observed

Fig. 31 137Cs distribution in a rice grain. After 15 days of flowering,

the rice grain was harvested from the plant to which 137Cs was added

during the growth. The brown rice was sliced and placed on an

imaging plate. Then, all the images of the sliced sections were used to

construct 3-dimentional distribution of 137Cs. The distribution of
137Cs was high at the embryo and the surface of the brown rice
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specific image and for water movement itself; without

using 15O it is hardly possible to calculate the small amount

of water.

The relationship between the element and the plant is

one of the important issues, since plants live on inorganic

elements. However, the study of the element whose

radioactive isotope is not available has not been developed

well. For example, the research on B or Si has been far

behind compared to the other elements such as P or S.

Therefore, it is very important to prepare and apply the

radioisotopes for research which are not commercially

available even if they have relatively short half-lives, such

as 15O, 38 Mg and 42K.

There are many advantages of using radioactive

tracers especially for the real-time imaging. Image is the

direct evidence to show the activities of living plants.

When RI imaging is referred, only static imaging using

an imaging plate is widely performed and the real-time

imaging using the conventional radioisotopes has not

been studied well. The wide application of RI imaging is

expected not only in plant study but also for foods,

industrial materials, etc.

In the case of Fukushima, after the accident the local

government had set up the system to measure the

radioactivity of all agricultural products. In the case of rice,

radioactivity of all the rice grains produced in Fukushima

was measured prior to marketing. Now no bag was found

showing higher radioactivity than the regulation value of

100 Bq/kg. However, since the half-life of 137Cs is

30 years, we still have to continue the study to understand

the radio-contamination effect in agricultural environment

including forests.
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