Natural radioactivity distribution in geological matrices around Kaiga environment

A. K. Patra,¹ J. Sudhakar,¹ P. M. Ravi,¹* J. P. James,² A. G. Hegde,² M. L. Joshi¹

¹ ESL (ESS, Health Physics Division, BARC), Kaiga Generating Station, P.O. Kaiga, Karwar, Uttar Kannada District, Karnataka – 581400, India ² Health Physics Division, BARC, Mumbai – 400 085, India

(Received December 13, 2005)

The activity and absorbed dose rate of the naturally occurring radionuclides, viz. ²³⁸U, ²³²Th and ⁴⁰K were determined in soil and rock samples collected around Kaiga site. The mean activity levels (Kaiga soil) of naturally occurring ²³²Th are comparable with that in worldwide soil, while concentrations of ²³⁸U and ⁴⁰K are lower than those in worldwide soil. The absorbed dose rate in outdoor air ranged 20–58 nGy^{-h-1} with a mean of 33.3 nGy^{-h-1}, which is below the world average of 60 nGy^{-h-1}. The total effective dose rate in outdoor air for soils ranged 25.6–74.4 μ Sv^{-y-1} with a mean of 43.0 μ Sv^{-y-1}. The estimated dose rate at Kaiga is comparable with that estimated at Kakrapar and Rawatbhata and much less than that estimated at coastal sites of India.

Introduction

Radioactive elements constitute a part of the Earth's spheres. Their composition and distribution are subject to the same natural laws as the other non-radioactive elements. Natural radioactivity is composed of the cosmogenic and primordial radionuclides. Cosmogenic radionuclides, such as ³H, ⁷Be, ¹⁴C and ²²Na are produced by the interaction of cosmic-ray particles in the Earth's atmosphere. Primordial radionuclides are formed by the process of nucleosynthesis in stars. The most common terrestrial radionuclides that produce gamma-rays are ²³⁸U, ²³²Th daughter products and ⁴⁰K. The intensity of the terrestrial natural radioactivity varies by an order of magnitude for different regions due to geological factors. The external radiation exposure arises mainly from cosmic rays and from terrestrial radionuclides occurring at trace levels in all geological matrices. The cosmic ray induced γ field generally contributes one-third to one-half of the total, the rest is from terrestrial radioelements.¹ Therefore, major spatial variations in natural y-radioactivity are caused by variations in the abundance and distribution of U, Th and K. The terrestrial background radiation is related to the types of rock from which the soil originates. The higher concentrations of uranium, thorium and potassium are associated with soil developed from acid magmatic rocks and clay² and probably, the majority of uranium is associated with the phosphatic sands and clays of these formations.³ The study of natural terrestrial radiation is useful for various reasons as has been reported by many authors.^{4–10}

The primary objective of the present study was to determine the activity of 238 U, 232 Th and 40 K in geological matrices such as soil, rock and its contribution to dose rate around Kaiga environment.

Site description

This study was carried out at Kaiga site, located east of the coastal town Karwar in Karnataka on the southwest coast of India (latitude 14.86 °N and longitude 74.44 °E), as shown in Fig. 1. Kaiga is identified as the site for six nuclear power stations (Two 220 MWe PHWR type stations operational, two similar units under construction and two more units proposed). The site is surrounded by tropical forest populated by a variety of plants and animals.

Experimental

Sample collection and counting

A total of 24 rock samples and 16 soil samples have been collected from various locations at Kaiga site. Soil samples were dried in an oven at 100 °C for 24 hours, and then crushed, ground to fine powder and homogenized by passing through 180 μ m test sieve. The rock samples were dried and crushed.

The samples were sealed and stored in a Marinelli beaker to prevent the escape of radiogenic gases ²²²Rn and ²²⁰Rn, and to allow the attainment of radioactive equilibrium in the decay chain. Natural radionuclides of relevance for this work are mainly gamma-ray emitting nuclei in the decay series of ²³²Th and ²³⁸U, and single occurring ⁴⁰K. ⁴⁰K was measured directly by its own gamma-rays (1461 keV). Decay products of ²³⁸U (²¹⁴Pb: 352 keV; and ²¹⁴Bi: 609 keV) and ²³²Th (²²⁸Ac: 911 keV; ²¹²Pb: 238 keV; ²¹²Bi: 727 keV; and ²⁰⁸TI: 583 keV) were used by assuming the decay series to be in secular equilibrium. After attainment of secular equilibrium between ²³²Th, ²³⁸U and their daughter products, the samples were subjected to gamma-ray

0236–5731/USD 20.00 © 2006 Akadémiai Kiadó, Budapest

^{*} E-mail: pmr9@sancharnet.in

spectrometric analysis. A high purity germanium detector (HPGe) of coaxial type having dia 50.2 mm and length 49.5 mm coupled to a PC aided 4K MCA was used for analysis. The system was calibrated for energy and efficiency using a Marinelli beaker containing spiked soil sample and liquid standards containing 137 Cs, 60 Co, 133 Ba and 40 K. The efficacy of the sample counting was verified by the analysis of certified reference materials IAEA-375 Soil and IAEA-156 Clover provided by IAEA. The results agreed within $\pm 5\%$ with the certified values.

Derivation of gamma dose rates in air outdoors: If naturally occurring nuclides are uniformly distributed in the ground, dose rates at 1 m above the ground surface were calculated by:¹¹

Dose rate
$$(nGy \cdot h^{-1}) =$$

= Concentration of radionuclide $(Bq\cdot kg^{-1})$ (1) · Conversion factor $(nGy\cdot h^{-1} \text{ per } Bq\cdot kg^{-1})$

The absorbed gamma dose rate in air was mainly determined from 212 Pb (photon energy 238 keV), 208 Tl (583 keV), 212 Bi (727 keV) and 228 Ac (911 keV) for the 232 Th series, and from 214 Pb (352 keV) and 214 Bi (609 keV) for the 238 U series. Due to the small

Fig. 1. Location of Kaiga

fractional yield and relatively low energy of the emitted photons, radionuclides such as 226 Ra and 224 Ra were neglected.¹² TZORTZIS et al.¹³ reported the dose rate conversion factor for 232 Th and 238 U series and for 40 K as 0.52813, 0.38919, 0.03861, respectively, and these values were used in the present work.

Finally, in order to make a rough estimate for the annual effective outdoor dose, one has to take into account the conversion coefficient from absorbed dose in air to effective dose and the outdoor occupancy factor. In the UNSCEAR reports (1993, 2000),^{14,15} the committee used 0.7 Sv·Gy⁻¹ as the conversion coefficient from absorbed dose in air to effective dose received by adults, and 0.2 for the outdoor occupancy factor. Effective outdoor dose rate (μ Sv·y⁻¹) was calculated by:

Effective dose rate
$$(\mu Sv \cdot y^{-1}) =$$

= Dose rate $(nGy \cdot h^{-1}) \cdot$
 $\cdot 24 (h) \cdot 365 (d) \cdot 0.2$ (occupancy factor) \cdot
 $0.7 Sv \cdot Gy^{-1}$ (conversion coefficient)×10⁻³ (2)

Results and discussion

Distribution of natural radioactivity in rocks

The activity of ²³²Th, ²³⁸U and ⁴⁰K in the rock samples collected around Kaiga site is shown in Table 1. The activity of ²³²Th in the rock ranged from 1.2–14.2 Bq·kg⁻¹ with a mean of 8.1 Bq·kg⁻¹, ²³⁸U ranged from 0.5–11.5 Bq·kg⁻¹ with a mean of 4.3 Bq·kg⁻¹ and ⁴⁰K ranged from 14.8–866.2 Bq·kg⁻¹ with a mean of 349.6 Bq·kg⁻¹, respectively. The ²³²Th/²³⁸U ratio in the rock ranged from 0.5–4.2 with a mean of 2.2. It is observed that the ⁴⁰K activity in the rocks is higher than that of ²³²Th and ²³⁸U. MOHANTY et al.¹⁶ reported the ²³²Th, ²³⁸U and ⁴⁰K in the bulk sand samples in Erasama beach (eastern coast of Orissa, India) as 900–4700 Bq·kg⁻¹, 150–500 Bq·kg⁻¹, 100–250 Bq·kg⁻¹, respectively. Figure 2 shows the normal distribution of ²³⁸U, ²³²Th and ⁴⁰K content in rock samples.

Distribution of natural radioactivity in soil

The activity of ²³²Th, ²³⁸U and ⁴⁰K in the soil samples collected around Kaiga site is shown in Table 2. The activity of ²³²Th in the soil ranged from 19.8–45.3 Bq·kg⁻¹ with a mean of 31.7 Bq·kg⁻¹, ²³⁸U ranged from 12.8–42.2 Bq·kg⁻¹ with a mean of 24.0 Bq·kg⁻¹ and ⁴⁰K ranged from 135.8–344.6 Bq·kg⁻¹ with a mean of 201.4 Bq·kg⁻¹, respectively. The ²³²Th/²³⁸U ratio in the soil ranged from 0.9–1.9 with a mean of 1.4. SIDDAPPA et al.¹⁷ reported ²³²Th/²³⁸U in soil samples in the Kaiga region as 0.8–5.1. It is observed that the ⁴⁰K activity in the Kaiga soil is higher than that of ²³²Th and ²³⁸U.

Table 1. Natural radioactivity in rocks around Kaiga (in Bq·kg⁻¹)

Sample ID	²³² Th	²³⁸ U	⁴⁰ K	²³² Th/ ²³⁸ U
Rock-1	4.6 ± 0.5	1.4 ± 0.3	14.8 ± 3.0	3.3
Rock-2	4.3 ± 0.5	1.9 ± 0.3	107.0 ± 5.8	2.3
Rock-3	11.8 ± 0.6	5.4 ± 0.3	232.2 ± 6.5	2.2
Rock-4	11.6 ± 0.8	5.7 ± 0.4	337.2 ± 9.4	2.0
Rock-5	6.1 ± 0.4	11.5 ± 0.4	317.6 ± 5.9	0.5
Rock-6	7.0 ± 0.4	6.4 ± 0.3	318.2 ± 5.1	1.1
Rock-7	7.5 ± 0.5	3.7 ± 0.3	309.5 ± 6.9	2.0
Rock-8	8.6 ± 0.6	4.9 ± 0.4	364.0 ± 9.4	1.8
Rock-9	14.2 ± 0.9	5.5 ± 0.4	866.2 ± 15.3	2.6
Rock-10	8.1 ± 0.7	5.8 ± 0.5	617.7 ± 12.4	1.4
Rock-11	9.1 ± 0.7	3.3 ± 0.4	376.0 ± 9.7	2.8
Rock-12	10.3 ± 0.7	4.2 ± 0.4	544.1 ± 11.0	2.5
Rock-13	14.0 ± 0.7	4.8 ± 0.4	315.6 ± 7.3	2.9
Rock-14	11.1 ± 0.9	5.0 ± 0.4	351.2 ± 10.1	2.2
Rock-15	7.2 ± 0.4	4.7 ± 0.3	232.9 ± 5.5	1.5
Rock-16	10.4 ± 0.7	6.1 ± 0.5	324.3 ± 8.6	1.7
Rock-17	8.0 ± 0.4	4.1 ± 0.3	295.8 ± 5.3	2.0
Rock-18	2.6 ± 0.3	1.5 ± 0.2	22.1 ± 2.5	1.7
Rock-19	2.0 ± 0.3	0.9 ± 0.2	529.9 ± 7.8	2.2
Rock-20	2.5 ± 0.5	0.6 ± 0.3	501.2 ± 11.9	4.2
Rock-21	1.2 ± 0.4	0.5 ± 0.1	416.7 ± 9.1	2.6
Rock-23	12.5 ± 0.7	4.2 ± 0.3	352.2 ± 7.7	1.8
Rock-22	6.2 ± 0.5	3.4 ± 0.3	280.9 ± 6.6	3.0
Rock-24	12.5 ± 0.6	7.1 ± 0.3	363.0 ± 7.1	1.8
Range:	1.2 - 14.2	0.5 - 11.5	14.8-866.2	0.5-4.2
Mean:	8.1	4.3	349.6	2.2
Std. Dev.:	3.8	2.5	181.4	0.8

Table 2. Natural radioactivity in soil around Kaiga (in $Bq kg^{-1}$)

Sample ID	²³² Th	238U	40K	²³² Th/ ²³⁸ U
Soil-1	38.9 ± 2.6	38.1 ± 1.6	217.7 ± 13.8	1.0
Soil-2	45.3 ± 2.3	42.2 ± 1.5	266.5 ± 12.2	1.1
Soil-3	37.5 ± 2.3	31.5 ± 1.5	229.4 ± 12.8	1.2
Soil-4	38.5 ± 2.5	26.4 ± 1.5	226.6 ± 14.7	1.5
Soil-5	24.4 ± 2.0	26.7 ± 1.5	189.4 ± 13.0	0.9
Soil-6	23.2 ± 2.0	18.4 ± 1.2	169.3 ± 14.1	1.3
Soil-7	25.1 ± 1.7	17.6 ± 1.0	189.5 ± 12.2	1.4
Soil-8	19.8 ± 1.4	16.7 ± 0.8	154.0 ± 9.6	1.2
Soil-9	19.9 ± 1.4	17.6 ± 0.9	154.5 ± 9.7	1.1
Soil-10	34.1 ± 2.0	20.3 ± 1.2	179.2 ± 12.4	1.7
Soil-11	27.4 ± 1.1	18.5 ± 0.8	172.9 ± 8.0	1.5
Soil-12	45.0 ± 2.9	24.1 ± 1.6	238.3 ± 17.9	1.9
Soil-13	28.6 ± 1.8	21.9 ± 1.1	151.5 ± 11.4	1.3
Soil-14	33.6 ± 3.0	23.6 ± 1.9	344.6 ± 23.6	1.4
Soil-15	41.8 ± 2.1	27.4 ± 1.2	202.9 ± 12.4	1.5
Soil-16	23.3 ± 1.6	12.8 ± 0.9	135.8 ± 10.2	1.8
Range:	19.8-45.3	12.8-42.2	135.8-344.6	0.9–1.9
Mean:	31.7	24.0	201.4	1.4
Std. Dev.:	8.8	8.0	52.7	0.3

It is interesting to compare the natural radioactivity of Kaiga soil with the soil worldwide. RAMLI et al.¹⁸ studied the natural radioactivity around Palong area in the Segamat district, northern part of Johor state, Malaysia and the concentration of 238 U and 232 Th in the soil ranged from 58.8–484.8 Bq·kg⁻¹, 59.6–1204 Bq·kg⁻¹, respectively. TZORTZIS et al.¹³ reported the 232 Th, 238 U and 40 K in the soil ranged from 1.3–52.8 Bq·kg⁻¹, 0.9–90.3 Bq·kg⁻¹, 13–894 Bq·kg⁻¹, respectively. The worldwide revised median values of ²³²Th, ²³⁸U and ⁴⁰K concentrations in soil is reported as 30, 35 and 400 Bq·kg⁻¹, respectively.¹⁵ This reveals that the mean concentration levels measured in Kaiga soil from naturally occurring radioisotopes such as ²³²Th is comparable with worldwide soil, ²³⁸U and ⁴⁰K concentrations are lower than the corresponding values obtained worldwide. Figure 3 shows the normal distribution of ²³⁸U, ²³²Th and ⁴⁰K content in soil samples. Good correlation was observed between ²³²Th and ²³⁸U in soil samples (R^2 =0.90), ²³²Th and ⁴⁰K (R^2 =0.78) as shown in Figs 4 and 5.

Fig. 2. Normal distribution of 238 U (a), 232 Th (b) and 40 K (c) content in rock samples

Fig. 3. Normal distribution of 238 U (a), 232 Th (b) and 40 K (c) content in soil samples

Fig. 4. Correlation between ²³²Th and ²³⁸U activity in soil

Fig. 5. Correlation between ²³²Th and ⁴⁰K activity in soil

Comparison of ²³⁸U, ²³²Th and ⁴⁰K in rocks and soils

Table 3 shows the comparison of ²³⁸U, ²³²Th and ⁴⁰K concentration in rocks and soil around Kaiga site. It is observed that the ratio of soil/rock in the case of ²³⁸U, ²³²Th and ⁴⁰K is 5.6, 3.9, 0.58, respectively. WOLLENBERG and SMITH¹⁹ reported the ratio of soil/rock in the case of ²³⁸U and ²³²Th as 0.71, 0.72, respectively. WOLLENBERG and SMITH¹⁹ also reported that K/U and K/Th ratios may be used to differentiate low radioactivity terrains (carbonates, between ultrabasics, and basic igneous rocks) and between high radioactivity terrains (acid-igneous and alkali feldspathoidal rocks).

Gamma dose rate

The dose rates in outdoor air were calculated from concentration of radionuclides of ²³²Th and ²³⁸U series, and of ⁴⁰K using Eq. (1) and are tabulated in Table 4. In the soil samples, the computed values were for ²³²Th series (²²⁸Ac: 10.5–23.9 nGy·h⁻¹ with a mean of 16.7 nGy·h⁻¹, ²¹²Bi: 10.3–32.4 nGy·h⁻¹ with a mean of 18.7 nGy·h⁻¹, ²⁰⁸TI: 1.8–9.0 nGy·h⁻¹ with a mean of 5.2 nGy·h⁻¹, ²¹²Pb: 11.1–38.0 nGy·h⁻¹ with a mean of 19.1 nGy·h⁻¹), for ²³⁸U series (²¹⁴Pb: 7.0–20.5 nGy·h⁻¹ with a mean of 11.8 nGy·h⁻¹, ²¹⁴Bi: 5.0–16.4 nGy·h⁻¹ with a mean of 9.3 nGy·h⁻¹) and for 40 K: 5.2– 13.3 nGy·h⁻¹ with a mean of 7.8 nGy·h⁻¹, respectively. Figure 6 illustrates the measured relative contributions to total absorbed dose in outdoor air due to ²³²Th and ²³⁸U decay products and ⁴⁰K content in soil. The relative contribution to dose due to ⁴⁰K was 27%, followed by the contribution due to ²³²Th and ²³⁸U series elements as 43% and 30%, respectively. The absorbed dose rate in outdoor air were found to be in the range of 20–58 nGy·h⁻¹ with a mean of 33.3 nGy·h^{-1} , which is below the corresponding population-weighted (world-average) value of 60 nGy·h⁻¹.¹³ The total

effective dose rates in outdoor air estimated according to Eq. (2) for soils ranged 25.6–74.4 μ Sv·y⁻¹ with a mean of 43.0 μ Sv·y⁻¹. Table 5 shows the comparison of radiation dose rate of Kaiga, Karnataka with different parts of India.^{9,20–26} It is observed that the estimated

dose rate at Kaiga from ²³⁸U, ²³²Th and ⁴⁰K content in soil is comparable with that estimated at Kakrapar and Rawatbhata and much less than that estimated at coastal sites such as Kalpakkam, Ullal, Bhimilipatanam, Chhatrapur, Kerala coast, Tamilnadu coast of India.

Table 3. Comparison of ²³⁸U, ²³²Th and ⁴⁰K in rock and soil

Type of matrix	²³⁸ U	²³² Th	⁴⁰ K	⁴⁰ K/ ²³⁸ U	⁴⁰ K/ ²³² Th
Rock	0.5–11.5 (4.3)	1.2–14.2 (8.1)	14.8-866.2 (349.6)	81.3	43.2
Soil	12.8–42.2 (24.0)	19.8–45.3 (31.7)	135.8–344.6 (201.4)	8.4	6.4
Ratio soil/rock	5.6	3.9	0.58		

Figures in parenthesis indicate the arithmetic mean.

Table 4. Activity, dose and effective dose rates assessment for the ²³²Th and ²³⁸U series and ⁴⁰K

DDGE		A	D 1 1		TT + 1 66 + 1 + +
DRCF,	Nuclide	Activity range,	Dose rate outdoors	Effective dose rate	Total effective dose rate
nGy [.] h ⁻¹ per Bq.kg ⁻¹	rtaenae	Bq·kg ⁻¹	range, nGy [.] h ⁻¹	outdoors range, µSv·y ⁻¹	outdoors range, µSv·y ⁻¹
Thorium series	$228 \Lambda_{0} (011 \text{ keV})$	19.8-45.3	10.5-23.9	12.8-29.3	10.3-31.7
0.52813	AC(911 KeV)	(31.7)	(16.7)	(20.5)	(18.3)
	212 P ; (727 $\log V$)	19.5-61.4	10.3-32.4	12.6-39.8	
	DI(121 KeV)	(35.4)	(18.7)	(22.9)	
20	208T1 (592 1-1)	3.5-17.1	1.8-9.0	2.3-11.1	
	11 (385 KeV)	(9.9)	(5.2)	(6.4)	
212 _I	212Dh (228 haV)	21.1-72	11.1-38.0	13.7-46.6	
	FU(230 KeV)	(36.2)	(19.1)	(23.5)	
Uranium series	214 pb (252 koV)	17.9-52.7	7.0-20.5	8.5-25.2	7.3-22.6
0.38919	FU(332 KeV)	(30.4)	(11.8)	(14.5)	(13.0)
2	²¹⁴ Bi (609 keV)	12.8-42.2	5.0-16.4	6.1-20.1	
		(24.0)	(9.3)	(11.4)	
Potassium	⁴⁰ K (1461 keV)	135.8-344.6	5.2-13.3	6.4-16.3	7.9-20.0
0.03861		(201.4)	(7.8)	(9.5)	(11.7)
Total					25.6-74.4
10(a)					(43.0)

Values in parenthesis indicate arithmetic mean.

Table 5. Comparison of radiation dose rate of Kaiga, Karnataka with different parts of India

Location in India	Characteristics of area	Absorbed dose rate in air, nGy ⁻¹	Reference
Kalpakam (Tamilnadu)	Monazite sands	3500	KANNAN et al. ²⁰ (2002)
Ullal (Karnataka)	Monazite sands	2100	RADHAKRISHNA et al. ⁹ (1993)
Kerala coast	Monazite sands	200-4000	SUNTA et al. ²¹ (1982)
Tamilnadu coast	Monazite sands	200-4000	SUNTA et al. ²² (1993)
Bhimilipatanam (Andhra Pradesh)	Monazite sands	200-3000	PAUL et al. ²³ (1998)
Chhatrapur (Southern Orissa)	Monazite sands	375-5000	MOHANTY et al. ²⁴ (2004)
Kakrapar (Gujrat)	Soil	7–32	RAMKUMAR et al. ²⁵ (2001)
Rawatbhata (Rajasthan)	Soil	21–94	VERMA et al. ²⁶ (2002)
Kaiga (Karnataka)	Soil	20–58	Present study

Fig. 6. Relative contributions to total absorbed dose in outdoor air due to ²³²Th and ²³⁸U decay products and ⁴⁰K content in soil

Conclusions

The mean activity levels in Kaiga soil due to naturally occurring ²³²Th is comparable with those of worldwide soil but that of ²³⁸U and ⁴⁰K concentrations are lower than in the worldwide soil. The ratio of soil/rock in the case of ²³⁸U, ²³²Th and ⁴⁰K was 5.6, 3.9, 0.58, respectively. The absorbed dose rate in outdoor air was found to be in the range of 20-58 nGy·h⁻¹ with a mean of 33.3 nGy·h⁻¹, which is below the corresponding population-weighted (world-average) value of 60 nGy·h⁻¹. The estimated dose rate at Kaiga is comparable with that estimated at Kakrapar and Rawatbhata and much less than that at coastal sites of India. The total effective dose rate in outdoor air for soils ranged 25.6–74.4 μ Sv·y⁻¹ with a mean of 43.0 μ Sv·y⁻¹. The relative contribution to dose due to 40 K is 27%, followed by the contribution due to 232 Th and ²³⁸U series radionuclides as 43% and 30%, respectively.

The authors would like to thank Shri. H. S. KUSHWAHA, Director, Health, Safety and Environment Group, BARC for his keen interest and encouragement. Authors gratefully acknowledge the continuous support from Shri. G. NAGESWARA RAO, Station Director, Kaiga Generating Station, Shri. HARSH KAPOOR, Project Director, Kaiga 3&4 and Shri. K. RAMAMURTHY, Station Director, Kaiga 3&4. Authors would like to thank Shri. U. P. MADIVAL, ESL, Kaiga, Shri. S. B. NAIK, ESL, Kaiga and Shri. P. G. HARIKUMAR, ESL, Kaiga for their technical assistance.

References

 United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR, Ionizing Radiation: Sources and Biological Effects, United Nations, New York, Report to the General Assembly, 1982.

- R. M. KOGAN, R. M. NAZAROV, S. D. FRIDMAN, Gamma Spectrometry of Natural Environments and Formations, Keter Press, Jerusalem, 1971.
- C. E. ROESSLER, H. MOHAMMED, R. RICHARDS, D. L. SMITH, Radon source studies in north Florida, in: Proc. 26th Midyear Topical Meeting, Health Physics Society, Jan. 24–28, 1993, p. 331.
- M. EISENBUD, Natural Radiation Environment, University of Chicago Press, 1964, p. 837.
- E. FRENZEL, Basics and philosophy of environmental monitoring in Europe, in: Proc. 26th Midyear Topical Meeting, Health Physics Society, Jan. 24–28, 1993, p. 19.
- J. L. ERICKSON, L. M. ALBIN, G. HUGHES, Background radiation dose estimates in Washington State, in: Proc. 26th Midyear Topical Meeting, Health Physics Society, Jan. 24–28, 1993, p. 647.
- 7. A. T. RAMLI, Appl. Radiation Isotopes, 48 (1997) 407.
- 8. M. L. MAIELLO, Health Phys., 72 (1997) 915.
- 9. A. P. RADHAKRISHNA, H. M. SOMASHEKARAPPA, Y. NARAYAMA, K. SIDDAPPA, Health Phys., 65 (1993) 390.
- N. M. IBRAHIM, A. H. A. E. GHANI, E. M. SHAWKY, E. M. ASHRAF, M. A. FAROUK, Health Phys., 64 (1993) 620.
- 11. C. KOHSHI, I. TAKAO, S. HIDEO, J. Health Sci., 47 (2001) 362.
- 12. A. CLOUVAS, S. XANTHOS, M. ANTONOPOULOS-DOMIS, Radiat. Prot. Dosim., 94 (2001) 233.
- M. TZORTZIS, H. TSERTOS, S. CHRISTOFIDES, G. CHRISTODOULIDES, Radiat. Measurem., 37 (2003) 221.
- UNSCEAR, Sources and Effects of Ionizing Radiation, Report to the General Assembly, with Scientific Annexes, United Nations, New York, 1993.
- UNSCEAR, Sources and Effects of Ionizing Radiation, Report to the General Assembly, with Scientific Annexes, United Nations, New York, 2000.
- A. K. MOHANTY, D. SENGUPTA, S. K. DAS, V. VIJAYAN, S. K. SAHA, Radiat. Measurem., 38 (2004) 153.
- K. SIDDAPPA, K. M. BALAKRISHNA, A. P. RADHAKRISHNA, H. M. SOMASHEKARAPPA, Y. NARAYANA, Report on Distribution of Natural and Artificial Radioactivity Components in the Environs of Coastal Karnataka, Kaiga and Goa, (1991–1994).
- 18. A. T. RAMLI, A. M. A. HUSSEIN, A. K. WOOD, J. Environ. Radioact., 80 (2005) 287.
- 19. H. A. WOLLENBERG, A. R. SMITH, Health Phys., 58 (1990) 183.
- V. KANNAN, M. P. RAJAN, M. A. R. IYENGAR, R. RAMESH, Appl. Radiation Isotopes, 57 (2002) 109.
- C. M. SUNTA, M. DAVID, M. C. ABANI, A. S. BASU, K. S. V. NAMBI, Analysis of dosimetry data of high natural radioactivity areas of southwest coast of India, in: The Natural Radiation Environment, Wiley Eastern Ltd., India, 1982, p. 35.
- 22. C. M. SUNTA, A Review of the Studies of High Background Radiation Areas of the S-W Coast of India, IAEA Publication Series, IAEA, Vienna, 1993, p. 71.
- A. C. PAUL, P. M. B. PILLAI, P. HARIDASAN, S. RADHAKRISHNAN, S. KRISHNAMONY, J. Environ. Radioact., 40 (1998) 251.
- 24. A. K. MOHANTY, D. SENGUPTA, S. K. DAS, S. K. SAHA, K. V. VAN, J. Environ. Radioact., 75 (2004) 15.
- S. RAMKUMAR, M. U. DOLE, K. G. VARUGHESE, T. A. SEBASTIAN, R. P. GURG, Evaluation of terrestrial and cosmic components of external exposure in Kakrapar region, in: Proc. 10th National Symp. on Environment, June 4–6, 2001, p. 77.
- 26. P. C. VERMA, A. ROY, R. P. GURG, Natural radioactivity in Rawatbhata environment, in: Proc. 11th National Symp. on Environment, June 5–7, 2002, p. 135.