

A systematic evaluation of the potential of PCTA-NCS ligand as a bifunctional chelating agent for design of ¹⁷⁷Lu radiopharmaceuticals

Usha Pandey¹ · Naresh Gamre¹ · Yogendra Kumar¹ · Priyalatha Shetty¹ · Haladhar Dev Sarma² · Ashutosh Dash¹

Received: 18 December 2014/Published online: 16 July 2015 © Akadémiai Kiadó, Budapest, Hungary 2015

Abstract This paper explores the utility of para isothiocyanato benzyl 3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA-NCS) as a bifunctional chelating agent for ¹⁷⁷Lu in comparison to para isothiocyanato benzyl 1,4,7,10-tetra aza cyclododecane tetraacetic acid (DOTA-NCS). The ¹⁷⁷Lu-PCTA-NCS complex could be obtained in high radiolabeling yields at ambient temperature and exhibited excellent stability in vitro. Influence of trace metal ions on the radiolabeling yields was also evaluated. Biodistribution studies revealed no significant retention of ¹⁷⁷Lu-PCTA-NCS in any vital organ at 24 h p.i. It could be concluded from our study that PCTA-NCS could be a potential BFCA for design of ¹⁷⁷Lu radiopharmaceuticals.

Keywords Therapeutic radiopharmaceuticals · ¹⁷⁷Lu · Bifunctional chelating agent · Trace metal ions

Introduction

Therapeutic radiopharmaceuticals comprising β^- emitters are increasingly used to target a number of disease conditions, most importantly cancer. Amongst the various β^- emitters which are in use currently, ¹⁷⁷Lu has received noteworthy attention in the past decade and is one of the extensively used radionuclides in recent times for in vivo targeted therapy

Usha Pandey ushap@barc.gov.in [1–4]. The favorable nuclear properties and the well-established co-ordination chemistry of ¹⁷⁷Lu have led to the speedy translation of ¹⁷⁷Lu radiopharmaceuticals from laboratories to the nuclear medicine clinics. ¹⁷⁷Lu labeled receptor-targeted peptides and antibodies are regularly used in the nuclear medicine clinics for targeting a number of cancers, demonstrating its dominant role in cancer therapy. ¹⁷⁷Lu emits medium energy β^- particles (78.6 % of 497 keV β^-) thereby decaying to stable ¹⁷⁷Hf [5–7]. Scintigraphic imaging and dosimetric evaluation during therapy is possible due to the emission of two low energy γ radiations with low abundances (11 % of 208 keV and 6.4 % of 113 keV) [5-7]. Radiolabeling of biomolecules such as peptides and antibodies with ¹⁷⁷Lu is accomplished through the use of bifunctional chelating agents. The macrocyclic chelator DOTA (1,4,7,10tetraaza cyclododecane tetraacetic acid) and its analogs are universally employed chelating agents for cross-linking biomolecules with many radiometals, including 177 Lu [7–9]. DOTA remains the chelating agent of choice for sequestering many radionuclides including ¹⁷⁷Lu due to the achievement of high radiolabeling yields in moderately high specific activities as well as superior stability of the radiolabeled complexes in vivo [7–9]. In pursuit of newer chelating agents which demonstrate excellent thermodynamic and kinetic stabilities on radiolabeling with the diagnostic and therapeutic radioisotopes, a wide range of ligands with varied donor atoms as well as chelating networks have been synthesized and investigated [10-12]. Selection of a ligand for use with a particular radioisotope is based on radiolabeling yields, reaction conditions including temperature, influence of trace metallic impurities in solution, in vitro stability, kinetic inertness in vivo preventing the release of the radiolabel in vivo and the extent of accumulation of the radiolabeled complexes in non-target organs. Although DOTA and its bifunctional derivatives are considered to be very efficient

¹ Isotope Production & Applications Division, Bhabha Atomic Research Centre (BARC), 400085 Mumbai, India

² Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre (BARC), 400085 Mumbai, India

chelators for ¹⁷⁷Lu, they reportedly suffer from slow complex formation at mild conditions requiring the performance of the radiolabeling reaction at elevated temperatures [13, 14]. This is definitely a drawback especially while radiolabeling temperature-sensitive biological vectors such as antibodies. Hence, extensive research has been carried out in pursuit of ligands which can enable instantaneous radiolabeling at room temperature along with imparting high kinetic stability in vivo to the radiolabeled complexes. In this respect, the development of backbone substituted derivatives of the acvclic ligand DTPA such as the cvclohexvl derivative of DTPA (CHX-A"-DTPA) which form stable complexes with ¹⁷⁷Lu is an important advancement [15]. However, macrocyclic ligands which can sequester the radiometals at rates faster than DOTA with the additional benefit of kinetic inertness in vivo are highly desirable. Recently, Chong et al. have reported the synthesis of the ligand NETA which consists of a macrocyclic triaza cyclononane ring linked to an iminodiacetic acid moiety while Baranyai and co-workers have reported the synthesis of AAZTA, a cyclic heptadentate ligand forming instantaneous complexes with many metals including radiolanthanides [16, 17]. Tircsó G et al. have reported the synthesis of the ligand [S-5p-(para nitrobenzyl) 3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid] (p-NO₂-Bz-PCTA) which forms complexes with several metals of particular interest to nuclear medicine including lutetium, indium and yttrium, at an order of magnitude quicker than DOTA [18, 19]. The authors observed that the acid catalyzed dissociation of the lanthanide-PCTA complexes was slower even though the thermodynamic stabilities of the complexes were low. However, they reportedly exhibit high kinetic inertness analogous to the DOTA complexes [19]. Recently, the potential of this ligand for use with ⁶⁴Cu was examined by Ait-Mohand et al. [20] while our group has evaluated its ⁶⁸Ga and ⁹⁰Y complexation properties [21–23]. The objective of the present study is to investigate the use of para isothiocyanato benzyl 3,6,9,15-[9.3.1]pentadeca-1(15),11,13-triene-3,6,9tetraazabicyclo triacetic acid (PCTA-NCS) as a BFCA for preparation of ¹⁷⁷Lu radiopharmaceuticals with respect to the complexation kinetics, amenability for room temperature labeling, influence of trace metal ions on the radiolabeling yields, in vitro and in vivo stabilities and the biodistribution pattern in normal Swiss mice, in comparison to ¹⁷⁷Lu-DOTA-NCS.

Experimental

Materials

flux of $\sim 1.4 \times 10^{14} \text{ n/cm}^2$ s for a period of 21 days and further processed at the Radiochemicals Section of Isotope Production and Applications Division, BARC [6, 24]. The bifunctional chelating agents viz. PCTA-NCS (Fig. 1) and DOTA-NCS were purchased from M/s. Macrocyclics, Dallas, USA. Lutetium chloride used as a carrier in the experiments, calcium (II), copper (II), iron (III) and zinc (II) salts as well as sodium acetate were purchased from M/s. Aldrich, USA. HPLC grade water (Merck, India) was used for preparation of all reagents. Radioactivity measurements were performed using a well-type NaI (Tl) detector (ECIL, India) while radioactivity measurements during biodistribution experiments were performed using a flat-geometry NaI(Tl) detector. HPLC analyses were carried out on a dual pump HPLC system (JASCO, Japan) equipped with a reversed phase C-18 HiQ Sil column (5 μ m, 4 \times 250 mm), coupled to a PU 1575 UV/visible detector (JASCO, Japan) and a NaI (Tl) radioactivity detector (Raytest, Germany). Whatman 3 mm chromatography paper (20 mm width) was purchased from M/s. Whatman International, UK. Approval from the institutional animal ethics committee was obtained before carrying out the biodistribution studies. All the reactions were carried out in acid washed glass vials to minimize the presence of trace metallic impurities.

Methods

Preparation and characterization of ¹⁷⁷Lu-PCTA-NCS complex

The ability of the ligand PCTA-NCS to sequester ¹⁷⁷Lu effectively was ascertained by carrying out its radiolabeling at various Lu to PCTA-NCS molar ratios (1:20, 1:10, 1:4, 1:2 and 1:1) in 0.1 M sodium acetate buffer at pH \sim 5.5 at 80 °C for 30 min. The reaction volume was kept constant at

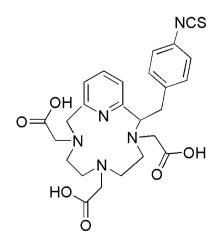


Fig. 1 Chemical structure of PCTA-NCS

1 ml. All the experiments were carried out with trace activity of 177 LuCl₃ (~37–74 MBq) with deliberate addition of ¹⁷⁶Lu carrier equivalent to 100 mCi of ¹⁷⁷Lu (~4 µg, based on the specific activity of 177 Lu as ~25 Ci/ mg). The trace level activity of 177 LuCl₃ (~37–74 MBg) contained very small amounts of carrier 176 Lu (~40–80 ng) which was much less in comparison to the carrier ¹⁷⁶Lu deliberately added in the reaction. Complexation of ¹⁷⁷Lu with DOTA-NCS was also carried out at the above-mentioned molar ratios, under identical reaction conditions, for comparison. After ascertaining the complexation yields at the above-mentioned Lu to PCTA-NCS molar ratios, complexation kinetics was determined by carrying out the radiolabeling reaction at ambient temperature (25 °C) and at 80 °C at the lowest ¹⁷⁷Lu:PCTA molar ratio (1:2) at which >95 % radiolabeling yield was achieved. For comparison, complexation was also carried out with DOTA-NCS by adopting identical reaction conditions using 37 MBq of 177 LuCl₃ and 4 µg of 176 Lu carrier.

Characterization of ¹⁷⁷Lu-PCTA-NCS and ¹⁷⁷Lu-DOTA-NCS complexes as well as the determination of radiolabeling yields was performed by HPLC and paper chromatography techniques. For HPLC characterization, 20 μ l aliquots of the ¹⁷⁷Lu labeled complexes were injected into a C18 reverse phase column eluted using water (solvent A) and acetonitrile (solvent B) both containing 0.1 % trifluoroacetic acid in a gradient mode of elution (0–4 min 5 % B, 4–20 min 5–95 % B, 20–30 min 95–5 % B) at a flow rate of 1 ml/min and the radioactivity was monitored using a flow-through NaI(TI) scintillation detector. Paper chromatography was performed using 50 % aqueous acetonitrile as the mobile phase to differentiate between free and complexed ¹⁷⁷Lu.

Role of trace metal impurities on yields of ¹⁷⁷Lu-PCTA-NCS

It is well recognized that trace metallic contaminants play a major role in reducing the yields of ¹⁷⁷Lu radiopharmaceuticals, particularly the receptor-targeted radiopharmaceuticals synthesized using small amounts of ligands. For instance, Fe(III) ions may be present in trace levels even in highly pure reagent solutions [25, 26]. Hence, the potential role of trace metal ions such as Ca(II), Cu(II), Fe(III) and Zn(II) on the radiochemical yield of ¹⁷⁷Lu-PCTA-NCS was studied in comparison to that of ¹⁷⁷Lu-DOTA-NCS. For this purpose, the absence of trace metal ions in the ¹⁷⁷LuCl₃ solution was ascertained by carrying out ICP-AES analysis of decayed ¹⁷⁷Lu samples, as reported elsewhere [27]. All the experiments were carried out using 37-74 MBq of ¹⁷⁷LuCl₃ with deliberate addition of ¹⁷⁶Lu carrier (4 μ g) equivalent to 100 mCi of ¹⁷⁷Lu, as explained previously. Standard solutions of the trace metal metal ions (Ca(II), Cu(II), Fe(III) and Zn(II)) were prepared and diluted to the appropriate concentrations corresponding to trace metal to ¹⁷⁶Lu molar ratios of 0.1:1, 1:1 and 10:1 respectively, keeping the Lu:PCTA-NCS molar ratio constant at 1:2 for all the studies). In a typical complexation reaction, 37-74 MBq of ¹⁷⁷LuCl₃ was taken in 0.1 M sodium acetate buffer to which carrier Lutetium (¹⁷⁶Lu) (4 µg/23 µM) equivalent to 100 mCi of ¹⁷⁷Lu (3.7 GBa) was added along with the corresponding trace metal solution followed by the ligand PCTA-NCS (46 μ M). The reaction volume was kept constant at 1 ml and was buffered at pH 5-5.5. The radiolabeling reaction was carried out for 15 min at ambient temperature. A reference reaction was also set-up simultaneously in the absence of trace metal ions. All the reactions were carried out with DOTA-NCS under identical reaction conditions, for comparison. All the reactions were repeated four times and the results correspond to the mean \pm SD of four replicates (n = 4).

In vitro stability studies and determination of octanol/ water partition co-efficients (log P)

In vitro stability of ¹⁷⁷Lu-PCTA-NCS complex (which has a Lu:PCTA-NCS molar ratio of 1:2) was determined in saline and human serum for 7 days at 37 °C. For determining the in vitro stability in saline, 100 µl of the complex was incubated in 1.9 ml of saline and incubated at 37 °C. Aliquots of $\sim 100 \ \mu$ l were taken at specific time intervals up to 7 days post-incubation and the radiochemical purity of the complex was determined by paper chromatography using 50 % aqueous acetonitrile as mobile phase. For determination of stability in human serum, $\sim 100 \ \mu$ l of the complex was incubated in 1 ml of human serum at 37 °C for 7 days. At end of every 24 h, $\sim 100 \ \mu$ l was taken and 2 ml of acetonitrile was added. The precipitate was removed by centrifugation and the supernatant was analysed by paper chromatography using 50 % aqueous acetonitrile as mobile phase. A similar experiment was carried out with ¹⁷⁷Lu-DOTA-NCS for comparison (Lu:DOTA-NCS molar ratio of 1:2).

The octanol to water partition coefficient of ¹⁷⁷Lu-PCTA-NCS was determined by adding 100 μ l of the complex to a biphasic solution consisting of 900 μ l saline and 1 ml of *n*-octanol. The resulting solution was shaken for ~5 min after which the aqueous and octanol layers were separated. Equal aliquots of both the layers were counted. 100 μ l of the octanol phase was again mixed with 900 μ l of octanol and 1 ml of saline and the experiment was repeated once again. Logarithm of the ratio of the counts in the octanol phase to that in the aqueous phase gave the partition coefficient values. Similar experiment was also carried out with ¹⁷⁷Lu-DOTA-NCS for comparison.

Biodistribution studies

For biodistribution studies, ¹⁷⁷Lu-PCTA-NCS complex was prepared at a Lu:PCTA-NCS molar ratio of 1:2 (using 37-74 MBq of ¹⁷⁷LuCl₃, 4 µg of ¹⁷⁶LuCl₃ carrier) and injected via the lateral tail vein in normal healthy Swiss mice. In brief, each mice, weighing 20-25 g, was injected with 0.1 ml of 177 Lu-PCTA-NCS complex (~370 kBg per animal, n = 4 per time point). The animals were kept in separate cages and were sacrificed by carbon dioxide asphyxiation at 1, 3 and 24 h p.i., blood was collected, the organs of interest (liver, lungs, kidney, intestine, spleen, stomach, muscle and bone) were excised and weighed. The associated radioactivity was measured in a flat-bed NaI (Tl) scintillation counter. The organ activities were corrected for decay and percentage injected activity (%ID) and percentage injected activity per gram (%ID g⁻¹) were determined. Percentage activity excreted (urine and feaces) was determined by counting the cage paper. Blood, bone and muscle uptakes were calculated by assuming their weights to be 6.5, 10 and 40 % of the body weight respectively [28]. Biodistribution study of ¹⁷⁷Lu-DOTA-NCS was also carried out under identical experimental conditions (at a Lu:DOTA-NCS molar ratio of 1:2, using 37-74 MBq of ¹⁷⁷LuCl₃ and $\sim 4 \mu g$ of ¹⁷⁶LuCl₃ carrier) for comparison.

Results

Preparation and characterization of ¹⁷⁷Lu-PCTA-NCS complex

For a bifunctional chelating agent to be considered suitable for preparation of radiopharmaceuticals for in vivo targeted therapy, it must preferentially form complexes with the radiometals at low radiometal to ligand ratios thereby reducing the amount of ligand used for preparing the radiopharmaceuticals. Herein, experiments were carried out to determine the amount of PCTA-NCS ligand required for preparation of ¹⁷⁷Lu-PCTA-NCS complex at high radiochemical yields using carrier ¹⁷⁶LuCl₃ equivalent to 100 mCi of ¹⁷⁷LuCl₃ and \sim 37 MBq of ¹⁷⁷LuCl₃ activity. Complexation reactions were carried out at various ¹⁷⁷Lu to PCTA-NCS molar ratios. Table 1 depicts the radiolabeling yields at various ¹⁷⁷Lu:PCTA-NCS molar ratios, in comparison to ¹⁷⁷Lu-DOTA-NCS, when reaction was carried out at 80 °C for 30 min, using trace levels of ¹⁷⁷Lu and ~4 µg of Lu carrier equivalent to ~100 mCi of 177 Lu. It is evident that at a 1:1 molar ratio of ¹⁷⁷Lu to PCTA-NCS, the radiolabeling yield was only 80 ± 6 %. Radiolabeling yields in excess of 95 % could be obtained even at 1:2 (lutetium to PCTA) ratios, similar to that of ¹⁷⁷Lu-DOTA-NCS. Based on the results of the above experiments, all further experiments (complexation kinetics, influence of trace metal ions, in vitro stability studies and biodistribution studies) were carried out using ¹⁷⁷Lu-PCTA-NCS complex having a Lu:PCTA molar ratio of 1:2. The ¹⁷⁷Lu-PCTA-NCS and ¹⁷⁷Lu-DOTA-NCS complexes were characterized by paper chromatography and HPLC techniques. In paper chromatography using 50 % aqueous acetonitrile as the mobile phase, $R_{\rm f}$ value of ¹⁷⁷Lu-PCTA-NCS and ¹⁷⁷Lu-DOTA-NCS complexes was about 0.8-1.0 while uncomplexed ¹⁷⁷Lu remained at $R_{\rm f} = 0.0$. HPLC analysis employing a C18 reverse phase column with a gradient elution of water and acetonitrile both containing 0.1 % TFA using the optimized protocol revealed the formation of ¹⁷⁷Lu-PCTA-NCS complex having the major peak at a retention time of 19.1 min (Fig. 2) while unbound ¹⁷⁷Lu(III) eluted at 3.2 min. Results of the experiments carried out to determine the complexation kinetics at ambient temperature (25 °C) and 80 °C showed that high radiolabeling vields (>95 %) could be achieved even within 15 min of incubation at ambient temperature for 15 min, for both ¹⁷⁷Lu-PCTA-NCS and ¹⁷⁷Lu-DOTA-NCS (at Lu:Ligand molar ratio of 1:2). Hence, all subsequent radiolabeling reactions were carried out for 15 min at ambient temperature. This finding demonstrates that it was not essential to perform the radiolabeling reaction at elevated temperature to obtain high radiolabeling yields of ¹⁷⁷Lu-PCTA-NCS.

Role of trace metal impurities on yields of ¹⁷⁷Lu-PCTA-NCS

Results of the studies carried out to determine the role of trace metal ions on the ¹⁷⁷Lu labeling yields are summarized in Table 2 in which the percentage yield of ¹⁷⁷Lu-PCTA-NCS and ¹⁷⁷Lu-DOTA-NCS is given in terms of trace metal to lutetium molar ratios of 0.1, 1.0 and 10 respectively. In control experiments carried out in the absence of any trace metallic contaminant, radiolabeling yields exceeding 95 % could be readily obtained. It is very well evident from the Table 2 that the adverse effects exerted by Fe(III) ions on the yields of ¹⁷⁷Lu-PCTA-NCS and ¹⁷⁷Lu-DOTA-NCS is similar with reduced yields only at higher trace metal to lutetium ratios (10:1). The yield of

Table 1 Complexation of ¹⁷⁷Lu with PCTA-NCS and DOTA-NCS at various Lu to ligand molar ratios (pH ~5.5, added ca. Lu ~4 μ g, 30 min at 80 °C, n = 3)

¹⁷⁷ Lu-BFC complex	Lu:ligand molar ratio				
	1:20	1:10	1:4	1:2	1:1
¹⁷⁷ Lu-PCTA-NCS	98 ± 2	98 ± 1	97 ± 1	97 ± 1	80 ± 6
¹⁷⁷ Lu-DOTA-NCS	99 ± 1	99 ± 1	99 ± 1	98 ± 1	97 ± 2

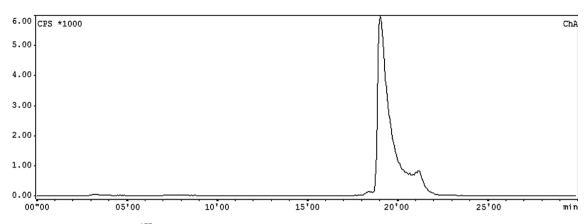


Fig. 2 HPLC radiochromatogram of ¹⁷⁷Lu-PCTA-NCS

¹⁷⁷Lu-PCTA-NCS was reduced only at ten times molar excess of Cu(II) ions over Lu(III) ions. In contrast, the yields of ¹⁷⁷Lu-DOTA-NCS were reduced at equimolar ratios of Cu(II) and Lu(III) ions. Zn(II) ions reduced the radiochemical yields of ¹⁷⁷Lu-PCTA-NCS at equimolar ratios with Lu(III) ions. A similar trend was also observed in the formation of ¹⁷⁷Lu-DOTA-NCS in presence of Zn(II) ions. Ca(II) ions did not have any adverse effect on the radiochemical yields of the ¹⁷⁷Lu complexes at lower Ca(II) to Lu(III) molar ratios (0.1 and 1.0).

In vitro stability studies and determination of octanol/water partition co-efficients (log P)

The radiochemical purity of ¹⁷⁷Lu-PCTA-NCS when incubated in saline and serum respectively was determined at various time intervals up to 7 days (at 37 °C) in comparison to ¹⁷⁷Lu-DOTA-NCS. The results are given in Fig. 3. It is evident that the radiochemical purity of ¹⁷⁷Lu-PCTA-NCS did not decrease significantly with time and was more or less similar that of ¹⁷⁷Lu-DOTA-NCS complex. Even at 7 days post-incubation, >95 % of the ¹⁷⁷Lu-PCTA-NCS complex remained intact, both in saline and serum.

Based on the results of the Octanol:water partition experiments, log *P* values for ¹⁷⁷Lu-PCTA-NCS and ¹⁷⁷Lu-DOTA-NCS were determined to be -1.4 ± 0.2 and -2.4 ± 0.4 . Based on the log *P* values obtained herein, it is evident that ¹⁷⁷Lu-PCTA-NCS is less hydrophilic than the corresponding DOTA-NCS complex.

Biodistribution studies

Biodistribution of ¹⁷⁷Lu-PCTA-NCS was carried out in normal Swiss mice in comparison to that of ¹⁷⁷Lu-DOTA-NCS, the results of which are shown in Table 3 as the percentage administered activity per gram of tissue/organ (%ID g⁻¹). It is evident from the data that most of the ¹⁷⁷Lu-PCTA-NCS complex is excreted by 24 h p.i., similar to that of ¹⁷⁷Lu-DOTA-NCS complex. Activity in the blood was not very high

Trace metal impurity	Trace metal/Lu molar ratio	% Radiochemical yield		
		¹⁷⁷ Lu-PCTA-NCS	¹⁷⁷ Lu-DOTA-NCS	
Ca(II)	0.1	93 ± 4	96 ± 3	
	1.0	89 ± 1	94 ± 0	
	10	84 ± 5	89 ± 4	
Cu(II)	0.1	94 ± 2	94 ± 3	
	1.0	92 ± 4	86 ± 1	
	10	90 ± 0	82 ± 3	
Fe(III)	0.1	97 ± 1	96 ± 0	
	1.0	95 ± 1	94 ± 3	
	10	91 ± 1	89 ± 3	
Zn(II)	0.1	95 ± 3	94 ± 4	
	1.0	89 ± 1	92 ± 7	
	10	85 ± 1	91 ± 3	

Table 2 Influence of trace metal ions on the radiochemical yields of 1^{77} Lu-PCTA-NCS and 1^{77} Lu-DOTA-NCS (Lu:ligand molar ratio of 1:2, n = 4)

in both cases. However, the uptake of ¹⁷⁷Lu-PCTA-NCS complex in the liver and intestine was higher than that of the ¹⁷⁷Lu-DOTA-NCS complex at 1 h and 3 h p.i. which decreased significantly by 24 h p.i., as shown in Table 4. The absence of noteworthy uptake in the bone affirmed the in vivo stability of the ¹⁷⁷Lu-PCTA-NCS complex.

Discussion

The successful clinical deployment of ¹⁷⁷Lu labeled peptides and antibodies has led to the widespread recognition of ¹⁷⁷Lu as an important therapeutic radionuclide. The

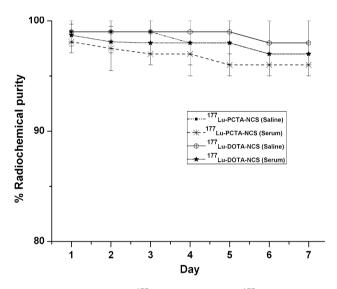


Fig. 3 In vitro stability of 177 Lu-PCTA-NCS and 177 Lu-DOTA-NCS in saline and serum (incubated for 7 days at 37 °C)

Table 3 Biodistribution pattern of 177 Lu-PCTA-NCS in normal Swiss mice (n = 4)

Tissue/organ	%ID g ⁻¹			
	1 h p.i.	3 h p.i.	24 h p.i.	
Blood	1.2 ± 0.1	0.9 ± 0.1	0.4 ± 0.1	
Liver	1.3 ± 0.2	1.2 ± 0.1	0.4 ± 0.1	
Int + Gb	9.3 ± 1.8	8.2 ± 3.1	0.1 ± 0.0	
Stomach	0.2 ± 0.1	0.2 ± 0.1	0.01 ± 0.0	
Heart	0.4 ± 0.1	0.3 ± 0.0	0.1 ± 0.0	
Lung	0.7 ± 0.2	0.5 ± 0.2	0.4 ± 0.1	
Spleen	0.2 ± 0.1	0.2 ± 0.1	0.3 ± 0.1	
Tibia [#]	0.05 ± 0.01	0.03 ± 0.02	0.01 ± 0.01	
Muscle	1.3 ± 0.3	1.3 ± 0.2	1.0 ± 0.1	
Kidneys	0.7 ± 0.2	0.6 ± 0.1	0.5 ± 0.1	
Excreta $(urine + feaces)^*$	52 ± 5	58 ± 6	74 ± 8	

(%ID/organ)

* (%ID)

pursuit for chelating agents which enable near-complete complexation at ambient temperature while imparting high stability to the complex in vivo has resulted in the synthesis and evaluation of a number of ligands in recent times. One such ligand PCTA is reportedly of potential application due to its fast complexation rate with a number of medically important radioisotopes [18, 19]. Although there are a few reports on the use of this ligand for preparation of ¹⁷⁷Lu labeled monoclonal antibodies and peptides [29], to the best of our knowledge, detailed studies as regards the influence of trace metal ions, in vitro stability and the biodistribution pattern of ¹⁷⁷Lu-PCTA-NCS complex are not yet reported. Herein we report detailed studies carried out to evaluate the suitability of PCTA-NCS as a BFCA for design of ¹⁷⁷Lu radiopharmaceuticals. The results of our work reported here show that under the optimized conditions, high radiolabeling yields could be achieved with PCTA-NCS even at 1:2 lutetium to PCTA-NCS molar ratios. However, the radiolabeling vields at equimolar ratios of Lu and PCTA-NCS was less than 90 %, in contrast to ¹⁷⁷Lu-DOTA-NCS complex having equimolar ratios of Lu and DOTA-NCS. Experiments carried out to determine the detrimental effects of trace metal contaminants on ¹⁷⁷Lu-PCTA-NCS complex formation showed that while Fe(III) and Cu(II) ions had minimum influence on the radiolabeling yields at low concentrations, Zn(II) ions reduced the yields at equimolar ratios with respect to lutetium. A similar trend was observed for DOTA-NCS ligand. However, none of the trace metallic impurities studied reduced the radiochemical yields significantly even at high metal to lutetium molar concentrations, although all the studied cations such as Cu(II), Zn(II), and Fe(III) also

Table 4 Biodistribution pattern of 177 Lu-DOTA-NCS in normal Swiss mice (n = 4)

Tissue/organ	%ID g ⁻¹			
	1 h p.i.	3 h p.i.	24 h p.i.	
Blood	1.0 ± 0.1	0.7 ± 0.1	0.3 ± 0.2	
Liver	1.0 ± 0.2	0.8 ± 0.1	0.2 ± 0.1	
Int + Gb	4.8 ± 0.1	5.2 ± 1.1	0.1 ± 0.0	
Stomach	0.2 ± 0.1	0.2 ± 0.1	0.0	
Heart	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	
Lung	0.6 ± 0.1	0.7 ± 0.1	0.5 ± 0.1	
Spleen	0.1 ± 0.1	0.2 ± 0.1	0.2 ± 0.0	
Tibia [#]	0.01 ± 0.0	0.01 ± 0.0	0.0	
Muscle	1.2 ± 0.1	0.5 ± 0.2	0.3 ± 0.2	
Kidneys	0.7 ± 0.0	0.7 ± 0.1	0.9 ± 0.2	
Excreta $(urine + feaces)^*$	56 ± 6	62 ± 3	79 ± 6	

(%ID/organ)

" (%ID)

form thermodynamically stable complexes with the BFCAs used for complexation with ¹⁷⁷Lu due to their suitable ionic size, charge and co-ordination chemistry [18, 30, 31]. Asti et al. and Pawlak et al. have previously reported a detailed study of the influence of trace metal ions on ⁹⁰Y and ¹⁷⁷Lu labeling of DOTA-TATE [26, 32]. They have reported that the radiochemical yields of ¹⁷⁷Lu-DOTA-TATE is drastically reduced in presence of trace metal ions such as Cu. Fe and Zn. However, a direct comparison of our results of ¹⁷⁷Lu-DOTA-NCS with that reported by them for ¹⁷⁷Lu-DOTA-TATE is difficult due to the difference in the experimental conditions. Asti et al. have reported that the exclusion of one carboxylate group as in DOTA-TATE (DO3A) has a major impact on the stability of the complexes with Y^{3+} or Lu^{+3} [26]. In addition, the influence of trace metal ions would also depend on the lutetium to ligand molar ratios used for the studies. With higher lutetium to ligand molar ratios, the interference of the trace metal ions is expected to be lower [26]. ¹⁷⁷Lu-PCTA-NCS complex also exhibited high in vitro stability, both in saline and serum. Results of the biodistribution studies carried out in Swiss mice show that ¹⁷⁷Lu-PCTA-NCS did not show any significant uptake in any vital organs, except the liver and intestine. The dose to the liver and intestine was more with ¹⁷⁷Lu-PCTA-NCS than ¹⁷⁷Lu-DOTA-NCS at 1 and 3 h p.i. Similar results have been also reported for ⁹⁰Y and ⁶⁸Ga labeled PCTA-NCS complexes by other researchers [21, 22]. The higher liver uptake may be attributed to the lower hydrophilicity of ¹⁷⁷Lu-PCTA-NCS complex in comparison to the ¹⁷⁷Lu-DOTA-NCS complex. The kinetic stability of ¹⁷⁷Lu-PCTA-NCS in vivo could be confirmed from the absence of notable uptake in the bone. These results establish the utility of PCTA-NCS ligand as a bifunctional ligand for use with ¹⁷⁷Lu, especially while radiolabeling temperature-sensitive biomolecules as the radiolabeling is complete within few minutes at ambient temperature.

Conclusion

In this study, the potential use of PCTA-NCS ligand as a BFCA for ¹⁷⁷Lu was evaluated. The high labeling efficiency, in vitro stability and results of the biodistribution studies show that PCTA-NCS ligand could be a suitable BFCA for use with ¹⁷⁷Lu.

Acknowledgments Research at the Bhabha Atomic Research Centre is part of the ongoing activities of the Department of Atomic Energy, India and is fully supported by government funding. The authors are thankful to Dr. Sudipta Chakraborty of Isotope Production & Applications Division, BARC for the supply of ¹⁷⁷Lu. The authors express their sincere gratitude to Dr. K.L. Ramakumar, Director, RC&I Group, BARC for his continued support and encouragement.

References

- Dash A, Knapp FF, Pillai MRA (2013) Targeted radionuclide therapy-an overview. Curr Radiopharm 6:152–180
- Kam BL, Teunissen JJ, Krenning EP, de Herder WW, Khan S, van Vliet EI, Kwekkeboom DJ (2012) Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39(Suppl 1):S103–S112
- 3. Van Essen M, Krenning EP, De Jong M, Valkema R, Kwekkeboom DJ (2007) Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol 46:723–734
- 4. Delpassand ES, Samarghandi A, Zamanian S, Wolin EM, Hamiditabar M, Espenan GD, Erion JL, O'Dorisio TM, Kvols LK, Simon J, Wolfangel R, Camp A, Krenning EP, Mojtahedi A (2014) Peptide receptor radionuclide therapy with ¹⁷⁷Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors: the first US phase 2 experience. Pancreas 43:518–525
- Pillai MRA, Chakraborty S, Das T, Venkatesh M, Ramamoorthy N (2003) Production logistics of ¹⁷⁷Lu for radionuclide therapy. Appl Radiat Isot 59:109–118
- Chakraborty S, Sarma HD, Vimalnath KV, Pillai MRA (2013) Tracer level radiochemistry to clinical dose preparation of ¹⁷⁷Lu-labeled cyclic RGD peptide dimer. Nucl Med Biol 40:946–954
- Cutler CS, Smith CJ, Ehrhardt GJ, Tyler TT, Jurisson SS, Deutsch E (2000) Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radiopharm 15:531–545
- Kang CS, Sun X, Jia F, Song HA, Chen Y, Lewis M, Chong HS (2012) Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of ⁹⁰Y and ¹⁷⁷Lu for targeted radioimmunotherapy. Bioconjugate Chem 23:1775–1782
- Chappell LL, Ma D, Milenic DE, Garmestani K, Venditto V, Beitzel MP, Brechbiel MW (2003) Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-*N*, *N'*, *N''*, *N'''*-tetraacetic acid for radiolabeling proteins. Nucl Med Biol 30:581–595
- Perk LR, Vosjan MJ, Visser GW, Budde M, Jurek P, Kiefer GE, van Dongen GA (2010) *p*-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with ⁸⁹Zr for immuno-PET imaging. Eur J Nucl Med Mol Imaging 37:250–259
- Riss PJ, Kroll C, Nagel V, Rösch F (2008) NODAPA-OH and NODAPA-(NCS)_n: synthesis, ⁶⁸Ga-radiolabelling and in vitro characterisation of novel versatile bifunctional chelators for molecular imaging. Bioorg Med Chem Lett 18:5364–5367
- Laznickova A, Biricova V, Laznicek M, Hermann P (2014) Mono(pyridine-*N*-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with ¹⁷⁷Lu: radiolabeling and biodistribution studies. Appl Radiat Isot 84:70–77
- Lewis MR, Raubitschek A, Shively JE (1994) A facile, watersoluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates. Bioconjugate Chem 5:565–576
- Sherry AD, Brown RD, Geraldes CFGC, Koenig SH, Kuan KT, Spiller M (1989) Synthesis and characterization of the gadolinium(3+) complex of DOTA-propylamide: a model DOTA-protein conjugate. Inorg Chem 28:620–622
- 15. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, Sandström M, Rosik D, Carlsson J, Lundqvist H, Wennborg A, Nilsso FY (2007) Radionuclide therapy of HER2positive microxenografts using a ¹⁷⁷Lu-labeled HER2-specific affibody molecule. Cancer Res 67:2773–2782

- Chong HS, Song HA, Ma X, Milenic DE, Brady ED, Lim S, Lee H, Baidoo K, Cheng D, Brechbiel MW (2008) Novel bimodal bifunctional ligands for radioimmunotherapy and targeted MRI. Bioconjugate Chem 19:1439–1447
- Baranyai Z, Uggeri F, Giovenzana GB, Bényei A, Brücher E, Aime S (2009) Equilibrium and kinetic properties of the lanthanoids(III) and various divalent metal complexes of the heptadentate ligand AAZTA. Chemistry 15:1696–1705
- Tircsó G, Kovacs Z, Sherry AD (2006) Equilibrium and formation/dissociation kinetics of some lanthanide (III)-PCTA complexes. Inorg Chem 45:9269–9280
- Tircsó G, Benyó ET, Suh EH, Jurek P, Kiefer GE, Sherry AD, Kovács Z (2009) (S)-5-(p-nitrobenzyl)-PCTA, a promising bifunctional ligand with advantageous metal ion complexation kinetics. Bioconjugate Chem 20:565–575
- Ait-Mohand S, Fournier P, Dumulon-Perreault V, Kiefer GE, Jurek P, Ferreira CL, Bénard F, Guérin B (2011) Evaluation of ⁶⁴Cu-labeled bifunctional chelate-bombesin conjugates. Bioconjugate Chem 22:1729–1735
- Chakravarty R, Chakravarty S, Dash A (2014) A systematic comparative evaluation of ⁹⁰Y-labeled bifunctional chelators for their use in targeted therapy. J Label Compd Radiopharm 57:65–74
- 22. Chakravarty R, Chakraborty S, Dash A, Pillai MRA (2013) Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted ⁶⁸Ga with different bifunctional chelators. Nucl Med Biol 40:197–205
- 23. Pandey U, Gamre N, Chakravarty R, Pillai MRA, Dash A (2014) Investigation on the influence of metal ion impurities on the complexation behavior of generator produced ⁹⁰Y with different bifunctional chelators. Radiochim Acta 102:947–954
- 24. Vimalnath KV, Shetty P, Lohar SP, Adya VC, Thulasidas SK, Chakraborty S, Dash A (2014) Aspects of yield and specific activity of (n, γ) produced ¹⁷⁷Lu used in targeted radionuclide therapy. J Radioanal Nucl Chem 302:809–812

- 25. Šimeček J, Hermann P, Wester H, Notni J (2013) How is ⁶⁸Ga labeling of macrocyclic chelators influenced by metal ion contaminants in ⁶⁸Ge/⁶⁸Ga generator eluates? Chem Med Chem 8:95–103
- 26. Asti M, Tegoni M, Farioli D, Iori M, Guidotti C, Cutler CS, Mayer P, Versari A, Salvo D (2012) Influence of cations on the complexation yield of DOTATATE with yttrium and lutetium: a perspective study for enhancing the ⁹⁰Y and ¹⁷⁷Lu labeling conditions. Nucl Med Biol 39:509–517
- 27. Chakraborty S, Vimalnath KV, Lohar SP, Shetty P, Dash A (2014) On the practical aspects of large-scale production of ¹⁷⁷Lu for peptide receptor radionuclide therapy using direct neutron activation of ¹⁷⁶Lu in a medium flux research reactor: the Indian experience. J Radioanal Nucl Chem 302:233–243
- Pillai MRA, Samuel G, Banerjee S, Mathew B, Sarma HD, Jurisson S (1999) Technetium-99m complexes of polydentate amine-pyrrole and amine-thiophene ligands. Nucl Med Biol 26:69–77
- Novy Z, Laznickova A, Mandikova J, Barta P, Laznicke M, Trejtnar F (2014) The effect of chelator type on in vitro receptor binding and stability in ¹⁷⁷Lu-labeled cetuximab and panitumumab. J Label Compd Radiopharm 57:448–452
- 30. Volková M, Mandíková J, Lázníčková A, Lázníček M, Bárta P, Trejtnar F (2015) The involvement of selected membrane transport mechanisms in the cellular uptake of ¹⁷⁷Lu-labeled bombesin, somatostatin and gastrin analogues. Nucl Med Biol 42:1–7
- 31. Anderegg G, Arnaud-Neu F, Delgado R, Felcman J, Popov K (2005) Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications. Pure Appl Chem 77:1445–1495
- Pawlak D, Korsak A, Mikolajczak R, Janota B, Karczmarczyk U, Jakubowska E (2007) Comparative evaluation of therapeutic radiopharmaceutical. I.A.E.A. Technical Reports Series no. 458, 13:217–232