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Abstract A simple, fast and reliable spectrophotometric

method for the determination and microextraction of trace

amounts of uranium using chromotrope 2R as a chelating

agent and 1-butyl-3-methylimidazolium hexafluorophos-

phate ionic liquid (IL) was used as an extractant solvent.

Influence variables such as pH, volume of ligand and IL

were inspected by full factorial design. In the view of

Pareto chart a contour plot was studied to examine the

significant variables and their interactions. The detection

limit and the preconcentration factor were found to be 0.87

and 50 lg L-1, respectively. The developed method was

successfully applied to ore samples.
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Introduction

Uranium and its compounds are known as one the dan-

gerous radioactive element [1] and it can be harmful

because of its toxicity. It occurs naturally in soil, rock and

water at low level and is commercially extracted from

uranium-bearing minerals such as uraninite [2]. The

quantitative determination of uranium in igneous rocks is

of great interest and important for geological investigation

[3]. However the small amount of radioactive element can

cause acute toxicological effects in humans and animals

[4, 5].

Several methods have been developed for the determi-

nation of uranium such as instrumental neutron activation

analysis (INAA) [6], inductively coupled plasma mass

spectrometry (ICP-MS) [7, 8], capillary zone electropho-

resis (CZE) [9], alpha spectrometry [10, 11] and spectro-

photometry [12]. Although all these techniques have also

some drawbacks such as high level of sensitivity, lack of

selectivity, presence of complex matrix, poor precision and

accuracy, because it requires well-controlled experimental

conditions, and presence of complex matrix.

Spectrophotometric methods are widely used for the

determination of trace U, due to its simplicity, rapidity,

inexpensive and reliable accuracy [13]. A number of

chromogenic reagents were used such as chromazurol [14],

4-(2-pyridylazo) resorcinol [15], 8-quinolinol [16], Arse-

nazo III [17], and Chromotrope 2R [18].

Multivariate technique has been widely used in analyt-

ical chemistry for heavy metal determination. In the mul-

tivariate technique a full factorial design (FFD) is well

established in preconcentration and separation techniques

[19–21].

In this study, an ionic liquid (IL) based dispersive

liquid–liquid microextraction (IL-DLLME) procedure has

been developed for the determination of uranium in ore

sample using chromotrope 2R as a chelating agent. The

optimization of procedure was carried out through a mul-

tivariate approach. The three factors [pH (P), ligand vol-

ume (LV) and IL volume] were selected as effective

parameters for the extraction of U with two levels for each

one. A FFD was applied to identify the effects of main

variables on the % recovery of U and finding out possible

interactions between the main factors.
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Materials and methods

Apparatus

A Hitachi Model 150–20 UV–Vis double beam spectro-

photometer carrying a 10 mm optical path cell was used for

the measurement of U. A model Nel pH 900 (Ankara-

Turkey) with glass electrodes was used for the pH

adjustment.

Chemicals and reagents

Chemicals and reagents were used of high purity analytical

grades (Merck, Darmstadt, Germany). Nitric acid (HNO3-

65 %), perchloric acid (HClO4-60 %), hydrogen flouride

(HF-38–40 %) and 1-butyl-3-methylimidazolium hexa-

fluorophosphate [C4MIM] [PF6] IL were used and obtained

from Merck, (Darmstadt, Germany). A stock standard

solution (1,000 lg mL-1) of U was also purchased (Merck,

Darmstadt, Germany). While working standards of corre-

sponding metal ion was prepared from the dilution of stock

standard solution with distilled water. A solution of chro-

motrope 2R (Fluka, Buchs, Switzerland) was prepared with

the addition of an appropriate amount of 0.1 g of the

reagent in 100 mL distilled water.

Ionic liquid based dispersive liquid–liquid

microextraction procedure

For the preconcentration of U(VI), 20 mL of aliquots

containing 100 lg L-1 U(VI) were taken into 50 mL

conical bottom vials. The pH of the solution was adjusted

at desired pH value of 8.0 by the addition of HCl

(0.01 mol L-1) and NaOH (1.0 mol L-1). After adjusting

of pH, 100–500 lL of LV, and 50–200 lL of IL was added

into mixtures. The mixture solutions were diluted up to

20 mL with distilled water and were kept at room tem-

perature for the formation of U chelates. Afterward, the

solution was centrifuged for 3 min at 3,000 rpm. After

centrifugation, the aqueous layer was decanted and the

sample solution containing uranium(VI) was diluted with

400 lL of ethanol and finally was determined by UV–Vis

spectrophotometer.

Analysis of ore samples

The ore samples were collected from Kayseri, Turkey. A

0.2 g of triplicate ore samples were weighed in 100 mL of

beaker and added 10 mL of HNO3 followed by heating on

hot plate for 2 h at 90 �C. After that 5 mL of HClO4 was

added to this mixture and then left the sample solution for

overnight. Thereafter, HNO3 (10 mL) and HClO4 (5 mL)

were added into the mixture and was heated overnight at

90 �C. After cooling, the resulting solutions were filtered

through a 0.45 lm pore size membrane filter (Millipore

Corporation, Bedford, MA, USA) into a 25 mL conical

bottom flask and were diluted with distilled water. After-

wards, adjusted pH of digested ore samples to desired pH

and then were subjected to developed procedure as

described in ‘‘IL based dispersive liquid–liquid microex-

traction procedure’’ section and subsequent determination

of uranium(VI) by UV–Vis spectrophotometer.

Statistical software

A FFD was used for experimental design analysis and to

evaluate the results by using of computer program Minitab

13.2 (Minitab Inc., State College, PA, USA).

Experimental design

For the optimization of proposed procedure, a two level

factorial design was carried out [22, 23]. A FFD was used

for sequential experimentation and gives the practical

information about the imperative factors. Thus the three

most significant factors such as P, IL and LV were evalu-

ated by FFD in which eight experiments were performed to

optimize above discussed three variables versus % recov-

ery of U. For further assessment of optimal conditions of

variables and their significant interactions were studied by

Pareto chart.

Results and discussion

Optimization strategy by full factorial design

In preliminary experiments, FFD was performed involving

8 experimental runs. The variables at low (-) and high (?)

levels are listed in Table 1. This design was used for the

screening of the main variables such as P, IL and LV which

influencing on the analytical signal of U and estimation of

the corresponding response surface by a proposed proce-

dure based on the advantages of standardized testing [24].

From the results of the FFD (Table 2), it was clearly seen

that the high P(?), IL and high amount of ligand provided

significantly high extraction efficiency for U. In the present

Table 1 Factors and levels are used in FFD

Variables Low (-) High (?)

P 2.0 8.0

Chromotrope-2R chelating

agent (LV) (lL)

100 500

IL (lL) 50 200
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study, pH plays a very important role in metal chelate

formation and the consequent extraction efficiency of

analytes [25–33]. The results showed that the analytical

signal of uranium(VI) increased with the increasing of pH

and whereas remaining factors were at low (-) level. At

high pH, % recovery was achieved 85.6 % and whereas

other factors LV and IL were at low level (-) (experi-

ment 2).

The selected three significant variables P, LV and IL

(experiment 8) showed optimum % recovery of U at high

level of each factors, 8.0, 500 and 200 lL, respectively.

Therefore, U(VI) CT-2R complex will become stronger at

high pH 8.0. However, in the present study FFD with eight

experiments were performed to explore the significant

variables and their interactions versus % recovery of U as

summarized in Table 2 and their interactions can be visu-

alized by Pareto chart using standardized effect at 0.05

P values (Fig. 1). According to the Pareto chart, the effect

of P and IL were shown to be most significant at P values

of 0.05. Since there were eight experiments were per-

formed at two levels for optimization of recovery and

estimation of the corresponding response surface. Figures 2

Table 2 Design matrix for FFD

Experiments P LV IL % Recovery

A B C

1 - - - 35.1 ± 1.1

2 ? - - 85.6 ± 2.3

3 - ? - 45.4 ± 1.2

4 ? ? - 92.2 ± 2.5

5 - - ? 68.1 ± 1.3

6 ? - ? 95.5 ± 2.6

7 - ? ? 60.5 ± 1.4

8 ? ? ? 101.0 ± 2.7

Fig. 1 Pareto chart of effects versus % recovery of U

Fig. 2 Response contour plot for % recovery of U versus P and IL

Fig. 3 Response contour plot for % recovery of U versus P and LV

Table 3 Influences of foreign species on the determination of ura-

nium (lg mL-1)

Foreign species Added Tolerance limit % Recovery

Ca2? CaCl2 2,500 98.8

Cu? Cu(NO3)2�3H2O 25 99.3

F- NaF 25 97.4

Fe3? Fe(NO3)3�9H2O 1,000 97.9

Mg2? Mg(NO3)2 1,500 98.8

Na? NaCl 1,500 98.3

Ni2? Ni (NO3)2 25 98.8

NO3
- KNO3 1,000 99.3

PO4
3- Na3PO4�12H2O 1,000 98.3

SO4
2- Na2SO4 1,500 100.7

Zn2? Zn (NO3)2 25 99.8
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and 3 represented the contour diagram of the estimated

response surface. The figure clearly indicates the signifi-

cance of P and IL at high levels and its interaction.

Interferences study

Due to the ‘‘Matrix Effects’’ are an important problem in

the instrumental detection of analytes at trace levels [31,

34–39], the effect of interference ions on analytical

response of U was studied under optimized conditions. The

solution containing 100 lg L-1 and different concentra-

tions of alkali, alkaline earth metals and some metal ions

were prepared separately and then was applied the pro-

posed procedure as illustrated in ‘‘IL based dispersive

liquid–liquid microextraction procedure’’ section. The

results showed that the proposed method was fairly free

from foreign interfering species as shown in Table 3.

Analytical figure of merit

Under the optimized conditions, the analytical performance

of the developed procedure was evaluated. The linear range

was 0.5–10 lg mL-1 with the correlation coefficient (R) of

0.998. The preconcentration factor (PF) was 50 when

sample volume 20 mL and final volume 400 lL. The limit

of detection (LOD) was calculated as equivalent of three

times of standard deviation of blank signals was

0.87 lg L-1. The limit of quantification (LOQ), ten times

of the standard deviation of the blank signals was

2.90 lg L-1.

Validation of proposed methodology

In order to validation of IL-DLLME methodology, the

accuracy of the proposed method was evaluated by stan-

dard addition recovery/test method to determine U in ore

samples. The proposed procedure was applied on four

replicates of ore samples as discussed in ‘‘IL based dis-

persive liquid–liquid microextraction procedure’’ section.

Under the optimized experimental conditions, the spiking

of ore samples was performed with a known amount of 2.0,

4.0 and 8.0 lg g-1, respectively. The results are listed in

Table 4. A good agreement exists between the results of

the proposed method and can be applied successfully to

real samples.

Comparison of IL-DLLME with other analytical

methodologies

A comparison of developed IL-DLLME procedure with the

other reported analytical methodologies is summarized in

Table 5 [40–49]. Our method has comparatively low

detection limit.

Conclusion

A two-level FFD was used for the screening of the main

variables which affect extraction efficiency of U(VI). Thus

the effects of significant variables versus the % recovery of

U were evaluated by FFD. Moreover, pareto chart was used

to identify important variables and their interactions

between the significant variables. The developed procedure

was really more effective, rapid, and environmental

friendly. This technique provides good repeatability and

reproducibility with high LODs and PF and could be suc-

cessfully applied for determination of U in ore samples

without interfering ions.
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