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Abstract 69mZn was produced and separated for medical

applications. Possibilities and perspectives for production

of radiopharmaceuticals based on 69mZn containing

derivatives of thiazine, thiazoline and thiourea are con-

sidered. Each one of the latters is a zinc chelator and a

nitric oxide synthase (NOS) effector at the same time.

Cytotoxic effect of NOS activator and NOS inhibitors are

shown in experiments with HL-60, K-562 and MOLT-4

cell lines and in bone marrow cells of the acute B-lym-

phoblastic leukemia patients. Some of those compounds

are worthy to get selected for further application as

radiopharmaceuticals including their antitumor

speciements.
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Introduction

One of the trends in the modern drug development research

is the use of preparations with multi-faceted effects (or

platforms-transporters carrying several different drugs) as

well as the approved drugs application and previously

untreatable clinical cases [1]. The common design of

radiopharmaceuticals includes radionuclide that is chemi-

cally linked to the molecule responsible for target delivery.

Such vector molecule usually does not demonstrate the

drug properties but enable chelation of the radionuclide

enable its delivery to tumor cells. However alternative

approach is to use multicomponent systems (drug platform)

that may combine several drug molecules that are linked

with specific vector molecule. In some cases this enable to

prolong drug properties and use multiple attack on the

tumor with simultaneous protection of the healthy tissues,

e.g. by the use of fullerene derivatives [2] that may carry

several drugs (including metal ion isotope) and specific

vector. For example, hydroxylated metallo-fullerene that

contain Gd-atom demonstrate immune and antitumor

activity, down-regulate more than ten angiogenic factors at

the mRNA level and at the same time act as an antioxidant

[3, 4].

Our approach to radiopharmaceuticals molecular design

means a selection and a further chemical link between the

below listed component types: 1—radionuclide that can be

used as a diagnostic or therapeutic agent; 2—active organic

molecule that acts as the drug itself and metal radionuclide

chelator; and 3—transporter (vector) which can carry entire

construction to the biological target, that may have an

affinity towards the radioactive isotope. In case of metal

cation radionuclide it serves as a drug substance and a

linker between the vector and an active biomolecule that

also serves as a multiple drug substance (Fig. 1).
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69mZn isotope has a half-life of 13.78 h and the gamma

decay energy of 438.6 keV [5]. This allows to consider it as a

possible component of radiopharmaceuticals for both diag-

nostic and therapeutic purposes. Energy line of 438.6 keV

can be used for SPECT diagnostics and b-radiation of

daughter 69Zn isotope with Emax = 906 keV makes it a

therapy reliable product. Several methods for producing the
69mZn isotope were described in 1970s [5–8].

Zinc is a unique trace element responsible for a total

control over the conformational patterns in some major

enzymes and supramolecular biostructures (like zinc fin-

gers-DNA, NOS dimers etc.) functioning within the body

signaling pathways [9–11]. Zinc have rich coordination

geometry (tetrahedral, pyramidal and octahedral) with

coordination number equals 4 to 6 depending on the ligand

type [13] and it can form ternary complexes as well

[14, 15].

Aliphatic and heterocyclic sulfur- and nitrogen-contain-

ing radioprotectors used for their direct purpose and as the

radiotherapy compensating agents may have a great future in

nuclear medicine. Noteworthy, these compounds sometimes

possess inhibitory properties for signaling molecules [for

example, NO-synthase (NOS)] which may result in antitu-

mor activity. The role of NO and NOS expression in the

development and treatment of cancer has been widely dis-

cussed [16–18]. Besides, some recent reviews contain the

statement about the participation of NO and NOS inhibitors

in the mechanisms of emergence and treatment of different

diseases [19–22]. In malignant bone marrow and blood cells,

the increased NOS expression has been found [23]. The most

prominent contribution to this increased expression level

was made by inducible NOS (iNOS), while in a smaller

degree—by epithelial (eNOS) and neuronal (nNOS). Fig-

ure 2 shows the NO participation in carcinogenesis. It is

believed that the enabling enhancing effects of NO at the

initial stage of hematopoiesis may lead to formation of stem

cancer cells [24, 25]. Patients diagnosed with acute myeloid

leukemia (AML), with different types of lymphoma and with

some other cancers showed overexpression of iNOS [16].

Laminar hemodynamic shock which can activate a NF-jB

(an element of cancerogenesis) caused the increased enzy-

matic production of NO via the eNOS activation [26]. At

present, both NOS inhibitors and NO-donors are considered

as the possible antitumor drugs [17]. Here we focus on NOS

effectors (in particular, iNOS inhibitors) as the potential

antitumor agents capable to be the base and the linker for

radiopharmaceuticals (RP). All of these compounds are

active chelators for metal ions—particularly, zinc and cop-

per ions [12, 27].

Drug delivery process is not considered here. Delivery

of zinc-containing drugs to the organs and tissues can be

performed by the body’s own systems (albumine, metal-

lothionein etc.) as well as by binding the zinc-containing

drugs with nanoparticles and with specific physiological

Zn-transporters (of ZIP and ZnT families) that is a great

advantage of this element and its isotopes.

Experimental

Production of 69mZn radioactive isotope

69mZn (T1/2 = 13.78 h) was produced by reaction of 71Ga

(c, np) 69mZn from metallic gallium by bremsstrahlung

photon beam with energy up to 55 MeV on a race-track

microtron of Skobeltsyn institute of nuclear physics of

MSU (Fig. 3). The yield was 0.13 MBq mA-1 h-1.
69mZn was separated in two-step process: the initial

isolation of zinc from the bulk gallium target was carried

out by the liquid–liquid extraction (twice) with methyl

isobutyl ketone followed by an ion exchange using Dowex

1 9 8 (2 mol L-1 HCl). All processes were monitored

using a gamma spectrometer (Ge-detector GR 3818 Can-

berra Ind., USA). The criterion for evaluation was a long-

life 67Ga radionuclide. After two extraction steps more than

80 % of gallium was separated which comes from the ratio

of peaks the related to isotopes 67Ga and 69mZn. The result

of ion exchange chromatography is shown on Fig. 4. Yield

of the carrier free 69mZn was 96 %.

NOS-effectors: active molecules for drug design

In this work, the following compounds were synthesized and

used: 2-amino-5,6-dihydro-4H-1,3-thiazine hydrobromide (T1);
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Fig. 1 Molecular design of 69mZn-radiopharmaceuticals

1178 J Radioanal Nucl Chem (2017) 311:1177–1183

123



2-dodecylamino-5,6-dihydro-4H-1,3-thiazine hydrobromide

(T2); 2-amino-5,6-dihydro-4H-1,3-thiazine salicylate (T3);

2-(2-fluorophenyl) amino-5,6-dihydro-4H-1,3 thiazine

hydrobromide (T4); N-(5,6-dihydro-4H-1,3-thiazin-2-yl)-

benzamide hydrobromide (T5); 2-amino-5-methyl-2-thia-

zoline hydrobromide (TZ6); 2-amino-5-hydroxymethyl-2-

thiazoline hydrobromide (TZ7); N-(4-isopropyl-phenyl)-N-

(1–iminoethyl-piperidin)-1-carbo-thioamide hydrobromide

(TM8) and-N-(4-methylphenyl)-N-(1-iminoethyl) pyrro-

lidine-1-carbo-thioamide hydrobromide (TM9) and 1-(1-

iminoethyl)-1-(4-isopropylphenyl)-3,3-dimethyl-thiourea

hydrobromide (TM10) (Figs. 5, 6). The methods for syn-

thesis of species were described earlier [28–32]. The com-

position and structure of the specimens were controlled by

element analysis and by 1H and 13C NMR. The selection of

drugs was based on various types of the NOS-inhibitory

activity [33] to create the following chain of NOS effectors:

NOS activator—an inert preparation (with respect to

iNOS)—NOS inhibitors with an increased degree of inhi-

bition in vivo.

Preparation of cell material

Cell lines cultured in a standard way were used: HL-60

(human promyelocytic leukemia line), K-562 (chronic

myeloid leukemia line) and MOLT-4 (human cell line, an

acute T-lymphoblastic leukemia. The patient bone marrow

samples were aspirated (3–5 mL) with diagnostic puncture

of the front or rear iliac spines before chemotherapy when

diagnosed with acute B-lymphoblastic leukemia (B-ALL).

Blood samples from healthy donors and preparation of cell

material were carried out as described previously [34]. The

content of blast cells in the peripheral blood mononuclear

fraction was[80 %. Lymphocytes of healthy donors of the

same age group were used as control.

MTT-method is based on determining the viability of cell

cultures. Living cells can recover the soluble yellow 3-(4,5-

dimethylthiazole-2-yl)-2,5-tetrazolium bromide (MTT) by

mitochondrial and cytoplasmic dehydrogenases to form pur-

plish-blue formazan crystals, soluble in DMSO or isopropanol

[35, 36]. The amount of formazan was determined by spec-

trophotometry (Microplate Reader, model 550, Bio-Rad) at

k = 550 nm. The methodology of the MTT assay was descri-

bed in detail in [34], n C 10 for each case. The contribution of

blast cells was more than 80 %. Results were processed by the

Mann–Whiney U-test (p\0.05). The LC50 value was evalu-

ated by the median and the t-student statistic.

Stability of compounds represented on Figs. 4 and 5 was

determined spectrophotometrically in ‘‘UV PD303UV’’

(Apel, Japany) keeping for 2–6 days at 37 �C in the saline

solution. Stability of Zn (69mZn)-complexes with T5 and

TM8 was determined similarly in the alcoholic solutions

for 3 days.

In vitro tests The literature data on the in vitro experi-

ments were taken for comparison from previous studies

[31, 32, 37] which were carried out using the liquid scin-

tillation counting method with [3H-L-arginine]. iNOS in

these studies were isolated from mouse macrophages

Fig. 2 Processes involving NO

as a promoter of cancerogenesis
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stimulated with LPS ((lipopolysaccharides, �Cayman

Chemical�, USA). The catalytic activity of enzyme was

determined by the rate of accumulation of [3H-L-citrulline].

In vivo tests The NOS-inhibitory activity of compounds

were carried out by EPR spectroscopy [38] with spin trap

(Fe2?-diethyl-dithiocarbamate complex) on the Swiss line

white inbred male mice of the Swiss line, aged 5 months,

weighing 27–30 g. LPS from E. coli (a dose of

1.5 mg kg-1 (0.5 mL of the saline)) were used.

Complexes of zinc with above compounds were

obtained like in [39] by addition of ZnCl2 in the alcoholic

solution of specimen (the ratio 2:1) under stirring and with

further precipitation. The composition of complexes was

checked by element analysis and 1H-NMR. To obtain the
69mZn-T5 and 69mZn-TM8 labeled compounds, both T5

and TM8 alkaline forms were applied. The latters were

slowly dissolved in an appropriate organic media followed

by addition of strictly necessary amount of the 69mZnCl2
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Fig. 3 Gamma spectrometry of the samples: a after the irradiation of

Ga-target and its dissolution; b after Zn separation by extraction (b,

water phase)

Fig. 4 Chromatographic separation of 69mZn from the bulk gallium

target
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Fig. 5 Thiazine derivatives: T1—2-amino-5,6-dihydro-4H-1,3-thi-

azine hydrobromide; T2—2-dodecylamino-5,6-dihydro-4H-1,3-thi-

azine hydrobromide; T3—2-amino-5,6-dihydro-4H-1,3-thiazine

salicylate; T4—2-(2-fluorophenyl)-amino-5,6,-dihydro-4H-1,3,-thi-

azine hydrobromide; T5—N-(5,6-dihydro-4H-1,3-thiazine-2-yl)-ben-

zamide hydrobromide. Thiazoline (TZ) derivative: TZ6—2-amino-5-

methyl-2-thiazoline hydrobromide
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Fig. 6 Thiazoline (TZ) and thiourea (TM) derivatives: TZ7—2-

amino-5-hydroxymethyl-2-thiazoline hydrobromide; TM8—N-(4-iso-

propylphenyl)-N-(1-iminoethyl-piperidine)-1-carbothioamide hydro-

bromide; TM9—N-(4-methylphenyl)-N-(1-iminoethyl)-pyrrolidine-

1-carbothioamide hydrobromide; TM10—1-(1-iminoethyl)-1-(4-iso-

propylphenyl)-3,3-dimethylthiourea hydrobromide
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solution. White crystalline precipitate of complex salt has

been appeared instantly.

As it comes to a pure 69mZnCl2, the water solution of

carrier free 69mZn was evaporated with a subsequent

addition of the enough-minimal volumes of ZnCl2 dis-

solved in the very same organic media as the active com-

pounds were dissolved in. To evaluate the labeled

compounds stability, gamma-spectrometry, UV-spec-

trophotometry and radioTLC were employed (98 and 95 %

radiochemical purity for 69mZn-T5 (A) and 69mZn-TM8

(B) complexes, respectively). The systems: methanol:H2O

(95:5 %) for (A) and BAM (butanol-acetone-formic acid)

(1:1:1) for (B) were used in radioTLC, demonstrating the

values of Rf = 0.65 and 0.80, respectively.

Results and discussion

Active molecules

Interconnection between the NOS-inhibitory activity of

administered compounds and the cell survival patterns

were described in [33]. In healthy donor cells, the reduction

of NO level (at the increasing NOS inhibitory activity)

leads to a sharp (trigger) change of the impact mechanism

on the system whose behavior after the jump to a new

higher level of survival does not depend on the concen-

tration of NO (within the margin error). This reminds the

buffer system properties in terms of its capability to

demonstrate the ‘‘jump’’ of cell viability with a following

stabilization of the higher level. For leukemic cells, such a

jump is unseen except for the K-562 cell line.

The highest value of the ‘‘therapeutic index’’ as

TI = LC50 (healthy donors)/LC50 (leukemic cells) is

expected to be observed for compounds with NOS-in-

hibitory level within the region right after the ‘‘jump’’. The

values of the TI for our compounds are listed in Table 1,

where the magnitudes of LC50 were obtained by MTT-test

method. If we consider the compounds as drugs for ther-

apy, it is evident that the compounds from part II (Table 1)

have no practical interest. Even though TM8 (NOS-acti-

vator) and T5 compounds were not selective towards any

particular cancer cell type, they both show a clear down-

regulation in all leukemic cells tested. Unlike TM8, a T5

compound has a low toxic effect on healthy cells and,

besides, it possesses the antihypotensive (antishock)

activity [40]. In addition to its anticancer properties, it may

be of interest. A TM10 (TI = 10) compound seems

promising for treatment of B-ALL, while a TZ7 (TI = 20)

compound demonstrates a selective activity against HL-60.

A high value of TI is observed for TM10 (TI = 10). This is

a radiosensitizer with a dose modification factor (DMF)

*0.8.

The replacement of hydrobromide on salicylate as a

counter ion (compound T3) showed a slight increase in

cytotoxicity that correlates with the literature data on the

antitumor activity of salicylates and acetylsalicylate

[41, 42]. However, these properties of salicylates require

further study.

Preliminary studies of 69mZn-T5 effect on MOLT-4 cell

line showed a slight decrease in healthy cells survival

compared to leukemic cells and about 3-fold increase of TI.

However, this work requires a special long-term study,

which is planned in the future.

Stability of compounds in saline solution

T1, T3, TM8, T5, TZ6 and TZ7 compounds showed high

stability and a lack of significant hydrolysis under the

experimental conditions. T2, a thiazin derivative, with long

hydrophobic ‘‘tail’’, demonstrates a high cytotoxicity and a

firm tendency to aggregation and a formation of vanable

nanoparticles. This leads to changes in a spectrophoto-

metric patterns and promotes a peak shift at k = 220 nm.

The T4 compound (dihydrothiazin derivative) underwent

hydrolysis with partial formation of thiazine and additional

intermediates during long storage (more than 6 days). The

latter were not analyzed in this paper. No significant cor-

relation was observed between the cell survival and com-

pounds stability. The spectrophotometric data showed no

significant changes in the stability of the complexes 69mZn-

T5 and 69mZn-TM8 during time suitable for an active work

with this isotope (3 days).

Zinc isotopes in the NOS-effectors based drugs

All compounds represented above exhibit anticancer

activity and possesses the nitrogen, oxygen and sulfur in

their structures. This makes them capable to form

stable chelates [12] with a variety of zinc (or other metal)

isotopes. Once incorporated into the drug-vector containing

complex, Zn isotopes may provide a benefit of the origin

and a further development of a new radiofarmaceutical

family. 69mZn is one of these isotopes, combining magnetic

and radiochemical properties and representing a promising

object for the creation of new radiopharmaceuticals. This

can be made, in particular, on the basis of NOS-effectors.

Radiochemical purity of 69mZn obtained is seen in Fig. 3b

(line of 438.6 keV).

In this way, we have two perspective components for

radiopharmaceutical: the most promising compounds T5 and

TM8—and radioactive 69mZn isotope with suitable parame-

ters. The model experiments including the introduction of
69mZn isotope (T1/2 = 13.78 h, A *1.5 105 Bq mg-1) into

compounds did not lead to significant changes in their sta-

bility (determined by spectrophotometry) at least for 3 days

J Radioanal Nucl Chem (2017) 311:1177–1183 1181
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(data not shown). That means a very low level of radiolysis.

However, this requires additional verification.

Conclusions

The next steps of research should be the careful investi-

gation of 69mZn-complexes, the carrier screening and the

binding of zinc-labeled compounds with a carrier suit-

able to manage an organ specific targeted delivery of the

new pharmaceutical agent.
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