

Speciation analysis of ¹²⁹I in seawater using coprecipitation and accelerator mass spectrometry and its applications

Shan Xing¹ · Xiaolin Hou^{1,2} · Ala Aldahan^{3,4} · Göran Possnert⁵

Received: 16 August 2016/Published online: 12 October 2016 © Akadémiai Kiadó, Budapest, Hungary 2016

Abstract Speciation analysis of long-lived ¹²⁹I in seawater can provide useful information on the source of water masses. This paper presents an improved method for speciation analysis of ¹²⁹I based on coprecipitation of iodide as AgI with Ag₂SO₃ and AgCl. By adding a small amount of ¹²⁷I carrier, the separation efficiency of iodine species and the accuracy and precision of ¹²⁹I measurement are remarkably improved. ¹²⁹I species in depth profiles of seawater from the Antarctic were analyzed for investigation of water circulation in the Antarctic.

Keywords ¹²⁹I · Speciation analysis · Accelerator mass spectrometry · Seawater

Xiaolin Hou xiho@dtu.dk; houxl@ieecas.cn

State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

- ² Center for Nuclear Technologies, Technical University of Denmark, Risø Campus, 4000 Roskilde, Denmark
- ³ Department of Geology, United Arab Emirates University, Al Ain, United Arab Emirates
- ⁴ Department of Earth Sciences, Uppsala University, 75120 Uppsala, Sweden
- ⁵ Tandem Laboratory, Uppsala University, 75120 Uppsala, Sweden

Introduction

Iodine is a conservative element in the ocean and mainly exists as iodide and iodate with a minor organic iodine [1]. Iodine is also a biophilic element and is highly concentrated in algae [2, 3]. Meanwhile, iodine is a redox sensitive element, and in the marine environment biological activities significantly influence the species of iodine present. ¹²⁹I (15.7 Ma) is the only long-lived radioisotope of iodine. In the nuclear age, ¹²⁹I is dominantly originated from human nuclear activities, mainly nuclear reprocessing plants, nuclear weapons testing in 1940s–1980s and nuclear accidents [3]. Anthropogenic ¹²⁹I therefore provides us an excellent oceanographic tracer for water circulation and marine environment [2, 4].

Solvent extraction is the most commonly used method for separation of iodine from solution [5, 6]. Due to low concentration of iodine and high salinity in seawater. iodine (¹²⁷I) has to be added as carrier to enhance the extraction efficiency and provide a physical sample for AMS target preparation. This is not suitable for the determination of low level ¹²⁹I in seawater, such as those collected in the southern hemisphere including the Antarctic and deep seas because of the interference of minor ¹²⁹I in the iodine carrier. In addition, solvent extract cannot be used to separate single species of iodine from water. A coprecipitation method based on selective precipitation of iodide as AgI has been proposed for separation of iodide from iodate in seawater for speciation analysis of ¹²⁹I in seawater using accelerator mass spectrometry (AMS) measurement [7]. AMS is the most suitable method for determination of ultralow level ¹²⁹I/¹²⁷I in natural samples with a ${}^{129}I/{}^{127}I$ atomic ratio $<10^{-10}$ [2, 7–11], such as those collected from the southern hemisphere, the deep seas and the Antarctica water. However, due to the low concentration of iodine in samples, the ¹²⁷I signal in the AMS measurement of a target prepared using the carrier-free coprecipitation method is very weak, causing a high uncertainty in the AMS measurements of the ¹²⁹I/¹²⁷I ratio. This work aims to improve the method for speciation analysis of ¹²⁹I by increasing the ¹²⁷I signal in AMS measurement thereby reducing the uncertainty in the ¹²⁹I/¹²⁷I ratio. Meanwhile, depth profiles of seawater collected from the Amundsen Sea in the Antarctic were analyzed for species of ¹²⁹I, in order to use it as an oceanographic tracer of water circulation and marine environment in this region.

Materials and methods

Samples and chemicals

Three depth profiles of seawater were collected using a CTD rosette consisting of Niskins bottles and CTD sensors in the research vessel N.B. Palmer during cruise in the Amundsen Sea, Antarctica $(73^{\circ}-74^{\circ}S, 111^{\circ}-114^{\circ}E)$ in Dec., 2010. Figure 1 shows the sampling locations. Salinity, seawater temperature and concentrations of chlorophyll, phosphate and nitrite were measured by on-line detecting system of the research vessel (Table 1). One seawater sample was collected in open sea of the Yellow Sea $(43^{\circ}29.5'N, 121^{\circ}59.1'E)$ in Jan., 2013 and South China Sea in 2013 (not shown in Fig. 1). All seawater samples were filtered through a 0.45 membrane to remove suspended particles immediately after collection. All seawater samples were collected in a pre-cleaned polyethylene bottle (using deionized water in the lab and original seawater on

site) and stored in the dark at room temperature until analysis. A certified seawater reference material for 129 I (IAEA-418), which was collected at the DY-FAMED station (43°25.117′N, 7°50.040′E) in the Mediterranean Sea on 18 Feb., 2001, was provided by International Atomic Energy Agency.

¹²⁵I standard solution (NIST-SRM-4949c) was purchased from the National Institute Standard and Technology (Gaithersburg, MD). ¹²⁷I carrier solution with a low ¹²⁹I level (¹²⁹I/¹²⁷I atomic ratio <2 × 10⁻¹⁴) was prepared by dissolving iodine crystals (Woodward iodine, Woodward Iodine Corporation, Oklahoma, U.S.A.) in 0.40 mol/ L NaOH–0.05 mol/L NaHSO₃ solution. ¹²⁷I⁻ carrier (KI, ¹²⁹I/¹²⁷I atomic ratio of (2.0 ± 0.3) × 10⁻¹³) was purchased from Shantou Xilong Chemical Factory in Shantou, China. All chemical reagents used were of analytical grade, and all solutions were prepared using deionized water (18.2 MΩ·cm).

Separation of iodine and its chemical species in seawater

0.60 L of seawater was transferred to a beaker, 0.5 kBq of $^{125}IO_3^-$ tracer was spiked, 0–1.0 mg of ^{127}I carrier and 0.50 mL of 2.0 mol/L NaHSO₃ solution were added into the beaker, and then 3.0 mol/L HNO₃ was added to adjust pH 1–2 to convert all iodine species to iodide. 30 mg Ag⁺ (28 mL of 0.01 mol/L AgNO₃ solution) was dropwise added to the sample solution under stirring to form AgI–AgCl–Ag₂SO₃–AgBr coprecipitate. The precipitate was separated by centrifuge and sequentially washed with 3.0 mol/L HNO₃, H₂O, 30 % and 20 % NH₄OH to remove

Fig. 1 Sampling locations (indicated as red dots) of seawater profiles in the Amundsen Sea, the Antarctic. (Color figure online)

Table 1 Information of seawater samples collected in the Amundsen Sea, Antarctica

Sampling station	Depth (m)	Salinity (psu)	Seawater temperature (°C)	Chlorophyll (µg/L)	Phosphate (µM)	Nitrite (µM)
1	2	33.8	-0.81	20.5	0.97	0.0284
	100	34.1	-1.63	_	1.93	0.0461
	200	34.1	-1.72	_	1.97	_
	350	34.3	-1.11	_	2.16	_
	394	34.4	0.19	_	2.18	_
2	2	33.9	-1.45	1.41	1.85	0.0284
	100	34.0	-1.70	_	1.89	0.0235
	260	34.1	-1.79	_	1.91	0.0306
	640	34.5	0.44	_	2.16	_
	750	34.5	0.62	_	2.13	_
	1227	34.6	-0.79	_	2.12	_
3	2	33.8	0.12	26.2	1.07	0.0268
	100	34.1	-1.63	_	1.89	0.0496
	240	34.2	1.24	_	2.02	_
	350	34.3	-0.19	_	2.12	_
	422	34.6	0.56	_	2.15	-

 Ag_2SO_3 and most of the AgCl and AgBr until 1–3 mg of coprecipitate was obtained.

1.20 L seawater was transferred to a beaker for separation of iodide. 0.5 kBq of $^{125}I^-$ tracer and 0–1.0 mg of $^{127}I^-$ carrier (KI, $^{129}I/^{127}I$ atomic ratio of $<2.0\times10^{-13}$ carrier) were spiked, NaHSO₃ was added into the sample to a final concentration of 0.30 mmol/L, and then 0.5 mol/L HNO₃ was slowly added under stirring to adjust pH 4.2-5.5 (measured using a pH meter). 150 mg Ag⁺ (45 mL of 0.03 mol/L AgNO₃) was dropwise added to the solution to form AgI-AgCl-Ag₂SO₃-AgBr coprecipitate. The precipitate was separated by centrifuge and the supernatant was used for separation of iodate. The separated precipitate was sequentially washed with 3.0 mol/L HNO₃, H₂O, 30 % and 20 % NH₄OH until 1–3 mg of precipitate were obtained. To the supernatant, 0.5 kBq¹²⁵IO₃⁻ tracer was spiked, 0.1–0.2 mg of ¹²⁷I carrier, 0.5 mL of 2.0 mol/L NaHSO₃ solution were added, and then 3.0 mol/L HNO₃ was added to adjust pH 1-2 to convert all iodine species to iodide. The following procedure was the same as that for total iodine. The diagram of the analytical procedure is schematically shown in Fig. 2.

¹²⁵I in the precipitate was measured using a NaI gamma detector (Model FJ-2021, Xi'an Nuclear Instrument factory, Xi'an, China) for monitoring the chemical yield of iodine in the procedure. The recoveries of iodine species in the entire procedure for total iodine and species of iodine are higher than 80 %.

Two ¹²⁹I standard solutions with a total iodine concentration of 1.00 mg/mL and ¹²⁹I/¹²⁷I atomic ratios of 9.954×10^{-12} and 1.138×10^{-10} , respectively, were first

prepared by dilution of ¹²⁹I standard solution (NIST-SRM-4949c) with ¹²⁷I carrier solution [12]. Two ¹²⁹I working solutions were prepared by mixing the above prepared ¹²⁹I standard solutions with NaCl solution in Cl/I mass ratio of 2:1. From each standard, 1.0 mL of working solution was taken to a 15 mL centrifuge tube, 0.5 kBq of ¹²⁵I⁻ tracer, 0.10 mL of 2.0 mol/L NaHSO₃, 0.20 mL of 3.0 mol/L HNO₃ were added and the solution is mixed. 0.20 mL of 1.0 mol/L AgNO₃ was then added to coprecipitate iodine as AgI–AgCl. After centrifuging, the precipitate was sequentially washed with 3.0 mol/L HNO₃ and deionized water. For ¹²⁹I standards in AgI form, the ¹²⁹I/¹²⁷I standard solution with a total iodine concentration of 1.0 mg/mL was first converted to iodide by NaHSO₃ in acidic medium, and then AgNO₃ was added to directly precipitate iodide as AgI.

The procedure blank samples were prepared using the same procedure as for separation of total iodine, iodide and iodate in seawater.

Iodine in the commercial ¹²⁵I tracer exists as iodide (NaI). To synthesize ¹²⁵IO₃⁻ tracer, ¹²⁵I⁻ solution was taken to a beaker, NaClO was added, then HCl is added to adjust pH 1–2 to oxidize iodide to iodate. The remained NaClO in the solution was decomposed by heating at 80 °C. The residue is dissolved in water, and the solution passed through a small anion exchange column (AG1- \times 4 resin, NO₃⁻ form, 1.0 cm in diameter and 5 cm in height). The effluent containing iodate was collected and used as ¹²⁵IO₃⁻ tracer.

50 mL of seawater was taken to a beaker and $^{125}I^-$ was spiked. The sample was loaded to an anion exchange

Fig. 2 Schematic diagram of the analytical procedure for speciation analysis of ¹²⁹I in seawater

column (1.0 × 5.0 cm, AG1- × 4 resin, NO₃⁻ form), the column is rinsed with 10 mL of 0.2 mol/L NaNO₃. The influent and rinse solution were collected and combined for ¹²⁷IO₃⁻ determination. Iodide on the column was eluted with 5 % NaClO, and the eluate was used for determination of ¹²⁷I⁻. ¹²⁵I in the iodide fraction was measured by gamma spectrometer to monitor chemical recovery of iodide during column separation.

AMS measurement of ¹²⁹I

The separated AgI–AgCl coprecipitate was dried in an oven at 60–70 °C for 3–6 h, the dried precipitate was ground to fine powder and mixed with five times by mass of niobium powder (325-mesh, Alfa Aesar, Ward Hill, MA), which was finally pressed into a copper holder using a pneumatic press (Zhenjiang Aode Presser Instruments Ltd.). ¹²⁹I/¹²⁷I atomic ratios in the prepared targets were measured by AMS using 3MV Tandem AMS system (HVEE) in the Xi'an AMS center. I⁵⁺ ions were chosen for the measurement, where ¹²⁷I⁵⁺ was measured as charges (current) using a Faraday cup and ¹²⁹I⁵⁺ was measured using a gas ionization detector. All samples were measured for 6 cycles and 5 min per sample in each cycle. A detailed

description of AMS system and measurement of 129 I has been reported elsewhere [13].

Measurement of ¹²⁷I concentration by ICP-MS

1.0 mL sample solution of the iodide fraction and the iodate fraction separated using anion exchange column and the original seawater were taken to a vial, Cs solution (CsNO₃) was spiked to a concentration of 2 ng/mL and used as internal standard of ICP-MS measurement, and the samples were diluted for 10 times using 1 % NH₄OH solution. ¹²⁷I in the prepared samples was measured using ICP-MS (X-series II, Thermo Scientific, USA). A detection limit of 0.02 ng/mL for ¹²⁷I was obtained. Iodide concentration in the samples was corrected for chemical yield during column separation.

Results and discussion

Influence of the amount of ¹²⁷I carrier on ¹²⁹I measurement

Figure 3 shows the variation of measured concentration of 129 I with the amounts of added 127 I carrier in samples.

Fig. 3 Variation of the measured concentration of $^{129}\mathrm{I}$ with the amount of $^{127}\mathrm{I}$ carrier

Sample-1 and Sample-2 were collected in open sea of the South China Sea and the Yellow Sea, respectively. They were analyzed after addition of different amount of ¹²⁷I carrier, as well as using carrier free method as described in the literature. The measured concentration of ¹²⁹I $(13.9 \times 10^6 \text{ atoms/L for sample-1 and } 38.7 \times 10^6 \text{ atoms/L})$ for sample-2) by the carrier free AgI-AgCl coprecipitation method is 1.5-3.5 times higher than that in the target prepared by the carrier addition (0.1-1.0 mg) and AgI-AgCl coprecipitation method, in which concentrations of ¹²⁹I measured range from 4.08×10^6 atoms/L to 5.53×10^6 atoms/L for sample-1 and 26.1×10^6 atoms/L to 29.7×10^6 atoms/L for sample-2. The difference between the measured ¹²⁹I concentrations by two methods in the sample-1 is much bigger than that in sample-2, indicating that unreliable measurement results might be obtained when the target was prepared by carrier free method, especially for the low ¹²⁹I samples.

Figure 4 shows the variation of the measured ¹²⁷I current with the amounts of ¹²⁷I carrier added in samples. The intensity of ¹²⁷I current (4.4 nA) in the sample-2 prepared by carrier free copreciptiation method is only about 5 times higher than that in the blank (0.77 nA). In the AMS facilities using in Xi'an AMS center, the ¹²⁷I intensity is measured by Faraday cup while ¹²⁹I is counted by ionization detector. According to the deflection of ¹²⁷I measuring position by Faraday cup, terminal voltage of AMS can automatically adjust to take ¹²⁹I⁵⁺ through 115° magnet as much as possible before reach to the detector. Therefore, the ¹²⁹I was adjusted according to the measured ¹²⁷I intensity, the low iodine concentration in sample causes a higher measurement uncertainty of ¹²⁷I current, which consequently influence the stability of ¹²⁹I counts measured in AMS.

For sample-2, addition of ¹²⁷I carrier significantly enhanced the ¹²⁷I current intensity by factors of 30–140 to 137–620 nA compared to the carrier free target (4.4 nA).

837

Fig. 4 Variation of the measured ^{127}I current with the amount of ^{127}I carrier added

Meanwhile the measurement stability and reliability of ¹²⁹I can be significantly improved.

The amount of ¹²⁷I carrier is therefore a key parameter for the measurement accuracy and precision of ¹²⁹I by AMS. Figure 5 shows variation of the measured ${}^{129}I/{}^{127}I$ ratios with the amount of added ¹²⁷I carrier in samples. The difference between the ¹²⁹I/¹²⁷I ratio in the samples and procedure blank decreases as the amount of ¹²⁷I carrier added increases. When 1.0 mg ¹²⁷I carrier was added, the measured ${}^{129}\text{I}/{}^{127}\text{I}$ value in sample-1 [(0.65 \pm 0.02) \times 10⁻¹²] is close to the procedure blank $[(0.26 \pm 0.02) \times 10^{-12}]$, causing an increased analytical uncertainty of ¹²⁹I in the sample after a correction for the blank. Therefore, addition of higher amount of ¹²⁷I carrier is not suitable for the determination of low level ¹²⁹I in seawater because of contribution of ¹²⁹I in the iodine carrier to the sample. When the amount of ¹²⁷I carrier was reduced to 0.1–0.2 mg, the measured ¹²⁹I/¹²⁷I value in the sample-1 is more than one order of magnitude higher than that in the procedure blank.

Fig. 5 Variation of the measured $^{129}\mathrm{I}/^{127}\mathrm{I}$ ratios with amount of $^{127}\mathrm{I}$ carrier

making the measurement results of 129 I more reliable. These results reveal that addition of a small amount of carrier (0.1–0.2 mg) can significantly improve the measurement uncertainty in AMS measurement, especially in low level samples.

Reliability of the measurement of ¹²⁹I and its species in seawater

Many parameters affect the reliability of the measurement of ¹²⁹I and its species. Besides the addition of ¹²⁷I carrier presented above, the chemical yield of ¹²⁹I during separation, procedure blank and instrument background are also important factors for the reliable measurement of low level ¹²⁹I. The chemical yield of ¹²⁹I in the overall separation procedure was monitored using ¹²⁵I which was spiked into the sample at the beginning of the separation; a chemical yield for ¹²⁵I of more than 80 % was obtained for total ¹²⁹I and its species, which is sufficient to ensure accurate measurement of ¹²⁹I in low level samples, such as those collected from the Antarctic.

The procedure blanks were prepared using the same procedure as the sample, and the instrumental background was assessed by directly pressed Nb powder into a target holder. The measurement results including the measured intensity of ¹²⁷I and ¹²⁹I signal in these blanks, as well as the standards and IAEA-418 reference materials are presented in Table 2. The measured ¹²⁹I/¹²⁷I atomic ratios in the procedure blanks are lower than 4×10^{-13} , which are 2–3 orders of magnitude lower than those in the standards and IAEA-418 reference material. Meanwhile it is also more than one order of magnitude lower than the ¹²⁹I/¹²⁷I ratios in the seawater samples from the Antarctic (Fig. 6). This low procedure blank level and the high sensitivity of

AMS for ¹²⁹I measurement ensure the reliability of the analytical results of ¹²⁹I in these low-level samples. However, it can be observed that the intensity of the ¹²⁹I signals (4.6–5.4 counts/min) in the procedure blanks of seawater is higher than that in the instrumental background [(0.2 ± 0.1) counts/min] by a factor of more than 10. This might be contributed to the existence of tiny amount of ¹²⁹I in the ¹²⁷I carrier, which also confirms that it is critical to add suitable amount of ¹²⁷I carrier in the analysis of low level seawater samples.

The measured 129 I/ 127 I ratios in two types of standards prepared by AgI precipitation and AgI–AgCl coprecipitation are $(11.3 \pm 0.2) \times 10^{-11}$ and $(1.02 \pm 0.03) \times 10^{-11}$, respectively (Table 2), which are in a good agreement (p > 0.05) with the known value of $(11.38 \pm 0.15) \times 10^{-11}$ and $(0.9954 \pm 0.0150) \times 10^{-11}$, respectively. All these features indicate that the analytical results of low level 129 I in the Antarctic seawater samples by the improved method are reliable.

A certified reference material, IAEA-418 (Mediterranean Sea water) was analyzed using the improved method as well as the traditional solvent extraction method, i.e., after addition of iodine carrier and NaHSO₃, the pH of solution was adjusted to 1–2 using HNO₃ and then after the procedures of solvent extraction and backextraction iodine was precipitated as AgI and finally measured by AMS. The measured concentrations of ¹²⁹I and ¹²⁹I/¹²⁷I atomic ratios in IAEA-418 (Table 2) by the two methods are in agreement (p > 0.05). The measured ¹²⁹I concentration in IAEA-418 seawater [(2.71 ± 0.01) × 10⁸ atoms/L for coprecipitation method] also agrees well with the certified value [(2.16–2.73) × 10⁸ atoms/L] [14]. This confirms the reliability of the presented method for ¹²⁹I in seawater.

Table 2 Results of ¹²⁹I and ¹²⁷I signals in background, blanks and standards, as well as in IAEA-418 treated using solvent extraction and coprecipitation and measured by AMS in the AgI–AgCl targets

Sample	Intensity of signals ^a		Measured ¹²⁹ I concentration	Measured ¹²⁹ I/ ¹²⁷ I ratio	
	¹²⁷ I ⁵⁺ , nA in 5 min	¹²⁹ I ⁵⁺ , counts/min	$(\times 10^{\circ} \text{ atoms/L})$	$(\times 10^{-11})$	
Background (Nb power)	0.27 ± 0.12	0.21 ± 0.10			
Procedure blank1	209.5 ± 17.4	5.41 ± 0.42		0.031 ± 0.003	
Procedure blank2	164.1 ± 17.9	4.63 ± 0.73		0.040 ± 0.004	
Standard-1 (AgI)	590.7 ± 1.9	5030 ± 300		11.35 ± 0.17	
Standard-1 (AgI–AgCl)	198.4 ± 1.04	1697 ± 198		11.41 ± 0.18	
Standard-2 (AgI–AgCl)	264.6 ± 6.0	202.4 ± 23.0		1.02 ± 0.03	
IAEA-418 (solvent extraction) ^c	432.7 ± 21.3	662.6 ± 32.6	2.68 ± 0.08^{b}		
IAEA-418 (coprecipitation) ^c	342.2 ± 15.3	1229 ± 58.0	2.71 ± 0.08^{b}		

^a The results are given as average and 1 standard division of 6 measurements

^b Value in sample, corrected for blank

 c 0.315 and 0.817 mg 127 I carrier are added in the coprecipitation and solvent extraction method respectively, and the chemical recoveries of 125 I tracer are 95.8 and 70.3 %, respectively

Fig. 6 Depth distribution of 129 I concentration (a), 129 I/ 127 I (b) in three seawater depth profiles and iodide/iodate molar ratios (c) in one depth profile of seawater, error bars indicate the analytical uncertainty

Due to lack of certified reference materials of seawater for ¹²⁹I species, a seawater sample collected from Yellow Sea was analyzed for iodide and iodate using the improved coprecipitation method presented in this work and the conventional anion-exchange chromatography method [2, 15] for control of the analytical quality. The analytical results of ¹²⁹I concentrations and ¹²⁹I/¹²⁷I atomic ratios for total ¹²⁹I, ¹²⁹I⁻, ¹²⁹IO₃⁻ obtained by the two methods are presented in Table 3. The results show a good agreement between the analytical results for ¹²⁹I and its species obtained by two methods (p > 0.05). This confirmed that the improved coprecipitation method for speciation analysis of ¹²⁹I presented here is reliable and suitable for analysis of ¹²⁹I in seawater. In addition, the sample was analyzed twice (Table 3), and the results show good reproducibility for both ¹²⁹I concentrations and ¹²⁹I/¹²⁷I ratios for both iodide and iodate species (RSD < 5 %). Meanwhile, the cross contamination was also investigated, iodide precipitated in the iodate fraction is less than 3 %, and less than 1 % of iodate is precipitated in the iodide fraction, therefore the cross contamination of iodine species is therefore negligible.

In addition, the improved method presented in this work is less chemicals consuming, and very easy to operate in field compared to the conventional anion-exchange chromatography method for separation of iodine species in seawater [15]. These features make this method suitable for in situ separation of iodine species on board sampling

Table 3 Comparison of
improved coprecipitation with
conventional ion exchange
chromatography methods for
speciation analysis of ¹²⁹ I in
seawater (Yellow Sea water,
China)

Species	Method	129 I × 10 ⁷ atoms/L	$^{129}\mathrm{I}/^{127}\mathrm{I} \times 10^{-10}$
Total iodine	Improved coprecipitation	5.43 ± 0.10	3.29 ± 0.06
		5.47 ± 0.11	3.31 ± 0.07
	Ion exchange chromatography	5.69 ± 0.14	3.44 ± 0.09
		5.64 ± 0.14	3.41 ± 0.09
I^-	Improved coprecipitation	3.93 ± 0.07	12.99 ± 0.22
		3.73 ± 0.07	12.34 ± 0.22
	Ion exchange chromatography	3.92 ± 0.12	12.96 ± 0.41
		3.99 ± 0.11	13.2 ± 0.38
IO_3^-	Improved coprecipitation	2.14 ± 0.07	1.59 ± 0.05
		2.13 ± 0.06	1.60 ± 0.04
	Ion exchange chromatography	1.79 ± 0.08	1.32 ± 0.06
		1.92 ± 0.08	1.42 ± 0.06

vessels during expedition. In particular, the method is apprciate for the separation of low level ¹²⁹I from seawater collected in the area far away from nuclear activity such as the Antarctic.

Distribution of ¹²⁹I and ¹²⁷I species in seawater in the Antarctic

Seawater samples collected from three depth profiles in the Antarctic water were analyzed for species of ¹²⁹I using the presented method. Figure 6 shows depth distribution of 129 I concentrations and ${}^{129}I/{}^{127}I$ atomic ratios in these three seawater profiles and iodide/iodate molar ratios in one seawater profile. The concentrations of ¹²⁹I ranged from 0.90×10^6 to 2.40×10^6 atoms/L, with an average of 1.71×10^6 atoms/L, which is significantly lower than that in the Northern Hemisphere (>1.0 \times 10⁷ atoms/L) [16]. The 129 I/ 127 I atomic ratios range from 3.4×10^{-12} to 9.0×10^{-12} , with an average of 6.0×10^{-12} . This ratio is 4 times higher than the pre-nuclear level (1.5×10^{-12}) in the marine system [17-20], and indicates that anthropogenic ¹²⁹I has not only reached into the Antarctic surface marine environment [21] but into deeper waters down to 1227 m. The main source of ¹²⁹I in the investigated area might be attributed to the global fallout of atmospheric nuclear weapons testing [21].

¹²⁹I concentrations and ¹²⁹I/¹²⁷I atomic ratios in profile 2 show a small but visible decreasing trend with increasing depth, which might reflect a downward migration of ¹²⁹I in the ice shelf zone. However, vertical variation of profile 1 and 3 in the Amundsen Sea Polynya fluctuates smoothly with increase of the depth in some ranges, indicating strong vertical exchange/mixture of the water masses between the surface and the deep water. The trend of profile 2 is similar to that in the Gulf of Mexico and the Makarov Basin, Arctic Ocean, which shows a decrease with the increase of depth and the highest ¹²⁹I concentration lies near the surface (<100 m) [22, 23]. The trend of ¹²⁹I level in the profile 1 and 3 is different from that in the profile 2 and most of reported seawater profiles in other locations, where ¹²⁹I level exponentially decreases with the increase of depth and the highest ¹²⁹I level lies in subsurface water (<200 m) [24–26]. This indicates that a strong mixing of the water masses between the surface and subsurface layer occurred in this region in the Antarctic.

The iodide/iodate molar ratios of ¹²⁷I and ¹²⁹I show an obviously different distribution for ¹²⁹I compared with ¹²⁷I in the profile 1 (Fig. 6). The ¹²⁷I⁻/¹²⁷IO₃⁻ values are normally below 0.35 and show a fairly small variation, while the ratios for ¹²⁹I⁻/¹²⁹IO₃⁻ lie at 0.84–4.20, indicating that ¹²⁹I exists predominantly as iodide. This difference of iodine species between ¹²⁷I and ¹²⁹I is likely attributed to the different sources of these two isotopes and the

comparatively long time it takes to reach equilibrium between iodide and iodate in the open sea. It is well known that iodine mainly exists as iodate in the open sea, and iodide is formed in the coastal water and surface water by reduction of iodate through biological activities and photochemical and chemical reactions [2, 24]. Profile 1 was collected from an open sea, and the ${}^{127}I^{-}/{}^{127}IO_{3}^{-}$ ratios are typical values for the open sea. Meanwhile, there are higher concentrations of phosphate, nitrite and lower concentrations of chlorophyll in the whole profile (Table 1), indicating the relatively weak biological activity. Therefore, the ¹²⁹I species should be controlled by the source water. The higher ¹²⁹I^{-/129}IO₃⁻ values in the deep sea might reflect strong vertical mixture of water masses and originate from the upwelling of circumpolar deep water [27] that carried the higher ${}^{129}\text{I}^{-}/{}^{129}\text{IO}_3^{-}$ values. These results imply that the chemical speciation analysis of ¹²⁹I can be used to investigate the mixing and circulation of the water masses.

Conclusions

Based on the results and discussion above, it can be concluded: (1) addition of a small amount of ¹²⁷I carrier (0.1–0.2 mg) remarkably improved the accuracy and precision of ¹²⁹I measurement; (2) Three seawater profiles collected from the Antarctic in 2011 were successfully analyzed utilizing the improved method; (3) The results show that anthropogenic ¹²⁹I has reached into the Antarctic deep water down to 1227 m and its main source might be the global fallout of atmospheric nuclear weapons testing; (4) Depth distribution of ¹²⁹I and its speciation indicate that a strong mixing of the water masses between the surface and subsurface layer occurred in the Antarctic. This is just a preliminary investigation for the dispersion and mixing of water in the Antarctic and a comprehensive investigation using ¹²⁹I will provide detailed information on the water circulation in this region.

Acknowledgments Financial supports from the Ministry of Science and Technology of China (2015FY110800), as well as State Key Laboratory of Loess and Quaternary Geology are gratefully acknowledged. S. Xing thanks Dr. Qi Liu in Xi'an AMS center for his help in AMS measurement of ¹²⁹I. The sampling program was done as part of 2010/2011 Antarctica two-ship expedition through the international scientific cruise jointly funded by the Swedish Polar Research Secretariat and the US National Science Foundation (NSF). We thank the N.P. Palmar scientific team for providing the onlone measurement data.

References

- 1. Wong GTF (1991) The Marine geochemistry of iodine. Rev Aqua Sci 4:45–73
- Hou XL, Aldahan A, Nielsen SP, Possnert G, Nies H, Hedfors J (2007) Speciation of ¹²⁹I and ¹²⁷I in seawater and implications for

sources and transport pathways in the North Sea. Environ Sci Technol 41:5993-5999

- Hou XL, Hansen V, Aldahan A, Possnert G, Lind OC, Lujaniene G (2009) A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta 632:181–196
- Raisbeck GM, Yiou F (1999) ¹²⁹I in the oceans: origins and applications. Sci Total Environ 237–238:31–41
- Nishiizumi K, Elmore D, Honda M, Arnold JR, Gove HE (1983) Measurements of ¹²⁹I in meteorites and lunar rock by tandem accelerator mass spectrometry. Nature 305:611–612
- Rao U, Fehn U (1999) Sources and reservoirs of anthropogenic iodine-129 in western New York. Geochim Cosmochim Acta 63:1927–1938
- Luo MY, Hou XL, He CH, Liu Q, Fan YK (2013) Speciation analysis of ¹²⁹I in seawater by carrier-free AgI–AgCl coprecipitation and accelerator mass spectrometric measurement. Anal Chim 85:3715–3722
- Fehn U, Snyder G, Egeberg PK (2000) Dating of pore waters with ¹²⁹I: relevance for the origin of marine gas hydrates. Science 289:2332–2335
- Keogh SM, Aldahan A, Possnert G, Finegan P, Vintro LL, Mitchell PI (2007) Trends in the spatial and temporal distribution of ¹²⁹I and ⁹⁹Tc in coastal waters surrounding Ireland using fucus vesiculosus as a bio-indicator. J Environ Radioact 95:23–38
- Reithmeier H, Lazarev V, Rühm W, Schwikowski TM, Gäggeler HW, Nolte E (2006) Estimate of European ¹²⁹I releases supported by ¹²⁹I analysis in an Alpine ice core. Environ Sci Technol 40:5891–5896
- Santschi PH, Schwehr KA (2004) ¹²⁹I/¹²⁷I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine. Sci Total Environ 321:257–271
- 12. Hou XL, Zhou WJ, Chen N, Zhang LY, Liu Q, Luo MY, Fan YK, Liang W, Fu YC (2010) Determination of ultralow level ¹²⁹I/¹²⁷I in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection. Anal Chim 82:7713–7721
- Zhou W, Hou X, Chen N (2010) Preliminary study of radioisotope ¹²⁹I application in china using Xi'an accelerator mass spectrometer. INCS News 25:8–23
- Pham MK, Betti M, Povinec PP, Alfimov V, Biddulph D, Gastaud J, Kieser WE, Lopez Gutierrez JM, Possnert G, Sanchez-Cabeza JA et al (2010) Certified reference material IAEA-418: ¹²⁹I in Mediterranean Sea water. J Radioanal Nucl Chem 286:121–127

- Hou XL, Dahlgaard H, Nielsen SP (2001) Chemical speciation analysis of ¹²⁹I in seawater and a preliminary investigation to use it as a tracer for geochemical cycle study of stable iodine. Mar Chem 74:145–155
- Snyder G, Aldahan A, Possnert G (2010) Global distribution and long-term fate of anthropogenic ¹²⁹I in marine and surface water reservoirs. Geochem Geophys Geosyst 11:1–19
- Fehn U, Moran JE, Snyder GT, Muramatsu Y (2007) The initial ¹²⁹I/I ratio and the presence of 'old' iodine in continental margins. Nucl Instrum Methods Phys Res Sect B 259:496–502
- Fehn U, Snyder G (2000) ¹²⁹I in the Southern Hemisphere: global redistribution of an anthropogenic isotope. Nucl Instrum Methods Phys Res Sect B 172:366–371
- Moran JE, Fehn U, Hanor JS (1995) Determination of source ages and migration patterns of brines from the U.S. gulf coast basin using ¹²⁹I. Geochim Cosmochim Acta 59:5055–5069
- Moran JE, Fehn U, Teng RTD (1998) Variations in ¹²⁹U¹²⁷I ratios in recent marine sediments: evidence for a fossil organic component. Chem Geol 152:193–203
- Xing S, Hou XL, Aldahan A, Possnert G, Shi KL, Yi P, Zhou WJ (2015) Iodine-129 in snow and seawater in the Antarctic: level and source. Environ Sci Technol 49:6691–6700
- Alfimov V, Aldahan A, Possnert G, Winsor P (2004) Anthropogenic iodine-129 in seawater along a transect from the norwegian coastal current to the North Pole. Mar Pollut Bull 49:1097–1104
- Schink DR, Santschi PH, Corapcioglu O, Sharma P, Fehn U (1995) ¹²⁹I in Gulf of Mexico waters. Earth Planet Sci Lett 135:131–138
- 24. Hou XL, Povinec PP, Zhang LY, Shi KL, Biddulph D, Chang C-C, Fan YK, Golser R, Hou YK, Ješkovský M et al (2013) Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ Sci Technol 47:3091–3098
- 25. Smith JN, Ellis KM, Kilius LR (1998) ¹²⁹I and ¹³⁷Cs tracer measurements in the Arctic Ocean. Deep Sea Res I 45:959–984
- 26. Suzuki T, Kabuto S, Amano H, Togawa O (2008) Measurement of iodine-129 in seawater samples collected from the Japan Sea area using accelerator mass spectrometry: contribution of nuclear fuel reprocessing plants. Quat Geochronol 3:268–275
- Yabuki T, Suga T, Hanawa K, Matsuoka K, Kiwada H, Watanabe T (2006) Possible source of the antarctic bottom water in the Prydz Bay region. J Oceanogr 62:649–655