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Abstract The simulated radionuclides Sr and Nd were

simultaneously separated from high level liquid waste

(HLLW) using in situ hydrotalcite synthesis. The optimum

conditions of removal of Sr and Nd determined by acid–

base titration, single factor test and X-ray powder diffrac-

tion (XRD) are that the initial CNd(III), initial CSr(II), pH

range and (Sr ? Mg)/(Nd ? Al) molar ratio are 70,

90 mg L-1, 10–11 and around 3, respectively. Both the

removal rates of Sr and Nd could reach more than 99 %

under these conditions. The synthetic samples were char-

acterized by XRD, Fourier transform infrared spectros-

copy, scanning electron microscope. The results indicate

that as-synthesized samples possess single hydrotalcite

phase, which confirms that Sr and Nd separated from

HLLW are all embedded into the crystal lattice of Sr–Nd-

HTlcs. In addition, the morphology of Sr–Nd-HTlcs is in

hexagonal platelet-like sheets and the particle size is about

1 lm. From the XRD patterns of Sr–Nd-HTlc calcination

product, we only observe the phases of spinel and MgO and

don’t find the phases of SrO and Nd2O3, which show that

Sr and Nd embedded into the crystal lattice of Sr–Nd-HTlc

still occur in the structure of spinel.

Keywords Strontium � Neodymium � Separation � High

level liquid waste � Hydrotalcite � In-situ synthesis

Introduction

Nuclear energy plays an important role in energy genera-

tion of the modern society [1]. But the development of

nuclear power industry is accompanied by increasing

accumulation of high level liquid waste (HLLW), which

contains long-lived minor actinides such as 239Pu(III) and

U(IV) as well as some specific fission product elements,

such as 90Sr(II), 137Cs(I), 99Tc(II), etc. [2, 3]. These ra-

dionuclides have persistent long radioactivity and biologi-

cal toxicity, which makes a huge damage to humans, plants

and animals [4, 5]. Thus, the safe disposal of HLLW has

attracted numerous attentions [6].

The safe disposal of HLLW generally includes two steps,

the first is to separate the long-lived actinides and specific

fission product elements (90Sr, 137Cs) from original HLLW,

and the second is to immobilize these separated radionuc-

lides to form a highly stable solid such as synroc, ceramic and

glass [7, 8]. There are many separation methods of radio-

nuclides, such as liquid–liquid solvent extraction, ion-

exchange, adsorption, liquid membrane extraction and pre-

cipitation, etc [9–11]. The current attention has been focused

on the liquid–liquid solvent extraction, which has shown

high selectivity and extraction ability for radionuclides.

However, this method usually generates a lot of secondary

organic waste and probably increases the number of the

instruments and equipments used in the process [12, 13].

Hydrotalcite-like compound (HTlc) has the general

formula of [M1-x
II Mx

III(OH)2]x? [An-]x/n �yH2O, where MII

and MIII are divalent and trivalent cations respectively,

with An- being interlayer anions [14]. As the categories of

cations or the chemical ratio of divalent cations to trivalent

cations can be adjusted in wide ranges, a series of hydro-

talcite-like compounds can be obtained with different

compositions [15, 16]. These compounds, when calcined at
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high temperature (C600 �C), produce stable MIIM2
IIIO4

spinel which is one of the main synroc radixes for the

radionuclide immobilization [17, 18]. Thus, the radionuc-

lides in HLLW could be separated by in situ hydrotalcite

synthesis and immobilized by spinel synroc prepared from

the calcination of hydrotalcite.

The separation of Sr from HLLW by in situ hydrotalcite

synthesis has been studied in our previous work [19]. This

study aims to investigate the feasibility of the simultaneous

separation of 90Sr and trivalent actinides (using 88Sr and

Nd as the surrogates, respectively) since the number of

radionuclides in HLLW is more than one. The main work

of this study is to: (1) study the effect of different param-

eters on the separation efficiency of Sr and Nd, such as pH

value, (Sr ? Mg)/(Nd ? Al) molar ratio and initial con-

centrations of Sr (CSr(II)) and Nd (CNd(III)); (2) characterize

the Sr–Nd-HTlc samples by XRD, FT-IR and SEM; (3)

simply discuss the phase assemblages of Sr–Nd-HTlc

calcination product.

Experimental

Synthesis of Sr–Nd-HTlc

All chemicals were purchased in analytical purity and used

as received without further purification. Sr–Nd-doped hy-

drotalcite-like compounds (Sr–Nd-HTlc) were synthesized

by hydrothermal treatment. A solution of 0.8 mol L-1

NaOH and 0.05 mol L-1 Na2CO3 was added dropwise

with vigorous stirring to another solution containing

Mg(NO3)2, Al(NO3)3, Sr(NO3)2 and Nd(NO3)3 with a

molar ratio to precipitate and adjust the pH. Then the

mixed solution was transferred into Teflon lined stainless

steel bombs and hydrothermally treated at 150 �C for 12 h.

Afterwards the precipitate was filtered, washed and

finally dried for 10 h at 80 �C. The filter liquid solution

was used to determine the residual Sr and Nd concentra-

tions. The solid was used for X-ray powder diffraction

(XRD), Fourier transform infrared (FT-IR) and scanning

electron microscope (SEM) analysis.

Characterization methods

XRD data were collected in the 2h range of 5–70� on a

Rigaku D/MAX2500VL/PC diffractometer using Cu Ka
radiation. FT-IR spectrum was recorded on a THERMO

NICOLET67 spectrophotometer using KBr pellet tech-

nique. SEM was performed on a JEOL JSM-6700F

instrument at an acceleration voltage of 20 kV and a

working distance of 10 mm. The concentrations of Sr and

Nd in solutions were measured by THERMO ICAP6300

inductively coupled plasma emission spectrometer.

Results and discussion

Acid–base titration

The variable pH values play a key role in the synthesis of Sr–

Nd-HTlc, because it can directly affect the successful syn-

thesis of HTlc with unique crystal form [20]. A mixed

solution containing Sr2?, Nd3?, Mg2? and Al3? with a molar

ratio was titrated by 1.0 mol L-1 NaOH solution at a con-

stant rate under vigorous stirring. During the titration pro-

cess, the pH value increased, and precipitation was formed in

the system step by step. The variation plot of the pH value

versus the added amount of NaOH is shown in Fig. 1.

According to Fig. 1, three different plateaus of pH val-

ues can be detected, i.e., 3.7–4.8, 8.5–11.0 and 13.3–14.0.

At the first plateau, the hydrolization and polymerization of

MIII mainly occurred. At the third plateau, the MII pre-

cipitated in the form of MII(OH)2. At the middle plateau,

Sr–Nd-HTlc was obtained, indicating that the HTlc phase

is more stable under this pH range than a mixture of

MIII(OH)3 and MII(OH)2 [21]. Thus, the synthesized pH

range is chosen at 8.5–11.0 to obtain Sr–Nd-HTlc samples.

Effect of pH value on the separation efficiency of Sr

and Nd

The effect of pH value on the removal rates of Sr and Nd is

shown in Fig. 2. As can be seen from Fig. 2, the higher pH

value contributes to increasing removal rate of Sr. At pH

10.0–12.0, the removal rate of Sr approaches to an ultimate

figure of 99 %. However, it is obviously that the pH value

almost has no effects on the separation of Nd, and its

removal rate maintains 99 % in the pH range of 6.0–12.0.
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Fig. 1 Evolution of pH versus NaOH (mmol) during the basic

titration of solution, (Sr ? Mg)/(Nd ? Al) molar ratio = 3.0, initial

CSr(II) = 70 mg L-1, initial CNd(III) = 50 mg L-1
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This trend maybe due to the fact that Nd can easily

hydrolyze and polymerize at lower pH.

The XRD patterns of samples obtained at different pH

are displayed in Fig. 3. All the samples present the main

reflections of planes (003), (006), (012), (110) and (113) of

hydrotalcite (JCPDS 70-2151) [22]. These sharp and

symmetric peaks demonstrate the formation of a single

well-crystallized Sr–Nd-HTlc at pH 9 and 11. Little

impurities such as AlO(OH) (JCPDS 21-1307) and

Nd2(CO3)3�8H2O (JCPDS 53-0694) can be observed in

the samples at pH 6, 7 and 12. The presence of

Nd2(CO3)3�8H2O indicates that the Nd separated from

HLLW isn’t all embedded into the structure of hydrotal-

cite. After calcination, the Nd2(CO3)3�8H2O will transform

into Nd2O3, which will markedly affect the immobilization

efficiency of Nd. The main aim of our study is to obtain

unique hydrotalcite phase and higher removal rates of

simulated radionuclides, thus the optimal pH range is

chosen to 10–11.

Effect of (Sr ? Mg)/(Nd ? Al) molar ratio

on the separation efficiency of Sr and Nd

Figure 4 displays the effect of (Sr ? Mg)/(Nd ? Al) molar

ratio on the removal rates of Sr and Nd. It is evident that

the removal rates of Sr and Nd increase sharply when the

(Sr ? Mg)/(Nd ? Al) molar ratio B2.5, then they rise

slowly and reach the ultimate point of 99 % when the

(Sr ? Mg)/(Nd ? Al) molar ratio is 3.0. Change in

removal rates of Sr and Nd might be attributed to the rel-

ative similar ionic radii of Sr and Nd to Mg (Mg2? 0.72 Å;

Al3? 0.54 Å; Sr2? 1.18 Å; and Nd3? 0.98 Å) [23]. Thus

with the increasing (Sr ? Mg)/(Nd ? Al) molar ratio,

which means the increase in molar quantity of Mg, the

incorporation amounts of Sr and Nd increase based on the

isomorphous replacement.

The XRD patterns of the samples under different

(Sr ? Mg)/(Nd ? Al) molar ratios are shown in Fig. 5. As

can be seen from Fig. 5, there is a single hydrotalcite phase

existed in the synthetic sample when (Sr ? Mg)/(Nd ? Al)

molar ratio is 3. However, the patterns obtained in other

(Sr ? Mg)/(Nd ? Al) molar ratios exhibit the diffraction

signals of AlO(OH), Sr(OH)2�H2O (JCPDS 28-1222) and

Nd2(CO3)3�8H2O. Therefore, the (Sr ? Mg)/(Nd ? Al)

molar ratio must be fixed to around three in order to assure

the higher removal rates and unique hydrotalcite phase of

Sr–Nd-HTlc.
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Fig. 2 Effect of pH value on the removal rates of Sr and Nd,

(Sr ? Mg)/(Nd ? Al) molar ratio = 3.0, initial CSr(II) = 70 mg L-1,

initial CNd(III) = 50 mg L-1
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Fig. 3 XRD patterns of synthetic samples in different pH values
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Fig. 4 Effect of (Sr ? Mg)/(Nd ? Al) molar ratio on the removal

rates of Sr and Nd, initial CSr(II) = 70 mg L-1, initial

CNd(III) = 50 mg L-1, pH 11
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Effect of initial CSr(II) and CNd(III) on the separation

efficiency of Sr and Nd

The effect of initial CNd(III) on the removal rates of Sr and

Nd is shown in Fig. 6. It can be clearly seen from the figure

that with the increase in the initial CNd(III), the removal rate

of Sr does not appreciably decrease when the initial CSr(II)

keeps an amount of 70 mg L-1. It also can be observed

that the removal rate of Nd decrease evidently with the

increasing of the initial CNd(III). These behaviors may be

due to the limited substitution of Sr and Nd.

Figure 7 shows the effect of initial CSr(II) on the removal

rates of Sr and Nd. It is clear that both the removal rates of

Sr and Nd decrease slightly with increasing of the initial

CSr(II) when the initial CSr(II) B90 mg L-1 and the initial

CNd(III) keeps 70 mg L-1. And when the initial CNd(III)

C90 mg L-1, they decrease rapidly. The result indicates

that the effect of initial CSr(II) on Sr separation is similar to

the influence of initial CNd(III) on Nd.

The XRD patterns of synthetic samples under different

initial CSr(II) and CNd(III) are presented in Fig. 8. The

samples have pure hydrotalcite crystal structure at initial

CSr(II) = 70 mg L-1, initial CNd(III) = 60 mg L-1 and ini-

tial CSr(II) = 90 mg L-1, initial CNd(III) = 70 mg L-1. No

AlO(OH) or Nd2(CO3)3 8H2O phase can be observed under

these two conditions. Additionally, both the removal rates

of Sr and Nd could reach more than 99 % at initial

CSr(II) = 90 m L-1and initial CNd(III) = 70 mg L-1. The

above data suggest that the optimum initial CSr(II) and

CNd(III) are 90 and 70 mg L-1 respectively.

The lattice parameters of hydrotalcites under different

initial CSr(II) and CNd(III) are calculated and presented in

Table 1. The lattice parameter a, which depends on the size

of the cation in the brucite-like layers, is calculated by the

expression a = 2d(110); parameter c is related to the dis-

tance between brucite-like layers and can be obtained from

the expression 1/2{d(003) ? [2d(006)]}[24]. As observed

from Table 1, the lattice parameter a increases with the

increase of initial CSr(II) and CNd(III), which suggests that Sr

and Nd incorporated into the lattice of HTlc.

FT-IR spectrum and SEM image

FT-IR spectrum of synthetic Sr–Nd-HTLc is shown in

Fig. 9. A broad absorption band centered at 3,573 cm-1

can be attributed to O–H stretching vibration of
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Fig. 5 XRD patterns of synthetic samples under different (Sr ? Mg)/

(Nd ? Al) molar ratios
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Fig. 6 Effect of initial CNd(III) on the removal rates of Sr and Nd at

initial CSr(II) = 70 mg L-1, pH 11, (Sr ? Mg)/(Nd ? Al) molar

ratio = 3.0
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Fig. 7 Effect of initial CSr(II) on the removal rates of Sr and Nd at

initial CNd(III) = 70 mg L-1, pH 11, (Sr ? Mg)/(Nd ? Al) molar

ratio = 3.0
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hydrogen-bonded hydroxyl groups in the brucite-like

sheets and of water in the interlayer space [25]. Another

band at 1,623 cm-1 is owing to the bending vibration of

H–O–H and it should be assigned to the adsorbed water

molecule in the interlayer. The peak observed at

1,367 cm-1 can be indexed to CO3
2- ions [26]. The bands

at 661 and 549 cm-1 coincide by position and intensity

ratio with the characteristic vibrations of hydrotalcite [27].

Figure 10 displays the SEM image of Sr–Nd-HTlc. It

can be seen that the morphology of Sr–Nd-HTlc is in

hexagonal platelet-like sheets [28] and its particle size is

about 1 lm.

The characterization of calcined Sr–Nd-HTlc

Figure 11 shows the XRD pattern of the sample obtained

from calcination of Sr–Nd-HTlc at 1,100 �C for 3 h. The

peaks at 19.1, 31.3, 36.9, 44.8, 55.6, 59.4 and 65.3 could be

assigned to the (110), (220), (311), (400), (422), (511) and

(440) diffractions of spinel. Nevertheless, there is a small

amount of MgO in the sample due to the excess of Mg in

Sr–Nd-HTlc. The absence of SrO and Nd2O3 in the product

suggests that Sr and Nd embedded into the crystal lattice of

Sr–Nd-HTlc still occurred in the structure of spinel.

Conclusions

In summary, Sr and Nd are successfully separated from the

simulated liquid waste with a unique hydrotalcite phase and

optimal removal rates of 99 % by in situ Sr–Nd-HTlc syn-

thesis. The pH value, (Sr ? Mg)/(Nd ? Al) molar ratio and

initial concentrations have great influences on the formation

of Sr–Nd-HTlc and removal rates of Sr and Nd. The optimum

conditions determined by acid–base titration, single factor

tests and XRD analysis are that the initial CSr(II) and CNd(III)

are 90 and 70 mg L-1 respectively, pH range is 10–11 and

(Sr ? Mg)/(Nd ? Al) molar ratio is around 3. Under these
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Fig. 8 XRD patterns of synthetic samples under different initial
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Table 1 Crystallographic parameters of HTlc at different initial

CSr(II) and CNd(III)

Sample Initial CSr(II)

(mg L-1)

Initial CNd(III)

(mg L-1)

a (Å) c (Å)

HTlc-0 0 0 3.0576 23.1674

HTlc-1 110 70 3.0648 23.4539

HTlc-2 100 70 3.0622 23.4162

HTlc-3 90 70 3.0620 23.3319

HTlc-4 70 60 3.0587 23.1938

HTlc-5 70 70 3.0607 23.2934

HTlc-6 70 80 3.0608 23.3167

HTlc-7 70 90 3.0811 23.4413
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Fig. 9 FT-IR spectra of Sr–Nd-HTLc

Fig. 10 SEM image of Sr–Nd-HTLc
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conditions, Sr and Nd not only can be separated simulta-

neously from the simulated liquid waste, but also are all

embedded into the crystal lattice of Sr–Nd-HTlcs. The

morphology of Sr–Nd-HTlc is in hexagonal platelet-like

sheets and the particle size is about 1 lm. The calcination

product of Sr–Nd-HTlc consists of spinel and MgO, and we

can not observe the phases of SrO and Nd2O3, which indi-

cates that Sr and Nd embedded into the crystal lattice of Sr–

Nd-HTlc occurred in the structure of spinel.
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