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Abstract Studies on the solvent extraction of Plutonium

(Pu(IV)) from aqueous nitric acid by N,N,N0,N0-tetraoctyl-

diglycolamide (TODGA) in 1-hexyl-3-methylimidazoli-

um-bis(trifluoromethylsulfonyl) imide (C6mimTf2N) room

temperature ionic liquid (RTIL) were carried out. It was found

that Pu(IV) is extracted into RTIL phase as [Pu(NO3)(TOD-

GA)]3? through cation exchange mechanism. Extraction

reaction equation is obtained by the influence of acidity and

extractant concentration, and the parameters of thermody-

namic equilibrium constant was calculated.

Keywords Solvent extraction � Plutonium(IV) � TODGA �
C6mimTf2N

Introduction

Recently, room temperature ionic liquids (RTILs), espe-

cially these containing alkylimidazolium cations, such as

1-hexyl-3-methylimidazolium bis(trifluoromethyl)sulpho-

nyl-imide(C6mimTf2N) have received increasing attentions

as next generation diluents for extractions in nuclear fuel

reprocessing. A result of their unique physical and chem-

ical properties [1, 2]. A preliminary assessment showed

that the relative viscosity of 1-octyl-3-methylimidazolium

bis(trifluoromethyl)sulphonyl-imide C8mimTf2N ionic

liquid is larger than C6mimTf2N ionic liquid [3]. Moreover

the extractive ability of C6mimTf2N to Pu(IV) is higher

than 1-butyl-3-methylimidazolium bis(trifluoromethyl)sul-

phonyl-imide (C4mimTf2N) ionic liquid [2]. Based on the

possible stability towards radiation according to the pre-

vious research [4], RTILs are expected to be used in the

reprocessing of spent fuel as diluent or extractant [5, 6].

There is big difference between the extraction behavior of

metal ions in ionic liquid and that in the molecular organic

solvent system. Thus, it is necessary to investigate the

solvent extraction of lanthanides and actinides in water/

RTIL system. Moreover there are many research reports

about the extraction of actinides, lanthanides and strontium

(Sr), cesium (Cs) by tri-butyl-phosphate (TBP)/n-octyl

(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide

(CMPO)/crown ether, using ionic liquid CnmimTf2N

(n = 4, 6, 8) as the diluent [1, 7–10]. In comparison, the

extraction ratio of one metal ion by TBP is slow, the sol-

ubility of CMPO in ionic liquid is low, crown ether is

usually used to extract Sr and Cs. TODGA (Fig. 1) as a

class of actinides novel extractant, synthesis is simple, low

cost, resistance to radiation, not easy hydrolysis, degrada-

tion products do not affect the extraction process and

overcomes the shortcoming of solubility low compared

with CMPO in RTILs [11–19]. Solvent extraction studies

on lanthanides and actinides from aqueous solutions sug-

gest that TODGA dissolved in kerosene greatly enhances

the extractability of lanthanides and actinides [17–23].

While at the same experimental condition of ameri-

cium(Am(III)) and europium(Eu(III)), plutonium exists as

Pu(IV), which is the reason for the extraction study of

Pu(IV) by TODGA because no research is reported in this

area. Here, we chose a hydrophobic ionic liquid—

C6mimTf2N (Fig. 1) as a diluent, using TODGA for the

solvent extraction studies of Pu(IV) in the present work for

accumulating the basic data for the effective use of this

type of RTILs for the solvent extraction of actinides.
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Experimental

Reagents and instruments

All chemicals were regent grade or higher. The TODGA

was synthesized in our laboratory with a purity over 98 %.

C6mimTf2N was synthesized and purified according to the

method described in paper [24] and its purity was [99 %

checked with [1] H and [13] C NMR spectral data, TLC,

and mass spectrometry.

Stock solution of [9, 23] Pu was purified with 256 9 4

pyridine-type resin (the length of the column is 350 mm,

with the diameter 6 mm)through adsorption in 8 M HNO3

solution and eluate in 0.5 M HNO3, and purity was mea-

sured by alpha spectrometry. Pu in 0.5–1 M HNO3 was

adjusted to Pu(IV) by using liquid N2O4. Required amount

of Pu (about 10 lg/mL) was transferred into the equili-

bration tube containing aqueous phase and its valency was

adjusted to Pu(IV) by N2O4 liquid. Because in nitric acid

solution, the main valence state of plutonium includes III,

IV and VI. N2O4 oxidizes Pu(III) to Pu(IV) and reduces

Pu(VI) to Pu(IV), so it can be used for the valence

adjustment of plutonium as Pu(IV), which can be proved

by the extraction of TTA/xylene and then measured by the

a spectrometry. Reaction equations as follows:

N2O4 þ H2O! HNO3 þ HNO2 ð1Þ

HNO2 þ Pu3þ þ Hþ ! Pu4þ þ NO " þH2O ð2Þ

NO�2 þ PuO2þ
2 þ 2Hþ ! Pu4þ þ NO�3 þ H2O ð3Þ

TODGA in RTILs, were equilibrated with the given

concentration of HNO3 three times before the extraction of

Pu(IV) in the same concentration of HNO3.

An LS-600LL liquid scintillation counter. (Shichema,

Japan) was used to measure the concentration of Pu(IV).

Procedure

Equal volumes of ionic liquids containing TODGA and

aqueous nitric acid solution containing Pu(IV) were vor-

texed for a certain time and equilibrated in a shaker bath at

required temperature. The mixed solutions were then cen-

trifuged for phase separation, aliquots from both phases

were withdrawn for liquid scintillation counting. At

293.15 K, the density of C6mimTf2N ionic liquid is 1.3

times larger than that of water. The viscosity and the

density of TODGA are larger than those of water also [3].

Thus the aqueous phase is at upper position of the solution.

From activities of Pu(IV) in initial solution and that of in

raffinate, the distribution ratio (D) is calculated as follows:

D ¼
Mtotal �Mremainder=aq

Mremainder=aq

where Mtotal stands for the total concentration of M, namely

the metal added and Mremainder/aq means the concentration

of M remained in aqueous phase.

The distribution ratio was measured repeatedly over a

period of time until it reaches equilibrium. All the mea-

surements were done in duplicate and D values obtained

were within ±5 % with good material balance (C95).

Results and discussion

The effect of extraction time

0.1 mol/L TODGA/C6mimTf2N were selected to extract

HNO3 and tracer amount of Pu(IV) in the aqueous phase in

which the HNO3 concentration was 0.988 and 3.93 mol/L

respectively. The effect of extraction time on the extraction

at different conditions were shown in the Fig. 2. The

equilibrium was established after 1 min of contact. For the

sake of reaching efficient equilibrium, the distribution ratio

were all measured after 10 min of vortexing.

Fig. 1 Structure of TODGA

and C6mimTf2N
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Fig. 2 Equilibrium time of HNO3 and Pu(IV). Organic phase 0.1 M

TODGA/C6mimTf2N, Aqueous phase 0.988 M HNO3 (HNO3) and

Trace amount Pu(IV) 3.93 M HNO3 respectively
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Effect of HNO3 concentration on D(HNO3) and DPu(IV)

Figure 3 gives distribution ratios of HNO3 as a function of

[HNO3] at 0.1 M TODGA/C6mimTf2N. D HNO3ð Þ remains

almost \0.15 with 0.34 M up to 7.5 M HNO3. At nitric

acid concentration higher than 1.8 M, the D HNO3ð Þ values

increased with increase of nitric acid concentration.

Figure 4 gives the plot of distribution ratios of Pu(IV) as

a function of [HNO3] at 0.1 M TODGA/C6mimTf2N and

0.1 M TODGA/n-dodecane. The results indicate that the

distribution ratio of Pu(IV) in ionic liquid is much higher

than that of in the system of n-dodecane.

Figure 5 displays log–log plot of distribution ratios of

Pu(IV) as a function of [HNO3] at 0.1 M TODGA–

C6mimTf2N. From the slope of the plot in Fig. 5, it can be

seen that in the acidity range studied, the slope of 0.85

close to 1, which suggests that the molar ratio of NO3
- and

Pu(IV) in the complex is 1:1, the stoichiometry of the

cationic complex transferred into the IL phase is

[Pu(NO3)(TODGA)x]
3?.

Extraction mechanism

Figures 6, 7, 8 and 9 show plots of distribution ratios of

Pu(IV) in C6mimTf2N as a function of TODGA concen-

tration at different concentration of HNO3. The results

show that the slopes of log(DPu(IV)) vs log([TODGA])

change from 0.8 to 1.09, which can be considered as 1

approximately. Therefore, in the aqueous acidity studied,

the extraction reaction equation can be written as follows:

Pu4þ
aq þ NO�3aq þ ½TODGA�IL þ 3½C6mim�þIL
, ½PuðNO3ÞðTODGAÞ�3þIL þ 3½C6mim�þaq ð4Þ

The equilibrium constant can be expressed as [25, 26]:
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Fig. 3 Dependence of distribution ratios of HNO3 versus HNO3

concentration. Organic phase 0.1 M TODGA/C6mimTf2N, Aqueous

phase HNO3
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Fig. 4 Dependence of distribution ratios of Pu versus HNO3

concentration. Organic phase 0.1 M TODGA/C6mimTf2N, 0.1 M

TODGA/n-dodecane respectively. Aqueous phase trace amount

Pu(IV) ? HNO3
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Fig. 5 Dependence of distribution ratios of Pu(IV) on HNO3

concentration. Organic phase 0.1 M TODGA/C6mimTf2N, Aqueous

phase trace amount Pu(IV) ? HNO3
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Fig. 6 TODGA dependency of distribution ratios of Pu(IV) in

C6mimTf2N. Organic phase 0.1 M TODGA/C6mimTf2N, Aqueous

phase trace amount Pu(IV) ? 0.089 M HNO3
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b ¼
½PuðNO3ÞðTODGAÞ�3þ
n o

½Pu4þ�½NO�3 �½TODGA�
�

f ½PuðNO3ÞðTODGAÞ�3þf g
f½Pu4þ� � f½NO�3 � � f½TODGA�

ð5Þ

here, [M] represents molar concentration (mol/L), and f[M]

means the activity coefficient. According to the theory of

Debye–Huckel [27], as a first approximation, the activity

coefficient of dilute solution is correlative with ionic

strength only. When the concentration of individual ion is

moderate, Davies equation can be used for the calculation

of activity coefficients, which can be written as follows:

� log fz� ¼ AZ2½
ffiffi
I
p

1þ
ffiffi
I
p � 0:2I� ð6Þ

I ¼ 0:5� ðC1Z2
1 þ C2Z2

2 þ C3Z2
3 þ � � �Þ ¼ 0:5�

X
CIZ

2
I

ð7Þ

here I is the ionic strength in molality, C is the molar

concentration of ion in mol/L and Z is the charge of it. As

for aqueous solution, the constant A is 0.509 at room

temperature and about 0.52 at the temperature of

(28 ± 0.5) �C. Nitric acid solution of 0.988 M, with the

Pu(IV) concentration 5.8 9 10-8 M, I is calculated as

follows:

I ¼ 0:5� 0:988� 12 þ 0:988� 12 þ 5:8� 10�8 � 42
� �

¼ 0:988

so we get

� log fZ� ¼ 0:52� Z2 � ð0:4985� 0:1976Þ ¼ 0:156Z2

f½NO�3 � ¼ 10�0:156; f½PuðNO3ÞðTODGAÞ�3þ

¼ 10�0:156�9; f TODGA½ � ¼ 1; f
Pu4þ½ � ¼ 10�0:156�16

And the activity coefficient f ¼
f ½PuðNO3ÞðTODGAÞ�3þf g
f½Pu4þ�f½NO�

3
�f½TODGA�

¼ 17:701:

In general, K can be represented as

K ¼ ½PuðNO3ÞðTODGAÞ3þ�
½Pu4þ�½NO�3 �½TODGA�

ð8Þ

here K is the equilibrium constant. Pu(IV) in aqueous

solution exists as Pu(NO3)3?, Pu(NO3)2
2? etc. If CPu is the

total concentration of plutonium in the aqueous phase and

bI is the stepwise formation constant between Pu(IV) and

NO3
-, CPu can be expressed as

CPu ¼ ½Pu4þ�ð1þ
X

bI½NO�3 �
IÞ
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Fig. 7 TODGA dependency of distribution ratios of Pu(IV) in

C6mimTf2N. Organic phase 0.1 M TODGA/C6mimTf2N, Aqueous

phase trace amount Pu(IV) ? 0.52 M HNO3
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Fig. 8 TODGA dependency of distribution ratios of Pu(IV) in

C6mimTf2N. Organic phase 0.1 M TODGA/C6mimTf2N, Aqueous

phase trace amount Pu(IV) ? 1.81 M HNO3
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Fig. 9 TODGA dependency of distribution ratios of Pu(IV) in

C6mimTf2N. Organic phase 0.1 M TODGA/C6mimTf2N, Aqueous

phase trace amount Pu(IV) ? 2.94 M HNO3
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So the Eq. (8) can be written

K ¼
½PuðNO3ÞðTODGAÞ�3þ
n o

ð1þ
P

bI½NO�3 �
IÞ

CPu½NO�3 �½TODGA� ð9Þ

The distribution ratio:

D ¼
½PuðNO3ÞðTODGAÞ�3þ
n o

CPu

ð10Þ

Inserting (10) into (9) gives

K ¼ ðD� D0Þð1þ
P

bI½NO�3 �
IÞ

½NO�3 �½TODGA� ð11Þ

where D and D0 denote the distribution ratios of Pu(IV) in

organic phase of TODGA–RTIL and RTIL, respectively.

ð1þ
P

bI½NO�3 �
IÞ is 2.69 ± 0.14 in 1 M [HNO3],

which was taken from the literature [20]. So, we obtain

K ¼ 2:69� ðD� D0Þ
½NO�3 �½TODGA�

and

log K ¼ 0:43þ logðD� D0Þ � log½NO�3 � � log½TODGA�

According to the D values obtained at (28 ± 0.5) �C

and 1 M [HNO3], the logK and b values are determined as

described in Table 1

In general, the solubility of the neutral complex in

aqueous solution is far less than that of in organic solvents

due to the polarity. Thus, the neutral complex is easy to be

extracted into the organic solvents, while the charged

complex is difficult to be transferred into organic phase.

For example, the uranium and plutonium are extracted into

TBP/OK in the Purex process. However, ionic liquid is a

very strong polar organic solvent, which means that the

charged complex extracted should be larger for ionic

compounds than the neutral complex. The above results are

accordable completely with this basis theory [28].

Conclusion

In the range of experimental conditions, the extraction

percentage of Pu(IV) is more than 99 % in 0.1 M TODGA/

C6mimTf2N. Through cation exchange mechanism, Pu(IV)

is extracted into RTIL phase, as [Pu(NO3)(TODGA)]3?.

Extraction reaction equation is obtained by the influence of

acidity and extractant concentration, and the parameters of

thermodynamic equilibrium constant is calculated.
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