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Abstract Endogenous D-serine, a co-transmitter of glu-

tamate for synaptic N-methyl-D-aspartate receptors, is

implicated in an array of health conditions. The feasibility

of a rapid asymmetric preparation of carbon-11 labelled

gliotransmitter D-serine is demonstrated via the hydroxy-

methylation of a chiral nickel(II) complex. Using an

automated radiochemistry synthesiser the key intermediate

was obtained with 80 % diastereomeric excess in a 1 min

reaction. Further optimisation of the starting glycine syn-

thon is possible in order to achieve even higher stereose-

lectivity of synthesis, which can benefit subsequent

separation–deprotection of the diastereomeric intermediate.
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Introduction

Amino acids labelled with positron-emitting isotopes were

one of the earliest developed PET radiotracers. Some

amino acids and their analogues, such as L-[11C]methionine

and O-(2-18F-fluoroethyl)-L-tyrosine has since then become

favoured tracers in oncology. Besides, the development of

radiolabelling methods for amino acids using carbon-11

and fluorine-18 remains an important research topic [1–3].

Endogenous D-serine is a co-transmitter of glutamate for

synaptic N-methyl-D-aspartate receptors (NMDARs).

Receptor affinity of NMDAR for binding D-serine versus

glycine depends on its GluN2 subunit composition. For the

activation of NMDARs glutamate binds to the GluN2

subunit of the receptor and a second ligand binds to the

GluN1 subunit. D-Serine is a ligand for the glycine site of

the GluN1 subunit receptors in the brain in the case when

NMDARs are composed of the GluN1 and the GluN2A

subunits. NMDARs composed of the GluN1 and the

GluN2B subunits preferentially bind glycine at GluN1 sites

[4, 5]. Endogenous D-serine is produced by the epimeri-

sation of L-serine in neurones by serine racemase. Result-

ing D-serine is transported into astrocites for storage. Na?-

independent alanine–serine–cysteine transporter-1 is found

exclusively in neurons, Na?-dependent ASCT1 and

ASCT2 are present in both neurons and astrocites. It was

demonstrated that D-serine plays an important role in the

formation and maturation of synaptic contacts and in the

earlier stages of neuronal circuit construction as a regulator

of neuroblast migration in the developing brain. It has been

tested as a therapeutic agent for the treatment of schizo-

phrenia, depression, Parkinson disease and post-traumatic

stress disorder (PTSD) [6]. Further, D-serine is implicated

in stress-related disorders [7], age-related memory loss [8],

amyotrophic lateral sclerosis (ALS) [9], apoptosis related

to neurotoxins and neurodegenerative disorders [10] among

others [6, 11]. Recently, the influence of D-serine to

interaction of serotonin 2A receptors with their agonists

was described [12]. Contingent on having favourable
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pharmacological properties D-serine labelled with 11C may

become a useful tracer helping better understand these

conditions by non-invasive imaging of the brain using

positron emission tomography (PET).

Considering the choice of the radionuclide the isotopic

labelling using 11C would be advantageous because the

resulting labelled compound will fully retain chemical and

biochemical properties. Previously a number of amino

acids have been labelled using chemical and biochemical

routes. In this communication we report a proof of concept

preparation of D-serine intermediate via rapid asymmetric

synthesis mediated by a chiral nickel(II) Schiff base

complex.

With a growing use of PET in preclinical and clinical

settings the tracer synthesis automation has become an

important aspect with respect to regulatory (cGMP) and

radiation safety guidelines. In particular this is valid for the

multi-step synthesis described in this communication.

Experimental

The synthesis was performed using a remote-controlled

robotic synthesiser ScansysTM installed in the Cyclotron

facility at Herlev University Hospital. The analysis of the

reaction mixtures and intermediates was carried out using

Shimadzu Prominence HPLC equipped with a diode-array

and a c-ray detectors and Phenomenex Luna C18 5l,

4.6 9 100 mm column. A linear gradient was run from 30

to 50 % of methanol and water.

Isotopically unmodified reference standards were pre-

pared according to published procedures [13, 14]. Nickel(II)

complex of the Schiff base of (S)-N-(2-benzoylphenyl)-1-

benzylpyrrolidine-2-carboxamide (BPB) and glycine was

prepared according to [15].

[11C]Methyl iodide was obtained via the gas phase

iodination of methane. Carbon-11 labelled formaldehyde

was prepared by the oxidation of [11C]methyl iodide by

trimethylamine oxide as described by Hooker et al. [16].

[11C]Hydroxymethylation of the glycine synthon

A solution of the nickel(II) complex of the Schiff base of

BPB and glycine (2 mg, 4 lmol) in 2 M MeONa in

methanol (1 ml, 2 mmol) was added to [11C]formaldehyde

at 25 �C. In 1 min 5 % aqueous citric acid (5 ml) was

quickly added to the reaction mixture and nitrogen was

bubbled through the solution for efficient mixing. The

reaction mixture was then transferred into a solid-phase

extraction module fitted with a C18 cartridge. The cartridge

was washed with 20 % aqueous methanol (10 ml) followed

by elution of the [11C]hydroxymethylated product with

60 % MeOH in water (10 ml).

Results and discussion

A multi-enzymatic synthesis of carbon-11 labelled L-serine

was published in 1990 [17]. For the preparation of

D-[11C]serine we employed BPB in nickel(II) complex of

its Schiff base with glycine [13, 18, 19]. This glycine

synthon enables the creation of desired stereochemistry of

the chiral centre of D-serine (Scheme 1). Mass-spectral and

NMR properties of such complexes have been studied in

great detail [18, 20–22]. The complexes are stable during

storage at ambient temperature. Previously, similar syn-

thons were successfully used for the preparation of aro-

matic a-methyl amino acids labelled with carbon-11 [23].

The [11C]hydroxymethylation leads to the labelled

complex of the Schiff base of D-serine with decay corrected

radiochemical yield above 50 % based on [11C]methyl

iodide (Fig. 1). The peak with the retention time of 6.7 min

corresponds to the complex containing D-[11C]serine and

the peak with the retention time of 7.2 min corresponds to

the complex containing L-[11C]serine, both correlated well

with retention times of the respective standards on the UV

channel 6.5 and 7.0 min. The first experiments have pro-

duced a 80 % diastereomeric excess of the anticipated

compound. The mixture of the diastereomers could be
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Scheme 1 Preparation of carbon-11 labelled D-serine
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separated using HPLC. Preliminary optimisation of the

separation of the Schiff base of D-serine was performed on

C-18 SPE columns and proved feasible.

Further synthesis optimisation is necessary in order to

develop a stereospecific synthesis which does not require

separation of the diastereomeric intermediates. More ster-

eoselective chiral auxiliaries for hydroxyalkylation of

glycine synthons have been described in the literature [24].

Several stereospecific glycine synthons have been devel-

oped for use in alkylation reactions [25]. Our intention is to

test their performance for the preparation of carbon-11

labelled D-serine.

Conclusions

Feasibility of the efficient and rapid asymmetric preparation

of a D-serine intermediate was demonstrated using an auto-

mated synthesiser. High diastereomeric excess (80 %) of

[11C]hydroxymethylation was achieved starting with nick-

el(II) complex of the Schiff base of (S)-N-(2-benzoylphe-

nyl)-1-benzylpyrrolidine-2-carboxamide and glycine.

For the convenient clinical application of the labelled glio-

transmitter further optimisation of the starting glycine synthon

is necessary in order to develop a stereospecific synthesis and

avoid separation of diastereomeric intermediates.

Provided high asymmetric induction is achieved during

the second step of the process (Scheme. 1) the product

should be amenable for automation on radiochemistry

synthesisers that do not have LC module as a constituent.
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