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In one of our recent papers, the applicability of linear parameter functions for fitting the full-energy peak efficiency of n-type Ge gamma-ray
detectors has been examined over a wide energy range of 50–8500 keV. In that paper we compared six different analytical functions and showed
that higher-order polynomial functions on a log-log scale gave the best performance. However, there is a drawback to using the log-log scale when
an additive function of efficiency at different energies or of the inverse efficiency has to be used in a fitting procedure. In the present study, the
applicability of higher-order polynomial and spline functions to linear and inverse efficiency, but logarithmic energy scales, is examined.

Introduction

In gamma-ray spectroscopy, one of the most
important tasks is to determine the full-energy gamma-
ray peak efficiency ε. The simplest procedure for its
determination is the counting of multi-gamma-ray
sources placed at the sample position, with full spectrum
analysis.1,2 The full-energy efficiency of the detector
can be determined from Eq. (1) (neglecting coincidence
summing) at the energies of the peaks provided by the
sources:
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where N is the number of disintegrations during the
measurement, A is the integrated peak area in counts, Pγ
is the emission probability of the peak located at an
energy of Eγ and K is a correction factor for losses.3 If
the energy range of interest is densely covered with
calibration peaks, they will define an efficiency curve
that is a smooth, continuous function of the energy
(except at X-ray absorption edges) which lends itself for
fitting with a smooth curve. The main characteristics of
the efficiency curve are a maximum at about 100 keV
and then an exponential decrease towards higher
energies. Thus, it is a quite general practice to fit the
logarithm of the efficiency instead of the efficiency
itself.4 Linear parameter functions, which were
suggested to fit the efficiency, have generally failed to
describe it over a wide energy range.3,4 In the recent
paper of KIS et al., the only linear parameter function,4
which was able to describe the whole energy range had
the following form:
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where 1≤n≤9 and ai are the fitting parameters. This
function is defined on a log-log scale. However, there is

a drawback to this functional form. Namely, if one needs
to use a linear combination of efficiency values (ε) or its
inverse values (1/ε) at different energies, and tries to fit
the parameters, then using Eq. (2) leads to a very
nonlinear problem. This situation may occur when the
efficiency is to be fit using intensity balances.
Unfortunately, fitting polynomials with logarithmic
energy scale to a linear or inverse efficiency scale was
not studied,4 nor were fits with cubic splines, which are
also suitable for interpolation.

Splines have already been used in fitting Ge gamma-
ray detector efficiency curves.5 JANSSEN used cubic and
quintic B-splines in fitting the efficiency of various
detectors on a log-log scale in the 2 keV–3 MeV energy
regions with a p-type Ge(Li), an n-type HPGe and a
Si(Li) detectors. Here, we will study how a special,
easy-to-use form of cubic splines performs in a wider
energy range from 50 keV–10.8 MeV with an n-type Ge
detector. Furthermore, we will compare its capability of
fitting the efficiency on the log-log, log-linear and log-
inverse scales to that of the polynomial fitting function.

Experimental

To study the linear-parameter efficiency-fitting
functions we have chosen recent experimental data that
was measured as part of our regular efficiency
determination procedure at the prompt gamma activation
analysis (PGAA) facilities of the Budapest Research
Reactor.6–8 The PGAA detector is an n-type, Compton-
suppressed high-purity Ge (HPGe) detector of 25%
efficiency and 1.8 keV energy resolution at the
1332 keV 60Co line.8 The detector to source distance
was 23 cm. The true coincidence summing at this
detector to source distance is negligible, therefore, no
effort was made to perform a correction for it. In the
series we include data accumulated with 60Co, 133Ba,
152Eu, 207Bi and 226Ra standard sources purchased from
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Table 1. Full-energy-peak absolute efficiency of the PGAA system
at the Budapest Research Reactor

Source Energy, keV Efficiency
Relative

uncertainty,
% Z-score

24Na12 1368.7 2.3787E-04 0.5 –0.2
2754.2 1.3318E-04 0.7 0.3

60Co12 1173.2 2.6584E-04 0.1 0.3
1332.5 2.4248E-04 0.2 –0.5

110mAg12 446.7 5.3668E-04 0.9 0.0
620.2 4.1548E-04 0.9 –0.7
677.4 3.9903E-04 0.9 2.1
686.8 3.9285E-04 0.7 1.9
744.1 3.6720E-04 0.9 0.3
763.7 3.5745E-04 0.4 –1.2
817.8 3.4131E-04 0.6 –0.4
937.2 3.1005E-04 0.4 –0.8

1384.1 2.3713E-04 0.4 1.1
1475.6 2.2529E-04 0.9 0.0
1504.9 2.2146E-04 0.4 –0.6
1562.2 2.1490E-04 1.3 –0.4

133Ba12 53.3 9.5603E-04 1.9 –0.1
79.8 1.0802E-03 3.2 1.0

276.4 7.7490E-04 0.5 1.1
302.8 7.2194E-04 0.4 0.1
355.9 6.3874E-04 0.2 –0.5
383.8 6.0316E-04 0.4 –0.2

152Eu12 121.8 1.0898E-03 0.9 –0.2
244.7 8.3962E-04 0.9 0.5
344.2 6.5535E-04 0.8 –0.1
411.0 5.7345E-04 0.9 0.2
443.9 5.4100E-04 1.0 0.3
778.7 3.5381E-04 0.9 –0.2
867.2 3.2587E-04 1.0 –0.7
963.9 3.0290E-04 0.8 –0.8

1085.7 2.8055E-04 0.9 0.0
1089.6 2.8442E-04 1.1 1.5
1111.9 2.7814E-04 0.9 0.9
1212.8 2.5952E-04 1.2 0.0
1299.1 2.4799E-04 1.1 0.3
1408.0 2.3260E-04 0.9 –0.3
1457.6 2.2239E-04 1.6 –1.4

207Bi12 569.7 4.4537E-04 0.1 –0.2
1063.5 2.8498E-04 0.3 0.4
1770.2 1.9679E-04 0.7 0.6

226Ra12 242.2 8.1981E-04 1.3 –1.9
295.4 7.3700E-04 1.6 0.2
352.1 6.4404E-04 1.4 –0.1
609.5 4.3010E-04 1.1 1.4
768.5 3.6174E-04 1.5 0.8
934.2 3.1905E-04 1.7 1.4

1120.4 2.7631E-04 1.4 0.5
1155.4 2.6814E-04 2.5 –0.1
1238.3 2.5234E-04 1.4 –1.0
1281.1 2.4871E-04 2.2 –0.2
1377.8 2.4069E-04 2.1 0.8
1509.4 2.2165E-04 2.0 0.0
1729.8 1.9495E-04 2.2 –1.1
1764.7 1.9560E-04 1.3 –0.3
1847.7 1.8544E-04 2.1 –1.0
2118.9 1.6985E-04 2.8 0.2
2204.5 1.6229E-04 1.9 –0.3
2448.2 1.5172E-04 2.8 0.7

Table 1 (continued)

Source Energy, keV Efficiency
Relative

uncertainty,
% Z-score

14N(n,γ)13 1678.2 2.0677E-04 1.1 1.0
1681.1 2.0445E-04 2.4 0.1
1884.8 1.8614E-04 1.1 –0.1
1999.6 1.7515E-04 1.3 –1.0
2520.4 1.4265E-04 1.6 –0.9
2830.8 1.2905E-04 2.3 –0.1
3532.0 1.0429E-04 1.3 1.1
3677.7 9.8640E-05 1.2 0.2
4508.7 7.7640E-05 1.1 –0.1
5269.1 6.3815E-05 1.0 –0.1
5297.8 6.3286E-05 1.2 –0.2
5533.4 5.9863E-05 1.2 –0.1
5562.0 5.9626E-05 1.3 0.2
6322.5 4.9731E-05 1.3 –0.1
7299.0 3.9847E-05 1.4 –0.3
8310.0 3.1948E-05 2.3 –0.1
9149.0 2.8506E-05 4.6 1.5

10829.1 1.7554E-05 4.4 –0.4

metrological laboratories, plus home-made 24Na and
110mAg sources. High energy gamma rays from the
14N(n,γ)15N reaction were also included. Since the data
were taken separately we normalized them together with
the efficiency routine of the HYPERMET-PC
program.9,10 The reduced chi-square of the 8 th order
polynomial fit was 0.82 on the log-log scale. The
resulting data set is listed in Table 1, together with
reference to the literature of the source gamma-ray
intensities, as well as the fitted efficiency from
HYPERMET-PC.

The data set in Table 1 was used to test the
performance of the polynomial and spline model
functions for linear, logarithmic and inverse scales of the
efficiency axis mentioned above.

The efficiency functions and discussion

The mathematical form of the efficiency-fitting
spline function is defined as:
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where Ci are the so called cardinal spline functions11
and function g can be a logarithmic, linear or inverse
function. Each cardinal spline Ci has the form of a cubic
spline function:
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where n is the number of nodes and xs are the nodes,
which are predetermined. The α0, α1 and γs are
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parameters to be fixed. The ‘+’ index has the following
meaning:
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The definition of the cardinal spline function Ci is:
kiki xC ,)( δ= (6)

where δi,k is the Kronecker-delta and the set of node
points xk are conveniently spaced. The cardinal spline C
differs from spline S only in this orthogonality
requirement expressed in Eq. (6).

The remaining free parameter in Eq. (4) may be
fixed with the following boundary condition:

0|)( =′′ = nxxxS (7)

With linear combinations of n cardinal splines Ci
[Eq. (3)] the solution of a set of complicated nonlinear
equations may be reduced to simple algebraic
equations.11 Although, this is not the task in our case,
the flexibility of cardinal splines may be superior to
other functions. Since cardinal splines Ci are determined
completely by their node points through Eqs (4)–(7),
they can be used in least square fitting like any other
functions such as polynomials. In the case of a
polynomial fitting function, the Ci in Eq. (3) is defined
as:

1)( −ii xxC a (8)
The least square expression for a set of efficiency-

points εj at energies Ej is:
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where σj are the uncertainties of g(εj). The index j runs
up to the number of data points m, while n is the number
of nodes or number of free parameters in case of the
polynomial. The number of free parameters in Eq. (9) is
2n for cardinal splines, however, for a fixed set of node
points it is only n. This is a crucial point, since there is
also the question of which placement of nodes gives the
minimum for Eq. (9). The simplest choice for the
placement of the node points is an equidistant
distribution between and including the boundary values,
which are chosen to be 5% smaller and 5% larger than
the minimum and maximum of the logarithm of the
measured energies. The 5% refers to 5% of the distance
between maximum and minimum. We must note that in
all cases the energies used were in MeV and when using
log10(E), this transforms the energies roughly to in the

interval (–1, 1). This helps to increase the numerical
stability, especially in the case of the high order
polynomials. If the boundaries differ considerably from
the boundaries of the (–1, 1) interval, then it may be
advisable to transform the energy values to the (–1, 1)
interval before doing the least square fit.

Table 2 summarizes the resulting reduced chi values
χ = Q2/f obtained from fits with different number of
free parameters, where equation f = m–n defines the
number of degree of freedom.

From Table 2 one may note that the fitting
performance of cardinal splines in the linear ε case is
slightly better than the polynomial with the same
number of free parameters. However, the polynomial
model performs similarly or better at larger n order in
the case of logarithmic and inverse efficiency scale. To
make this overview easier, a plot of Table 2 is presented
in Fig. 1.

From Fig. 1 it is easy to recognize that from 7
parameters onwards the reduced chi values stabilize and
the improvement slows down considerably. It is also
interesting that on the log-log scale the stabilization
happens earlier than in the other two cases. To show
what the fits look like, we present the nine-parameter fit
to the inverse (shown on a log scale for clarity) in Fig 2.
The results show that the major difference happens at
the low and high energy ends. Since the cubic spline
does not go to infinity as fast as a high-order polynomial
with increasing argument values, their behaviors differ
significantly at the boundaries. In general the spline
seems to be more appropriate for extrapolation at the
low energy end, since from more detailed experiments
with our n-type HPGe detector we know that at low
energy the efficiency does not have such a large
curvature as the polynomial fit would indicate (Fig. 2).
Although in this particular case, the polynomial seems to
give a better description at the high energy end, we
suggest caution in taking it seriously since the
uncertainties in the extrapolation grow very rapidly just
beyond the last fitted point. At the high energy end the
requirement in Eq. (7) may not let the spline approach
the last point closely enough.

Table 2. Comparison of χ values by changing the number of free
parameters n, for polynomial function and cardinal splines

n Spline
linear ε

χ
Polynom
linear ε
χ

Spline
log ε
χ

Polynom
log ε
χ

Spline
inverse ε

χ
Polynom
inverse ε

χ
3 5.86 8.47 6.97 6.19 5.20 13.36
4 6.05 6.61 6.53 6.20 10.09 10.28
5 5.47 6.20 1.47 1.93 3.93 5.76
6 0.84 3.27 1.16 1.82 2.12 1.97
7 1.49 1.79 1.11 1.24 1.46 1.16
8 0.86 1.46 0.88 0.82 1.19 1.07
9 0.79 0.86 0.84 0.80 1.02 0.90
The value of m is 76 in all cases.
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Fig. 1. Reduced chi-values of spline and polynomial fits of detector efficiency on linear, logarithmic and inverse efficiency scales
as a function of number of parameters

Fig. 2. Comparison of the performance of polynomial and spline
models on log-inverse scale with 9 parameters. The lower panel shows

the experimental data with our n-type HPGe detector and the fitting
functions. The upper panel presents the relative difference of the fitted

polynomial and spline functions in percentage

In general, we can summarize that both the
polynomial and the spline model provide good fits to the
data, but at the ends of the data set, the reliability of the
fit decreases rapidly. This latter is reflected also by the
uncertainties of the fitted curves, which are not shown
here for the sake of clarity.

In the remaining part of this article we will
concentrate on the spline model itself, and study the
question of what distribution of the node points gives a

minimum reduced chi-square χ2 = Q2/f for a fixed
number of node-points n. Since this leads to a strongly
nonlinear problem we cannot give a definite answer.
Instead we will study the distribution of node points as a
function of reduced chi-square χ2. By randomly
selecting node points between the lowest and the highest
boundaries we can obtain such a distribution. Here we
present only the case where the number of node points is
9. This leads to a study of points in a parameter space of
7 dimensions. With a random number generator 5000
sets of node points have been generated and for each set
of node points the fit has been repeated.

Figure 3 shows results for about fifty of random
node point sets out of the total number of 5000 as a
function of the reduced chi-square. Lines guiding the
eyes connect the node points with the same serial
number from the sets. The rest of the remaining nearly
5000 sets have reduced chi-square values are larger than
0.85, and were left out of the figure. It is interesting that
even around the minimum chi-square, the locations of
the node points are changing rather rapidly, while for
higher reduced chi-square values (above 0.85) the
changes are extremely rapid. As a result there seems to
be a rather complicated rule for determining the set of
node points that gives the lowest reduced chi-square
value for the fit, which we cannot determine.

Due to this chaotic behavior the equidistant
distribution of nodes points (which yielded a reduced
chi-square of 1.04, see Table 2) is almost as good as
many others. Other general observations are, and this
can also be seen in Fig. 3, that a lower reduced chi-
square could be achieved when one of the node points is
close to the last (highest energy) data point and when the
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Fig. 3. Common logarithm of the energy of the randomly selected node points as a function of reduced chi-square (χ2).
The dots show the energy positions of the node points in each set (only shown for nodes 6 and 7)

node points are more dense where more of the accurate
data points are. One way of handling this situation is to
take the simple average of node point values from
Fig. 3. Doing so and performing a calculation with this
set of node points, the reduced chi-square of the fit was
0.806, which is fairly close to the minimum value. This
also yields two node points at higher energy than the last
experimental point and manages to fit the last point by
avoiding the end condition of Eq. (6). Finally we think
that these features of the cubic spline should be studied
in more detail by mathematicians.

Conclusions

In summary, we can state that although the setting up
to fit with the cubic splines is somewhat more
complicated than with simple polynomials, there are
applications where they can be used more efficiently
than simple polynomials, especially for extrapolation.
However, care must be taken with the endpoint
behavior. One such application is the fit of a Ge detector
full-energy-peak efficiency on a linear scale. For this
case, the cubic splines provide better reduced chi-
squares with the same number of free parameters than
the polynomials. Spline and polynomial models perform
similarly on the logarithmic and inverse efficiency case.
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