Studies on the age determination of trace plutonium

Yan Chen · Zhi-yuan Chang · Yong-gang Zhao · Ji-long Zhang · Jing-huai Li · Fu-jun Shu

Received: 19 April 2009/Published online: 13 June 2009 © Akadémiai Kiadó, Budapest, Hungary 2009

Abstract An isotope dilution multicollector inductive coupled plasma mass spectrometry (ID-MC-ICP-MS) method for determining age of trace Pu through measuring ²⁴¹Pu/²⁴¹Am, ²⁴⁰Pu/²³⁶U ratio was established. At the same time, other two methods-a-spectrometry combined with MC-ICP-MS and liquid scintillator combined with α spectrometry through measuring ²⁴¹Pu/²⁴¹Am ratio to determine the age of trace Pu were also studied. The techniques were explored for the age determination of nanogram grade Pu sample on the basis of Pu/Am, Pu/U separation. The ages of two Pu samples-one with known and the other with unknown age-were determined by the three methods. The determined ages by the three methods were all in agreement with the reference value. The established methods for determining the age of trace Pu could be adopted in the verification activities of nuclear safeguards and nuclear arms control.

Keywords Plutonium age · Inductive coupled plasma mass spectrometry · α-Spectrometry · Liquid scintillator

Introduction

In the verification technologies for arms control, age attribution of plutonium is of far reaching importance.

At present, γ -spectrometry and mass spectrometry were primarily used to determine the age of Pu. γ -spectrometry method was based on the determination of gamma rays of ²⁴¹Pu(²³⁷U) and ²⁴¹Am, a relatively large amount of plutonium was needed [1, 2]. More parent/daughter nuclides were used in Mass spectrometry method, such as ²³⁸Pu/²³⁴U, ²³⁹Pu/²³⁵U, ²⁴⁰Pu/²³⁶U and ²⁴¹Pu/²⁴¹Am ratios [3–5]. And only a relatively small quantity of sample was enough to get corrected results.

In our lab, three techniques for the age determination of nanogram grade Pu sample were studied on the basis of radiochemical separation of Pu/Am, Pu/U and isotopic dilution mass spectrometry.

Methodology

"Age" refers to the date of the last separation of parent nuclide from its daughters. The determination of the age of plutonium was based on the parent/daughter ratio of 240 Pu/ 236 U or 241 Pu/ 241 Am. 236 U and 241 Am are the first generation daughters of 240 Pu and 241 Pu, so the age of plutonium can be calculated by Eq. 1.

$$t = \frac{1}{\lambda_1 - \lambda_2} \cdot \ln\left[1 - \left(\frac{\lambda_2}{\lambda_1} - 1\right)\frac{N_2}{N_1}\right] \tag{1}$$

In this equation, t is the age of plutonium, λ_1 and λ_2 are the decay constants of Pu and the respective daughter nuclide and N_1 and N_2 are the amounts of the mother and daughter nuclide at the time of analysis.

Other parent/daughter radios $(^{238}Pu/^{234}U, ^{239}Pu/^{235}U)$ were not adopted for potential contamination from the background of natural uranium.

Y. Chen $(\boxtimes) \cdot Z$. Chang $\cdot Y$. Zhao $\cdot J$. Zhang $\cdot J$. Li $\cdot F$. Shu China Institute of Atomic Energy, 102413 Beijing, China e-mail: cy@ciae.ac.cn

Experimental

Instrumentation

GV Micromass Isoprobe MC inductively coupled plasma mass spectrometer, α -spectrometry (ORTEC Octête plus) and liquid scintillator (Tri-Carb3170) were used for studies.

Samples and reagents

Certified reference material (²³³U solution, NPL A051018 and ²⁴³Am solution, AEA Technology UK ATP10040) and standard reference material (²⁴²Pu solution, IRMM-044) were prepared as spike solutions for quantification of the analysis. Uranium isotopes standard solution (EC-NCM 199) and a mixture of standard reference solution (²³³U, NPL A051018 and ²³⁶U, NPL E5552) were used to correct mass discrimination and ion multiplier efficiency variance.

BV–III grade nitric acid and hydrochloric acid (Institute of Chemical Reagent of Beijing) were used for sample preparation. High-purity water (18 M Ω cm⁻¹) was prepared with a Millipore Milli-Q-Element water purification system (Millipore, USA). TEVA and TRU (all 50–100 μ m, Eichrom, USA) were used for the separation of U, Pu and Am.

Radiochemical separation

Separation of Pu and Am

About 0.04 g plutonium sample (contained 107 ng Pu g⁻¹) was weighed. Approximately 0.4 g ²⁴³Am spike solution (47.93 pg g⁻¹), 0.01 g ²⁴²Pu spike solution (1.0409 ng g⁻¹) and 600 μ L 4 \times 10⁻³ mol L⁻¹ NaNO₂ were added to the sample. The samples were vibrating for 10 min, heated to vaporize to nearly dry and re-dissolved with 2 mL 2 mol L⁻¹ HNO₃ for the following solid phase extraction procedure.

TEVA (1 mL) was added to 2 mL glass column and conditioned with 5 mL 2 mol L^{-1} HNO₃. The sample was then loaded on the column and rinsed with 1.5 mL 2 mol L^{-1} HNO₃ to remove americium. The TEVA column was then rinsed with 5 mL 2 mol L^{-1} HNO₃ to eliminate the residual americium completely. Plutonium was then eluted using 6 mL 0.15 mol L^{-1} HNO₃–0.025 mol L^{-1} H₂C₂O₄.

TRU (1 mL) was added to 2 mL glass column and conditioned with 5 mL 5 mol L^{-1} HCl. The americium fraction from TEVA column was loaded on the column and rinsed with 3 mL 5 mol L^{-1} HCl to remove sodium ions. Americium was then eluted using 11 mL 5 mol L^{-1} HCl.

Separation of Pu and U

About 0.04 g plutonium sample (contained 107 ng Pu g⁻¹) was weighed. Approximately 0.1 g ²³³U spike solution (7.285 pg g⁻¹), 0.2 g ²⁴²Pu spike solution (1.0409 ng g⁻¹) and 1 mL 6 mol L⁻¹ HNO₃ were added to the sample. The samples were vibrating for 10 min, heated to vaporize to nearly dry and re-dissolved with 0.5 mL 6 mol L⁻¹ HNO₃ for the following solid phase extraction procedure.

TEVA (1 mL) was added to 2 mL glass column and conditioned with 5 mL 3 mol L^{-1} HNO₃. The samples were then loaded on the column and rinsed with 7 mL 3 mol L^{-1} HNO₃ to collect uranium. Plutonium was then eluted using 6 mL 0.15 mol L^{-1} HNO₃–0.025 mol L^{-1} H₂C₂O₄.

Measurement

Multi-collector inductively plasma mass spectrometry

Uranium, plutonium and americium isotope ratios were measured using MC-ICP-MS. The operating condition of ICP-MS is listed in Table 1. ²³³U/²³⁶U ratio of the mixture of standard reference solution was quantitative analyzed using EC-NRM 199 as standard to correct the mass discrimination. ²⁴¹Am/²⁴³Am and ²⁴¹Pu/²⁴²Pu ratios of sample after the separation of Pu and Am and ²³³U/²³⁶U and ²⁴⁰Pu/²⁴²Pu ratios of sample after the separation of Pu and L were measured using the mixture of standard reference solution (²³³U, NPL A051018 and ²³⁶U, NPL E5552) as reference.

α -Spectrometry

The separated Am fraction was vaporized to nearly dry and re-dissolved with 8 mL 0.15 mol L⁻¹ HNO₃–0.025 mol L⁻¹ H₂C₂O₄. The solution was transferred to electrodeposit cell, adjusted to pH 1–2 and electrodeposited for 2 h. The ²⁴¹Am/²⁴³Am ratio was measured using α -spectrometer. For all measurements the counting time was optimized to

Table 1 Operating condition of ICP-MS

Parameter	Setting
RF power	1350 W
Cooling gas flow rate (Ar)	13 Lmin^{-1}
Auxiliary gas flow rate (Ar)	1.0 Lmin^{-1}
Pulverization gas flow rate	$0.73 \ {\rm L} \ {\rm min}^{-1}$
Collision gas flow rate (Ar)	1.3 mL min^{-1}
Ar carrying gas	4.25 mL min ⁻¹
N ₂ carrying gas	5 mL min^{-1}

achieve an uncertainty of the concerned isotopes due to counting statistics inferior to 1%.

Liquid scintillator

A series of 241 Pu standard samples of the different quenching degree were used to scale the efficiency of liquid scintillator. About 0.04 g plutonium age standard solution (contained 107 ng Pu g⁻¹) was weighed and measured using liquid scintillator.

Results and discussion

ID-MC-ICP-MS method

²⁴¹Pu/²⁴¹Am and ²⁴⁰Pu/²³⁶U ratios were determined by MC-ICP-MS. Determinations were performed on a plutonium age standard solution (PU 1) and a plutonium solution with unknown age (PU 2), and four sub-samples for each were measured. The obtained ages were shown in Table 2. As can be seen from Table 2, the ages determined by ²⁴¹Pu/²⁴¹Am ratio corresponded well with the ²⁴⁰Pu/²³⁶U ratio. The discrepancy between the obtained age and reference age of PU 1, which maybe come from unknown system error, was about 1 year. The results of sub-samples were comparatively consistent, so the method had good precision.

 241 Pu and 241 Am would interfere each other during the ICP-MS measuring, so the completely separation of Pu and Am was the key technique. TEVA and TRU resins were used to separate Pu and Am in this work. The decontamination factor was >250 for Pu in Am fraction and >1000 for Am in Pu fraction. These separation factors were adequate for the preparation of sample determined by ICP-MS. The chemical yields were about 80% for Am, 96% for Pu and 70% for U, respectively.

The primary interference during the measurement of 240 Pu/ 236 U ratio may come from the residual 236 U in the

Table 2 Age of plutonium using MC-ICP-MS

Sample	Determined age (years)		Reference age (years)
	²⁴¹ Pu/ ²⁴¹ Am	²⁴⁰ Pu/ ²³⁶ U	
PU 1	21.37 ± 0.30	21.75 ± 0.29	22.79
	21.31 ± 0.34	21.68 ± 0.44	
	21.77 ± 0.36	21.94 ± 0.56	
	21.31 ± 0.28	21.71 ± 0.40	
PU 2	23.40 ± 0.38	23.42 ± 0.70	-
	23.88 ± 0.32	23.32 ± 0.76	
	23.17 ± 0.38	23.20 ± 0.70	
	23.03 ± 0.32	23.76 ± 0.56	

initial Pu sample. According to the portion of ²³⁶U in the irradiated low enriched reacted uranium was about 0.49%. The amount of the residual uranium in the separated Pu was assumed to be 100 μ g g⁻¹ and ²⁴⁰Pu content was 5%, the initial ²⁴⁰Pu/²³⁶U ratio would be about 10⁵. ²⁴⁰Pu/²³⁶U ratio was <10³ for the plutonium with the age of about 20 years. So the deviation from the residual ²³⁶U should be <1%.

ID-α-spectrometry combined with MC-ICP-MS method

The other way to obtain the age of plutonium was that α -spectrometry combined with MC-ICP-MS to determine ²⁴¹Pu/²⁴¹Am ratio. The amount of ²⁴¹Pu was measured by using MC-ICP-MS as 4.1, and ²⁴¹Am was electrodeposited on stainless steel plate and determined by α -spectrometer. The result was shown in Table 3. In this method, the interference of ²⁴¹Pu on ²⁴¹Am and the correction of Am by uranium standard during the MC-ICP-MS measurement were avoided. In the α -spectra, the peaks of ²³⁸Pu and ²⁴¹Am were overlapped. But the radioactivity of ²³⁸Pu could be estimated less than one-ten thousandth of ²⁴¹Am. So the interference of ²³⁸Pu on ²⁴¹Am could be ignored. The result of the method was consistent with the foregoing method. The obtained age of PU 1 was in agreement with the reference one.

 $ID-\alpha$ -spectrometry combined with liquid scintillator method

A method using liquid scintillator to determine the amount of ²⁴¹Pu instead of ICP-MS and α -spectrometry to determine the amount of ²⁴¹Am to obtain the age of plutonium was also developed. The result of the method was shown in Table 4. The ages determined by α -spectrometry combined with liquid scintillator were lower than the ones obtained by the two foregoing methods. The deviation was about

Table 3 Ages determined by $\alpha\text{-spectrometry combined with MC-ICP-MS}$

Sample	Determined age (years)	Reference age (years)
PU 1	22.07 ± 0.72	22.79
PU 2	23.84 ± 0.86	-

Table 4 Ages determined by α -spectrometry combined with liquid scintillator

Sample	Determined age (years)	Reference age (years)
PU 1	20.84	22.79
PU 2	22.32	-

10% and considered to be mainly from the measurement of liquid scintillator. The method could be used in the normal radiochemistry labs without ICP-MS.

Conclusions

Three methods for determining the age of trace plutonium on the basis of separation of U, Pu and Am were developed in this work. A plutonium age standard solution and a plutonium solution of unknown age were analyzed by the three methods, respectively. The determined ages were quite consistent and agreed well with the reference age. The three methods could be adopted in the verification activities of nuclear safeguards and nuclear arms control.

References

- Keegan, R.P., Gehrke, R.J.: A method to determine the time since last purification of weapons grade plutonium. Appl. Radiat. Isot. 59, 137–143 (2003)
- West, D., Sherwood, A.C.: γ-Rays from an unirradiated plutoniumuranium oxide fuel pin and a method of measuring the age of plutonium since chemical processing. Ann. Nucl. Energy 8, 441– 453 (1981)
- Wallentus, M., Tamborinl, G., Koch, L.: The "age" of plutonium particles. Radiochim. Acta 89, 55–58 (2001)
- Wallenius, M., Mayer, K.: Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius J. Anal. Chem. 366, 234–238 (2000)
- Nygren, U., Rameback, H., Nilsson, C.: Age determination of plutonium using inductively coupled plasma mass spectrometry. J. Radioanal. Nucl. Chem. 1, 45–51 (2007)