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Abstract Multiwalled carbon nanotubes (MWCNTs) were

modified by strong oxidizing agents and were functional-

ized with toluene 2,4-diisocyanate, and they were used for

selective separation of Tl-201 from Pb-201 (radioactive

lead). The pristine and functionalized MWCNTs were

characterized by Fourier transform infrared spectroscopy

and scanning electron microscopy. The optimal conditions

of experiment, such as pH, amount of adsorbent, and

contact time were investigated. The adsorption capacity

was evaluated using both Langmuir and Freundlich

adsorption isotherm models. The results showed that

functionalized MWCNTs have a greater potential for

adsorption of lead from aqueous solution, nuclear sample,

and separation of Tl-201 from Pb-201.
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Introduction

Thallium is a soft and gray metal which is distributed in

trace amounts. This metal is used in electronics, detectors,

high-temperature superconductors, glass industries, and

pharmacy. Thallium has 25 isotopes, among them Tl-201

(t1/2 = 73 h) decays by electron capture, and has good

imaging characteristics without excessive patient radiation

dose. Tl-201 radioisotope is widely used in small and non-

toxic amounts in nuclear medicine for diagnosis purposes

[1].

Tl-201 is one of the cyclotron products that is produced

by proton bombardment of Tl-203 target. The related

reaction is Tl-203 (n, 3p) Pb-201 which decays to Tl-201

product. The chemical separation is the main step to purify

Tl-201 in pharmaceutical grade which involves two steps.

The first step is the separation of Pb-201 product from Tl-

203 as target matrixes, passing appropriate time to decay

Pb-201, and growth of Tl-201 radioisotope. The second

step is the separation and purification of Tl-201 from Pb-

201 solution in the isotonic chloride solution as thallous-

201 chloride for medical uses.

There are several methods for separation of trace metals

from solution such as precipitation [2–4], solvent extrac-

tion [5–10], ion exchange [11–14], adsorption on man-

ganese dioxide [15], Ferryhydrite [16], Prussian blue [17],

Chromium ferrocyanide gel [18], Zeolite adsorption [19],

Amonium molybdo phosphate [20], Solid Phase extraction

[21, 22], Magnetic solid phase extraction [23], and

adsorption on nanotubes [24–33].

Among the mentioned methods and adsorbents, the

carbon nanotubes cause more attraction and are called the

technology of 21st century. Carbon nanotubes have several

applications in electronic, composite, engineering, and

separation technology. Using CNTs is a kind of solid phase
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extraction and has been considered as a novel adsorbent for

various organic and inorganic species at their trace level. It

introduces more advantages such as simplicity, easy and

fast extraction time [24–29].

It has been used for preconcentration and separation of

Cu [27], Cd, Mn and Ni [28], Pb, Cd [29], Cd [30], Ag, Pb

[32] and Tl [31, 33].

The toxicity of Tl species highly depends on their

chemical forms. Tl(III) can easily penetrate into the body

and replace potassium. It is more toxic than Tl(I), Cu(II),

Cd(II) and is similar to Hg(II) [5, 6, 11, 16, 18, 33, 34].

Most of CNTs-based separation methods are according

to simple adsorption of metals or related ligands on CNTs.

Although the reported separations are effective and appli-

cable, due to weak forces of the adsorbent and adsorbate

species, it is a desirable functional group, which acts on

extraction and attaches to CNTs by covalent bonding. In

this regard, we designed CNTs adsorbent baring desired

functional group for effective and selective separation of

Tl-201 from Pb-201 (as parent). According to the related

literature, adsorbent which carries isocyanate functional

group is able to make complexes and adsorbs lead from

solution selectively. Whereas, our main aim is separation

of Pb-201 from Tl-201, the designed CNTs functionalized

with toluene isocyanate, which is able to selectively retain

Pb-201 from cyclotron radioisotope solution. The effi-

ciency of modification is investigated by IR, SEM, and

solubility test.

The extraction conditions of modified CNTs are opti-

mized and the best buffer, pH, extraction time, and amount

of adsorbent are defined. According to our protocol, the

cyclotron product of Pb-201 is adsorbed on CNTs and is

separated from other contaminations such as Tl-203. After

appropriate time passing and growing enough of daughter

Tl-201 from Pb-201 parent, Tl-201 is washed with good

efficiency. At optimal conditions, the washing efficiency is

more than 95 % for time intervals up to 50 min. The purity

of Tl-201 product is also determined using High Pure

Germanium which showed radio pharmaceutical purity.

Experimental

Chemicals and solutions

HNO3, Toluene, 2,4-diisocyanate, NH3, and CH3COOH

were purchased from Merck (Merck, Darmstadt, Ger-

many). Pristine MWCNTs with 7–12 nm in outer diameter,

0.5–10 lm in length, were purchased from Sigma-Aldrich

Co. (USA). A stock solution of lead (1000 mg L-1) was

prepared by dissolving specific amount of lead nitrate in

Deionized (DI) water. The work solutions with the con-

centration range of 10–120 mg L-1 were prepared by

dilution of stock solution. Ammonium acetate buffer

solution adjusted at pH 6 was obtained by dissolving

specific amounts of ammonia and acetic acid solutions (v/v

1:1). All the chemicals were of analytical grade. DI water

was used for preparation of all solutions and sample

washing.

Apparatus

Fourier transform infrared spectra were recorded by using a

Perkin–Elmer FT-IR Analyzer (Mattson ATI). The surface

morphology of MWCNTs was observed through scanning

electron microscope (SEM, Hitachi S3400N, Japan). The

concentration of lead(II) ions was done by a 757VA

Metrohm polarograph instrument (Metrohm, Switzerland).

The solution activity was analyzed by HPGe detector (N

Type, NGC 1040, DSG, Germany). The pH values of

solution were adjusted by WTW pH meter (720WTW,

Gemini BV, Germany).

Purification and functionalization of MWCNTs

The functionalized MWCNTs by carboxylic acid groups

were prepared according to the earlier described method

[35]. Pristine MWCNTs (1 g) were dispersed in 120 mL

concentrated HNO3 and sonicated for 15 min in an ultra-

sonic bath. The suspension was refluxed with vigorous

stirring at 140 �C for 3 h. After getting cold to room

temperature (25 �C), the mixture was filtered through

0.45 lm porous Teflon filter paper. The functionalized

MWCNTs were washed thoroughly with DI water to neu-

tralize the solution pH (pH[ 6.5). Then, the carbon nan-

otubes were dried in vacuum oven at 70 �C for 12 h. The

functionalized MWCNTs containing COOH and oxygen

groups were obtained (O-MWCNT).

Functionalized MWCNTs with isocyanate groups

The isocyanate functionalized MWCNTs were prepared

according to methods described elsewhere [36]. As the

amidating agent which reacts with carboxyl groups,

Toluene 2,4-diisocyanate was selected to obtain function-

alized MWCNTs containing isocyanate groups (MWCNT-

NCO). Figure 1 shows the functionalization of carbon

nanotubes.

Adsorption experiments

Batch adsorption experiments were performed by adding

specific amounts of MWCNTs-NCO as adsorbent, to

10 mL of solution containing Pb(II) ions (10 mg L-1). The

mixture was stirred vigorously on a magnetic stirrer. Then,

different adsorption parameters such as pH, the amount of
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sorbent, and contact time were studied. The pH values of

lead solutions were adjusted using 0.1 mol L-1 CH3COOH

and NH3. In all experiments before the start of experiment

stages, the beaker containing MWCNTs-NCO was placed

in an ultrasonic bath for 2 min. After filtration of mixture,

the concentration of Pb(II) in solution was determined by

polarography method. Over time, the lead ion concentra-

tion reduces due to adsorption onto functionalized

MWCNTs. The adsorption percentage of Pb(II) ions is

given by:

%Adsorption ¼ C0 � Ce

C0

� 100: ð1Þ

The amount of adsorbed Pb(II) onto the adsorbent surface

(MWCNT-NCO) was calculated by the following equation

[37, 38]:

qe ¼
VðC0 � CeÞ

m
; ð2Þ

where qe is the amount of Pb(II) adsorbed onto MWCNT-

NCO (mg g-1), V is the initial volume of solution (L), C0

and Ce are the initial and equilibrium concentrations of

Pb(II) ions in solution (mg L-1) respectively, and m is the

weight of adsorbent (g).

Adsorption of Pb-201 by MWCNT-NCO

A sample containing Pb-201 solution was added to 8 mL of

buffer (pH 6). In order to study the adsorption, MWCNT-

NCO was added to the solution containing Pb-201 under

optimal conditions. The radioactive experiments were

performed behind a lead shielding in complete safety. The

initial activity of Pb-201 ions (28.49 lCi) wer determined

by an high purity germanium detector (HPGe) (Fig. 2).

After filtering the adsorbent, the activity of solution was

analyzed by HPGe detector. The difference between initial

and final activities was reported as the amount of lead

absorbed by MWCNT-NCO. In other words, the activity of

Pb-201 was measured precisely after completion of

adsorption experiments exactly, before and after filtering

the adsorbent. Subsequently, the adsorption percentage was

calculated using these experimental data.

Desorption of Tl-201 (radioactive thallium)

For desorption studies, the activity of adsorbent was ana-

lyzed by an HPGe detector. The MWCNTs-NCO con-

taining adsorbed metal ions were stirred in the range of 5–

15 mL in buffer adjusted at pH 6 for 15–50 min at room

Fig. 1 Modification and

functionalization of MWCNTs

with COOH and isocyanate

groups

Fig. 2 The gamma ray spectra

of solution containing Pb-201

before adsorption
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temperature. Before filtering adsorbents, the initial activity

amounts of Pb-201 and Tl-201 were obtained as 2.19 and

1.48 lCi, respectively (Fig. 3). After filtering the adsor-

bent, the activity of Tl-201 and Pb-201 released in solution

was measured by HPGe detector. The amount of desorption

is defined as an extraction recovery (R) of ions released

from MWCNT-NCO is given by:

%R ¼ Amount of ion released to solution

Total adsorbed
� 100 ð3Þ

Results and discussion

FT-IR

The FT-IR spectra of pristine MWCNT, O-MWCNT, and

MWCNT-NCO are shown in Fig. 4. The peaks at 1399 and

1617 cm-1 are assigned to C=C stretching in structure of

carbon nanotubes. In Fig. 4b, the broad band at 3412 cm-1

is related to O–H stretching vibration of carboxyl groups.

These peak intensities are increased in nanotubes as com-

pared to pristine MWCNT. This difference can be explained

by this fact that MWCNTs are functionalized with COOH

groups. Moreover, the peaks at 1727 and 1125 cm-1 can be

attributed to C=O and C–O stretching of carboxyl groups,

respectively [36]. These results indicate that the COOH

group is successfully attached onto the surface of MWCNTs.

In MWCNT-NCO (Fig. 4c), the broad band at 2348 cm-1

exists due to asymmetric stretching of isocyanate groups.

The bands at 1677 and 1223 cm-1 correspond to C=O and

C–N stretching of amide groups, respectively [36]. A peak is

observed at around &1544 cm-1 which is attributed to the

overlapping of a signal from the N–H and C-N bands. The

bands at 2825 and 2900 cm-1 may be due to symmetric and

asymmetric stretching vibrations of CH group at methyl

groups. These results showed that functionalized carbon

nanotubes containing isocyanate groups were successfully

synthesized.

SEM

The SEM images of pristine MWCNT, O-MWCNT, and

MWCNT-NCO are shown in Fig. 5. As indicated in Fig. 5,

the tubular structure of carbon nanotubes is well retained

after functionalization. The morphology of MWCNTs

shows the presence of some open ends and activated

sidewalls on O-MWCNT, compared to pristine MWCNTs

and suggests that the ends and sidewalls of carbon nan-

otubes became active [39]. The SEM image shows that the

MWCNTs are covered with isocyanate group. The increase

in diameter of MWCNTs indicates that the nanotubes are

functionalized. Some aggregations can be detected in

MWCNT-NCO micrograph because of intermolecular

forces among the MWCNTs with different shapes and

directions. Figure 5c clearly indicates that MWCNTs have

been covered with functional groups.

Solubility test

The solubility test of O-MWCNT was remarkably

improved after functionalization. The O-MWCNTs are

hydrophilic and thus could be well dispersed in water.

However, MWCNT-NCO released some bubbles in contact

with water. This indicates that MWCNTs-NCO are highly

reactive and react in water (Fig. 6). In aqueous solution, the

isocyanate group of MWCNTs-NCO reacts with water and

carbamic acid is produced. Finally, the carbamic acid

breaks down into amine and carbon dioxide [40].

Fig. 3 The gamma ray spectra

of solution containing Pb-201

and Tl-201 before desorption
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Adsorption studies

Effect of pH

The pH value is one of the most essential analytical factors

in the adsorption of metal ions. There are several probable

forms of metal ions in aqueous solutions at different pH

values [38, 41, 42]:

M2þ $ M OHð Þþ $ M OHð Þ2 $ M OHð Þ�3 $ . . .

In this study, the effect of pH on lead absorption in func-

tionalized carbon nanotubes was investigated in the range of

Fig. 4 FTIR spectrum of

a pristine MWCNT, b O-

MWCNT and c MWNT-NCO
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2–8. Eventually, pH 6 was selected as the optimum pH. The

results are presented in Fig. 7. In this adsorbent (MWCNT-

NCO), lead adsorption level raises with increasing pH. The

maximum removal of Pb2? was observed at pH 6. The

favorite mechanism is electrostatic interactions between

metal ions (Pb) and nitrogen atoms in nanotube bed. In acidic

solution (pH\ 6), where H3O? concentration is high, the

amount of adsorption is very low due to the competition

between H3O? and Pb2? ions to interact with active sites on

adsorbent. On the other hand, at low pH value, the surface of

functionalized MWCNTs are covered by excess hydronium

ions presence in this media. Therefore, this positive surface

charge leads to high coulombic repulsion of lead ions in Pb2?

form and sorption sites of MWCNTs are protonated and

inhibited from reaction with Pb2?. As pH increased, the

surface charge of MWCNTs becomes negative and conse-

quently leads to higher adsorption of lead by MWCNTs.

A weak possible mechanism can also be considered such

as the electrostatic interactions between metal ions and

atoms full of electrons in nanotube surface for instance

nitrogen and oxygen, electrostatic interactions between

Pb(II) and nitrogen atoms of amide groups.

Effect of sorbent amount

The effect of sorbent amount was investigated in the range

of 1–8 mg of sorbent. The adsorption of Pb(II) ions

expanded with an increase in MWCNT-NCO mass, which

could be due to the availability of more sorption sites. The

results showed that 5 mg of sorbent is suitable for Pb(II)

adsorption from aqueous solution (Fig. 8). Amounts of

adsorbent less than 5 mg resulted in incomplete adsorption.

Therefore, in all experiments, 5 mg of adsorbent was used.

Effect of contact time

The effect of contact time on adsotption of Pb(II) ions was

studied using MWCNTs-NCO as adsorbent in the range of

5–45 min. As indicated in Fig. 9, there is a rapid increase

in lead adsorption on the surface of MWCNT-NCO up to

30 min which is because of unoccupied active sites.

Adsorbent reached equilibrium state after 30 min and the

removal percentage remained constant. This contact time

was selected for further experiments.

Adsorption isotherm

The equilibrium adsorption isotherms are among the basic

requirements for designing adsorption systems and inter-

action between adsorbent and adsorbate and they could

Fig. 5 SEM images of a pristine MWCNT, b O-MWCNT and c MWNT–NCO

Fig. 6 Dispersion ability of a pristine MWCNT and b O-MWCNT in

water

Fig. 7 Effect of pH on the adsorption of Pb2? by MWCNT-NCO.

[Pb2?]0 = 10 mg L-1, mMWCNT-NCO = 0.005 g, T = 25 �C
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provide the necessary information about adsorption

capacity [43].

Langmuir isotherm is based on this assumption that in

the maximum amount of adsorption, only one layer of

adsorbate is adsorbed on surface of adsorbent and considers

homogeneous surface; whereas, Freundlich model assumes

that adsorption occurs on a heterogeneous adsorbent sur-

face and in high concentrations the adsorption capacity

does not remain constant. This shows a multilayer

adsorption model [44–46].

The Langmuir and Freundlich models are given by the

following equations, respectively:

qe ¼ qmaxKLCe=ð1 þ KLCeÞ; ð4Þ

qe ¼ KFC
1=n
e ; ð5Þ

where qmax is the maximum amount of metal ions adsorbed

per unit weight of MWCNTs at a high equilibrium ion

Fig. 8 Effect of sorbent amount on the adsorption of Pb2? by

MWCNT-NCO. [Pb2?]0 = 10 mg L-1, pH 6, T = 25 �C

Fig. 9 Effect of contact time on the adsorption of Pb2?.

[Pb2?]0 = 10 mg L-1, mMWCNT-NCO = 0.005 g, pH 6, T = 25 �C

Fig. 10 Adsorption isotherm of Pb(II) ions on MWCNT-NCO

Fig. 11 Fitting line of Langmuir adsorption isotherm of Pb(II) on

MWCNT-NCO

Fig. 12 Fitting line of Freundlich adsorption isotherm of Pb(II) on

MWCNT-NCO
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concentration (maximum adsorption capacity) (mg g-1);

KL represents the Langmuir isotherm constant which is

related to the energy of adsorption (L mg-1); KF

(mg1-n Ln g-1) and n are Freundlich isotherm constants

which are related to adsorption capacity and adsorption

intensity, respectively [38]. The essential characteristic of

Langmuir isotherm can be expressed by a dimensionless

constant called separation factor (also called equilibrium

parameter) which is defined by the following equation:

RL ¼ 1=ð1 þ KLC0Þ ð6Þ

The value of RL indicates the type of isotherm to be either

unfavorable (RL[ 1), linear (RL = 1), favorable

(0\RL\ 1), or irreversible (RL = 0) [38, 47].

Equilibrium isotherm studies were carried out at lead

initial concentration range of 10.0–120.0 mg L-1 under

optimum conditions at ambient temperature. The experi-

mental data were collected as described in the previous

section and were fitted to Langmuir and Freundlich iso-

therm models.

As shown in Fig. 10, the experimental data fit well with

Langmuir model. Figures 11 and 12 show the linearized

Langmuir and Freundlich plots, respectively. Considering

the slopes and intercepts of these plots, the maximum

adsorption capacity and Langmuir and Freundlich constant

were calculated. The R2 value of Langmuir and Freundlich

models reveals that one of models fits well to experimental

data. Based on correlation coefficient (R2), it could be con-

cluded that the Langmuir model yields better fit to experi-

mental data than the Freundlich adsorption isotherm. The

correlation coefficient for Langmuir model (R2 = 0.996) is

greater than that of Freundlich model (R2 = 0.972); this

Table 1 Comparison of various

adsorbents with this study
Adsorbents Adsorption capacity (mg g-1) References

Chelating resin 7.38 [46]

MMWCN 9.3 [48]

Silica gel/gallic acid 12.63 [46]

Nanometer TiO2-DZ 22.5 [49]

Sulphuric acid-treated wheat bran 55.56 [50]

MWCNTs-TAA 71 [46]

MWCNT-NCO 196.08 This work

Table 2 Langmuir and

Freundlich isotherm parameters

for Pb(II) adsorption on

(a) pristine MWCNTs,

(b) O-MWCNTs and

(c) MWCNTs-NCO

Adsorbent Freundlich model Langmuir model References

Kf 1/n R2 aL KL qm RL R2

a 4.78 0.1429 0.980 – 3.71 6.71 – 0.961 [45]

b 12.80 0.2924 0.899 – 1.33 27.80 – 0.931 [45]

c 74.59 0.1856 0.972 2.43 333.33 196.10 0.03947 0.996 This work

Fig. 13 The gamma ray spectra

of solution after adsorption Pb-

201 by MWCNT-NCO
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means that adsorption is in monolayer form. As shown in

Fig. 11, Maximum adsorption capacity was found to be

196.1 mg g-1. Comparison of adsorption capacity of

MWCNTs-NCO with that of previous works reveals that

MWCNTs-NCO can be a promising candidate for the

adsorption of Pb(II) (Table 1). All isotherm parameters are

listed in Table 2.

Results of adsorption/desorption of Pb-201

on the MWCNTs-NCO

Figure 13 shows the gamma ray spectra of solution by

HPGe detector after adsorption by the adsorbent. Accord-

ing to the present spectra, the activity of the remaining lead

in solution after adsorption by MWCNT-NCO was

obtained 0.285 lCi. The adsorption percentage of Pb-201

was 99.00 %.

Figure 14 shows the gamma ray spectra of solution by

HPGe detector after desorption process. According to the

present spectra, at the optimal conditions (t = 50 min,

Vdetergent = 15 mL), the activity of Pb-201 and Tl-201

released in solution after desorption from the surface of the

MWCNTs-NCO was obtained 0.133 and 1.41 lCi,

respectively. The desorption percentage of Tl-201 was

95.34 %.

Conclusion

The attachment of COOH and NCO groups onto the sur-

face of MWCNTs could be proved by FT-IR spectrum and

SEM. MWCNTs-NCO were prepared by the reaction

between toluene 2,4-diisocyanate, and carboxylated carbon

nanotubes. The functionalized MWCNTs were then used

for adsorption of Pb(II) from aqueous solutions and sepa-

ration of Pb-201 and Tl-201 ions.

The findings showed that the lead adsorption is depen-

dent on solution pH, amount of adsorbent, and contact

time. The Langmuir model showed better agreement with

experimental data. Regarding the Langmuir equation,

maximum adsorption capacity for Pb(II) with MWCNTs-

NCO was 196.1 mg g-1.

After the decay of Pb-201 to Tl(III)-201, the adsorbent

was washed with detergent at optimal conditions and

Tl(III) released into solution. The washing efficiency was

more than 95 %. The results showed that MWCNTs-NCO

had a high potential for adsorption of metal ions from

aqueous solution, and separation of radioactive metal ions

from nuclear samples. The functionalization of MWCNTs

with isocyanate groups could be considered as a successful

strategy for enhancing the adsorption properties of

MWCNTs in removal of heavy metals from environment.

Further research works on separation of radioactive

metal ions from nuclear samples by other functionalized

MWCNTs in order to reach at the highest efficiency of

separation.
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