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Abstract Neutron activation analysis, especially in its k0

standardization is fairly robust down to the level of accu-

racy of a few percent, but further improvement is riddled

with difficulties, i.e. multiple physical effects having

opposite influences and introducing bias and uncertainty in

the measured results. It is the aim of this paper to give a

comprehensive review of the physical models in k0-NAA,

by providing exact definitions of the physical quantities,

detailing the procedures used for the determination of the

physical constants and by discussing the approximations

and sources of uncertainty therein. Furthermore, indica-

tions are given on how accurately known k0-NAA con-

stants can be of value for other applications, namely the

measurement and validation of nuclear cross sections.

Keywords Neutron activation analysis � k0

standardisation � Physical models � Nuclear constants

Introduction

Due to its selectivity and sensitivity, neutron activation

analysis (NAA) occupies an important place among the

various analytical methods. It has proven to be a powerful

non-destructive analytical technique for concentrations at

or below the lg/g range. Up to 60 elements can be deter-

mined, performing two irradiations and several gamma-

spectrum measurements after different decay periods [1].

The main fields of NAA application are analytical chem-

istry, geology, biology and the life and environmental

science. Its accuracy, the virtual absence of matrix effects

and the completely different physical basis when compared

to other analytical techniques, make it particularly suitable

for the certification of candidate reference materials (RMs),

providing e.g. the bulk of the literature data on the standard

RMs of the National Institute of Standards and Technology

[2] and reference materials of the International Atomic

Energy Agency.

The k0 standardisation method of NAA (k0-NAA), a con-

cept launched in 1975 [3], can be interpreted as an absolute

standardisation method. It relies on k0 and Q0 factors and a few

other parameters, which are composite physical constants that

can be derived from basic nuclear data. In practice they are

usually determined by direct measurements, partly because

equivalent constants derived from the basic data are often

discrepant. The purpose of this paper is to:

• define the reaction rate equations as used in k0-NAA

and their relation to the exact definitions from the basic

nuclear data,

• identify sources of uncertainties and approximations

and their propagation to calculated reaction rates.

The overall objective is to give a detailed description of the

process of neutron activation from the basic physics. This

will improve the understanding of the definitions of the

nuclear constants used in k0-NAA and lead eventually to the

improvement in these nuclear constants, as well as the basic

nuclear data, where accurately measured composite con-

stants for k0-NAA can provide additional constraints for the
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Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

e-mail: vladimir.radulovic@ijs.si

A. Trkov

IAEA, Vienna International Centre, P.O. Box 100, 1400 Vienna,

Austria

V. Radulović
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basic nuclear data evaluation process. A better understand-

ing of the physics of neutron activation will also be of benefit

to users of the relative and single-comparator methods of

NAA because they are often confronted with questions of

neutron self-shielding, variations of reaction rates with

neutron temperature and changing neutron spectra.

Definitions

Specific activities

When a material is irradiated in a neutron field, some

nuclei of the material may capture neutrons to form

excited nuclei, which transition promptly to the ground

state (or metastable isomeric states) by emitting gamma

radiation. The capture product nuclei are often radioac-

tive. Decay by beta particle emission produces nuclei in

an excited state, which decay into the ground state (or a

metastable isomeric state), again by emitting gamma

radiation. Gamma radiation associated with the radioac-

tive decay of a nucleus is actually the radiation of its

decay product transitioning to the ground state. Different

variants of activation analysis as an analytical technique

differ in the radiation that is being measured. Usually

these are either prompt gamma rays emitted by the

excited capture product or the delayed gamma rays

emitted by the excited decay product nuclei.

If irradiations are performed in a neutron field with a

significant fraction of high energy neutrons, it is possible

that some threshold reactions on other nuclei present in the

sample produce the same product nucleus as obtained by

capture in the measured nucleus. Furthermore, if fissile

material is present in the sample, such material may yield

on fission the same nuclei as the capture product nuclei.

These are interference reactions and must be taken into

account. During the irradiation some of the capture pro-

ducts decay and some may themselves interact with neu-

trons to form a different nucleus and are lost for the

purpose of the measurement. At high neutron flux levels

the target nuclei may become depleted, which also affects

the production of the capture-product nuclei. The differ-

ential equation governing the rate of change of the con-

centration of the nuclei of interest Nc is given by:

dNc

dt
¼ /Nmrmcm;c þ

X

h

/Nhrhch;c þ kpNp � /Ncrc

� kcNc ð1Þ

where / is the neutron flux, r are the cross sections, N the

nuclei number densities in the sample, k the decay con-

stants and c the branching ratios or the fission product

yields. The terms are as follows:

dNc=dt rate of change of the decaying nucleus c, the

activity of which is measured,

/Nmrmcm;c production rate of the decaying nucleus c;

this is the reaction rate of nuclide m that is

investigated, producing product c, which on

decay produces characteristic radiation that

is measured; cm;c is the branching ratio (in

case of the decay radiation of an isomer). By

definition, /Nmrmcm;c is the reaction rate Am

Am ¼ /Nmrmcm;c: ð2Þ

/Nhrhch;c is the production rate of the decaying nucleus

c from (threshold) reactions in admixed

constituents h in the sample; ch;c is the

branching ratio (in the case of isomer

production) or the fission yield (if rh is the

fission cross section of an admixed fissile

constituent),

kpNp production of the decaying nucleus c from

precursor nucleus p by decay,

�/Ncrc removal of the decaying nucleus c by capture

or other reactions,

�kcNc removal of the nucleus c by decay.

An equation similar to the above can be written for each

type of nucleus (denoted by subscripts c, m, h, p), forming

a system of coupled first order linear differential equations

that can be solved numerically, or analytically, with some

approximations.

The last term in the right-hand side of Eq. (1) is the removal

term due to radioactive decay at any time, while the first term

on the right-hand side gives the reaction rate for nuclide

production. In a ‘‘long’’ irradiation (neglecting all other

terms), the nuclide concentration reaches equilibrium and the

derivative on the left-hand side is zero. The rate of production

of nuclei c then equals the removal rate. For this reason the

term kNcðtirr !1Þ is sometimes called the specific satura-

tion activity, which is equal to the reaction rate Am.

Neglecting the second and third term on the right-hand

side of Eq. (1) that correspond to contributions of admixed

constituents of the sample, the equation is recognised as the

Leibnitz equation, which can be solved analytically. Inte-

grating the analytical solution of Eq. (1) over the irradia-

tion time tirr, we obtain the expression for the concentration

of nuclide c at the end of irradiation:

NcðtirrÞ ¼
N0

mrm/cm;ce�rm/tirr

kc þ ðrc � rmÞ/
1� e�ðkcþðrc�rmÞ/Þtirr

h i
ð3Þ

If in Equation (1) we also neglect the rate of change of the

target nucleus due to capture (Nm ¼ N0
m) and the rate of

removal of the capture product due to capture (rc ¼ 0), the

commonly used equation is obtained:
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NcðtirrÞ ¼
N0

mrm/cm;c

kc

1� e�kctirr
� �

ð4Þ

After irradiation the concentration of nuclide c changes due

to radioactive decay:

Ncðtirr þ tcoolÞ ¼ NcðtirrÞe�kctcool ð5Þ

The photon emission rate is equal to the product of the

decay rate kcNcðtÞ and the gamma-emission probability

Pc;c. If tcool is the cooling time and tm is the measurement

time, the average characteristic c-photon emission rate Rc

over the time period from tcool to tcool þ tm is obtained by

integrating Eq. (5):

Rc ¼
kcPc;c

tm

Z tcoolþtm

tcool

NcðtÞdt ¼ kcPc;cNcðtirrÞ
tm

Z tcoolþtm

tcool

e�kctdt

¼ kcPc;cNcðtirrÞ
tm

e�kctcool

kc

1� e�kctm
� �

ð6Þ

Substituting NcðtirrÞ from Eq. (4) we get:

Rc ¼ N0
mrm/cm;cPc;c 1� e�kctirr

� �
e�kctcool

1� e�kctm

kctm

� �
: ð7Þ

In principle the more accurate expression for NcðtirrÞ
[Eq. (3)] could be used in deriving Eq. (7), in practice

however, difficulties arise with the capture cross sections of

the radioactive nuclei rc, which are generally unavailable

in the present activation databases, but could become sig-

nificant in specific cases of long irradiations under high

flux conditions. The correction due to the burnup of the

investigated nuclei m during the irradiation can generally

be neglected, since in routine applications, even at low

concentrations, the number of atoms m in the samples is

very large compared to the number of transmuted nuclei

during the irradiation.

We recognise the term N0
mrm/cm;c in Eq. (7) as the

reaction rate Am in Eq. (2). The characteristic c-photon

emission rate Rc is thus related to the reaction rate Am of

the measured nuclide given by Eq. (2), which is implicit in

the term NcðtirrÞ. The gamma photon emission rates are

determined from the measured characteristic photon peak

areas, after taking into account the detection efficiency and

photon coincidences. The subject of detection efficiency is

however beyond the scope of the present discussion. The

remainder of this paper is devoted to the topic of reaction

rate calculation and to associated nuclear constants.

Reaction rates

The reaction rate A of particles travelling through a

material is parametrised by the reaction cross section rðvÞ,
which is a property of the material and the neutron

spectrum uðvÞ, which is related to the density of the par-

ticles travelling through the material nðvÞ and their speed v:

uðvÞ ¼ vnðvÞ: ð8Þ

Expressed in terms of the kinetic energy E of the incident

particles, which is related to the speed v by the relation

E ¼ ð1=2Þmv2 (where m is the particle mass), the reaction

rate is:

A ¼ K

Z 1

0

rðEÞuðEÞdE; uð1 eVÞ ¼ 1: ð9Þ

The normalisation of uðEÞ is quite arbitrary and is chosen

for convenience. The constant K ensures that the integral of

uðEÞ over the entire energy range results in the total

neutron flux:

K

Z 1

0

uðEÞdE ¼ /: ð10Þ

In terms of neutron speed the equivalent expression for the

reaction rate can be written as:

A ¼
Z 1

0

rðvÞvnðvÞdv: ð11Þ

The integral can be split into the thermal part up to energy

ECd (corresponding to the neutron speed vCd) and the epi-

thermal part:

A ¼ K

Z ECd

0

rðEÞuðEÞdE þ
Z 1

ECd

rðEÞuðEÞdE

� �
: ð12Þ

We denote the neutron spectrum in the range up to ECd as

the thermal spectrum component: uthðEÞ ¼ uðEÞ;E\ECd,

and the neutron spectrum above ECd as the epitermal

spectrum component: uepiðEÞ ¼ uðEÞ;E [ ECd. The epi-

thermal spectrum component can be further decomposed

into the resonance part urðEÞ and the suitably normalised

fast (fission) spectrum contribution uhðEÞ for convenience:

uepiðEÞ ¼ urðEÞ þ huhðEÞ; E [ ECd ð13Þ

Precise modelling of the fission spectrum contribution

does not have a significant influence on calculated reac-

tion rates in well-thermalised spectra; it might improve

the modelling of reaction rates in irradiation facilities with

a strong epithermal neutron spectrum component, but it is

crucial for threshold reactions. The reaction rate equation

becomes:

A ¼ K

Z ECd

0

rðEÞuthðEÞdE þ
Z 1

ECd

rðEÞurðEÞdE

�

þ h

Z 1

ECd

rðEÞuhðEÞdE

�
:

ð14Þ

The above expressions are exact; the problem is that nei-

ther the cross sections nor the neutron spectrum are known
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accurately enough due to the strong dependence of the

parameters on neutron energy. For example, to represent

the capture cross section of 238U to within 0.1 % tolerance,

several 100,000 data points are needed. Such detailed

representation is necessary to ensure proper account of the

Doppler broadening effect due to temperature and for the

estimation of the self-shielding effects.

Without loss of generality, the integral Eq. (14) can be

cast into the expression commonly used in k0-NAA by a

suitable definition of constants:

A ¼ /thr0gGth þ /epiðIGepi þ JhÞ

¼ /thr0 gGth þ
1

f
ðQGepi þ HhÞ

� �
; ð15Þ

where the symbols have the following meaning: /th is the

thermal flux, defined as K
ffiffiffi
p
p

=2
R ECd

0
uðEÞdE; /epi is the

epithermal flux scaling factor K, equal to the flux at 1 eV 1;

f is the ratio between the thermal and the epithermal flux,

equal to
ffiffiffi
p
p

=2
R ECd

0
uðEÞdE due to our choice of epithermal

spectrum normalisation to 1 at 1 eV; r0 is the reaction

cross section at a neutron speed of 2,200 m/s; g is the

generalized Westcott g-factor, which measures the devia-

tion of the thermal cross section from 1=v behaviour; I is

the effective resonance integral; J is the effective fission

spectrum integral; Q is the ratio between the resonance

integral, and the 2,200 m/s cross section, I=r0; H is the

ratio between the fission integral and the 2,200 m/s cross

section J=r0; h is the fission spectrum factor; Gth is the

thermal flux depression factor; Gepi is the resonance self-

shielding factor.

The last term in Eq. (15), containing H and h and rep-

resenting the fission neutron contribution to the reaction

rate, has always been neglected in k0-NAA. Indeed, this

term is negligible in well-thermalised neutron spectra, but

may affect the constants, as discussed in the ‘‘Fission

spectrum contribution to reaction rate’’ section.

The applicability and the accuracy of the above

expression [Eq. (15)] depend on the approximations

involved in determining the constants. Correspondence and

definitions of individual terms are discussed in the sections

that follow.

To avoid the need to determine the neutron flux, the k0

standardization method of NAA relies on the measurement

of the ratio of specific activities (and reaction rates) of the

measured nuclide and some well-defined standard. The

commonly applied standard is gold, because it has well-

known cross sections and an associated gamma ray of

accurately-known emission probability that is relatively

easy to measure. The ratio of the specific activity of the

sample Aa relative to the specific activity of the standard As

is related to the ratio of reaction rates, given by the fol-

lowing expression:

Aa

As

¼ k0;a
Gthfga þ Gepi;aQa þ Hah

Gthfgs þ Gepi;sQs þ Hsh
; ð16Þ

where

k0;a ¼
MsHaPc;ar0;a

MaHsPc;sr0;s
ð17Þ

and the constants (index x ¼ a denotes the samples and

x ¼ s the standard) are: Mx molar mass of sample; Hx

natural atomic abundance; Pc;x gamma emission probabil-

ity of the measured gamma ray; r0;x thermal capture cross

section.

Thermal cross section r0, g-factor and thermal flux

depression factor Gth

The contribution of thermal neutrons to the reaction rate,

expressed in the neutron speed domain is given by:

Ath ¼
Z vCd

0

rðvÞvnðvÞdv: ð18Þ

For a 1=v absorber the cross section is:

rðvÞ ¼ r0

v0

v
; ð19Þ

where the symbols are: v0 thermal neutron speed, 2200 m/s

by definition; r0 cross section at neutron speed v0.

Substituting into the equation for Ath

Ath ¼ r0v0

Z vCd

0

nðvÞdv ¼ r0v0Nth; ð20Þ

where Nth is the total thermal neutron density (i.e. total

number of neutrons per unit volume). Note that the reaction

rate is independent of the neutron speed distribution nðvÞ.
In the energy domain the equivalent expression for the

thermal reaction rate is:

Ath ¼ K

Z ECd

0

rðEÞuthðEÞdE: ð21Þ

Substituting the expression for kinetic energy into Eq. (19)

for a 1=v absorber we obtain

rðEÞ ¼ r0

ffiffiffiffiffi
E0

E

r
; ð22Þ

where E0 is the energy of thermal neutrons corresponding

to v0 and is equal to 0.0253 eV. Simplification of the

integral for the reaction rate in Eq. (21) in the energy

domain is not possible. The reaction rate is proportional to

the total thermal neutron density, but not to the total

thermal neutron flux.

1 In energy bin (group) representation, K ¼ /1 eV= lnðE2=E1Þ, where

/1 eV is the group flux in the energy bin around 1 eV and E1 and E2

are the corresponding energy bin boundaries.
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Assuming that the thermal neutron spectrum has Max-

wellian distribution:

uthðEÞ ¼ Ee�E=kT ; ð23Þ

where k is the Boltzman constant and T is the temperature,

the thermal reaction rate is given by:

Ath ¼ K

Z ECd

0

rðEÞEe�E=kT dE: ð24Þ

For a 1=v absorber

Ath ¼ Kr0

ffiffiffiffiffi
E0

p Z ECd

0

ffiffiffiffi
E
p

e�E=kT dE: ð25Þ

The average thermal cross section rth is defined by:

rth ¼
R

rðEÞuthðEÞdER
uthðEÞdE

¼ Kr0

ffiffiffiffiffi
E0

p R ffiffiffiffi
E
p

e�E=kT dE

K
R

Ee�E=kT dE
: ð26Þ

Extending the integration limits from 0 to 1 (possible by

the fact that the exponential factors decrease rapidly above

ECd), recognising the integral in the numerator as the

gamma function Cð3=2Þ and using the relation between the

energy and the temperature E0 ¼ kT0, the average thermal

cross section rth is related to the thermal cross section r0

by the relation:

rth ¼
Kr0ðkTÞ3=2 ffiffiffiffiffiffiffi

kT0

p ffiffiffi
p
p

2KðkTÞ2
¼

ffiffiffi
p
p

2
r0

ffiffiffiffiffi
T0

T

r
: ð27Þ

Note that this relation is strictly valid only for a pure 1=v

absorber in a Maxwellian spectrum. In practice, the cross

sections may deviate from the 1=v behaviour and the

spectrum may be distorted (depending on the irradiation

facility). Westcott attempted to correct for the nonideal

cross section behaviour by introducing the Westcott g-

factor [4, 5], but still assumed that the spectrum was of

Maxwellian shape. He even took the trouble to extract the

1=v part of the cross section contribution from the reso-

nance range above the energy ECd. At the time when the

Westcott formalism was developed, the knowledge of cross

section shapes was lacking and determining the spectral

shape was based more on intuition and educated guessing

than anything else. Computational power posed additional

limitations, which favoured analytical approaches. With

many of these constrains relaxed, it is possible to introduce

an alternative definition of the generalised g-factor, which

can be used to calculate reaction rates without loss of

generality and is applicable to non-1=v absorbers as well as

spectra which deviate from the Maxwellian shape. The

drawback of using the more elaborate Westcott formalism

was also noted by other authors [6]. Comparing Eqs. (14)

and (15) see that:

/thr0gGth ¼ K

Z ECd

0

rðEÞuthðEÞdE: ð28Þ

Arbitrarily we define:

/th ¼ K

ffiffiffi
p
p

2

Z ECd

0

uthðEÞdE ð29Þ

Neglecting the thermal flux depression factor Gth for the

time being (assuming it is equal to 1), the definition of the

generalised g-factor follows:

g ¼
R ECd

0
rðEÞuthðEÞdE

r0

ffiffi
p
p

2

R ECd

0
uthðEÞdE

¼ 2ffiffiffi
p
p rth

r0

: ð30Þ

Substituting the integrals with the expression for rth it is

easily seen that for a 1=v absorber in a Maxwellian spec-

trum the above definition gives the well-known Westcott g-

factor relation:

g ¼
ffiffiffiffiffi
T0

T

r
g0; ð31Þ

where g0 is the value of the g-factor for a Maxwellian

spectrum at room temperature. In addition to the applica-

bility to arbitrary spectra, the main difference in the gen-

eralised definition of the g-factor is the upper integration

limit ECd, commonly taken as 0.55 eV. Normally this does

not affect the value of the g-factors in Maxwellian spectra

because the Maxwellian distribution function falls off very

rapidly above 0.55 eV and its contribution to the integral is

very small. The generalised g-factor can be calculated

easily from the cross sections, which are available for

practically all nuclides of interest. The value of the cal-

culated g-factor does not depend on the absolute magnitude

of the cross sections, which may have significant system-

atic errors, but only on the shape. Introduction of the

generalised definition of the g-factor extends the applica-

bility of the methods which rely on simple expressions for

reaction rates such as given in Eq. (15), to irradiation

facilities with spectra that deviate significantly from the

Maxwellian shape in the thermal region.

The thermal neutron flux depression factor Gth is often

referred to as the ‘‘thermal self-shielding factor’’, but the term

is misleading, because it implies primary dependence on the

measured nuclide in the sample. This is indeed the case with

resonance absorption in the epithermal range range, but not in

the thermal range, where neutron transport effects play a

dominant role. The thermal neutron flux depression factor is

therefore determined by the macroscopic cross sections of the

sample material as a whole. It can be calculated by a direct

transport calculation or from parameterised expressions,

which are discussed in more detail in the literature [7–9].
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For reference, the thermal flux depression factor for-

mulae are given. For slabs, the factor is given by:

Gth;slab ¼
1

2n
1� expð�nÞ þ n expð�nÞ � n2

Z 1

n

e�u

u
du

� �
;

ð32Þ
Z 1

n

e�u

u
du � � C þ ln nþ

Xp

n¼1

1

n

ð�nÞn

n!

" #
ð33Þ

n ¼ l

2

X

k

Rk; ð34Þ

where the summation over k represents the summation over

the nuclides present in the sample, Rk are the macroscopic

cross sections of the nuclides, C is the Euler constant =

0.577215, p is the number of terms in the series; the terms

can be summed until the relative contribution of the last

term is sufficiently small, e.g. 10�6, and l is the mean chord

length in the sample. For wires (infinite cylinders), a rough

approximation for the thermal flux depression factor is:

Gth;wire ¼ 1� 4

3
n: ð35Þ

For spheres, defining y ¼ 3n=2

Gth;sphere ¼
1� 9

8
n; n� 0:003

3
4y3 y2 � 1

2
þ 1

2
þ y

� �
e�2y

� �
; n� 0:003:

	

ð36Þ

In addition, the original derivation of the equation for slabs

has been reviewed and a correction has been introduced

[9]:

G�th ¼
Gth

1�W Rs

Rt
ð1� GthÞ

; ð37Þ

where Rs and Rt are the macroscopic scattering and total

cross sections, respectively, and the parameter W repre-

sents an arbitrary weight (ideally equal to 1) and is used to

improve the agreement of the expression with results from

more detailed calculations of the thermal flux depression

factors.

Resonance integral I, cadmium transmission factor FCd

and Q value

The reference resonance integral I0 is usually defined by

the product of the cross section and a pure 1=E spectrum,

integrated between some chosen cadmium cutoff energy

ECd and an arbitrarily chosen upper limit E3:

I0 ¼
Z E3

ECd

rðEÞwðEÞdE; wðEÞ ¼ 1

E
: ð38Þ

Similarly, the reference Q0 value is given by:

Q0 ¼
I0

r0

: ð39Þ

This definition is rather artificial because such a spectrum

with sharp cutoff energies cannot be produced experi-

mentally. Measurements are usually done in thermal

reactor spectra, which approximately follow the 1=E

behaviour in the epithermal energy range. If the irradiation

position is separated from the fission source (usually the

reactor core) by a relatively thick moderator material

region, relatively few fission neutrons reach the irradiation

position directly, so the fission peak in the spectrum is

small. The fission spectrum falls off rather rapidly above

the peak, so the energy around 2 MeV is the natural upper

cutoff energy. At the low energy end, thermal neutrons can

be filtered by a strong absorber like cadmium, which has a

huge resonance at 0.178 eV and relatively weak resonances

at higher energies. A 1 mm cadmium filter effectively

removes most neutrons below 0.55 eV. The total and

absorption cross sections of cadmium are shown in Fig. 1.

The resonance integral can be approximated by the reaction

rate ICd measured under a cadmium filter.

Introducing the cadmium transmission function tðEÞ, a

more precise definition of the measured resonance integral

under cadmium cover ICd in a real spectrum u�ðEÞ is

obtained:

ICd ¼
Z 1

0

tðEÞrðEÞu�ðEÞdE: ð40Þ

The above equation reduces to the previous idealised one if

the range of integration is limited from ECd to E3, the

spectrum is pure 1=E, and tðEÞ is an idealised Heaviside

function:

Fig. 1 Total and absorption cross sections of natural cadmium
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tðEÞ ¼ 0 for E\ECd

1 for E�ECd

	
ð41Þ

A more realistic form of the cadmium transmission func-

tion is obtained by assuming exponential attenuation of

neutrons through cadmium:

tðEÞ ¼ eNCddrCdðEÞ; ð42Þ

where d is the cadmium cover thickness, rCdðEÞ is the

cadmium cross section and NCd is the number density of

cadmium atoms in the cover, given as:

NCd ¼
qCdNA

MCd

; ð43Þ

where qCd is the density of cadmium, NA the Avogadro

number and MCd the molar mass of cadmium.

In a collimated narrow neutron beam incident on a small

target, any reaction on cadmium would remove a neutron

from its path. Using the total cross section for rCd the cad-

mium transmission function would be valid exactly. In

practice, the beam profile and target dimensions are finite;

the neutron field may be isotropic, in which case there is a

high probability that scattered neutrons would also reach the

target. In such cases only the absorption reaction really

removes the neutrons so it may be more appropriate to define

rCd as the absorption cross section. In reality the truth is

somewhere in between. Figure 2 displays the cadmium

transmission functions obtained from the total and absorp-

tion cross-sections and the idealized cadmium transmission

function. The problem is schematically presented in Fig. 3.

Note that the form of the cadmium transmission function is

the first approximation in the definitions introduced so far.

The resonance integral defined by Eq. (40) is a mea-

surable quantity. This is to be compared with the required

form evident from Eqs. (14) and (15). The cadmium

transmission factor FCd is introduced to compensate for the

non-ideal shape of the cadmium filter transmission func-

tion, assuming the spectrum closely follows the 1=E

behaviour and ignoring (or subtracting out) the high energy

contribution of the fission spectrum:

I ¼
Z E3

ECd

rðEÞuðEÞdE ¼ 1

FCd

Z 1

0

tðEÞrðEÞuðEÞdE: ð44Þ

From this it follows that:

FCd ¼
R1

0
tðEÞrðEÞuðEÞdE

R E3

ECd
rðEÞuðEÞdE

: ð45Þ

Deviation of FCd from unity arises from the cadmium

transmission function and from the difference in the upper

integration limit. The contribution of the latter is small in

the case of 1=E spectrum with a small component of the

fission neutrons in the spectrum. This is usually the case for

irradiation facilities behind a reflector. Cadmium trans-

mission factor values can be calculated from the cross

sections by direct integration according to Eq. (45),

assuming a 1=E spectrum and choosing appropriate inte-

gration limits in the numerator and the denominator

(E3=2 MeV, say); the lower integration limit ECd is chosen

to approximately match the effective cutoff of the cadmium

cover, which depends on the cadmium thickness. The value

0.55 eV is usually adopted for a cadmium thickness of

1 mm.

Irradiation channels inside (or near) the reactor core

may exhibit spectra with a significant contribution of

fission neutrons. In such cases the neutron spectrum

characterisation has to be done very carefully and the

cadmium transmission factor calculated directly from the

cross sections and the actual spectrum of the irradiation

facility.

In k0-NAA databases very few nuclides contain FCd

factors that deviate from unity, and even those have to be

considered with care. For example, the commonly adopted

value for 186W is 0.908 [10] and yields measured Q0 values

which disagree by nearly 10 % from those calculated from

the energy-dependent cross sections in evaluated nuclear

data files [11]. Direct calculations, using cross sections to

simulate the transmission of neutrons through a 1 mm

cadmium layer, result in a cadmium transmission factor

that differs from unity by about 1 %. Furthermore, the

measured value of 0.908 is not given with the associated

uncertainty. From the original paper on the measurement

the uncertainty is likely to be high and the quoted measured

FCd is probably incorrect.

With the resonance integral uniquely defined, the Q

value for a general neutron spectrum can also be defined in

a way analogous to Eq. (39):

Fig. 2 Actual and idealized cadmium transmission functions for a

1-mm thick cadmium cover
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Q ¼ I

r0

: ð46Þ

The reference Q0 for an ideal 1=E spectrum is already

defined by Eq. (39). The relation between the reference Q0

and the general Q is discussed in the ‘‘Effective resonance

energy Er’’ section. Some comparisons between measured

values and those calculated using cross sections from

evaluated nuclear data files are given in the ‘‘Q0 mea-

surements by the cadmium ratio method’’ section.

Resonance self-shielding factor Gepi

In the absence of strong absorbers the neutron spectrum as

a function of energy is a smooth function. When resonance

absorbers are present in significant quantities, the reso-

nances tend to create dips in the spectrum shape. This

phenomenon is well known in reactor physics and has been

dealt with extensively in the so-called resonance theory. In

the intermediate resonance approximation (IR) the real

spectrum u�ðEÞ is expressed in terms of the spectrum

unperturbed by the resonance absorber uðEÞ by the

expression:

u�ðEÞ ¼ rb þ krpðEÞ
rb þ kraðEÞ þ rsðEÞ

uðEÞ; ð47Þ

where rb is the Bondarenko background cross section,

which measures the effective dilution of the resonance

absorber; ra is the absorption cross section of the reso-

nance absorber, rs is the scattering cross section of the

resonance absorber; rp is the potential scattering cross

section of the resonance absorber; k is the Goldstein–

Cohen parameter—a ‘‘measure’’ of the resonance width,

and uðEÞ is the smooth spectrum (unperturbed by the

resonances).

The intermediate resonance approximation is an

improvement to the narrow resonance (NR) approximation

(k ¼ 1, implying that the resonances are so narrow that any

scattering event will decrease neutron energy sufficiently to

fall outside the resonance) and the wide resonance (WR)

approximation (k ¼ 0, assuming that energy loss in a

scattering event is small compared to the resonance width).

Resonance theory is based on the assumption that the

absorber atom is surrounded by a moderator of approxi-

mately constant cross section, presented by the Bondarenko

background cross section, which effectively measures the

dilution of the absorber and is defined as the macroscopic

potential cross section of the moderator per absorber atom:

rb ¼
1

Na

X

i

Nikiri; ð48Þ

where Na is the absorber atom number density; Ni is the

number density of the ith moderator nucleus; ri is the cross

section of the ith moderator nucleus; ki is a parameter

related to the Goldstein–Cohen parameter that measures

the moderator effectiveness. By definition it is equal to 1

for hydrogen. Further details can be found in the docu-

mentation of the WIMS-D Library Update Project [12].

The above derivation is applicable to infinite homoge-

neous media, but irradiated samples are of finite dimen-

sions. In the surrounding medium (analogous to a

moderator without strong resonance absorbers) the spec-

trum is relatively smooth. The neutrons enter the sample

(containing a resonant absorber), but their depth of pene-

tration at resonance energies is limited due to the absorp-

tion in the resonances. The process is therefore similar to

the one in an infinite medium. In reactor physics this is

called the equivalence theorem. The equation for the

Bondarenko background cross section is modified to

include the so-called escape cross section Re, which

accounts for the finite dimensions of the sample:

rb ¼
1

Na

Re þ
X

i

Nikiri

" #
ð49Þ

The escape cross section is given by the simple expression:

Re ¼
a

l
; ð50Þ

Sample

Sample

Filter (thin slab)

Filter (container)

Collimated neutron
beam

Isotropic neutron
field

Fig. 3 Limiting cases for

irradiations using cadmium

filters: narrow collimated

neutron beam, isotropic neutron

field
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where a is the Bell factor (usually assumed constant with

value 1.16); l is the mean chord length.

The mean chord length for a convex volume is

approximately given by:

l ¼ 4V

S
; ð51Þ

where V is the volume and S is the surface area.

The epithermal self-shielding factor describing the

effects of resonance absorption can be defined by:

Gepi ¼

Z E3

ECd

rðEÞu�ðEÞdE

Z E3

ECd

rðEÞuðEÞdE

; ð52Þ

with the weighting spectrum u�ðEÞ defined by Eq. (47). A

practical procedure is to generate a library of self-shielding

factors for all nuclides of interest, and particularly the main

likely constituents of sample materials with significant

absorption properties, tabulated as a function of the

Bondarenko background cross section rb. This operation

can be performed e.g. by using the MATSSF code [13],

readily available from the IAEA website (http://www-nds.

iaea.org/naa/matssf/). The user can then calculate the rel-

evant value of rb from Eqs. (49) and (50), and retrieve the

required Gepi by interpolation. The main approximations in

this approach are those inherent in the IR resonance

approximation and the assumption that Gepi factors are not

sensitive to small deviations in the weighting spectrum

uðEÞ, which is usually assumed to be of the 1=E form.

Also, the interference between resonances is neglected in

cases where the sample contains several strong resonance

absorbers present in significant quantities.

Effective resonance energy Er

The resonance integral and the Q value depend on the

shape of the neutron spectrum in the epithermal range.

Assuming that the spectrum deviates only slightly from the

1=E behaviour such that it can be represented by:

uðEÞ ¼ 1

E1þa
; ð53Þ

where a is a constant. To relate the QðaÞ in terms of the

reference Q0 value corresponding to a ¼ 0 in a pure 1=E

spectrum, a semi-empirical relation is usually applied [14,

15]:

QðaÞ ¼ Q0 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0=ECd

p

ðEr=1 eVÞa þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0=ECd

p

ð2aþ 1ÞðECd=1 eVÞa ð54Þ

The numerical value of 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0=ECd

p
� 0:429 is often seen

in the equations in the literature. The relation is based on

the assumption that resonances can be represented by the

single-level Breit–Wigner formula. An effective resonance

energy Er is defined as a weighted average of the true

resonance energies, where the contributions of the partic-

ular resonances to the resonance integral are used as

weights. Replacing the resonances by a single resonance at

Er of width such that it reproduces the true resonance

integral, an analytical expression for the integral for any

value of a can be derived. Rearranging the expressions,

Eq. (54) is obtained.

To verify the validity of the approximation for QðaÞ,
exact values were calculated directly from the cross sec-

tions based on Eqs. (44), (45) and (46) for a set of a values

in the range between �0:1 and þ0:1, and using an idealised

cadmium transmission function with cutoff at 0.55 eV. By

inverting Equation (54) an expression for Er can be

obtained:

ErðaÞ ¼
Q0 � 0:429

QðaÞ � 0:429
ð2aþ1Þð0:55Þa

" #1=a

ð55Þ

The average Er is defined by the integral:

Er ¼
1

ahi � alo

Z ahi

alo

ErðaÞda ð56Þ

and the integration limits ahi and alo are chosen þ0:1 and

�0:1, respectively. The calculated ErðaÞ for different val-

ues of a were found to vary by up to 30 % from the average

value Er. The a-dependent ErðaÞ, (normalised with respect

to the average Er) for different nuclides is shown in Fig. 4.

The average effective resonance energies Er calculated

from modern differential cross section data also differ quite

significantly from the values in the database usually

adopted for k0-NAA, which were derived from the avail-

able resonance parameters [16]. The comparison is shown

in Table 1; the values from the k0-NAA database are

labeled ‘‘Kayzero’’. In the case of 94Zr the difference

exceeds a factor of two.

A similar analysis was performed for QðaÞ. Exact values

calculated by direct integration of Eqs. (38) and (39) were

compared to the approximate ones based on Eq. (54), using

Q0 and average Er calculated as described before. For

easier comparison between different nuclides all values

were normalised with respect to the corresponding Q0

value. The comparison is shown in Fig. 5. Fortunately it

turns out that the dependence of QðaÞ on Er is rather weak.

Although the a-dependence of Er is quite strong, the use of

the average value in conjunction with Eq. (54) does not

introduce a large error into the calculated QðaÞ. The dif-

ferences are larger for nuclides with higher effective res-

onance energies Er and may exceed 3 % in some cases. It

is interesting to note that Eq. (54) always leads to the un-

derprediction of QðaÞ. It has been shown that improved
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QðaÞ values can be obtained if one uses Er values calcu-

lated from modern differential cross section data and if the

variation of Er with a is taken into account. Compilation of

Er values from basic nuclear data libraries is work in

progress and is beyond the scope of the present discussion.

Fission spectrum contribution to reaction rate

The k0 standardization of NAA relies on measurements of

specific activities of radionuclides produced by radiative

capture reactions, which in the majority of cases have a

very low cross section at higher neutron energies. More-

over, the irradiation facilities used for k0-NAA typically

have a very well thermalized neutron spectrum, where even

the contribution to the reaction rates from the resonance

energy region is small compared to the main contribution

from the thermal region. For typical k0-NAA facilities, the

fission spectrum contribution is altogether neglected.

However, generalizing the equations used in k0-NAA by

the introduction of new terms describing the fission

spectrum contribution has several benefits. Firstly, in

cases where the reaction cross sections exhibit a very long

1=v dependence it enables to separate the fission spectrum

contribution from the measured resonance integal. One

such case is the 27Alðn; cÞ reaction. The Q0 factor for this

reaction has been determined from cadmium ratio mea-

surements in two irradiation channels of the JSI TRIGA

Mark II reactor with different spectral characteristics—the

Central Channel in the reactor core, with a strong fission

spectrum component and the IC40 irradiation channel in

the graphite reflector surrounding the reactor core, with a

significantly smaller fission spectrum component [17]. For

the Central Channel it has been shown that the correction

to Q0 due to the fission spectrum contribution is about

8 %.

Secondly, the benefit of the generalization is that it

enables the implementation of this analytical method at

irradiation facilities with a strong fission spectrum com-

ponent and it allows for the extension of the method to

threshold nuclear reactions with an alternative definition of

the k0 factors, although this possibility has not been

explored in detail.

The mathematical definition of the fission spectrum

integral is:

J ¼
Z 1

ECd

rðEÞuhðEÞdE

¼ 1

h

Z 1

ECd

rðEÞ½urðEÞ þ huhðEÞ�dE

� 1

h

Z 1

ECd

rðEÞurðEÞdE; ð57Þ

where the fission spectrum fraction h depends on the

spectrum normalisation. Once the fission spectrum shape is

Fig. 4 Comparison of effective resonance energies Er for neutron

activation analysis

Table 1 Comparison of effective resonance energies Er for neutron

activation analysis

Nuclide Er (eV)

(Kayzero)

Er (eV)

(This work)

Relative

difference (%)

55Mn 468.0 393.5 �16

59Co 136.0 123.3 �9

64Zn 2560.0 2785.5 9

94Zr 6260.0 13142.3 110

96Zr 338.0 346.0 2

98Mo 241.0 319.8 33

100Mo 672.0 881.8 31

115In 1.6 1.5 �6

197Au 5.7 5.7 0

232Th 54.4 72.6 33

238U 16.9 18.2 8
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defined, the fission spectrum integrals can readily be cal-

culated from the cross sections. The fraction h itself can

then be determined through measurements of threshold

reaction rates. By determining the parameters f , a and h the

neutron spectrum is fully characterized.

An alternative definition for the k0 factor, analogous to

Eq. (16) can be written for threshold reactions:

Aa

As

¼ k0;a
Ia þ Jah

Gthfgs þ Gepi;sQs þ Hsh
; ð58Þ

where

k0;a ¼
MsHaca

MaHscsr0;s
; ð59Þ

and the constants have their usual meaning. Note that in the

above expression there is no thermal component. There

might be a small contribution to the resonance integral for

reactions with threshold below the upper cutoff energy for

the resonance integral. Note also that the k0 factor is

defined without the cross section in the numerator, because

it is zero for threshold reactions.

The quantities in the denominator of the expression for

k0 refer to the standard and are well known. The largest

uncertainty probably originates from the gamma emission

probability of the threshold reaction product. However, if

threshold reactions are only needed to determine interfer-

ence lines in the spectra, their uncertainties are less

important.

Neutron spectrum

The neutron spectrum in thermal reactors is determined by

the fission neutron source, the slowing-down process at

intermediate energies, and the thermal region where neu-

trons are in equilibrium with the surrounding crystal lattice.

It is useful to define an analytical function that is repre-

sentative of the general features of the spectrum. A typical

light water reactor spectrum, which can be used as a

weighting function for averaging cross sections and cal-

culating reaction rates is approximated by the thermal

Maxwellian part wth, the epithermal region wepi and the

fission spectrum wf defined by:

wth ¼ CthEl e�E=kT þ Ct1e�E=kT1 þ Ct2e�E=kT2

h i

wepi ¼ E� 1þa0þa1 logðEÞþa2ðlogðEÞÞ2½ �

wf ¼
Cf e�E=Wa sinh

ffiffiffiffiffiffiffiffiffi
EWb

p� �
1

Em0þm1E or

Cf

ffiffiffiffi
E
p

e�E=Ef 1
Em0þm1E

;

( ð60Þ

where k is the Boltzmann constant; ai are the constants that

determine the deviation from 1=E behaviour in the epi-

thermal range; Wa, Wb are the constants of the Watt fission

spectrum; T is the temperature; Eth, Ef are breakpoints

between thermal, epithermal and fast spectrum ranges; Cth,

Cf are continuity constants such that wthðEthÞ ¼ wepiðEthÞ
and wf ðEf Þ ¼ wepiðEf Þ, respectively; m is the fast neutron

slowing-down factor (equals 0 for no slowing-down and 1

for fast neutron sources surrounded by a moderator). It may

vary linearly with energy, in which case the coefficients m0

and m1 are defined.

The full function w representing the spectrum is defined

by:

w ¼ Kthwth þ Kepiwepi þ Kf wf ; ð61Þ

where:

Kepi ¼
1 for Eth\E\Ef

0 otherwise

	
ð62Þ

Kth ¼ 1þ Oth � Kepi ð63Þ

Kf ¼ 1þ Of � Kepi: ð64Þ

Fig. 5 Comparison of exact and approximate QðaÞ values for

different nuclides
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The parameters Oth and Of can be chosen arbitrarily to

define overlap for a smooth transition between different

regions (0 for no overlap, about 1 for a moderate overlap,

typically). The weighting function thus defined gives the

spectrum shape with the required characteristics and a

smooth transition between the thermal, epithermal and the

fast energy range. It is equal to 1 at energy 1 eV.

Special features of the function are:

• the thermal region is a superposition of three Maxwell-

ian functions at different temperatures, which allows

the modelling of distortions in the spectrum at low

energies,

• the a parameter that measures the deviation from the

1=E shape is allowed to be energy-dependent,

• the fast fission spectrum can be described by a

Maxwellian or a Watt function, with a correction to

account for fast neutron slowing-down.

Determination of parameters

Parameters determined from evaluated cross section

data

As already mentioned, some of the parameters are difficult

to determine experimentally. Having precise definitions of

the constants from first principles allows us to calculate

them from the basic nuclear data (particularly the energy-

dependent cross sections in evaluated nuclear data files) at

least in cases when the parameters do not depend on the

absolute accuracy of the cross section values but mainly on

the shape in a particular energy range. The parameters are

given in the following subsections.

Generalized Westcott g-factor

The generalized Westcott g-factor is defined by Eq. (30)

and is usually very close to one. It is very difficult to design

an experiment for a direct measurement of the g-factor that

would be more accurate than the value calculated from

cross section data, except perhaps in cases where the g-

factor differs significantly from one. The ratio of the g-

factors of the measured material to the standard can be

determined from the measurements of the k0 factors in a

thermal and a cold neutron beam (see the ‘‘Cadmium

transmission factor FCd’’ section), knowing that at lower

neutron energies the deviations of the cross sections from

the 1=v behaviour are smaller. The precondition for such

measurement is good knowledge of the shape of the

spectra. Generally it is preferable to use measurements of

this kind for the validation of the g-factors calculated from

the cross sections rather than their direct determination.

Cadmium transmission factor FCd

The cadmium transmission factor FCd defined by Eq. (45)

accounts for the difference between the idealised and the

measurable resonance integral, taking explicitly into

account the interference between the absorber and the

cadmium resonances. It would be possible to choose a

definition of the resonance integral that would more closely

match the measured one, but this would only obscure its

subsequent application in the calculation of reaction rates.

Defining the cadmium transmission factor to correct for the

difference between the measured and the idealised reso-

nance integral in a 1=E spectrum between 0.55 eV and

2 MeV is a practical convenience.

Thermal flux depression factor Gth, epithermal self-

shielding factor Gepi

Contrary to the other constants listed in the ‘‘Determination

of parameters’’ section, the thermal ‘‘self-shielding’’ (or

flux depression) factor Gth is not a property of the measured

nuclei but of the matrix in which they are embedded. The

presence of strong absorbers may cause flux depression

(and hence a decrease in the reaction rate), while abun-

dance of organic materials may actually increase the

thermal flux locally due to internal moderation. Empirical

expressions for the calculation of Gth are described in the

literature [7] and discussed briefly in the ‘‘Thermal cross

section r0, g-factor and thermal flux depression factor Gth’’

section.

The epithermal self-shielding factor Gepi accounts for

detailed changes in the spectrum due to resonance

absorption. The theoretical approach defined by Eqs. (47),

(48), (49), (50), (51) and (52) is well established in reactor

physics and gives good results even for absorbers in rela-

tively high concentrations. There is no reason to question

its applicability in k0-NAA, where the levels of self-

shielding are usually lower. Accurate direct measurements

were reported for some monitor materials by irradiating

samples of various thicknesses and extrapolating to zero,

but such a procedure is not practical for general imple-

mentation to all materials that may occur in real samples; it

may serve well for the validation of the resonance self-

shielding factors calculated from the cross sections.

For practical purposes, both Gth and Gepi can be easily

calculated with the MATSSF code mentioned above. The

user is required to input the sample chemical composition,

density and geometrical data. Only cylidrical geometry is

considered. The code has been validated against
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experimental measurements for moderate levels of self-

shielding [18].

Effective resonance energy Er

The effective resonance energy in its original form was

based on the validity of the single-level Breit–Wigner

formula for the resonance cross section representation,

which is known to be poor. Interpreting expression (54) for

QðaÞ as a semi-empirical relation, calculating QðaÞ directly

from the cross sections and using Er as a fitting parameter

in the empirical relation is a far more accurate and satis-

factory procedure than any attempt to measure Er

experimentally.

Fission spectrum averaged cross-secion rh

The fission spectrum averaged cross-secion can approxi-

mately be determined from measurements in a pure fission

spectrum (e.g. behind a fission plate), but such estimates

are valid only for threshold reactions above the resonance

cutoff energy and do not take the distortions of the spec-

trum (e.g. slowing-down, oxygen resonances, etc.) into

account. Calculated cross sections from the differential

data and the actual shape of the spectrum are generally

more accurate and reliable.

Parameters of the analytical spectrum function

If no additional information is available, the user can

assume that the spectrum is purely Maxwellian with

strength defined by factor f at thermal energies and devi-

ates by a fraction a from 1=E in the resonance range up to

2 MeV, say. This is consistent with the traditional

approach in k0-NAA.

Rapid advances in computational power made possible

the development of detailed full-core models (including

irradiation facilities), with which the neutron spectrum

can be calculated. A Monte Carlo simulation of the

spectrum in the central channel of the TRIGA Mark-II

reactor in Ljubljana is presented in Fig. 6, labelled

‘‘MCNP pointwise’’. Note the structure in the spectrum

below the fission peak, which is due to the oxygen

resonances.

The calculated spectrum was fitted with parameter a
having a slight quadratic dependence on logðEÞ, thermal

spectrum given by parameter f with small contributions of

two secondary Maxwellians at 850 and 1,800 K to fit the

shape at around 0.2 eV.

The analytic function fit reproduces very well the overall

shape of the spectrum, but not the fine details. To remedy

this we define a modulating function as the ratio of the

calculated spectrum and the analytic function. Obviously,

scaling the analytic function with the modulating function

reproduces exactly the calculated spectrum. Modulation of

the analytic fitting function may be suppressed in the

regions where the detailed shape of the calculated spectrum

is unreliable (for example, below 0.4 eV and above

4 MeV).

If for some reason we need to change slightly the

fitting function parameters, the overall characteristics of

the spectrum change, but the detailed shape defined by

the modulating function is preserved. The curve in Fig. 6

labelled ‘‘Fit to reaction rates’’ was obtained by allowing

parameters f , a and m to vary so as to better reproduce

the measured reaction rates of dosimetry monitors.

Experimental measurements

k0 measurements, thermal capture cross section

and gamma emission probability

From Eqs. (16) and (17) it follows that the k0 factor can be

determined from the measured ratio of activities of the

nuclide of interest (subscript a) and the standard (subscript

s):

k0;a ¼
MsHaPc;ar0;a

MaHsPc;sr0;s
¼ Aa

As

Gthfgs þ Gepi;sQs þ Hsh

Gthfga þ Gepi;aQa þ Hah
: ð65Þ

The accuracy of the measured k0 factor depends on the

neutron spectrum in which the measurement is done. If the

epithermal spectrum contribution is small, the f factor is

large, making the contributions of the Q and H terms

negligible. The only parameter influencing the result in

addition to the measured ratio of specific activities is the

ratio of the g-factors of the measured nuclide and the

standard.

Fig. 6 JSI TRIGA central channel spectrum fitting: neutron spectrum

calculated with a Monte Carlo calculation, fitted analytical spectrum

function, modulated analytical spectrum funcion, fit to reaction rates
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The measured k0 factor is proportional to the ratio of the

partial gamma production cross sections rc, defined by the

product of the gamma emission probability Pc and the

capture cross section r0:

rc;a

rc;s
¼ Pc;ar0;a

Pc;sr0;s
¼ k0;a

MaHs

MsHa

: ð66Þ

Partial gamma production cross sections can be used in

combination with other experiments to determine the ther-

mal cross section and the gamma emission probabilities.

This possibility was generally not exploited, except in a few

cases where the experimentalists explicitly reported the

derived cross section values in the publication [19]. A more

rigorous effort in this direction was made in the re-evalua-

tion of the thermal capture cross section of 238U, where all

available measurements of the cross sections, partial cross

sections (including k0 values) and directly-measured gamma

emission probabilities were analysed simultaneously by a

generalised least squares procedure, taking correlations into

account whenever possible [20]. This method yields a self-

consistent set of cross sections, gamma emission probabil-

ities, their uncertainties and correlations.

Q0 measurements by the cadmium ratio method

The cadmium ratio is defined by the ratio of bare and

cadmium covered reaction rates:

RCd ¼
A

ACd

¼
/thr0gGth þ /epiðIGepi þ JhÞ

/epiðICdGepi þ JhÞ ; ð67Þ

from which it follows that:

RCd ¼
fgGth þ QGepi þ Hh

QGepiFCd þ Hh
;

Q ¼ gf

RCdFCd � 1

� �
Gth

Gepi

� ðRCd � 1ÞHh

ðRCdFCd � 1ÞGepi

:
ð68Þ

The first term in the expression for Q is well known in the

literature on neutron activation analysis. The second term

represents the correction for the fission spectrum contri-

bution and vanishes if either the fission spectrum integral

or the fission spectrum contribution tends to zero.

The reference Q0 value be obtained through relation

derived from Eq. (54):

Q0 ¼ Q� 0:429

ð2aþ 1Þð0:55Þa
� �

ðErÞa þ 0:429 ð69Þ

The only assumption in this definition is that parameters

FCd and Gepi are approximately independent of a and that

Eq. (54) adequately describes the dependence of Q on a.

It is important to consider error propagation, which

originates from the uncertainty Df in the measured value of

f , DRCd
, in the measured cadmium ratio, DFCd

, in the cad-

mium transmission factor, Dh in the fission spectrum con-

tribution and DH in the fission spectrum integral. Note

however, that the problem is ill-posed when the measured

cadmium ratio is close to one, that is, when the contribution

of thermal neutrons to the reaction rate is neglibible.
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ð70Þ

Different sets of evaluated nuclear data files were pro-

cessed to obtain constants for a number of nuclides that are

commonly used as monitors to determine the spectral

parameters. Q0 values were obtained from evaluated

nuclear data from the JENDL-4.0 [21] and ENDF/B-VII.1

[22] libraries. The values were compared to the values in

the Atlas of Neutron Resonances by Mughabghab [23] and

the values from the Kayzero database, applied in k0-NAA

Table 2 Comparison of Q0 nuclear constants for neutron activation analysis

Nuclide Mughabghab 	 (%) Diff. (%) Kayzero 	 (%) JENDL-4.0 Diff. (%) ENDF/B-VII.1 Diff. (%)

55Mn 1.003 3.8 -4.7 1.053 3.0 0.995 -5.5 0.995 -5.5

59Co 1.990 2.7 -0.5 2.0 3.0 2.015 0.7 2.016 0.8

64Zn 1.734 5.1 -9.1 1.908 5.0 1.780 -6.7 1.772 -7.1

94Zr 5.668 5.0 6.7 5.31 3.3 5.607 5.6 6.358 19.7

96Zr 230.6 4.8 -8.4 251.6 1.0 208.1 -17 221.0 -12

98Mo 51.54 6.4 -2.9 53.1 6.3 52.21 -1.7 50.17 -5.5

100Mo 18.894 4.3 0.5 18.8 4.0 20.372 8.4 19.247 2.4

115In 16.33 3.8 -2.8 16.8 1.9 15.89 -5.4 15.88 -5.5

197Au 15.71 1.8 0.0 15.71 1.8 15.89 1.2 15.89 1.2

232Th 11.33 1.8 -1.4 11.5 3.6 11.47 -0.3 11.46 -0.4

238U 103.4 1.3 0.0 103.4 1.3 102.6 -0.7 102.5 -0.8
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[24], which are here taken as reference. The results are

compared in Table 2. The columns ‘‘	 (%)’’ gives the

specified uncertainty while the columns labelled ‘‘Diff.

(%)’’ give the percent difference from the Kayzero values.

Comparison of the Q0 values shows that the data from

the Atlas of neutron resonances by Mughabghab agrees

within the quoted uncertainties with the Kayzero data for

important monitor reactions, except for 96Zr. The agree-

ment between the values derived from the evaluated data

libraries JENDL-4.0 and ENDF/B-VII.1 and in the Kay-

zero database is poorer; the values are in agreement within

the quoted uncertainties in the Kayzero database for

roughly half of the considered reactions.

Determination of spectral parameters

The spectral parameters in k0-NAA are mainly the spectral

ratio f and the spectrum slope parameter a. Equivalent

spectral parameters implied by Eq. (60) are the energy

breakpoint Eth between the thermal and the epithermal

spectrum and the ai parameters. Note that a is allowed to be

energy-dependent, parameterised by second-order polyno-

mial coefficients a0, a1 and a2 in logðEÞ domain. Normally

the nuclear constants for k0-NAA are not very sensitive to

the other parameters that appear in Eq. (60).

Traditionally, the spectral ratio f is determined from the

cadmium ratio of the gold standard, but measured cadmium

ratios of other nuclides may be used as well. Similarly, the

a parameter (assumed constant) can be determined from a

linear fit in the log–log scale of Hj as a function of a for

several monitor nuclides j, where Hj is given by:

HjðaÞ ¼
Gepi

Gth

RCd;j � 1
� �

Qj Er;j

� �a
� �

: ð71Þ

The fission spectrum fraction can be determined from

reaction rates sensitive to the fission spectrum using

Eq. (16). The obvious candidates are threshold reactions

that also have well-defined constants for the capture pro-

cess, which may serve as a secondary standard. The

expression for the fission fraction is:

h ¼
Gth gak0 � gs

Aa

As

h i
þ Gepi;aQak0 � Gepi;sQs

Aa

As

Hs
Aa

As
� Hak0

: ð72Þ

The expression for the threshold k0 factor defined by

Eq. (59) is applicable and the standard in this case is a

capture reaction for one of the isotopes of the same ele-

ment. The above expression becomes much clearer if we

note that for a threshold reaction ga is zero by definition,

Qa is (close to) zero and Aa=As and Hs are usually small:

h ¼ Aa

As

Gthfgs þ Gepi;sQs

Hak0

: ð73Þ

Note that Eq. (73) is given for clarity only. In practical

calculations there is little penalty for using the full

expression of Eq. (72).

Alternatively, the spectral parameters can be determined

directly by minimising v2, defined as the sum of the

squares of the relative differences between the measured

and calculated reaction rate ratios or specific activities.

Reaction rate ratios can be calculated from energy-depen-

dent cross sections and the parameterised neutron spec-

trum, such as discussed in the ‘‘Neutron spectrum’’ section.

Work is currently in progress through a Co-ordinated

Research Project of the International Atomic Energy

Agency. The main advantage of this approach is greater

flexibility in the treatment of specific features of the neu-

tron spectrum in some particular irradiation facility, but the

pre-requisite for a broader application of the method is

improved reliability of differential cross section data,

gamma emission probabilities and better consistency with

currently used integral data.

Conclusions

Nuclear constants used in k0-NAA are derived from the

basic nuclear data from first principles. Except for the

details, most of the ideas are known, but they are scattered

in various textbooks and articles; they are collected in the

present paper for convenience and future reference.

Detailed analysis of underlying equations explains why

the relatively simple approach of the k0-NAA is so suc-

cessful, like the accuracy of the description of the neutron

spectrum using the spectral factor f and the shape factor a
along with the concept of the effective resonance energy.

The fission spectrum parametrization with the factor h

and an alternative definition of the k0 factor allow for

generalization of the mehod to systems with a strong fis-

sion spectrum component and threshold nuclear reactions.

Rigorous definitions of constants for k0-NAA allows for

cross-checking with differential data. Accurately measured

integral constants for k0-NAA can provide additional

constraints in the process of cross section evaluation and

their validation, which is beneficial to the whole nuclear

community.
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