
Enhanced accumulation of U(VI) by Aspergillus oryzae mutant
generated by dielectric barrier discharge air plasma

Wencheng Song1,2 • Xiangxue Wang2,3 • Wen Tao2 • Hongqing Wang4 •

Tasawar Hayat5,6 • Xiangke Wang2,3,5

Received: 31 May 2016 / Published online: 15 July 2016
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Abstract Aspergillus oryzae was isolated from radionu-

clides’ contaminated soils, and dielectric barrier discharge

plasma was used to mutate A. oryzae to improve biore-

mediation capability of U(VI) pollution. The maximum

accumulation capacities of U(VI) on mutated A. oryzae was

627.4 mg/g at T = 298 K and pH = 5.5, which was

approximately twice than that of raw A. oryzae. XPS

analysis indicated that U(VI) accumulation on mutated A.

oryzae was largely attributable to nitrogen- and oxygen-

containing functional groups on fungal mycelia. The

mutated A. oryzae can be harnessed as bioremediation

agents for radionuclides pollution.

Keywords Accumulation � Aspergillus oryzae � Mycelia �
U(VI)

Introduction

Pollution caused by radionuclides has attracted much

attention as a result of the development of nuclear science

and technology. The presence of radionuclides in the envi-

ronment would hazard human health [1–4]. Conventional

technologies have been developed for the removal of

radionuclides from the environment. For example, coagu-

lation-flocculation [5], precipitation [6, 7], adsorption

[8–10], ion exchange [11], and membrane filtration [12] have

been gradually employed for the treatment of radionuclides

contaminated wastewaters. Although these methods have

been widely used, they have many limitations, such as

complex measurement and operation procedures, high cost,

and easily caused secondary pollution [13]. For the past few

years, bioremediation using microorganisms is more

advantageous for the removal of radionuclides from the

radioactive environment owing to its little by-product, high-

performance, and low-cost technology [14, 15]. Therefore,

plenty of microorganisms have been used for removal of

radionuclides from solution, such as bacteria [16, 17], yeasts

[18], fungi [19, 20], and algae [21]. Among them, fungi are

suitable bioremediation agents with favorable prospects for

the enrichment of radionuclides from liquid wastes [19]. In

order to increase the bioremediation capacity of microor-

ganisms, many mutation methods have been used. For

example, heavy-ion irradiation mutagenesis of Nan-

nochloropsis greatly improved lipid productivity and TAG

content [22]; Hydroxylamine hydrochloride and UV light

were used to mutate Penicillium funiculosum and adsorption
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performance of U(VI) on P. funiculosum was greatly

improved [23].

Atmospheric pressure dielectric barrier discharge (DBD)

air plasma, one of the electrical discharge plasma tech-

nologies, generates a mixture of reactive species, such as

charged particles, free radicals, excited neutral species,

high electric field, and UV radiation [24]. It was demon-

strated that atmospheric and room temperature plasma can

dramatically alter the DNA of microorganisms, which

suggests that it is a forceful tool to mutate microorganisms

with the advantages of easy operation, safety, low cost and

wide application [25]. Atmospheric and room temperature

plasma was successfully employed to mutate Klebsiella

pneumoniae, Candida shehatae, Streptomyces avermitilis,

Rhodosporidium toruloides [26–29].

In this study, radionuclides-resistant Aspergillus oryzae

(A. oryzae) was isolated from radionuclides’ contaminated

soils in China and DBD plasma was used to mutate A.

oryzae in order to improve U(VI) accumulation. Also,

accumulation of U(VI) on mutated A. oryzae as affected by

experimental parameters like pH, ionic strength, mycelia

content, and temperature were studied.

Experimental

Strain isolation and identification

The tested fungal mycelia isolated from radionuclides’

contaminated sites (Huajia County, Gansu Province, PR

China), near to a nuclear weapon test. 2.0 g soil sample

were suspended in 100 ml of sterilized water, and 2 ml of

the suspension was added to sterilized water to obtain

desired dilutions up to 10-7. 100 ll different dilutions were

spread on potato dextrose agar (PDA) plates which con-

tained 400 mg/g U(VI). The inoculated plates were incu-

bated at room temperature for 2–4 days. Then, the largest

colony on PDA plates was selected and purified, and

identified by molecular methods. DNA was extracted from

growing mycelium [30]. The universal fungal primers

ITS1/ITS4 was used to amplify ITS region gene. The

parameters of polymerase chain reaction (PCR) were 94 �C
for 6 min, followed by 30 cycles of 94 �C for 40 s, 56 �C
for 30 s, 72 �C for 1 min, and elongation at 72 �C for

10 min. The amplification products were followed by DNA

sequencing (Sangon, Shanghai), and then the sequence was

submitted to the BlastN (http://blast.ncbi.nlm.nih.gov/) for

the homology analysis.

Strain mutagenesis experiments

DBD plasma was generated at 60 V and power of

80–140 W between the two quartz dielectric barriers with

the gap of 3 mm. Spore suspension of the strain was har-

vested from 6 days old PDA slants and was appropriately

diluted for 107/ml. After DBD plasma treatment at room

temperature for 6 min, the 100 ll spore suspension was

taken to PDA plates contained 600 mg/g U(VI). Then, the

Erlenmeyer flasks (250 ml) containing 100 ml of PDA

medium was inoculated by the largest mutated colony.

Subsequently, the sample was cultured under 28 �C for

3 days. Mid-log phase mycelia were collected, washed

with sterilized water, freeze-dried, and ground into parti-

cles less than 0.45 mm for accumulation experiments.

Characterization of fungal mycelia

The surface morphology of fungal mycelia was investi-

gated by SEM (JEOL JSM-6330F, Japan). The mycelia and

the U(VI) loaded mycelia were solidified with 2.0 % glu-

taraldehyde and then 1.0 % osmic acid, washed with dis-

tilled water, and then dehydrated through a graded ethanol

series, finally critical-point-dried, gold-coated with stubs

for SEM analysis. In addition, the functional groups of

fungal mycelia were characterized by FTIR (Perkin Elmer

100, USA), potentiometric acid–base titration (DL50

Automatic Titrator, Switzerland), and XPS (Thermo

ESCALAB 250, USA).

Accumulation procedures

All the accumulation experiments were carried out using

the batch technique. The suspensions of different concen-

trations of mycelia, U(VI), and NaCl solution were added

to 250 ml Erlenmeyer flasks. Afterwards, the suspensions

were shocked for 48 h to achieve accumulation equilib-

rium, and mycelia were separated by centrifugation. The

counts of U(VI) was determined by Liquid Scintillation

counting using a Packard 3100 TR/AB Liquid Scintillation

Analyzer (Perkin-Elmer). The accumulation percent (Ac-

cumulation % = (C0 - Ce) 9 100 %/Ce) and amounts of

U(VI) accumulation (Q = (C0 - Ce) 9 V/m) were derived

from initial concentration (C0), equilibrium concentration

(Ce), volume of suspension (V), and mass of mycelia (m).

The effect of pH on the accumulation percentage was

investigated in the pH range of 2.0–10.0. The medium pH

was adjusted with dilute HCl or NaOH using a pH meter

(PB-10, Sartorius, Germany) at 25 �C. To optimize the

mycelia content, batch experiments were conducted using

different amounts of mycelia from 0.01 to 0.8 g/l at pH 5.5.

To investigate the influence of ionic strength on U(VI)

accumulation, NaCl was employed as background elec-

trolyte and varied from 0.01 to 0.06 mol/l. To determine

the effect of initial U(VI) concentration on the accumula-

tion capacity, the initial concentration of U(VI) was varied
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from 10 to 300 mg/l at pH 5.5. All tests were conducted in

triplicate.

Results and discussion

Identification and characterization of the fungus

595 bp sequence of ITS gene was analyzed using the

online database (NCBI website) for the homology analysis

in order to identify the species of the isolated fungus. The

blast analysis and alignment with different fungal sequen-

ces in NCBI database showed the sequence exhibited 99 %

identity with that of A. oryzae (GenBank accession no.

JN561266.1 and HM145964.1). Based on these results, the

isolate was identified as A. oryzae.

The SEM micrographs of mutated A. oryzae and U(VI)

loaded mutated A. oryzae (mutated A. oryzae-U) are shown

in Fig. 1. It was observed that the surface morphology of

mutated A. oryzae considerably changed after U(VI) accu-

mulation. Compared with raw fungal mycelia (Fig. 1a),

U(VI) loaded fungal mycelia cells looked obviously more

plump (Fig. 1b). The alteration in morphology may, to a

certain extent, result from increasement of the fungal cell

inclusions and secretion of the extra cellular polymeric

substance, in response to U(VI) toxicity [31].

The pHpzc value indicates that the A. oryzae and mutated

A. oryzae displays a great buffering capacity across the pH

range in 0.01 mol/l NaCl solution (Fig. 2a). At pH\ pHpzc,

the fungal surface charge is positive. Whereas, the fungal

surface charge is negative at pH[ pHpzc. The value of pHpzc

of mutated A. oryzae is 5.8, and the buffering-like zone

between pH 4.0 and pH 8.0 appears where the pH declines

gradually. The zone of mutatedA. oryzae is wider than that of

A. oryzae, which indicates mutated A. oryzae has more

functional groups [32].

Effect of mycelia content

Figure 2b showed that mycelia concentration obviously

affected the U(VI) accumulation on mutated A. oryzae. The

accumulation of U(VI) sharply increased as mutated A.

oryzae concentration increased. That is because functional

groups which related to accumulation process increased

when mutated A. oryzae concentration ascended. Oppo-

sitely, Q decreased when mutated A. oryzae concentration

increased, because the competition among mutated A.

oryzae would decrease available functional groups on

mutated A. oryzae, which resulted in Q decreasing [33].

Effect of pH

As shown in Fig. 3a, A. oryzae and mutated A. oryzae

accumulation U(VI) was affected by pH. The accumulation

increases significantly when the pH value increases from 2.0

to 5.0 and maintains the high level between pH 5.0 and 7.0,

then decreases steeply in the pH range of 7.0–10. At pH 6.0

approximately 80 % U(VI) accumulated on mutated A.

oryzae, which is approximately twice than that of A. oryzae.

These could be attributed to the electrostatic interaction

between U(VI) and fungal mycelia. The distribution of dif-

ferent U(VI) species in aqueous as a function of solution pH

is given in Fig. 3b. U(VI) exists as UO2
2? at pH \5.0,

(UO2)3(OH)5
? and (UO2)4(OH)7

? at pH 5.0–8.0, and UO2

(OH)3
- at pH[8.0 [34]. The surface of mutatedA. oryzaewas

positively charged at pH\5.8 (Fig. 2a). Thereby, the elec-

trostatic repulsion between mutated A. oryzae and UO2
2?

leads to the low accumulation at pH\5.0. The high accu-

mulation of U(VI) at pH 5.0–8.0 can be attributed to the

strong electrostatic attraction between positively charged

U(VI) species and negatively charged mycelia. The repul-

sion between UO2(OH)3
- and the negatively charged mycelia

leads to a drop of U(VI) accumulation at pH[8.0 [34, 35].

Fig. 1 SEM images of mutated

A. oryzae (a) and mutated A.

oryzae-U (b)
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Effect of ionic strength

It also is found that U(VI) accumulation on mycelia is

clearly dependent on NaCl concentrations at pH 5.5

(Fig. 4a). The U(VI) accumulation on A. oryzae and

mutated A. oryzae percentage decreases as NaCl concen-

tration increased. This phenomenon could be interpreted by

ion-exchange mechanism: the formed electrical double

layer complexes between U(VI) and the fungal mycelia

favor U(VI) accumulation as the content of NaCl

decreased, indicating ionic interaction was the main inter-

action between U(VI) and functional groups [36].

Additionally, the increasing ionic strength may result in

mycelia aggregation and thereby reduced the available sites

to U(VI) on the surface of mycelia.

Accumulation Isotherms

Radioactive wastewater is usually the acid medium. Hence,

U(VI) accumulation isotherms of A. oryzae and mutated A.

oryzae was estimated at pH 5.5 and 298 K. As shown in

Fig. 4b, the amounts of U(VI) accumulation on A. oryzae

and mutated A. oryzae enhanced quickly as U(VI) con-

centration increased. To characterize the accumulation
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equilibria, data points were fitted with Langmuir and Fre-

undlich models [37]:

Q ¼ b� Qmax � Ce=ð1 þ b� CeÞ ð1Þ
Q ¼ KF � Cn

e ð2Þ

Qmax is theoretical maximum accumulation capacity per

unit weight of the biosorbent. KF and b are accumulation

constants of Freundlich and Langmuir, respectively. In

addition, n represents the Freundlich linearity index. As

shown in Fig. 4b, the Langmuir model fit the experimental

data better than Freundlich model. From Table 1, the Qmax

values of U(VI) on mutated A. oryzae was 627.4 mg/g at

298 K, which was higher than U(VI) onto other biomate-

rials, such as Algae, Trichoderma harzianum, and Cate-

nella repens (Table 2) [38–49]. These results indicate that

mutated A. oryzae can be potentially used as a high effi-

cient biomaterial in the radioactive wastewater treatment.

FTIR analysis

The FTIR spectrum of mutated A. oryzae was studied to

evaluate the functional groups on fungal mycelia for U(VI)

accumulation. In Fig. 5a exhibits the intense peaks at

3450–3200 cm-1 (O–H and N–H stretching vibrations),

2928–2857 cm-1 (C–H stretching vibrations), 1735 cm-1

([C=O stretching of the protonated carboxylic or ester

groups or fatty acids), 1710 cm-1 (C=O of COOH attrib-

uted to the amino acid), 1653 cm-1 (the amide I band,

C=O stretching in the protein), 1557 cm-1 (the amide II

band, C–N stretching and N–H bending vibrations associ-

ated with the protein), 1239 cm-1 (the amide III band, C–N

stretch attributed to the protein), and 1318 cm-1 (C–O

stretches in the lipid) [1, 50]. After U(VI) accumulation,

some adsorption peaks shifted, especially, O–H and N–H

stretching and carboxyl groups (C–O). Two peaks ranged

from 30.6 and 41 cm-1 after U(VI) accumulation, which

indicated that these groups were involved in accumulation

process [31]. The FTIR results reveal that hydroxyl, amino,

and carboxyl groups probably contribute to the complex-

ation between U(VI) and mycelia.

XPS analysis

The XPS technique is applied to investigate U(VI) accu-

mulation mechanism on mutated A. oryzae. The total scans

of XPS spectra for fungus before and after accumulation

Table 1 Parameters for the

Langmuir and Freundlich

isotherm models

Biosorbent Langmuir model Freundlich model

Qmax

(mg/g)

b (L/mg) R2 KF (mg1-nLn/g) n R2

A. oryzae 389.07 0.037 0.998 35.078 0.479 0.960

Mutated A. oryzae 627.37 0.035 0.998 38.240 0.608 0.986

Table 2 Comparison of

maximum accumulation

capacities of U(VI) on various

biomaterials

Biosorbents Experimental conditions Qmax (mg/g) Reference

Algae RD256 363.1

Algae RD257 pH = 4.5, T = 301 K 426.6 [38]

Trichoderma harzianum 496.0

Sunflower straw pH = 5.0, T = 298 K 251.5 [39]

Catenella repens pH = 4.5, T = 303 K 303 [40]

Coir pith pH = 3–6 232.56 [41]

Penicillium citrinum pH = 6, T = 298 K 255.1 [42]

Rhodotorula glutinis pH = 6, T = 298 K 187 [43]

Formaldehyde-treated Rhodotorula glutinis pH = 6, T = 298 K 360 [43]

The amidoxime modifed Aspergillus niger pH = 5, T = 298 K 621 [44]

Marine algae and yeast immobilized silica gel pH = 4.0, T = 303 K 56.7 [45]

Eichhornia crassipes pH = 5.5 142.85 [46]

Amidoxime-modified

Spirulina platensis

pH = 5.0, T = 298 K 370.4 [47]

Spirulina platensis 114.9

Chlamydomonas reinhardtii pH = 4.5, T = 298 K 344.9 [48]

Amidoxime modified Trametes trogii pH = 5.0, T = 298 K 447.4 [49]

A. oryzae pH = 5.5, T = 298 K 389.07 This study

Mutated A. oryzae pH = 5.5, T = 298 K 627.37 This study
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U(VI) are shown in Fig. 5b. After accumulation, the

characteristic peak of U 4f7/2 appears at 382.3 eV, which

demonstrates the high absorbability of mutated A. oryzae.

Compared to free mutated A. oryzae, atomic contents (%)

of C, O, and N of mutated A. oryzae-U correspondingly

decline (Table 3). The high-resolution XPS O 1s and N 1s

spectra of mutated A. oryzae and mutated A. oryzae-U are

shown in Fig. 6a, b, and the results of relevant fitted peaks

are listed in Table 3. The O 1s spectrum is decomposed

into bridging-OH at 531.1 eV, C=O at 532.2 eV, and

alcoholic C–O at 533.1 eV (Fig. 6a) [35]. Compared to

mutated A. oryzae, the bridging-OH observably appears,

and quantification of C=O and C–O bands of mutated A.

oryzae-U reduce accordingly. Thereby, U(VI) accumula-

tion on mutated A. oryzae may be due to the interaction of
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C–O 533.1 9.65 533.2 7.54

Total O 20.66 19.52
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?– 401.9 0.12 402.1 1.27
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U(VI) with OH groups on fungal mycelia [51]. Before

U(VI) accumulation, only one N 1s fitted band appears at

399.9 eV, which is due to the N atom from amines and

amides. After U(VI) accumulation, however, a new weak N

1s band appears at around 402.1 eV, indicating that pro-

tonated amines (–NH2
?–) occur [52], which is attributed to

the formation of R–NH2–U(VI) complexes (Fig. 6b) [53].

Based on XPS spectra analysis, the high adsorbability of

mutated A. oryzae is greatly due to a large number of

nitrogen- and oxygen-containing functional groups on the

surface of mycelia, which can easily form complexes with

radionuclides.

Conclusions

To conclude, radionuclides-resistant A. oryzae was isolated

from radionuclides contaminated soils, and the mutagene-

sis of A. oryzae by DBD plasma was greatly improved

bioremediation capability of U(VI) pollution. FTIR and

XPS analysis indicated that abound nitrogen- and oxygen-

containing functional groups existed on mutated A. oryzae

surfaces which accounted for U(VI) accumulation on

mutated A. oryzae. Accumulation data can be represented

by Langmuir isotherm from isotherm analysis, and mutated

A. oryzae presented higher adsorbability for U(VI). These

results show that mutated A. oryzae demonstrates its

promising prospects of application in the treatment of

radionuclides pollution in the near future.
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