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Abstract Activity concentrations of 238U, 232Th, 226Ra,
40K and 137Cs were measured in milk, egg, fruit and fish

samples collected around a proposed site for setting up

nuclear facilities, near Vishakhapatanam. The activity

concentrations of the radionuclides ranged from 0.002 to

10.6, 0.002 to 2.8, 0.1 to 7.2, 3 to 110.8, 0.03 to 3 mBq g-1

for 238U, 232Th, 226Ra, 40K and 137Cs considering analysed

food matrices. Natural uranium was measured in drinking

water samples and the values were below 15 ppb. The

average ingestion dose was 2.07 ± 2.01, 2.81 ± 4.38,

7.66 ± 8.24, 1.28 ± 0.84 and 0.04 ± 0.05 lSv year-1 for
238U, 232Th, 226Ra, 40K and 137Cs in milk, egg, fruit, fish

and water. The ingestion dose received was the highest for

milk, due to its high ingestion rate. It was observed that
226Ra is the largest contributor of measured radionuclides

in this study for the different food matrices analysed due to

its high dose conversion factor. The study was carried out

as a part of baseline data generation for this region with

which future changes in the radiological scenario can be

compared.
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Introduction

Natural radiation and radioactivity is a fact of life. Natu-

rally occurring radioactive materials are present in all

compartments of the environment. Cosmic, terrestrial rays,

inhalation and ingestion of radionuclides through air, water

and food materials are the different sources of natural

radiation [1]. Radioactivity enters the human body mainly

by inhalation of radon and thoron and their decay products

[2] and also by ingestion of primordial radionuclides and

their progeny, like, 40K, 238U series and 232Th series ra-

dionuclides [3, 4]. Soils have different concentrations of

radionuclides depending on their formation from the parent

rocks, geographical location and by geochemical processes

[5]. The radionuclides that are present in soils and fertil-

izers find their way to the human body via the food chain

by atmospheric dispersion, gravitational settling, plant

uptake and various other geochemical processes.

Foodstuffs are known to contain natural and artificial

radionuclides that, after ingestion, contribute to an effec-

tive internal dose. The average natural radiation exposure

to global population is 2.4 mSv year-1 [6]; whereas for

Indian population it is reported as 2.3 mSv year-1 [7]. It

has been estimated that nearly one-eighth of the mean

annual effective dose due to natural sources is caused by

the intake of food [6]. Hence it is extremely important to

monitor the levels of radioactivity in foodstuffs to assess

the ingestion dose to members of the public.

The present study was carried out as a part of the

baseline survey around a proposed site for setting up

nuclear facilities, near Vishakhapatanam (also known as

Vizag). It is a prerequisite to establish the baseline radio-

logical data at any nuclear facility before its commence-

ment. The study area is situated around 17�31.4170N and

83�02.1430E in the South Eastern part of India, in the state
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of Andhra Pradesh. Granitic rocks that serve as good

geochemical hosts for U, Th and K are predominant in

Vizag. A major portion of this region is occupied by Pro-

terozoic rocks covering a vast time span from 3,800 to 570

million years. The crust in this region shows an enrichment

of rare earths with which U and Th are invariably associ-

ated in the form of minerals like monazite, samarskite,

fergusonite and allanite. Sandstones, limestones, quartzites,

slates with poor amounts of U, Th and K are also present

[8].

This paper discusses the measurement of radionuclides

in common foodstuffs and surface and ground water in the

study area with high resolution gamma spectrometry

(HRGS) system and laser fluorimetry and calculation of the

consequent ingestion dose. Studies on natural radioactivity

in food matrices have been reported from certain regions in

India [9–12], but there is little data for this part of the

country. Hence, this study will serve as the baseline for this

area, with which future measurements can be compared to

check any possible changes in the radiological scenario of

this region.

Sampling and analytical techniques

Sample collection and processing

Foodstuffs were selected according to the consumption

practices of local population residing around the study area.

Samples were collected from local markets at different

locations in the study area as shown in Fig. 1. Foodstuffs

such as milk, fruits, eggs and fish were collected and

processed according to the IAEA recommendations [13].

Food samples were washed with ultrapure water to remove

soil and dust particles. Sample fresh weights were taken

and they were put in a furnace for 24 h at 300 �C for ashing

(preconcentration). Ash samples were powdered, homog-

enised and then transferred to plastic containers of standard

geometry (polyethylene bottles of 6.5 cm diameter and

7.5 cm height). Water samples collected from the study

area included surface water and ground waters. 5 L of

water samples were each evaporated up to 250 mL and

transferred to the standard containers. Food samples were

sealed in standard geometry for 1 month, after drying and

Fig. 1 Map of the study area (source Google maps)
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homogenization, to ascertain secular equilibrium between
226Ra and 224Ra and their respective daughter products.

Samples were then counted on a gamma spectrometric

system for calculation of radionuclide concentrations.

Water samples were analysed by Laser Fluorimetry tech-

nique for estimation of total uranium concentration.

Radioactivity measurement

An n-type coaxial high-purity vertical germanium detector, of

100 % relative efficiency (DSG, Germany) was used for all

the measurements. The detector was surrounded by 7.5 cm

thick lead shield with inside dimensions 36 cm (l), 35 cm

(b) and 36 cm (h). The resolution of the HRGS was 2.5 keV at

1,332 keV gamma energy of 60Co. IAEA Certified Reference

Materials, RGU-I (235U and 238U and their daughter products)

and RGTh-I (232Th and daughter products), were used for the

energy and efficiency calibration of the HRGS [14]. The

gamma spectra were acquired for 1,00,000 s and subjected to

pulse height analysis by 8 K PC based MCA. Other details of

the counting system and associated electronics are given

elsewhere [15]. The energy calibrated detector was used for

counting the standards (RGU-I and RGTh-I) with known

activities. This enabled the calculation of detector efficiencies

at particular energies, which were then subjected to curve

fitting procedures to get efficiency versus energy plot. Iden-

tical geometry of the samples and standards were ensured by

filling containers to the same volumes. The density correction

factors were then applied to correct the difference in the

densities of samples and standards. IAEA-330 (spinach) and

IAEA-445 (spiked water) were analysed for quality control

purposes. The obtained results were all within 95 % confi-

dence interval of the recommended values.

The different chemical behavior of uranium and its

daughters is responsible for their dissimilar transport

behavior in the environment and differential plant uptake.

Hence it is unlikely that uranium and its daughter radium

will be in equilibrium in environmental matrices; elimi-

nating the possibility of measurement of uranium from the

gamma lines of 226Ra daughters. Since 238U emits a very

weak low energy c photon (49.56 keV, 0.064 %) it is

measured by the c rays of its immediate daughter product
234Th at 63.29 and 92.59 keV [16]. The 186.2 keV peak of
226Ra (c 3.59 %) was used for the estimation of 226Ra after

correcting for the contribution from 235U.

The 208Tl and 228Ac radionuclides were measured by the

c energies as given in Table 1 for the estimation of 232Th.

The background spectra recorded were used to correct the

net c-ray photopeak areas for the isotopes of interest.

Activity concentration of each radionuclide was calcu-

lated using the following equation:

A Bq=kgð Þ ¼ C countsð Þ=ðE � c �M � TÞ ð1Þ

where C is the background subtracted net counts of the

sample, E is the efficiency of the detector for the specific

gamma ray energy, c is the absolute transition probability

of that specific gamma decay, M is the mass of sample in

kg and T is the counting time in seconds.

Laser fluorimetry

Laser fluorimeter is a compact analytical instrument based on

the principle of measuring the fluorescence of uranyl complex

enhanced by addition of sodium pyrophosphate as fluores-

cence enhancement reagent. A sealed-off nitrogen laser is the

excitation source which emits a very intense, short lived pulse

(7 ns) of ultra violet light with wavelength 337.1 ± 0.1 nm.

The maximum energy is 20 lJ at a repetition rate of

10 pulses s-1. This excites the uranyl complex in the aqueous

medium. A PMT measures the green lights from excited

uranium complex at 496–565 nm (4 peaks). The organic

matter present in natural water also fluoresces when excited

by the nitrogen laser, but has very short life time (\100 ns).

The fluorescence of uranyl complex has a longer life time

([25 ls). By measuring the delayed fluorescence signal (a

few microsecond after the laser pulse), the unwanted fluo-

rescence of organic compounds are ignored and only the

fluorescence of uranyl complex is collected by the time gated

PMT. In addition to this, the fluorescence of organic matters

has a wavelength maximum around 400 nm whereas that of

uranyl complex is around 500 nm. Therefore, the wavelength

filters at 450 nm significantly curtail the interferences of

organic matters. The water samples were analyzed by stan-

dard addition method, in order to avoid the matrix effect.

Sodium pyrophosphate (Na4P2O7�10H2O) was used as fluo-

rescence enhancement reagent, as well as a complexing agent.

The details analysis protocol are given elsewhere [17].

Estimation of committed effective dose (CED)

Radiation dose due to intake of radionuclides through inges-

tion pathway was calculated using IAEA dose conversion

Table 1 Radionuclide energies and gamma ray intensities used in

this study [33]

Radionuclide Measured

nuclide

Energy

(keV)

Branching intensity

(%)

238U 234Th 63.6 3.75
226Ra 226Ra 186 3.56
232Th 208Tl 583.2 30.7
232Th 208Tl 2,614.5 35.6
232Th 228Ac 911.2 26.2
137Cs 137Cs 662 85.2
40K 40K 1,460.8 10.6
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factors for adults [18]. The daily dietary intake was estimated

by using prescribed food intake rates as given by IAEA [19].

The daily intake values considered were 100 mL milk, 20 g

fruits, 6 g eggs and 12 g fish. The daily water intake was

considered as 4.05 L [19]. The annual radiation ingestion

dose was calculated by using the following formula [20].

Ingestion dose mSv year�1
� �

¼ Conc: mBq g�1
� �

� Intake g year�1
� �

� DCF Sv Bq�1
� �

ð2Þ

where DCF is the dose conversion factor to convert

activity to dose for corresponding intake.

Results and discussions

Activity concentrations

The activity concentrations of 238U, 232Th, 226Ra, 40K and
137Cs were 2.58 ± 2.26, 1.11 ± 1.19, 1.78 ± 0.67,

8.78 ± 11.55 and 0.24 ± 0.44 mBq g-1 in milk,

2.84 ± 3.37, 0.38 ± 0.22, 1.94 ± 1.20, 24.46 ± 8.54 and

0.93 ± 1.23 mBq g-1 in eggs, 5.30 ± 3.63, 0.80 ± 0.77,

5.06 ± 1.35, 43.78 ± 55.99 and 0.35 ± 0.31 mBq g-1 in

fruits and 0.22 ± 0.38, 0.36 ± 0.6, 0.79 ± 0.59,

29.63 ± 14.52 and \0.03 mBq g-1 in fish, respectively.

The data are represented by Box-whisker plot in Fig. 2. It

can be observed from the figure that 232Th and 137Cs values

lie within a narrow range compared to those of 238U and
226Ra. The activity concentrations of 40K lie within a wider

range. The wide range of data values in the foodstuffs can

be attributed to the variety of food stuff, the area/location

of origin of the foodstuff and the transfer of a radionuclide

to a particular food item. The lowest concentrations of

radionuclides (except 40K) were observed for fish com-

pared to other food items, as can be noted from Table 2.

Highest concentrations were observed for 40K and lowest

for 137Cs in the food materials. The U concentrations

measured in drinking water samples were all below the

guideline value of 15 ppb set by WHO [21] and 60 ppb set

by AERB [22]. 79 % of the drinking water samples had
238U activity concentrations below 50 mBq L-1 as shown

in Fig. 3. This constituted eleven out of fourteen samples.

These values are comparable with other reported values

worldwide except a few high vales [6].

The data obtained from the present study are compared

to activity concentrations of radionuclides obtained from

studies carried our worldwide in Table 3. The values are

comparable with that reported for India in UNSCEAR [6].

The activity concentrations of radionuclides are in the

range of the global values but lesser than the reported data

in a high background radiation area in Nigeria [23, 24]. The

values in this region are comparable with those reported in

Punjab and Bombay in India but lesser than those from a

HBRA in Odisha [12]. This can be attributed to the geo-

chemistry of the region and the food items considered [25].

The baseline values observed at this site can be compared

with other baseline studies carried out at Tamil Nadu [37]

and Tarapur [38] in India and Lebanon [36]. In Tamil Nadu

and Tarapur the studies have been carried out before the

commencement of nuclear power plants, similar to the

present study. Rao et al. [39] have reported data fromFig. 2 Box plot of radionuclide activity concentrations in foodstuffs

Table 2 Activity concentrations of radionuclides in food matrices

Food matrix Statistical parameter 238U 232Th 226Ra 40K 137Cs

Milk Average 2.58 ± 2.26 1.11 ± 1.19 1.78 ± 0.67 8.78 ± 11.55 0.24 ± 0.44

(mBq g-1) Range 1.00–5.9 0.25–2.8 1.10–2.70 3.00–26.10 0.03–0.90

Egg Average 2.84 ± 3.37 0.38 ± 0.22 1.94 ± 1.2 24.46 ± 8.54 0.93 ± 1.23

(mBq g-1) Range 0.05–6.60 0.10–0.60 0.10–3.30 14.90–33.90 0.03–3.00

Fruit Average 5.30 ± 3.63 0.80 ± 0.77 5.06 ± 1.35 43.78 ± 55.99 0.35 ± 0.31

(mBq g-1) Range 1.50–10.60 0.10–2.00 3.60–7.20 3.00–110.80 0.03–0.70

Fish Average 0.22 ± 0.38 0.36 ± 0.6 0.79 ± 0.59 29.63 ± 14.52 \0.03

(mBq g-1) Range 0.002–0.66 0.002–1.05 0.21–1.39 13.36–41.27 \0.03
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Tarapur after 25 years of commencement of the facility,

comparing their data with pre-operational values. This

shows the significance of baseline studies and their utility

in the years to come, after the commencement of a facility.

Committed effective dose

The average CEDs for the different radionuclides have

been tabulated in Table 4. The highest CEDs were obtained

for milk. This is due to the higher ingestion rate for milk

(100 g day-1) compared to the other food matrices ana-

lysed, as given by IAEA [19]. The average ingestion dose

received by 238U and 232Th in milk, eggs, fruits and fish

make up for a total CED of 17.53 lSv year-1, which is

higher than the reported annual effective dose of

0.54 lSv year-1 due to ingestion by the Asian population

[26]. The CEDs due to 238U, 232Th, 226Ra, 40K and 137Cs
Fig. 3 Frequency distribution of uranium activity concentrations in

drinking waters

Table 3 Range of activity concentrations of radionuclides in food matrices, in mBq g-1, reported from global studies

Location 238U 232Th 226Ra 40K 137Cs References

Tenerife, Spain \0.09 – 0.03–0.47 35–380 0.01–0.42 [30]

Turkey – ND–10.54 15.96–52.80 491.62–2,324.51 – [34]

Tanzania 5.02–13.23 3.82–4.08 – 24.67–48.79 5.57 [31]

Jos Plateau, Nigeria – BDL–89.8 BDL–83.5 BDL–684.5 – [23]

Nigeria 1.47–39.5 3.5–10.5 – 9.9–298 ND [24]

Lebanon – – – 31.1–120.9 0.09–0.1 [29]

Tehran, Iran 0.6–15.6 – 6.0–1,153.3 – – [35]

Cameroon – 1.50 2.30 140.40 – [32]

Lebanon – – – 6.9–868 0.04–2.5 [36]

Bombay, India – 0.02–1.26 0.01–1.16 45.9–649 – [9]

Punjab, India 0.38–4.6 – – – – [10]

Tamil Nadu, India – 0.09–4.59 0.02–0.23 36–380.6 – [37]

Tarapur – – 0.003–0.8 – 0.03–7.1 [38]

India 0.017–77 – – – – [6]

Odisha, India 0.3–32.0 0.3–2.0 0.4–28.2 14.3–956.9 0.2–5.4 [12]

Vizag, India 0.002–10.6 0.002–2.8 0.1–7.2 3–110.8 0.03–3 Present study

ND not detected

Table 4 The average CEDs for different radionuclides in various food matrices

Food matrix CED (lSv year-1)

238U 232Th 226Ra 40K 137Cs

Milk 4.23 ± 3.72 9.34 ± 9.99 18.14 ± 6.85 1.99 ± 2.61 0.12 ± 0.21

Egg 0.28 ± 0.33 0.19 ± 0.11 1.19 ± 0.73 0.33 ± 0.12 0.03 ± 0.03

Fruit 1.74 ± 1.19 1.34 ± 1.29 10.34 ± 2.76 1.98 ± 2.53 0.03 ± 0.03

Fish 0.04 ± 0.07 0.36 ± 0.6 0.97 ± 0.72 0.8 ± 0.39 \0.001

Water 4.08 ± 4 – – – –
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were 10.37, 11.24, 30.65, 5.10 and 0.18 lSv/y considering

milk, eggs, fruits, fish and water intake. These values are

comparable with the CED values reported for Jaduguda

[11] and Tamil Nadu [36] region. A total CED of

53.46 lSv year-1 was obtained considering all radionuc-

lides in milk, eggs, fruit and fish. This is lower than that of

180.08 lSv year-1 in Pakistan [27], 109.83 lSv year-1 in

Korea [28], 186 lSv year-1 in Lebanon [29],

362 lSv year-1 in Tenerife, Spain [30], 360 lSv year-1 in

Tanzania [31], 476 lSv/y in Jos Plateau, Nigeria [23],

700 lSv year-1 in Cameroon [32]. This is because of low

intake of the food matrices considered in this study. The

large variation in CEDs is mainly due to the geochemical

and crustal characteristics of the environment and the

dietary and lifestyle choices of the local population.

Contribution of the individual radionuclides to the CEDs

in different food matrices are represented in Fig. 4. The
238U, 232Th, 226Ra, 40K and 137Cs contributions ranged

from 2.03 ± 3.42 to 13.86 ± 16.44, 8.7 ± 8.35 to

27.62 ± 29.56, 44.62 ± 33.18 to 66.99 ± 17.9,

5.87 ± 7.73 to 36.91 ± 18.09 and 0.07 ± 0.001 to

1.31 ± 1.73 %, respectively. The high degree of associated

uncertainty is due to the high variation of radionuclide

activity concentrations in a given matrix considering the

number of samples of that matrix analysed during this

study. This high degree of variation in radionuclide activity

concentration is typical for environmental samples and

may occur due to preferential uptake and accumulative

properties of a radionuclide in a matrix which again

depends on the soil characteristics of the region. It can be

observed that the highest dose is obtained from 226Ra in all

food matrices. Although the concentration of 226Ra is

smaller in the matrices than 40K, its contribution is higher

due to the higher value of DCF for adults (2.8 9 10-7

Sv Bq-1) [18] as compared to the other radionuclides.

Contribution of the radionuclides to the average CED

combining all the food matrices analysed is shown in

Fig. 5. It can be observed from the figures that that 226Ra is

the major contributor, making up 56 and 60.3 % for the

non-vegetarian and vegetarian diets of the dose considering

the food matrices analysed. This is due to its higher DCF

value. The smallest contribution is due to 137Cs. This is due

to its lower concentration in the food matrices, apart from

its small DCF value (1.3 9 10-8 Sv Bq-1) [18]. It can also

be observed that the contribution of 226Ra, 238U and 232Th

increase from non-vegetarian to vegetarian food, whereas

contribution of 40K and 137Cs reduces. This is because of

the variation of their corresponding concentrations in the

food matrices and their variable intake rates.

Conclusion

Activity concentrations of 238U, 232Th, 226Ra, 40K and 137Cs

were measured in various food matrices and theFig. 4 Contribution of radionuclides to the ingestion dose from food

Fig. 5 Contribution of radionuclides to the ingestion dose from (a) non-vegetarian: milk, egg, fruit and fish and (b) vegetarian: milk and fruit items
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corresponding ingestion dose was evaluated. The activity

concentrations of the radionuclides ranged from 0.002 to 10.6,

0.002 to 2.8, 0.1 to 7.2, 3 to 110.8, 0.03 to 3 mBq g-1 for 238U,
232Th, 226Ra, 40K and 137Cs considering milk, eggs, fruit and

fish. The U concentrations measured in drinking water sam-

ples were all below the guideline value of 15 ppb set by

WHO. The activity concentrations were comparable with

reported values in studies carried out globally. Highest

ingestion doses were obtained from milk, due to its higher

intake rate. The total CED of 53.46 lSv year-1 was obtained

for milk, fruit, fish and eggs. The highest contributor to the

average ingestion dose was 226Ra for the different food

matrices analysed due to its high value of dose conversion

factor. The contribution of 226Ra, 238U and 232Th increase

from non-vegetarian to vegetarian food, whereas contribution

of 40K and 137Cs reduces.
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