

Measurement of naturally occurring radioactive materials, ²³⁸U and ²³²Th: anomalies in photopeak selection

Nabanita Naskar^{1,2} · Susanta Lahiri² · Punarbasu Chaudhuri¹ · Alok Srivastava³

Received: 19 June 2016/Published online: 17 August 2016 © Akadémiai Kiadó, Budapest, Hungary 2016

Abstract There are more than 200 photopeaks of various daughter radionuclides of ²³⁸U and ²³²Th series, some of which have been randomly used for quantitative measurement of U/Th in natural samples. It has been observed that arbitrariness in photopeak selection may fail to stipulate statistically consistent data. This paper judiciously selects set of three photopeaks from each series whose respective averages could present statistically reliable measurement of ²³⁸U and ²³²Th based on minimum relative standard deviation (RSD) under the selected photopeaks. RSD is also proposed as an important parameter in NORM measurement.

Keywords Naturally occurring radionuclide materials (NORMs) \cdot ²³⁸U and ²³²Th measurement \cdot Gamma-ray spectrometry \cdot Photopeak selection

Introduction

The ubiquitous natural background radiation felt on the Earth is mainly due to terrestrial and cosmic radiation [1]. Long-lived, primordial naturally occurring radionuclides or NORMs like ²³⁸U ($T_{1/2} = 4.468 \times 10^9$ a), ²³⁵U

³ Chemistry Department, Panjab University, Chandigarh 160014, India $(T_{1/2} = 7.04 \times 10^8 \text{a})$, ²³²Th $(T_{1/2} = 1.40 \times 10^{10} \text{a})$ and ⁴⁰K $(T_{1/2} = 1.248 \times 10^9 \text{a})$ have geological presence since formation of the Earth [2]. They along with their daughter products (²²⁶Ra, ²¹²Pb, ²¹²Bi, ²²⁸Ac, ²¹⁰Pb, ²⁰⁸Tl, etc.) are prime contributors of background radiation. The global mean of ²³⁸U, ²³²Th and ⁴⁰K in terrestrial system reported are 35, 45 and 420 Bq/kg respectively [3]. The enhanced concentration of natural and anthropogenic radionuclides resulting due to human activities like mining, refining, nuclear experiments, etc., is termed as technologically enhanced naturally occurring radioactive materials or TeNORMs [4]. It could be further stated that nuclear weapon testing (1960–1970), Chernobyl accident (1986) and recent Fukushima-Daichii accident (2011) have made significant contribution to the global inventory of anthropogenic radionuclides.

There are several reports on measurement of NORMs $(^{238}\text{U}, ^{232}\text{Th} \text{ and } ^{40}\text{K})$ all over the globe. These measurements have come out from laboratories with moderate experimental facilities as well as from renowned laboratories equipped with state-of-art detectors. The sample size for NORM measurement generally varied in the reported works from 20 to 50 g, which was further normalized to Bq/kg. The estimated radioactivity level of ²³⁸U and ²³²Th in such sample could be around only 1-2 Bq. Therefore slight discrepancy in measurement would reflect in terms of high uncertainty in the final normalized value. Lowlevel radiation measurement requires selection of high efficiency detector, accurate energy and efficiency calibration, optimum counting time, proper selection of photopeaks, etc. The literature review reveals that researchers in many cases have arbitrarily fixed the above-mentioned experimental parameters. In the present work we have discussed about proper selection of photopeaks from the daughter radionuclides of ²³⁸U and ²³²Th series to get

Susanta Lahiri susanta.lahiri@saha.ac.in

¹ Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India

² Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India

Table 1 List of photopeaks taken by different groups of researchers for measurement of ²³⁸U and ²³²Th activity

Sl	Reported by	Parent radio	onuclide ²³⁸ U	Parent radio	onuclide ²³² Th
No.		Photopeak	Energy (keV)	Photopeak	Energy (keV)
1	Mohapatra et al. [1]	²³⁴ Th	63.29	²⁰⁸ Tl	2614.53
		²¹⁴ Pb	351.93		
		²¹⁴ Bi	609.31, 1764.49		
2	Srivastava et al. [3]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20, 968.97
		²¹⁴ Bi	609.31		
3	Sartandel et al. [5]	²³⁴ Th	63.29	²²⁸ Ac	Not mentioned
		²¹⁴ Pb	Not mentioned	²⁰⁸ Tl	Not mentioned
		²¹⁴ Bi	Not mentioned		
4	Wang et al. [6]	²³⁴ Th	63.29, 92.6	²²⁸ Ac	338.32, 911.20, 968.97
		²¹⁴ Pb	351.93		
		²¹⁴ Bi	609.31		
5	Al-Sharkawy et al. [7]	²³⁴ Th	63.29, 92.38, 92.8	²²⁸ Ac	911.20, 964.76, 968.97, 1588.19
		²¹⁴ Pb	295.2, 351.93		
		²¹⁴ Bi	609.31, 1120.29, 1764.49, 2204.21, 2447.86	²⁰⁸ Tl	583.19, 860.56, 2614.53
				²¹² Bi	727.33, 1620.7
6	Chowdhury et al. [8]	²³⁴ Th	63.29	²¹² Pb	238.63
		^{234m} Pa	1001.03	²¹² Bi	727.33
		²¹⁴ Pb	295.22, 351.93	²²⁸ Ac	338.32, 911.20, 968.97
		²¹⁴ Bi	609.31, 1120.29, 1764.49	²⁰⁸ Tl	583.19
7	Janković et al. [9]	²³⁴ Th	63.29	²²⁸ Ac	911.20
		²³⁴ Pa	1001.03		
		²¹⁴ Pb	351.93		
		²¹⁴ Bi	609.31		
8	Song et al. [10]	²³⁴ Th	63.29, 92.6	²²⁸ Ac	911.20
		²¹⁴ Pb	295.22, 351.93	²¹² Pb	238.63
		²¹⁴ Bi	609.31	²⁰⁸ Tl	583.19
9	Mahur et al. [11]	²¹⁴ Pb	295.22, 351.93	²²⁸ Ac	338.32, 463.00, 911.20, 968.97
		²¹⁴ Bi	609.31, 1120.29, 1764.49	²¹² Bi	727.33
		²³⁴ Pa	1001.03	²¹² Pb	238.63
10	Santawamaitre et al. [12]	²²⁶ Ra	186.21	²²⁸ Ac	338.32, 911.20,
		²¹⁴ Pb	295.22, 351.93		968.97
		²¹⁴ Bi	609.31, 1120.29, 1238.11, 1764.49, 2204.21	²¹² Pb	238.63, 300.09
				²¹² Bi	727.33, 1620.5
				²⁰⁸ Tl	583.19, 2614.53
11	Gupta et al. [13]	²²⁶ Ra	186.21	²²⁸ Ac	338.32, 463.00, 911.20, 968.97
		²¹⁴ Pb	295.22, 351.93	²¹² Bi	727.33
		²¹⁴ Bi	609.31, 1120.29, 1764.49	²¹² Pb	238.63
12	Boukhenfouf and Boucenna	²²⁶ Ra	186.21	²²⁸ Ac	338.32, 911.20, 964.76 968.97
	[14]	²¹⁴ Pb	295.22, 351.93	²¹² Pb	238.63
		²¹⁴ Bi	609.31, 1120.29, 1764.49	²⁰⁸ Tl	583.19, 860.56
13	Aközcan [15]	²²⁶ Ra	186.21	²²⁸ Ac	911.20
		²¹⁴ Pb	351.93	²⁰⁸ Tl	583.19
		²¹⁴ Bi	609.31		

Table 1 continued

Sl	Reported by	Parent radio	onuclide ²³⁸ U	Parent radi	onuclide ²³² Th
No.		Photopeak	Energy (keV)	Photopeak	Energy (keV)
14	Yang et al. [16]	²²⁶ Ra	186.21	²¹² Pb	238.63
		²¹⁴ Pb	351.93	²²⁸ Ac	338.32, 911.20, 968.97, 974.2
		²¹⁴ Bi	609.31, 768.35, 1120.29, 1238.11, 1764.49		
				²⁰⁸ Tl	583.19
15	Alaamer [17]	²²⁶ Ra	186.21	²²⁸ Ac	911.20
		²¹⁴ Pb	351.93	²⁰⁸ Tl	583.19
		²¹⁴ Bi	609.31		
16	Kurnaz et al. [18]	²²⁶ Ra	186.21	²²⁸ Ac	911.20
		²¹⁴ Pb	351.93	²⁰⁸ Tl	583.19
		²¹⁴ Bi	609.31		
17	Ele Abiama et al. [20]	²¹⁴ Bi	609.31, 768.35, 1120.29, 1238.11, 1764.49	²¹² Pb	238.63
				²²⁸ Ac	338.32, 911.20, 968.97, 974.2
				²⁰⁸ Tl	583.19
18	Aytekin et al. [21]	²¹⁴ Pb	295.22, 351.93	²⁰⁸ Tl	583.19
	-	²¹⁴ Bi	609.31	²²⁸ Ac	338.32, 911.20
19	Alfonso et al. [22]	²¹⁴ Pb	295.22, 351.93	²²⁸ Ac	911.20
		²¹⁴ Bi	609.31	²¹² Pb	238.63
20	Hannan et al. [23]	²¹⁴ Bi	609.31	²²⁸ Ac	911.20
21	Adukpo et al. [24]	²¹⁴ Bi	609.31	²²⁸ Ac	911.20
22	Ravisankar et al. [25]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
23	Potoki et al. [26]	²¹⁴ Bi	Not mentioned	²²⁸ Ac ²⁰⁸ Tl	Not mentioned
24	Bakim and Ugur Görgün [27]	²¹⁴ Pb	295.22, 351.93	²⁰⁸ Tl	2614.53
25	Kobya et al $[28]$	²¹⁴ Ph	Not mentioned	²⁰⁸ Tl	Not mentioned
20		²¹⁴ Bi		²¹² Pb	
26	Isinkaye and Emelue [29]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2615.53
27	Chakraborty [30]	²¹⁴ Pb	351.93	²⁰⁸ Tl	583.19
		²¹⁴ Bi	609.31, 1120.29	²²⁸ Ac	911.20
28	Manigandan and Chandar Shekar [31]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
29	Yadav et al. [32]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
30	Bala et al. [33]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
31	Canbazoğlu et al. [34]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20
		²¹⁴ Bi	609.31	²⁰⁸ Tl	583.19
32	Tchokossa et al. [35]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20
		²¹⁴ Bi	609.31, 1120.29	²⁰⁸ Tl	583.19
33	Singh et al. [36]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
34	Kannan et al. [37]	²¹⁴ Bi	609.31	²²⁸ Ac	911.20
35	Alatise et al. [38]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
36	Agbalagba and Onoja [39]	²¹⁴ Pb	295.22	²¹² Pb	238.63
37	Ahmed et al. [40]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20
		²¹⁴ Bi	609.31	²⁰⁸ Tl	583.19
38	Rajeshwari et al. [41]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20
	-	²¹⁴ Bi	609.31	²¹² Pb	238.63
				²⁰⁸ Tl	583.19, 2614.53

Table 1 continued

Sl	Reported by	Parent radio	onuclide ²³⁸ U	Parent radio	onuclide ²³² Th
No.		Photopeak	Energy (keV)	Photopeak	Energy (keV)
39	Matiullah and Malik [42]	²¹⁴ Pb	295.22, 351.93	²²⁸ Ac	338.32, 911.20, 968.97
		²¹⁴ Bi	609.31, 1120.29		
40	Pinto and Yerol [43]	²¹⁴ Bi	609.31, 1120.29, 1764.49	²⁰⁸ Tl	583.19, 2614.53
41	Jeevarenuka et al. [44]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
42	El-Taher and Madkour [45]	²¹⁴ Pb	351.93	²¹² Pb	238.63
		²¹⁴ Bi	609.31, 1764.49	²²⁸ Ac	911.20
43	Powell et al. [46]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20
		²¹⁴ Bi	609.31		
44	Özmen et al. [47]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20
		²¹⁴ Bi	609.31		
45	Rani and Singh [48]	²¹⁴ Bi	1764.49	²⁰⁸ Tl	2614.53
46	Al-Jundi et al. [49]	²¹⁴ Pb	351.93	²¹² Pb	238.63
		²¹⁴ Bi	609.31	²²⁸ Ac	911.20, 968.97
				²⁰⁸ Tl	583.19
47	Murty and Karunakara [50]	²¹⁴ Pb	351.93	²²⁸ Ac	911.20
_		²¹⁴ Bi	609.31, 1120.29, 1764.49	²⁰⁸ Tl	583.19, 2614.53

reliable estimate of uranium and thorium present at ultralow level concentration in natural matrices.

Different investigators have measured activity of ²³⁸U and ²³²Th by selecting different photopeaks; most of them selected multiple gamma-peaks from different daughter radionuclides of the corresponding series, and presented the average value of the activity of ²³⁸U and ²³²Th. Even when multiple photopeaks were used, different groups selected different sets of photopeaks (not necessarily the most intense peaks). In Table 1, we list the sets of photopeaks taken by various research groups to measure ²³⁸U and ²³²Th activity [1, 3, 5–18, 20–50]. A careful look to this table shows some interesting and apparently illogical choice of photopeaks. Few of them are illustrated here. Mohapatra et al. [1], Sartandel et al. [5], Wang et al. [6], Al-Sharkawy et al. [7], Chowdhury et al. [8], Janković et al. [9] and Song et al. [10], have considered low intensity (4.8 % only) 63.29 keV (²³⁴Th) photopeak for ²³⁸U activity measurement. Chowdhury et al. [8], Janković et al. [9], Mahur et al. [11] have included very low intensity (0.65 % only) 1001.03 keV photopeak of ²³⁴Pa along with other peaks to measure ²³⁸U. Many authors [12-18] have considered 186.21 keV photopeak of ²²⁶Ra, member of ²³⁸U decay series, to measure ²³⁸U. However, this photopeak may have significant interference from ²³⁵U, which could be as high as 11.4 % [19], therefore should be avoided otherwise correction for ²³⁵U should be made. Al-Sharkawy et al. [7], have selected both 92.38 and 92.8 keV photopeaks for ²³⁸U measurement. Both of these photopeaks have low intensities (2.81 and 2.77 % respectively). They also reported that they have measured using 50 % *p*-type HPGe detector, which normally will be unable to resolve these photopeaks. Similarly for ²³²Th measurement many authors [7, 14, 16, 20] have measured 964.76 keV (4.99 %) and 974.2 keV (0.05 %) photopeaks, both from ²²⁸Ac. These peaks are situated on the shoulder and on the trail of 968.97 (15.8 %) keV photopeak respectively and therefore difficult to have statistically reliable area count.

The pertinent question therefore boils down to which photopeaks are preferable for low-level measurement? In this paper we made an attempt towards optimization of NORM measurement (²³⁸U and ²³²Th) with respect to selection of photopeaks from different daughter radionuclides of ²³⁸U and ²³²Th decay series. To the best of our knowledge, despite large number of measurements on NORM reported in literature, this type of detailed analysis has been attempted for the first time.

Initial screening of photopeaks

In Table 2, we list the gamma energies of different daughter radionuclides of ²³⁸U, ²³²Th and major photopeaks of ²³⁵U. As ultra-low level activities are measured in NORM measurement, we excluded the photopeaks having

Daughter

²³⁴Th

²⁰⁸Tl

²¹⁴Pb

²¹²Pb

²⁰⁸Tl

²¹⁴Pb

²¹²Pb

²²³Ra

²²³Ra

²¹²Pb

²¹²Pb

²³⁴Th

²³⁴Th

²²⁸Ac

²³⁵U

²³⁴Pa

²³⁴Pa

²³⁴Pa

²³⁴Pa

²³⁴Pa

²³⁴Pa

²²⁸Ac

²³⁴Pa

²³⁵U

²³⁴Pa

²²⁶Ra

²²⁸Ac

²³⁴Pa

²³⁴Pa

²²⁷Th

²¹²Pb

²²⁴Ra

²¹⁴Pb

²³⁴Pa

²²³Ra

²²⁸Ac

²¹⁹Rn

²⁰⁸Tl

²³⁴Pa

²¹⁴Pb

²¹²Pb

²²⁸Ac

²²⁸Ac

²¹¹Bi

²¹⁴Pb

Parent

²³⁸U

²³²Th

²³⁸U

²³²Th

²³²Th

²³⁸U

²³²Th

²³⁵U

²³⁵U

²³²Th

²³²Th

²³⁸U

²³⁸U

²³²Th

²³⁵U

²³⁸U

²³⁸U

²³⁸U

²³⁸U

²³⁸U

²³⁸U

²³²Th

²³⁸U

²³⁵U

²³⁸U

²³⁵U

²³⁸U

²³²Th

²³⁸U

²³⁸U

²³⁵U

²³²Th

²³²Th

²³⁸U

²³⁸U

²³⁵U

²³²Th

²³⁵U

²³²Th

²³⁸U

²³⁸U

²³²Th

²³²Th

²³²Th

²³⁵U

²³⁸U

 Table 2
 List of different photopeaks of the radionuclides belonging to natural decay series and their suitability for measurement

72.805 (X-ray)

74.815 (X-ray)

74.815 (X-ray)

74.969 (X-ray)

77.107 (X-ray)

77.107 (X-ray)

81.069 (X-ray)

83.787 (X-ray)

86.83 (X-ray)

87.349 (X-ray)

93.35 (X-ray)

93.35 (X-ray)

94.654 (X-ray)

98.434 (X-ray)

110.421 (X-ray)

111.298 (X-ray)

114.445 (X-ray)

99.853

129.065

131.29

143.764

152.72

185.712

186.2111

209.253

226.5

227.25

235.971

238.632

240.986

241.997

249.22

269.46

270.245

271.23

277.351

293.79

295.224

300.087

338.32

351.059

351.9332

328

92.38

92.8

Intensity (%)

4.8

2.09

4.8

10.41

3.51

17.5

15.2

25.2

2.09

4.01

2.81

2.77

3.19

14.4

23.3

3.2

2.87

5.44

2.1

10.8

6.31

2.99

19.3

3.28

2.95

11.27

12.91

37.6

11

8

Score

1

0^{a,b}

 0^{b}

 0^{b}

 0^{b}

 0^{b}

 0^{b}

0

0

 $0^{a,b}$

 0^{b}

 $0^{a,b}$

 $0^{a,b}$

 $0^{a,b}$

 0^{b}

 0^{b}

 0^{b}

 $0^{a,b}$

 $0^{a,b}$

 0^{b}

0^{a,b}

Energy (keV)

63.29

Parent	Daughter	Energy (keV)	Intensity (%)	Score
²³⁸ U	²³⁴ Pa	369.5	2.47	0^{a}
²³² Th	²²⁸ Ac	463.004	4.4	1
²³² Th	²⁰⁸ Tl	510.77	22.6	0^{c}
²³⁸ U	²³⁴ Pa	568.9	3.6	0^{b}
²³⁸ U	²³⁴ Pa	569.5	8.2	0^{b}
²³² Th	²⁰⁸ Tl	583.19	84.5	1
²³⁸ U	²¹⁴ Bi	609.31	46.1	1
²³⁸ U	²³⁴ Pa	699.03	3.6	0^{a}
²³⁸ U	²³⁴ Pa	705.9	2.27	0^{a}
²³² Th	²¹² Bi	727.33	6.58	1
²³⁸ U	²³⁴ Pa	733.39	6.9	1
²³⁸ U	²³⁴ Pa	742.81	2.06	0^{a}
²³⁸ U	²¹⁴ Bi	768.356	4.94	1
²³² Th	²²⁸ Ac	794.947	4.25	0^{b}
²³⁸ U	²³⁴ Pa	796.1	2.58	$0^{a,b}$
²³⁸ U	²³⁴ Pa	805.8	2.52	0^{a}
²³⁸ U	²³⁴ Pa	831.5	4.12	1
²³² Th	²⁰⁸ Tl	860.564	12.42	1
²³⁸ U	²³⁴ Pa	876	2.524	0^{a}
²³⁸ U	²³⁴ Pa	880.5	4.2	0^{b}
²³⁸ U	²³⁴ Pa	880.5	6	0^{b}
²³⁸ U	²³⁴ Pa	883.24	9.6	0^{b}
²³⁸ U	²³⁴ Pa	898.67	3.24	0^{a}
²³² Th	²²⁸ Ac	911.204	25.8	1
²³⁸ U	²³⁴ Pa	925	7.8	0^{b}
²³⁸ U	²³⁴ Pa	926.72	7.2	0^{b}
²³⁸ U	²¹⁴ Bi	934.061	3.03	0^{a}
²³⁸ U	²³⁴ Pa	946	13.4	1
²³² Th	²²⁸ Ac	964.766	4.99	0^{b}
²³² Th	²²⁸ Ac	968.97	15.8	1
²³⁸ U	²³⁴ Pa	980.3	2.7	0^{a}
²³⁸ U	^{234m} Pa	1001.03	0.837	0^{a}
²³⁸ U	²¹⁴ Bi	1120.287	15.1	1
²³⁸ U	²¹⁴ Bi	1238.11	5.79	1
²³⁸ U	²¹⁴ Bi	1377.669	4	0^{a}
²³⁸ U	²¹⁴ Bi	1407.98	2.15	0^{a}
²³⁸ U	²¹⁴ Bi	1509.228	2.11	0^{a}
²³² Th	²²⁸ Ac	1588.19	3.22	0^{a}
²³⁸ U	²¹⁴ Bi	1729.595	2.92	0^{a}
²³⁸ U	²¹⁴ Bi	1764.49	15.4	1
²³⁸ U	²¹⁴ Bi	1847.42	2.11	0^{a}
²³⁸ U	²¹⁴ Bi	2204.21	5.08	1
²³² Th	²⁰⁸ Tl	2614 53	99	1

		-
2.42	0^{a}	²³⁸ U
18	1	²³² Th
10.96	0	²³⁸ U
6	1	²³⁸ U
57.2	0^{b}	²³⁸ U
3.59	$0^{a,b}$	²³⁸ U
3.89	0^{a}	²³² Th
4.2	0^{b}	²³² Th
5.8	0^{b}	²³⁸ U
12.3	0^{b}	²³⁸ U
43.3	0^{b}	²³⁸ U
4.1	0^{b}	²³⁸ U
7.43	0^{b}	²³⁸ U
2.5	0^{a}	²³⁸ U
13.7	0^{b}	²³⁸ U
3.46	0^{b}	²³² Th

 0^{b}

1

 0^{a}

1

 0^{a}

 0^{a}

1

 0^{b}

1

^a Low intensity peaks

^b Closely spaced, detector cannot resolute

^c Coincides with 511 keV annihilation peak

 Table 3 Photopeaks of ²³⁸U series suitable for measurement of ²³⁸U after preliminary screening

Sl. no.	Daughter	Energy (keV)	Intensity (%)
1	²³⁴ Th	63.29	4.8
2	²³⁴ Pa	131.29	18
3	²³⁴ Pa	152.72	6
4	²¹⁴ Pb	295.22	19.3
5	²¹⁴ Pb	351.93	37.6
6	²¹⁴ Bi	609.31	46.1
7	²³⁴ Pa	733.39	6.9
8	²¹⁴ Bi	768.35	4.94
9	²³⁴ Pa	831.5	4.12
10	²³⁴ Pa	946	13.4
11	²¹⁴ Bi	1120.29	15.1
12	²¹⁴ Bi	1238.11	5.79
13	²¹⁴ Bi	1764.49	15.4
14	²¹⁴ Bi	2204.21	5.08

Table 4 Photopeaks of ²³²Th series suitable for measurement of²³²Th after preliminary screening

Sl. no.	Daughter	Energy (keV)	Intensity (%)
1	²⁰⁸ Tl	277.35	6.31
2	²²⁸ Ac	338.32	11.27
3	²²⁸ Ac	463.00	4.4
4	²⁰⁸ Tl	583.19	84.5
5	²¹² Bi	727.33	6.58
6	²⁰⁸ Tl	860.56	12.42
7	²²⁸ Ac	911.20	25.8
8	²²⁸ Ac	968.97	15.8
9	²⁰⁸ Tl	2614.53	99

intensities less than 2 % in 238U and 232Th series. However, some of them are even listed in the table, if frequently taken by different research groups (e.g., 1001.00 keV photopeak of ²³⁴Pa having intensity 0.65 %). Also we have excluded all the photopeaks of ²¹⁰Tl and ²⁰⁶Tl, which belong to ²³⁸U series. The reason of exclusion is extremely low population from their parent radionuclides, e.g. ²¹⁴Bi decays to ²¹⁰Tl with branching ratio 0.02 % only. Similarly, ²¹⁰Bi decays to ²⁰⁶Tl by emitting α -particle with only 1.3×10^{-4} % probability. We have assigned a score to each photopeak listed in Table 2, 0 or 1 where 0 denotes unsuitability of the gamma line for quantification of the parent radionuclide of the series; whereas the score 1 denotes the suitability of the gamma line based on the preliminary observation. The reason for assigning 0 is based on either very low intensity in the specific energy region or possibility of overlapping

with the neighboring photopeaks either from the same series or from inter-series interference. While overlapping with another photopeak is considered, it is assumed HPGe detectors are used for NORM measurement that have generally 2-3 keV resolution in the higher energy region and $\sim 1-2$ keV in the lower energy region. All the photopeaks from ²³⁵U series have been assigned score zero because of its very low natural abundance, 0.7204 %. However, they have been included in the table to show possible interference to the radionuclides, like 185.71 keV interferring with 186.21 keV ²²⁶Ra photopeak and 351.06 keV interferring with 351.93 keV ²¹⁴Pb photopeak. From the preliminary screening it is revealed that only 14 photopeaks from ²³⁸U series, and 9 photopeaks from ²³²Th series qualify for quantitative measurements of low-level NORMs. Tables 3 and 4 represent these useful photopeaks as deduced from Table 2 for measurement of the activity of uranium and thorium respectively. Rest of the investigation has been carried out using only the useful photopeaks.

Experimental

Four soil samples were collected from different parts of India, e.g., from Sundarban region (SB1, SB2) and from Punjab state (PU1 and PU2). It is noteworthy to mention Sundarban is world's largest mangrove ecosystem known for its luxuriant floral-faunal diversity. The samples were air-dried until moisture was driven out and then further pulverized in grinder to obtain homogenized form. Each of the pulverized samples were weighed to 50 g, hermetically sealed in leak-proof petri-plates and kept aside for 40 days to ensure the state of secular equilibrium. The dimension of the petri-plates as well as that of the soil samples was 7.5 cm diameter and 1.1 cm height. In addition to four test samples, four standards (two each of ²³⁸U and ²³²Th) were also prepared. For preparation of two ²³⁸U standards (2 and 5 dps), weighed amount of IAEA Uranium Ore (Pitchblende); S-8 standard (0.35 and 0.14 g correspond to 5 and 2 dps respectively) was taken in leak-proof petri-plate. For ²³²Th standards (2 and 5 dps), weighed amount of thorium acetate, [Th(CH₃COO)₄] (0.995 and 2.49 mg correspond to 2 and 5 dps respectively) was taken in leak-proof petri-plate. To maintain the geometry at par with the test samples, all the four standard samples were mixed thoroughly with silica gel to attain the total weight of 50 g, equivalent to the sample size. The petri-plates were also hermetically sealed for 40 days to establish the secular equilibrium between the parent and daughter isotopes. One of the two standards (2 dps) was used as standard for all

Table 5 Calculated activity of different daughter radionuclides of ²³⁸U under different photopeaks using 2 dps as U standard (SU)

Sl. no.	Radionuclide	Photopeak (keV)	Intensity (%)	SB1	SB2	PU1	PU2	U-5 dps
1	²³⁴ Th	63.29	4.8	4.20 ± 0.28	3.69 ± 0.26	5.53 ± 0.36	5.17 ± 0.34	5.47 ± 0.34
2	²³⁴ Pa	131.29	18	0	0	0	0	0
3	²³⁴ Pa	152.69	6	0	0	0	0	0
4	²¹⁴ Pb	295.22	19.3	1.48 ± 0.08	1.16 ± 0.08	2.09 ± 0.11	1.69 ± 0.09	5.86 ± 0.21
5	²¹⁴ Pb	351.93	37.6	1.39 ± 0.04	1.04 ± 0.04	2.20 ± 0.06	1.81 ± 0.05	4.77 ± 0.10
6	²¹⁴ Bi	609.31	46.1	1.56 ± 0.06	1.24 ± 0.05	2.14 ± 0.07	2.07 ± 0.07	4.95 ± 0.13
7	²³⁴ Pa	733.39	6.9	0	0	0	0	0
8	²¹⁴ Bi	768.4	4.94	0	0	0	0	0
9	²³⁴ Pa	831.5	4.12	0	0	0	0	0
10	²³⁴ Pa	946	13.4	0	0	0	0	0
11	²¹⁴ Bi	1120.29	15.1	1.86 ± 0.26	1.56 ± 0.24	3.95 ± 0.44	2.55 ± 0.32	8.23 ± 0.79
12	²¹⁴ Bi	1238.11	5.79	1.27 ± 0.33	0	1.79 ± 0.39	0.76 ± 0.31	3.7 ± 0.48
13	²¹⁴ Bi	1764.49	15.4	2.20 ± 0.22	1.6 ± 0.17	2.69 ± 0.26	2.32 ± 0.23	6.88 ± 0.55
14	²¹⁴ Bi	2204.21	5.08	1.86 ± 0.50	0.72 ± 0.26	3.34 ± 0.75	2.52 ± 0.59	6.13 ± 1.19
Mean phote 13 at	values of activi opeaks having s nd 14 (%RSD)	ties obtained fr serial nos. 1, 4,	om 5, 6, 11, 12,	1.98 ± 0.76 (47.98)	1.38 ± 0.48 (76.81)	2.97 ± 1.06 (42.42)	$2.36 \pm 0.86 \\ (53.81)$	5.75 ± 1.66 (24)
Mean phot (%R	values of activi opeaks having s SD)	ties obtained fr serial nos. 4,5,6	om and 13	1.66 ± 0.25 (22.29)	1.26 ± 0.2 (19.05)	$2.28 \pm 0.29 \\ (11.84)$	1.97 ± 0.26 (14.21)	5.62 ± 0.61 (17.25)
Mean phot	values of activi opeaks having s	ties obtained fr erial nos. 4, 5 a	rom nd 6 (%RSD)	1.48 ± 0.11 (5.4)	1.15 ± 0.1 (8.69)	2.14 ± 0.14 (2.8)	1.86 ± 0.13 (10.21)	5.19 ± 0.27 (11.37)
Mean phot 14 (4	values of activi opeaks having s %RSD)	ties obtained fr erial nos. 4, 5,	rom 6, 12, 13 and	$\begin{array}{c} 1.63 \pm 0.65 \\ (20.85) \end{array}$	0.96 ± 0.33 (57.3)	$2.38 \pm 0.9 \\ (23.10)$	$\begin{array}{c} 1.86 \pm 0.72 \\ (33.33) \end{array}$	5.38 ± 1.42 (21.19)
Mean phot (%R	values of activi opeaks having s SD)	ties obtained fr serial nos. 4,5,6	om ,13 and 14	$\begin{array}{c} 1.70 \pm 0.56 \\ (19.41) \end{array}$	$ \begin{array}{r} 1.15 \pm 0.33 \\ (27.83) \end{array} $	$2.49 \pm 0.81 \\ (21.28)$	$2.08 \pm 0.65 \\ (16.35)$	5.72 ± 1.33 (15.21)
Mean phot (%R	values of activi opeaks having s SD)	ties obtained fr serial nos. 4, 5,	om 6 and 14	1.57 ± 0.51 (12.74)	1.04 ± 0.28 (22.11)	$2.44 \pm 0.77 (24.59)$	2.02 ± 0.61 (17.82)	5.43 ± 1.22 (12.33)

 $RSD = \frac{\text{standard deviation}}{\text{maximum}} \times 100$; RSD values have been given in parenthesis

Table 6 Photopeaks of ^{238}U series suitable for quantitative analysis of ^{238}U

Sl. no.	Daughter	Energy (keV)	Intensity (%)
1	²³⁴ Th	63.29	4.8
2	²¹⁴ Pb	295.22	19.3
3	²¹⁴ Pb	351.93	37.6
4	²¹⁴ Bi	609.31	46.1
5	²¹⁴ Bi	1120.29	15.1
6	²¹⁴ Bi	1238.11	5.79
7	²¹⁴ Bi	1764.49	15.4
8	²¹⁴ Bi	2204.21	5.08

measurements in both cases of 238 U and 232 Th. The other one (5 dps) was used as sample of known activity (SU for 238 U and STh for 232 Th) to validate the result.

All samples and standards were measured for 75000 s using reverse electrode coaxial high-purity Germanium (HPGe) detector with 50 % relative efficiency and FWHM (full width at half maxima) of 3.3 and 0.96 keV respectively at 1.33 MeV and 122 keV. Shielding of this detector had CANBERRA model 747 lead shield with 9.5 mm thick low carbon outer jacket, 10 cm thick low background lead as bulk shield, also graded lining of 1 mm tin and 1.6 mm copper preventing the interference by lead X-rays [3]. Samples were kept at 1 cm distance from top of central HPGe detector. Energy calibration was performed using single elemental standards or point sources of ¹³³Ba, ⁶⁰Co, ¹³⁷Cs and ¹⁵²Eu. Count of 50 g silica gel was taken also for 75,000 s in a similar petriplate. This was considered as background spectrum. This background spectrum was stripped from all sample and

1 able /	Activity of U obtained for four test samples with	different sets of photopea	iks as laken by un	lerent researchers	(see lable 1)			
Sl. no.	Research group	Photopeaks (keV)	Intensity (%)	Average ²³⁸ U a	ctivity (Bq), rela	tive standard dev	iation (RSD in %	(
				SB1	SB2	PUI	PU2	U-5dps
1	Mohapatra et al. [1]	63.29	4.8	2.34 ± 0.37	1.89 ± 0.32	3.14 ± 0.45	2.84 ± 0.42	5.51 ± 0.67
		351.93	37.6	55.12	64.55	51.27	55.28	17.42
		609.31	46.1					
		1764.49	15.4					
2	Wang et al. [6]	63.29	4.8	2.38 ± 0.29	1.99 ± 0.27	3.29 ± 0.37	3.02 ± 0.35	5.06 ± 0.38
		92.38^{a}	2.77	65.97	73.87	58.97	61.92	7.11
		351.93	37.6					
		609.31	46.1					
3	Al-Sharkawy et al. [7]	63.29	4.8	2.08 ± 0.68	1.57 ± 0.48	3.13 ± 0.99	2.59 ± 0.8	6.04 ± 1.59
		92.38^{a}	2.81	46.63	62.42	40.25	45.56	19.87
		92.8^{b}	2.77					
		295.22	19.3					
		351.93	37.6					
		609.31	46.1					
		1120.29	15.1					
		1764.49	15.4					
		2204.21	5.08					
		2447.86	1.57					
4	Chowdhury et al. [8]	63.29	4.8	1.81 ± 0.46	1.47 ± 0.41	2.66 ± 0.64	2.23 ± 0.54	5.17 ± 1.05
		295.22	19.3	69.61	75.51	64.66	69.06	49.71
		351.93	37.6					
		609.31	46.1					
		1001.03	0.837					
		1120.29	15.1					
		1764.49	15.4					
S	Jankovic et al. [9]	63.29	4.8	1.79 ± 0.29	1.49 ± 0.27	2.47 ± 0.37	2.26 ± 0.35	3.79 ± 0.38
		351.93	37.6	97.76	104.7	92.31	95.13	67.28
		609.31	46.1					
		1001.03	0.837					
9	Song et al. [10]	63.29	4.8	2.16 ± 0.31	1.78 ± 0.28	2.99 ± 0.39	2.68 ± 0.37	5.26 ± 0.43
		92.38^{a}	2.77	62.96	71.35	56.52	61.94	9.31
		295.22	19.3					
		351.93	37.6					
		609.31	46.1					

238-

S1 no. Research group Photopeuks (acV) Intensity (%) Average $\frac{2^3}{10}$ activity (%), relative et al. [1] Average $\frac{2^3}{10}$ activity (%), relative et al. [1] Average $\frac{2^3}{10}$ activity (%), relative et al. [1] Pail Pail Pail Pail Pail Pail Pail Pail Pail State Substance Pail Pail Substant Substant Substant Substant Substant Substant Pail Substant	Table 7	continued							
7 Mahur et al. [11] 295.22 19.3 1.42 \pm 0.36 1.01 \pm 0.31 2 7 Mahur et al. [11] 295.22 19.3 1.42 \pm 0.36 1.01 \pm 0.31 2 8 Santawamaitre et al. [12] 351.93 37.6 5.282 5.273 5 5 2 3 5 5 2 3 5 3 5 3 5 3 3 5 3 3 5 3 <th>Sl. no.</th> <th>Research group</th> <th>Photopeaks (keV)</th> <th>Intensity (%)</th> <th>Average ²³⁸U a</th> <th>ctivity (Bq), rela</th> <th>tive standard devi</th> <th>iation (RSD in %</th> <th>(</th>	Sl. no.	Research group	Photopeaks (keV)	Intensity (%)	Average ²³⁸ U a	ctivity (Bq), rela	tive standard devi	iation (RSD in %	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					SB1	SB2	PUI	PU2	U-5dps
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	Mahur et al. [11]	295.22	19.3	1.42 ± 0.36	1.10 ± 0.31	2.18 ± 0.52	1.74 ± 0.41	5.12 ± 0.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			351.93	37.6	52.82	52.73	58.71	52.29	55.08
			609.31	46.1					
8 Santawamaire et al. [12] 1120.29 15.1 1.06 \pm 0.71 1.10 \pm 0.42 2 7 1664.49 15.4 35.0 160 \pm 0.71 1.10 \pm 0.42 2 8 Santawamaire et al. [12] 295.22 19.3 21.25 48.18 3 9 Gupta et al. [13], Boukhenfouf and Boucerna [14] 186.21 5.08 1.60 \pm 0.34 2 176.449 15.4 1.62 \pm 0.38 1.34 \pm 0.34 2 9 Gupta et al. [13], Boukhenfouf and Boucerna [14] 186.21 3.59 1.62 \pm 0.38 1.34 \pm 0.34 2 10 Aközean [15], Alaamer [17], Kurnaz et al. [18] 186.21 3.59 1.51 1.716 3 11 Yang et al. [16] 351.03 37.6 1.376 1.68 1 1.75 11 Yang et al. [16] 351.03 37.6 51.11 71.72 5 1202.29 15.1 1.54.04 0.99 \pm 0.33 2 1.716 3 11 Yang et al. [16] 351.03 37.6 1.37.6 1.37.6 1.71.7 7.72 5			1001.03	0.837					
8Santawamaire et al. [12]154491541548Santawamaire et al. [12]186.213.591.60 \pm 0.711.10 \pm 0.422969.3146.16.933146.13.7648.1831120.2915.11120.2915.11.10 \pm 0.42239Gupta et al. [13], Boukherfouf and Boucerna [14]186.213.591.66 \pm 0.381.34 \pm 0.34210Aközan [15], Abukherfouf and Boucerna [14]186.213.591.62 \pm 0.381.34 \pm 0.34211Yang et al. [13], Boukherfouf and Boucerna [14]186.213.591.62 \pm 0.381.34 \pm 0.34211Yang et al. [15], Alaamer [17], Kurnaz et al. [18]186.213.591.35 \pm 0.141.25 \pm 0.13111Yang et al. [16]186.213.591.540.99 \pm 0.3322211Yang et al. [16]351.9337.651.1171.72512351.9337.651.1171.72511Yang et al. [16]351.9337.651.1171.72515351.9337.651.1171.72516351.9355.151.64.901.5417764.9015.446.11.74.901.74.9011Yang et al. [16]351.9337.651.1171.72512351.9337.651.1171.72512124.9015.446.1 <td></td> <td></td> <td>1120.29</td> <td>15.1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			1120.29	15.1					
8 Santawamaire et al. [12] 186.21 3.59 1.60 ± 0.71 1.10 ± 0.42 2 351.93 37.6 4.61 2.95.2 19.3 21.25 48.18 3.3 351.93 15.1 1.10 \pm 0.42 1.5.1 1.5			1764.49	15.4					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	Santawamaitre et al. [12]	186.21	3.59	1.60 ± 0.71	1.10 ± 0.42	2.48 ± 1.01	1.92 ± 0.79	5.62 ± 1.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			295.22	19.3	21.25	48.18	32.26	30.73	25.98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			351.93	37.6					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			609.31	46.1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1120.29	15.1					
			1238.11	5.79					
9Gupta et al. [13], Boukhenfouf and Boucenna [14] 186.21 5.08 296.22 0.3 3.59 1.62 ± 0.38 1.34 ± 0.34 2 295.22 19.3 37.6 9.3 37.6 37.6 3 35193 37.6 609.31 46.1 17.16 3 10 Aközcan [15], Alaamer [17], Kurnaz et al. [18] 186.21 3.59 1.38 ± 0.14 1.25 ± 0.13 1 11 Yang et al. [16] 35193 37.6 1.38 ± 0.14 1.25 ± 0.13 1 609.31 46.1 1.36 1.38 ± 0.14 1.25 ± 0.13 1 11 Yang et al. [16] 35193 37.6 1.38 ± 0.14 1.25 ± 0.13 1 609.31 46.1 3.59 1.38 ± 0.14 0.99 ± 0.33 2 11 Yang et al. [16] 35193 37.6 51.11 71.72 5 609.31 60.931 46.1 71.72 5 768.4 4.94 $1.254.0.49$ 0.99 ± 0.33 2 1202.9 15.1 71.72 5.79 1.110 71.72 5 1764.49 $1.264.9$ 15.1 71.72 5.79 1764.49 15.1 5.79 15.1 71.72 5.79 1238.11 5.79 15.1 71.72 5.79 1764.49 15.1 5.79 15.4 $1.764.9$ 1764.49 15.1 5.79 1.54			1764.49	15.4					
9Gupta et al. [13], Boukhenfouf and Boucenna [14] 186.21 3.59 1.62 ± 0.38 1.34 ± 0.34 2 295.22 19.3 22.22 17.16 3 351.93 37.6 46.1 15.4 15.4 10 Aközcan [15], Alaamer [17], Kurnaz et al. [18] 186.21 3.59 15.4 11 Yang et al. [16] 351.93 37.6 1.38 ± 0.14 1.25 ± 0.13 1 11 Yang et al. [16] 351.93 37.6 13.76 16.8 1 11 Yang et al. [16] 351.93 37.6 51.11 71.72 5 551.93 37.6 51.11 71.72 5 5 11 Yang et al. [16] 186.21 3.59 1.35 ± 0.49 0.99 ± 0.33 2 11 Yang et al. [16] 186.21 3.59 1.35 ± 0.49 0.99 ± 0.33 2 11 Yang et al. [16] 186.21 3.59 1.35 ± 0.49 0.99 ± 0.33 2 120229 $1.86.21$ 3.59 1.35 ± 0.49 0.99 ± 0.33 2 110 Yang et al. [16] 186.21 3.59 1.35 ± 0.49 0.99 ± 0.33 2 11 Yang et al. [16] 1.25 ± 0.12 1.35 ± 0.49 0.99 ± 0.33 2 10 1.25 ± 0.12 1.35 ± 0.49 0.99 ± 0.33 2 10 1.25 ± 0.12 1.25 ± 0.12 1.25 ± 0.13 1.25 ± 0.13 1.25 ± 0.13 10 1.2029 1.2029 1.2029 1.35 ± 0.49 <td></td> <td></td> <td>2204.21</td> <td>5.08</td> <td></td> <td></td> <td></td> <td></td> <td></td>			2204.21	5.08					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Gupta et al. [13], Boukhenfouf and Boucenna [14]	186.21	3.59	1.62 ± 0.38	1.34 ± 0.34	2.45 ± 0.55	2.01 ± 0.44	5.85 ± 1.02
$\begin{array}{llllllllllllllllllllllllllllllllllll$			295.22	19.3	22.22	17.16	33.06	18.40	24.96
			351.93	37.6					
			609.31	46.1					
10Aközcan [15], Alaamer [17], Kurnaz et al. [18]15.415.410Aközcan [15], Alaamer [17], Kurnaz et al. [18]186.213.591.38 \pm 0.141.25 \pm 0.131351.9337.613.7616.8111Yang et al. [16]3.591.35 \pm 0.490.99 \pm 0.3321251.9337.651.1171.7251376.4446.176.8449.41120.2915.11120.2915.11238.115.7915.11764.4915.4			1120.29	15.1					
10Aközcan [15], Alamer [17], Kurnaz et al. [18]186.21 3.59 1.38 ± 0.14 1.25 ± 0.13 1351.93 37.6 13.76 16.8 111Yang et al. [16] 351.93 37.6 1.35 ± 0.49 0.99 ± 0.33 212 351.93 37.6 51.11 71.72 5 12 768.4 494 46.1 71.72 5 12 768.4 4.94 1120.29 15.1 71.72 5 12 768.4 4.94 5.79 15.1 71.72 5 12 764.49 15.1 5.79 15.1 71.72 5.79			1764.49	15.4					
351.9337.613.7616.81.11Yang et al. [16] 609.31 46.1 1.35 ± 0.49 0.99 ± 0.33 2 351.93 37.6 51.11 71.72 5 609.31 46.1 76.44 494 1120.29 15.1 1120.29 15.1 1723.11 5.79 5.79 1764.49 15.4	10	Aközcan [15], Alaamer [17], Kurnaz et al. [18]	186.21	3.59	1.38 ± 0.14	1.25 ± 0.13	1.99 ± 0.17	1.82 ± 0.17	4.71 ± 0.26
11Yang et al. [16]609.3146.111Yang et al. [16]186.213.59 1.35 ± 0.49 0.99 ± 0.33 2351.9337.651.1171.725609.3146.1768.44.941120.2915.1111238.115.791764.4915.4			351.93	37.6	13.76	16.8	15.58	12.64	5.52
11 Yang et al. [16] 186.21 3.59 1.35 ± 0.49 0.99 ± 0.33 2 351.93 37.6 51.11 71.72 5 609.31 46.1 71.72 5 768.4 4.94 1120.29 15.1 1238.11 5.79 174.49 15.4			609.31	46.1					
351.93 37.6 51.11 71.72 5 609.31 46.1 46.1 76.84 4.94 768.4 4.94 1120.29 15.1 1120.29 15.1 5.79 1764.49 15.4	11	Yang et al. [16]	186.21	3.59	1.35 ± 0.49	0.99 ± 0.33	2.06 ± 0.66	1.57 ± 0.53	4.71 ± 1.10
609.31 46.1 768.4 4.94 1120.29 15.1 1238.11 5.79 1764.49 15.4			351.93	37.6	51.11	71.72	57.77	57.96	54.99
768.4 4.94 1120.29 15.1 1238.11 5.79 1764.49 15.4			609.31	46.1					
1120.29 15.1 1238.11 5.79 1764.49 15.4			768.4	4.94					
1238.11 5.79 1764.49 15.4			1120.29	15.1					
1764.49 15.4			1238.11	5.79					
			1764.49	15.4					

 $\underline{\textcircled{O}}$ Springer

Sl. no.	Research group	Photopeaks (keV)	Intensity (%)	Average ²³⁸ U	activity (Bq), rela	ttive standard dev	iation (RSD in 9	(9)
				SB1	SB2	PUI	PU2	U-5dps
12	Ele Abiama et al. [20]	609.31	46.1	1.38 ± 0.48	0.88 ± 0.3	2.12 ± 0.64	1.54 ± 0.5	4.75 ± 1.08
		768.4	4.94	60.87	93.18	67.92	71.43	66.95
		1120.29	15.1					
		1238.11	5.79					
		1764.49	15.4					
13	Aytekin et al. [21], Alfonso et al. [22]	295.22	19.3	1.48 ± 0.11	1.15 ± 0.10	2.14 ± 0.14	1.86 ± 0.13	5.19 ± 0.27
		351.93	37.6	5.41	8.69	2.80	10.21	11.37
		609.31	46.1					
14	Chakraborty [30], Tchokossa et al. [35]	351.93	37.6	1.6 ± 0.27	1.28 ± 0.25	2.77 ± 0.45	2.14 ± 0.33	5.98 ± 0.81
		609.31	46.1	14.37	20.31	37.18	17.76	32.44
		1120.29	15.1					
15	Matiullah et al. [42]	295.22	19.3	1.57 ± 0.28	1.25 ± 0.26	2.59 ± 0.46	2.03 ± 0.34	5.95 ± 0.83
		351.93	37.6	12.74	17.6	35.13	18.72	26.72
		609.31	46.1					
		1120.29	15.1					
16	Pinto et al. [43]	609.31	46.1	1.87 ± 0.34	1.47 ± 0.3	2.93 ± 0.51	2.31 ± 0.4	6.68 ± 0.97
		1120.29	15.1	17.11	12.92	31.74	10.39	24.7
		1764.49	15.4					
17	El-Taher and Madkour [45]	351.93	37.6	1.72 ± 0.23	1.29 ± 0.18	2.34 ± 0.27	2.06 ± 0.25	5.53 ± 0.57
		609.31	46.1	25	21.7	12.39	12.62	21.16
		1764.49	15.4					
18	Murty and Karunakara [50]	351.93	37.6	1.75 ± 0.35	1.36 ± 0.30	2.75 ± 0.51	2.18 ± 0.4	6.21 ± 0.98
		609.31	46.1	20	19.11	30.54	14.68	26.57
		1120.29	15.1					
		1764.49	15.4					

Table 8	Calculated activity or	f different daughter radi	onuclides of ²³² Th unc	ler different photopeak	s using 2 dps Th stand	lard (STh)		
Sl. no.	Radionuclide	Photopeak (keV)	Intensity (%)	SB1	SB2	PUI	PU2	Th-5 dps
1	²⁰⁸ TI	277.35	6.31	0.36 ± 0.14	0.26 ± 0.17	1.05 ± 0.19	0.82 ± 0.2	3.91 ± 0.41
2	^{228}Ac	338.32	11.27	2.16 ± 0.10	1.57 ± 0.08	2.14 ± 0.1	2.26 ± 0.1	7.7 ± 0.28
3	^{228}Ac	463.00	4.4	1.25 ± 0.21	2.14 ± 0.27	1.99 ± 0.29	2.51 ± 0.32	9 ± 0.9
4	208 TI	583.19	84.5	1.78 ± 0.07	1.65 ± 0.06	2.43 ± 0.08	2.14 ± 0.07	6.05 ± 0.17
5	^{212}Bi	727.33	6.58	2.02 ± 0.2	0.85 ± 0.13	1.92 ± 0.19	2.42 ± 0.22	5.43 ± 0.43
9	208 TI	860.56	12.42	0.16 ± 0.16	1.56 ± 0.23	2.36 ± 0.29	2.32 ± 0.27	5.84 ± 0.54
7	^{228}Ac	911.20	25.8	1.82 ± 0.07	1.34 ± 0.06	2.25 ± 0.09	2.09 ± 0.08	6.97 ± 0.21
8	^{228}Ac	968.97	15.8	2.61 ± 0.2	2.81 ± 0.2	4.19 ± 0.28	2.32 ± 0.18	12.54 ± 0.77
9	208 TI	2614.53	66	1.75 ± 0.09	1.09 ± 0.07	1.92 ± 0.11	2.19 ± 0.11	5.33 ± 0.24
Mean val 3, 4, 5,	ues of activities obtai 6, 7, 8 and 9 (%RSD	ned from photopeaks ha	tving serial nos. 1, 2,	$1.55 \pm 0.45 \ (52.26)$	$1.47 \pm 0.48 \ (49.66)$	$2.25 \pm 0.6 \; (36.89)$	$2.12 \pm 0.58 \; (23.58)$	$6.96 \pm 1.5 \ (36.78)$
Mean val 4, 5, 6,	tues of activities obtai 7 and 9 (%RSD)	ned from photopeaks ha	tving serial nos. 2, 3,	$1.56 \pm 0.37 \ (43.59)$	$1.46 \pm 0.40 \ (28.77)$	$2.14 \pm 0.49 \ (9.81)$	$2.28 \pm 0.51 \ (6.58)$	$6.60 \pm 1.22 \ (20.76)$
Mean val 5, 6 and	lues of activities obtai 1 9 (%RSD)	ned from photopeaks ha	tving serial nos. 2, 4,	$1.57 \pm 0.29 \ (51.59)$	$1.34 \pm 0.29 \ (26.12)$	$2.15 \pm 0.39 \ (11.16)$	2.27 ± 0.39 (4.84)	$6.05 \pm 0.81 \ (16.19)$
Mean val 2,4,5,6,'	T and 9 (%RSD)	ined from photopeaks ha	aving serial nos.	$1.62 \pm 0.31 \ (45.06)$	$1.34 \pm 0.29 \ (23.13)$	$2.17\pm 0.39~(10.13)$	$2.24 \pm 0.39 \ (5.35)$	$6.20 \pm 0.83 \; (15.32)$
Mean val and 9 ('	lues of activities obta %RSD)	ined from photopeaks ha	aving serial nos. 4,7	$1.78 \pm 0.14 \; (1.68)$	$1.36 \pm 0.11 \ (20.59)$	$2.20 \pm 0.16 \; (11.82)$	$2.14 \pm 0.16 \ (2.34)$	$6.09 \pm 0.36 \; (14.28)$
Mean val and 7 ('	lues of activities obta %RSD)	ined from photopeaks ha	aving serial nos. 2, 4	$1.92 \pm 0.14 \; (10.94)$	$1.52 \pm 0.12 \ (10.53)$	2.27 ± 0.16 (6.17)	$2.17 \pm 0.15 \ (4.15)$	$6.91 \pm 0.39 \ (11.87)$
%RSD vi	alue in parenthesis							

Table 9 Photopeaks of 232 Th series suitable for quantitative analysis of 232 Th

Sl. no.	Daughter	Energy (keV)	Intensity (%)
1	²²⁸ Ac	338.32	11.27
2	²²⁸ Ac	463.00	4.4
3	²⁰⁸ Tl	583.19	84.5
4	²¹² Bi	727.33	6.58
5	²⁰⁸ Tl	860.56	12.42
6	²²⁸ Ac	911.20	25.8
7	²²⁸ Ac	968.97	15.8
8	²⁰⁸ Tl	2614.53	99

standard spectra. Analysis of the obtained gamma-spectra was done using GENIE 2K software, also procured from CANBERRA.

Result and discussion

In principle, the activities of ²²⁶Ra, ²¹⁴Pb and ²¹⁴Bi, (all of them are member of ²³⁸U series) should be same as they are in secular equilibrium. But in practice slight difference is always observed between the measured activities of different isotopes or even in between the different peaks of same isotope. We have measured activities of ²³⁸U for all four samples SB1, SB2, PU1, PU2 and 5 dps test sample (SU) using 2 dps standard for all the photopeaks listed in Table 3 and tabulated the activity values in Table 5. It is clear from Table 5 that still some of the photopeaks do not qualify for quantitative measurement of ²³⁸U. These photopeaks are 131.3 keV (²³⁴Pa), 152.7 keV (²³⁴Pa), 733.4 keV (²³⁴Pa), 768.4 keV (²¹⁴Bi), 831.5 keV (²³⁴Pa) and 946 keV (²³⁴Pa). These peaks give either too low or too high value, as compared to other photopeaks. There may be multiple reasons for the disqualification of these photopeaks, such as low intensity and overlapping with other low abundance nearby photopeaks, location of the peak at the Compton edge of other photopeak, etc. Therefore we have not considered these photopeaks suitable for quantitative analysis of U content from natural samples and deleted in the next stage of selection of photopeaks. In Table 6 we have listed photopeaks of ²³⁸U series still suitable for analysis of uranium content. Now the pertinent question is whether all the photopeaks listed in Table 6 have same merit? More elaborately, whether one can take average of all the photopeaks listed in Table 6 to report uranium content of the sample or one can take arbitrarily average of activities obtained from few of these photopeaks? To answer these questions, we go back to bottom part of Table 5, wherein we have calculated the activity of U in samples SB1, SB2, PU1, PU2 by taking average of activities under various combinations of photopeaks and also calculated relative standard deviation (RSD = $\frac{\text{standard deviation}}{\text{mean value}} \times 100$) of the activities obtained in different photopeaks. The RSD values varied from 2.8 % to as high as 76.8 %. The RSD value need to be as low as possible to get the best estimate using set of good photopeak combinations. Table 5 suggests that average of activity calculated from 295.22, 351.93 and 609.3 keV gives minimum RSD value and therefore can be used to report uranium content of natural samples in a statistically reliable manner.

To further validate our result, we have calculated the activity of our four test samples with different combinations of photopeaks as taken by different researchers in Table 7. Only those results have been taken into account where the researchers selected three or more photopeaks. In some cases the RSD was even close to 100 %. For example, the RSD was ~ 100 % for all the samples, when photopeaks were selected as per Jankovic et al. [9] (entry no 5 in Table 7). This is because along with two good peaks they also selected two very low intensity peaks, 63.29 and 1001.03 keV. Only two groups of researchers, Aytekin et al. [21], and Alfonoso et al. [22] selected the photopeaks as proposed by us (295.22, 351.93 and 609.3 keV). However, these authors never mentioned the reason for choosing such photopeaks and therefore their selection can be considered "accidentally right selection." The RSD value was found to be minimal for these photopeaks compared to any other entry in the table, which corroborates and strongly validates our recommended approach.

The same approach has been resorted to for the quantification of ²³²Th in all four samples by measuring activity under different photopeaks listed in Table 4. In all measurements 2 dps ²³²Th standard was used. Also a 5 dps ²³²Th (STh) sample was taken as known strength. All such results have been tabulated in Table 8. The RSD values between various sets of photopeaks are closer in ²³²Th series when compared to that of ²³⁸U series. The 277.35 keV photopeak from ²⁰⁸Tl gave very low activity for all four samples. However, all other photopeaks provided more or less acceptable results. Therefore, using the same analogy as that of uranium, we have listed acceptable photopeaks of ²³²Th series in Table 9, which indicates 8 numbers of photopeaks might be suitable for ²³²Th analysis. However, the same questions arise again. Whether all of these photopeaks have same merit? Whether one can choose any number of photopeaks from Table 9, and report the mean as ²³²Th content in the sample? To answer this question, we have shown few combinations at the bottom of Table 8, with RSD for each combination.

Table 10 Activity of ²³²Th obtained for four test samples with different sets of photopeaks as taken by different researchers (see Table 1)

Sl.	Research group	Photopeaks (keV)	Intensity	Intensity Average ²³² Th acti (%)		activity (Bq), relative standard deviation (RSD in %)			
no.		(KCV)	(70)	SB1	SB2	PU1	PU2	Th-5dps	
1	Wang et al. [6]	338.32	11.27	2.19 ± 0.24	1.91 ± 0.23	2.86 ± 0.31	2.22 ± 0.23	9.07 ± 0.84	
	Matiullah and Malik [42]	911.20	25.8	17.81	41.36	40.56	5.41	33.41	
		968.97	15.8						
2	Al-Sharkawy et al. [7]	583.19	6.58	2.08 ± 3.55	2.14 ± 5.05	2.76 ± 3.89	2.92 ± 4.53	7.22 ± 7.35	
		727.33	84.5	86.06	127.10	59.42	64.38	56.23	
		860.56	12.42						
		911.20	25.8						
		964.76 ^c	4.99						
		968.97	15.8						
		1588.19	3.22						
		1620.7	1.49						
		2614.53	99						
3	Chowdhury et al. [8]	238.63	43.3	2.08 ± 0.32	1.66 ± 0.27	2.57 ± 0.38	2.25 ± 0.32	7.55 ± 0.97	
		338.32	11.27	13.94	39.16	31.91	5.33	34.04	
		583.19	6.58						
		727.33	84.5						
		911.20	25.8						
		968.97	15.8						
4	Song et al. [10]	238.63	43.3	1.89 ± 0.11	1.58 ± 0.09	2.38 ± 0.13	2.17 ± 0.12	6.54 ± 0.29	
		583.19	6.58	7.94	13.92	5.04	4.15	7.03	
		911.20	25.8						
5	Mahur et al. [11], Gupta et al.	238.63	43.3	1.99 ± 0.37	1.75 ± 0.38	2.49 ± 0.47	2.31 ± 0.45	8.04 ± 1.31	
	[13]	338.32	11.27	22.61	38.28	34.54	6.06	31.09	
		463.00	4.4						
		727.33	6.58						
		911.20	25.8						
		968.97	15.8						
6	Santawamaitre et al. [12]	238.63	43.3	2.27 ± 3.51	2.24 ± 5.04	2.64 ± 3.68	2.65 ± 4.32	7.43 ± 7.22	
		300.09	3.28	72.69	119.64	67.42	78.49	38.89	
		338.32	11.27						
		583.19	84.5						
		727.33	6.58						
		911.20	25.8						
		968.97	15.8						
		1620.5	1.49						
		2614.53							
7	Boukhenfouf and Boucenna [14]	238.63	43.3	1.51 ± 0.29	1.53 ± 0.33	2.38 ± 1.21	2.21 ± 1.28	6.53 ± 1.02	
		338.32	11.27	67.55	53.59	41.59	4.98	56.35	
		583.19	84.5						
		860.56	12.42						
		911.20	25.8						
		964.76°	4.99						
		968.97	15.8						

Table 10 continued

Sl.Research groupPhotopeaksIntenno.(keV)(%)		Intensity (%)	Average ²³² T	Th activity (Bq), relative standard deviation (RSD in %)				
			()	SB1	SB2	PU1	PU2	Th-5dps
8	Yang et al. [16], Ele Abiama	238.63	43.3	1.74 ± 0.25	1.52 ± 0.24	2.25 ± 0.32	1.85 ± 0.24	6.64 ± 0.86
	et al. [20]	338.32	11.27	51.72	59.21	59.55	49.19	60.39
		583.19	84.5					
		911.20	25.8					
		968.97	15.8					
		974.2 ^d	0.050					
9	Aytekin et al. [41]	338.32	11.27	1.92 ± 0.14	1.52 ± 0.12	2.27 ± 0.16	2.17 ± 0.15	6.91 ± 0.39
		583.19	84.5	10.94	10.53	6.17	4.15	11.87
		911.20	25.8					
10	Rajeshwari et al. [41]	238.63	43.3	1.85 ± 0.14	1.46 ± 0.12	2.27 ± 0.17	2.18 ± 0.16	6.22 ± 0.37
		583.19	84.5	7.57	20.55	11.01	3.67	12.06
		911.20	25.8					
		2614.53	99					
11	Al-Jundi et al. [49]	238.63	43.3	2.07 ± 0.23	1.89 ± 0.22	$.84 \pm 0.31$	2.21 ± 0.22	8.04 ± 0.82
		583.19	6.58	18.36	33.86	232.04	4.98	37.56
		911.20	25.8					
		968.97	15.8					
12	Murty and Karunakara [50]	583.19	6.58	1.78 ± 0.14	1.36 ± 0.11	2.19 ± 0.16	2.14 ± 0.16	6.09 ± 0.36
		911.20	25.8	1.68	20.59	11.87	2.34	14.28
		2614.53	99					

^c 964.76 keV photopeak is present on the shoulder of 968.97 keV photopeak, therefore couldnot be resolved and not included in calculation

^d 974.2 keV photopeak is present on the trail of 968.97 photopeak, therefore counldnot be resolved and not included in calculation

Sl. no.	Daughter	Energy (keV)	Intensity (%)		
Photopeak	s of ²³⁸ U				
1	²¹⁴ Pb	295.22	19.3		
2	²¹⁴ Pb	351.93	37.6		
3	²¹⁴ Bi	609.31	46.1		
Photopeak	s of ²³² Th				
1	²²⁸ Ac	338.32	11.27		
2	²⁰⁸ Tl	583.19	84.5		
3	²²⁸ Ac	911.20	25.8		

 Table 11
 Final recommended photopeaks of ²³⁸U and ²³²Th series

 suitable for low-level radioactivity measurement

The minimum and maximum RSD amongst different combination was 1.7 and 52.6 % respectively. However, average of activity obtained from 338.32, 583.19 and 911.20 keV yielded minimum RSD value, and hence recommended as the best combination of photo-peaks to measure ²³²Th.

Again to validate our approach for ²³²Th series, we have tabulated the activity of four test samples SB1, SB2, PU1, PU2 with different combinations of photopeaks of ²³²Th series as taken by different researchers in Table 10. The results are more consistent vis-a-vis the U series, but as high as 127 % RSD was observed in particular combination of photopeaks. Again, brilliantly Aytekin et al. [21] reported natural radioactivity in Black sea region of Turkey using the photopeaks as proposed by us (338.32, 583.19, and 911.20 keV), and have the lowest RSD compared to any other entry in the table, further corroborating and validating our proposed approach for measurement of low level environmental radioactivity.

In Table 11, we list our final proposed recommendations related to the appropriate selection of photopeaks from ²³⁸U series and ²³²Th series for carrying out statistically reliable quantitative measurement of NORMs like ²³⁸U and ²³²Th. It should however be kept in mind that this recommendation should not be treated as the ultimate one as the role of detector used, sample size, counting time etc. still needs to be further investigated. However, the above discussion advocates to take at least three photopeaks for quantitative measurement of low-level ²³⁸U/²³²Th, especially in natural samples and the best combination of photopeaks is that one where minimal RSD value is obtained.

Conclusion

Measurement of naturally occurring radionuclide materials (NORMs) is becoming increasingly important in the present world scenario. In conclusion it can be stated that the present work is the first attempt to systematically investigate the contribution of photopeaks and has come out with a prescription to get a better and statistically reliable estimate of activity/concentration of radionuclides while carrying out low-level radioactivity measurements. It would be interesting to extend the work further to understand the role of parameters like nature of detector, sample size, counting time etc. in the study of environmental radioactivity. This paper also states that RSD between different photopeaks is one of the important criteria to impose restrictions on the arbitrariness on choice of photopeaks for quantitative measurement of low-level ²³⁸U or ²³²Th in natural samples.

Acknowledgments This work is part of DAE-SINP 12 five-year plan project TULIP (Trace, ULtratrace Analysis and Isotope Production). One of the authors, NN would like to thank University Grants Commission (UGC) for providing the necessary fellowship. AS would like to place in record the financial support given to him by UGC-DAE and Alexander von Humboldt Foundation, Bonn, Germany to enable him to participate in NORM related studies in India and Germany. The financial support used for collection of sample given under DST PURSE program to Panjab University, Chandigarh is also thankfully acknowledged. PC would like to acknowledge Scientific and Engineering Research Board (SERB), Department of Science and Technology, Govt. of India for financial support.

References

- Mohapatra S, Sahoo SK, Dubey JS, Patra AC, Thakur VK, Tripathy SK, Vidyasagar D, Godbole SV, Ravi PM, Tripathi RM (2015) On the radiological assessment of natural and fallout radioactivity in a natural high background radiation area at Odisha, India. J Radioanal Nucl Chem 303:2081–2092
- 2. http://www.nndc.bnl.gov/chart. Accessed 15 Nov 2015
- Srivastava A, Lahiri S, Maiti M, Knolle F, Hoyler F, Scherer UW, Schnug EW (2014) Study of naturally occurring radioactive material (NORM) in top soil of Punjab State from the North Western part of India. J Radioanal Nucl Chem 302:1049–1052
- Sengupta D, Mittal S, Parial K (2014) Radiometric studies and base line calibrations for NORM and TENORM studies. In: Sengupta D (ed) Recent trends in modelling of environmental contaminants. Springer India, New Delhi, pp 1–20
- Sartandel SJ, Chinnaesakki S, Bara SV, Krishna NS, Vinod Kumar A, Tripathi RM (2014) Assessment of natural and fallout radioactivity in soil samples of Visakhapatnam. J Radioanal Nucl Chem 299:337–342
- Wang Q, Song J, Li X, Yuan H, Li N, Cao L (2015) Environmental radionuclides in a coastal wetland of the Southern Laizhou Bay, China. Mar Pollut Bull 97:506–511
- Al-Sharkawy A, Hiekal MTh, Sherif MI, Badran HM (2012) Environmental assessment of gamma-radiation levels in stream sediments around Sharm El-Sheikh, South Sinai, Egypt. J Environ Radioact 112:76–82

- Chowdhury MI, Alam MN, Hazari SKS (1999) Distribution of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Appl Radiat Isot 51:747–755
- Janković M, Todorović D, Savanović M (2008) Radioactivity measurements in soil samples collected in the Republic of Srpska. Radiat Meas 43:448–1452
- Song G, Chen D, Tang Z, Zhang Z, Xie W (2012) Natural radioactivity levels in topsoil from the Pearl River Delta Zone, Guangdong, China. J Environ Radioact 103:48–53
- 11. Mahur AK, Gupta M, Varshney R, Sonkawade RG, Verma KD, Prasad R (2013) Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of National Thermal Power Corporation, Dadri (U.P.), India. Radiat Meas 50:130–135
- 12. Santawamaitre T, Malain D, Al-Sulaiti HA, Bradley DA, Matthews MC, Regan PH (2014) Determination of ²³⁸U, ²³²Th and ⁴⁰K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J Environ Radioact 138:80–86
- Gupta M, Chauhan RP, Garg A, Kumar S, Sonkawade RG (2010) Estimation of radioactivity in some sand and soil samples. Indian J Pure Appl Phys 48:482–485
- Boukhenfouf W, Boucenna A (2011) The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. J Environ Radioact 102:336–339
- Aközcan S (2012) Distribution of natural radionuclide concentrations in sediment samples in Didim and Izmir Bay (Aegean Sea-Turkey). J Environ Radioact 112:60–63
- Yang YX, Wu XM, Jiang ZY, Wang WX, Lu JG, Lin J, Wang LM, Hsia YF (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isot 63:255–259
- Alaamer AS (2008) Assessment of human exposures to natural sources of radiation in soil of Riyadh, Saudi Arabia. Turk J Eng Environ Sci 32:229–234
- Kurnaz A, Küçükömeroğlu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289
- Patnaik R, Lahiri S, Chahar V, Naskar N, Sharma PK, Avhad DK, Bassan MKT, Knolle F, Schnug E, Srivastava A (2016) Study of uranium mobilization from Himalayan Siwaliks to the Malwa Region of Panjab State in India. J Radioanal Nucl Chem 308:913–918
- Ele Abiama P, Owono Ateba P, Ben-Bolie GH, Ekobena FHP, El Khoukhi T (2010) High background radiation investigated by gamma spectrometry of the soil in the southwestern region of Cameroon. J Environ Radioact 101:739–743
- Aytekin H, Çağatay Tufan M, Küçük C (2015) Natural radioactivity measurements and dose assessments in sand samples collected from Zonguldak beaches in Turkey. J Radioanal Nucl Chem 303:2227–2232
- Alfonso AJ, Pérez K, Palacios D, Handt H, LaBrecque JJ, Mora A, Vásquez Y (2014) Natural radioactivity studies of Bidar soil samples using gamma spectrometry. J Radioanal Nucl Chem 300:219–224
- Hannan M, Wahid K, Nguyen N (2015) Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. J Radioanal Nucl Chem 305:573–582
- 24. Adukpo OK, Faanu A, Lawluvi H, Tettey-Larbi L, Emi-Reynolds G, Darko EO, Kansaana C, Kpeglo DO, Awudu AR, Glover ET, Amoah PA, Efa AO, Agyemang LA, Agyeman BK, Kpordzro R, Doe AI (2015) Distribution and assessment of radionuclides in sediments, soil and water from the lower basin of river Pra in the Central and Western Regions of Ghana. J Radioanal Nucl Chem 303:1679–1685

- 25. Ravisankar R, Chandramohan J, Chandrasekaran A, Prince Prakash Jebakumar J, Vijayalakshmi I, Vijayagopal P, Venkatraman B (2015) Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar Pollut Bull 97:419–430
- Potoki I, Parlag O, Maslyuk V, Lengyel A, Torich Z (2015) Long-term monitoring of natural radionuclides in Uzhgorod city, Ukraine. J Radioanal Nucl Chem 306:249–255
- Bakım M, Uğur Görgün A (2015) Radioactivity in soils and some terrestrial foodstuffs from organic and conventional farming areas in Izmir, Turkey. J Radioanal Nucl Chem 306:237–242
- Kobya Y, Taşkin H, Yeşilkanat CM, Varinlioğlu A, Korcak S (2015) Natural and artificial radioactivity assessment of dam lakes sediments in Çoruh River, Turkey. J Radioanal Nucl Chem 303:287–295
- Isinkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J Radiat Res Appl Sci 8:459–469
- Chakraborty SR (2014) Radiological assessment of the surface soil of Bangladesh. Nucl Technol Radiat Prot 29:67–78
- Manigandhan PK, Chandar Shekar B (2014) Measurement of radioactivity in an elevated radiation background area of Western Ghats. Nucl Technol Radiat Prot 29:128–134
- 32. Yadav M, Rawat M, Dangwal A, Prasad M, Gusain GS, Ramola RC (2014) Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya. J Radioanal Nucl Chem 302:869–873
- Bala P, Mehra R, Ramola RC (2014) Distribution of natural radioactivity in soil samples and radiological hazards in building material of Una, Himachal Pradesh. J Geochem Explor 142:11–15
- 34. Canbazoğlu C, Turhan Ş, Bakkal S, Uğur FA, Gören E (2013) Analysis of gamma emitting radionuclides (terrestrial and anthropogenic) in soil samples from Kilis province in south Anatolia, Turkey. Ann Nucl Energy 62:153–157
- Tchokossa P, Makon TB, Nemba RM (2012) Assessment of radioactivity contents and associated risks in some soil used for agriculture and building materials in Cameroon. J Environ Prot 3:1571–1578
- 36. Singh S, Rani A, Mahajan RK (2005) ²²⁶Ra, ²³²Th and ⁴⁰Kanalysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39:431–439
- 37. Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure

germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57:109-119

- Alatise OO, Babalola IA, Olowofela JA (2008) Distribution of some natural gamma-emitting radionuclides in the soils of the coastal areas of Nigeria. J Environ Radioact 99:1746–1749
- Agbalagba EO, Onoja RA (2011) Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. J Environ Radioact 102:667–671
- 40. Ahmed NK, Mohamed El-Arabi AG (2005) Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J Environ Radioact 84:51–64
- Rajeshwari T, Rajesh S, Kerur BR, Anilkumar S, Krishnan N, Pant AD (2014) Natural radioactivity studies of Bidar soil samples using gamma spectrometry. J Radioanal Nucl Chem 300:61–65
- 42. Matiullah, Malik F (2014) Natural radioactivity in sand samples collected along the bank of river Indus in the area spanning over Gilgit to Lowarian Pakistan: assessment of its radiological hazards. J Radioanal Nucl Chem 299:373–379
- 43. Pinto P, Yerol N (2014) Studies on the seasonal variation and vertical profiles of natural radionuclides in high background radiation areas of Kerala on the south west coast of India. J Radioanal Nucl Chem 302:813–817
- 44. Jeevarenuka K, Pillai GS, Hameed PS, Mathiyarasu R (2014) Evaluation of natural gamma radiation and absorbed gamma dose in soil and rocks of Perambalur district (Tamil Nadu, India). J Radioanal Nucl Chem 302:245–252
- 45. El-Taher A, Madkour HA (2011) Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast. Appl Radiat Isot 69:550–558
- 46. Powell BA, Hughes LD, Soreefan AM, Falta D, Wall M, DeVol TA (2007) Elevated concentrations of primordial radionuclides in sediments from the Reedy River and surrounding creeks in Simpsonville, South Carolina. J Environ Radioact 94:21–128
- 47. Özmen SF, Cesur A, Boztosun I, Yavuz M (2014) Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey. Radiat Phys Chem 103:37–44
- Rani A, Singh S (2005) Natural radioactivity levels in soil samples from some areas of Himachal Pradesh, India using γ-ray spectrometry. Atmos Environ 39:6306–6314
- Al-Jundi J, Al-Bataina BA, Abu-Rukah Y, Shehadeh HM (2003) Natural radioactivity concentrations in soil samples along the Amman Aqaba Highway, Jordan. Radiat Meas 36:555–560
- Murty VRK, Karunakara N (2008) Natural radioactivity in the soil samples of Botswana. Radiat Meas 43:1541–1545