Comparison of the decay constants of ⁵¹Cr with metal, oxide, and chromate chemical states

H. Kikunaga · K. Takamiya · K. Hirose · T. Ohtsuki

Received: 31 August 2014/Published online: 9 September 2014 © Akadémiai Kiadó, Budapest, Hungary 2014

Abstract Chromium-51 decays through electron capture, the probability of which is perturbed by its electronic state. We have precisely measured the decay constants (λ) of ⁵¹Cr with metal (Cr⁰), oxide (Cr³⁺), and chromate (Cr⁶⁺) to investigate the effects of chemical states on the decay constants of ⁵¹Cr. The value of $\{\lambda(Cr^{6+}) - \lambda(Cr^{0})\}/\lambda(Cr^{0})$ was determined to be (6.4 ± 3.7) × 10⁻⁴, whereas the difference less than 1.4 × 10⁻⁴ was observed for $\{\lambda(Cr^{3+}) - \lambda(Cr^{0})\}/\lambda(Cr^{0})$.

Keywords Half-life \cdot Decay constant \cdot Chemical effect \cdot Radionuclide Cr-51

Introduction

The decay constants of more than ten nuclides from ⁷Be to 235 U^m have been found to be changed with changing environmental factors such as its chemical state [1]. Kakiuchi and Mukoyama [2] reported the change in the decay constant of the electron capture decay nuclide ⁵¹Cr between the two chemical forms CrCl₃ (valence state +3) and Na₂CrO₄ (valence state +6). They also estimated the

H. Kikunaga (⊠) · K. Hirose · T. Ohtsuki Research Center for Electron Photon Science, Tohoku University, Sendai, Japan e-mail: kikunaga@lns.tohoku.ac.jp

Present Address: K. Takamiya · T. Ohtsuki Research Reactor Institute, Kyoto University, Osaka, Japan

Present Address: K. Hirose Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan value for the relative change in the decay constant among Cr^0 , Cr^{3+} , and Cr^{6+} valence states with a simple theoretical model. The estimation shows that the relative change in the decay constant between Cr^0 and Cr^{3+} state is approximately equal to that between the Cr^{3+} and Cr^{6+} state. However, there is no experimental value of the decay constant of Cr^0 state so far. In this study, the decay constants of ${}^{51}Cr$ have been precisely measured with Cr^0 , Cr^{3+} , and Cr^{6+} valence states to investigate the effects of chemical states on the decay constants of ${}^{51}Cr$.

Experimental

The decay constants of 51 Cr were measured for three chemical forms: chromium metal (Cr⁰), chromium (III) oxide Cr₂O₃ (Cr³⁺), and potassium chromate K₂CrO₄ (Cr⁶⁺). The isotope 51 Cr was produced in the nat Cr(γ , xn) 51 Cr reaction.

Target materials were about 100 mg each of Cr metal, Cr_2O_3 , and potassium dichromate $K_2Cr_2O_7$. Each target material was sealed in a quartz tube and irradiated with bremsstrahlung photons. The irradiation was carried out with the electron linear accelerator at Tohoku University. The accelerator was operated at an electron energy of 30 MeV with a mean current of around 0.12 mA during the 8 h irradiation.

After the irradiation, the metal and Cr_2O_3 targets were maintained at 800 °C for 5 h in argon and atmosphere, respectively, with an electric furnace. The $K_2Cr_2O_7$ target was mixed into 250 mg of a non-radioactive $K_2Cr_2O_7$ reagent and then dissolved in 3 mL of distillated water. The solution was heated on a hot-plate and alkalified with potassium carbonate to produce CrO_4^{2-} . The solution was

Fig. 1 A typical $\gamma\text{-ray}$ spectrum for a Cr metal sample measured for 7,150 s

filtered and the filtrate was evaporated to less than 1 mL on a hot-plate. Finally, a K_2CrO_4 sample was prepared by recrystallization from the solution. The metal, Cr_2O_3 , and K_2CrO_4 samples were placed in aluminum cups separately and sealed with an epoxy resin adhesive.

These samples were measured in pairs of Cr_2O_3 -metal and K_2CrO_4 -metal to reduce the influence caused by the difference of detectors. The sample pairs were set in automated sample changers [3] and alternately placed in front of a high-purity Ge (HP-Ge) detector at intervals of 7,200 s. The procedures were repeated over at least 95 days, which is longer than 3.4 times of the half-life of ⁵¹Cr (27.702 days [4]). A ¹³⁷Cs source was positioned close to the HP-Ge detector as a reference source to correct for influential factors for determination of the half-life such as pile-up effects [5]. The dead-time of the measurement system was from 4 to 8 % at the beginning of the measurement. The internal clock time of the computer for data acquisition was constantly calibrated by a time-standard signal distributed via a long-wave radio transmission station in Japan.

The experiments for each of the sample pair were separately conducted two times.

Results and discussion

The decay constant of ⁵¹Cr was determined based on a reference method using a ¹³⁷Cs source. The ratio R(t) is given by the following equation:

$$\begin{split} R(t) &= \frac{C_{\text{sample}}(t)}{C_{\text{ref}}(t)}, \\ C_{\text{sample}(\text{ref})}(t) &= \frac{\lambda_{\text{sample}(\text{ref})}N}{(1 - e^{-\lambda_{\text{sample}(\text{ref})}t_{\text{R}}})} \frac{t_{\text{R}}}{t_{\text{L}}}, \end{split}$$

where $C_{\text{sample(ref)}}(t)$ and $\lambda_{\text{sample(ref)}}$ are count rates of a sample (reference source) at the beginning of each data

Fig. 2 An example of the decay curve for the 320 keV γ line of ⁵¹Cr (*upper panel*) and the normalized residuals (*lower panel*)

acquisition and decay constant, respectively. *N* is the net counts in the objective peak. t_R and t_L are real time and live time, respectively. The decay constant t_{sample} is described in the following equation:

$$\lambda_{\text{sample}} = \lambda_{\text{ref}} - a_{\text{slope}},$$

where a_{slope} is the slope of the graph of $\ln R(t)$ against time.

A typical γ -ray spectrum for a Cr-metal sample measured for the first 7,150 s is shown in the Fig. 1. The ⁵¹Cr γ peak at $E\gamma = 320.1$ keV and the ¹³⁷Cs γ peak at $E\gamma = 661.7$ keV can be observed as two prominent peaks. Other peaks in the spectrum are ascribed to ⁴⁸Cr, which is produced in the ⁵⁰Cr(γ , 2n) reaction, ⁴⁸V, in the ⁵⁰Cr(γ , pn) reaction, and natural background radiations.

A typical decay curve for the R(t) obtained using a leastsquares fitting procedure and their residuals are shown in the upper and lower panel of Fig. 2, respectively. The residuals of the fit of all the data are within the limit of approximately 0.6 %. The half-life of ⁵¹Cr with the metal form is determined to be 27.68 ± 0.02 days by the weighted average of four samples, which is in good agreement with literature value 27.702 ± 0.004 days [4].

Relative differences in the decay constant of ⁵¹Cr obtained from this work and the previous research [2] are shown in the Fig. 3. The relative difference $\{\lambda(Cr^{6+}) - \lambda(Cr^{0})\}/\lambda(Cr^{0})$ was determined to be $(6.4 \pm 3.7) \times 10^{-4}$. On the other hand, the difference less than 1.4×10^{-4} at a 68 % confidence level was observed for $\{\lambda(Cr^{3+}) - \lambda(Cr^{0})\}/\lambda(Cr^{0})$. Kakiuchi and Mukoyama [2] reported the value of $(5.3 \pm 2.1) \times 10^{-4}$ for $\{\lambda(Cr^{6+}) - \lambda(Cr^{0})\}/\lambda(Cr^{0}),$ which is in good agreement with the our value of $\{\lambda(Cr^{6+}) - \lambda(Cr^{0})\}/\lambda(Cr^{0})$. It follows from the results that the magnitude of the correlation of the decay constants of ⁵¹Cr with Cr metal, Cr₂O₃,

Fig. 3 Relative differences in the decay constant of 51 Cr between Cr metal, Cr₂O₃, and K₂CrO₄ chemical forms, respectively

and K₂CrO₄ chemical forms, respectively, are determined to be $\lambda(Cr^0) \approx \lambda(Cr^{3+}) < \lambda(Cr^{6+})$. In Ref. [2], the relative difference $\{\lambda(Cr^{6+}) - \lambda(Cr^0)\}/\lambda(Cr^0)$ and $\{\lambda(Cr^{3+}) - \lambda(Cr^0)\}/\lambda(Cr^0)$ were estimated to be 2.63 × 10⁻³ and (1.22–1.65) × 10⁻³, respectively, based on a Hartree– Fock-Slater approximation. There is a discrepancy between the simple theoretical estimation and our results not only of quantitative degree but also the qualitative tendency. In conclusion, we measured the decay constants of ⁵¹Cr with the Cr metal, Cr₂O₃, and K₂CrO₄ chemical form. The difference less than 1.4×10^{-4} at a 68 % confidence level was observed for $\{\lambda(Cr^{3+}) - \lambda(Cr^{0})\}/\lambda(Cr^{0})$, which disagrees with the theoretical estimation in Ref. [2]. For further discussion on the relation between the decay constant and the electron state, higher-accuracy experimental data and more realistic model are required.

Acknowledgments The authors would like to thank the technical staff of Research Center for Electron Photon Science, Tohoku University for their excellent operation of the accelerators. This work was supported by JSPS KAKENHI Grant Number 24740136.

References

- 1. Emery GT (1972) Ann Rev Nucl Sci 22:165-202
- Kakiuchi S, Mukoyama T (1981) Bull Inst Chem Res Kyoto Univ 59:27–35
- Ohtsuki T, Yuki H, Muto M, Kasagi J, Ohno K (2004) Phys Rev Lett 93:112501
- 4. Firestone RB, Shirley VS (eds) (1996) Table of isotopes, 8th edn. Wiley, New York
- Kikunaga H, Fujisawa H, Ooe K, Takayama R, Shinohara A, Takamiya K, Kasamatsu Y, Ezaki Y, Haba H, Nakanishi T, Mitsugashira T, Hirose K, Ohtsuki T (2011) Proc Radiochim Acta 1:113–116