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Abstract
Herein, the morphological properties of polypropylene/polyolefin elastomer (PP/POE) composites with various rubber 
compositions are investigated by scanning electron microscopy (SEM). Further, to understand the relationship between 
the rubber domain size and the impact toughness of the PP composites, the phase structure and rubber particle size in the 
PP matrix are analyzed. The results indicate that an increased flowability of the rubber reduces the domain size, thereby 
enhancing the impact strength of the PP composite. In particular, the maximum impact strength of 76 kJ/m2 is obtained 
for the PP/POE composite in which an increased concentration of ethylene octene random copolymer (EOR) is used as the 
POE. The experimental results are in good agreement with the interparticle distance model for plastic/rubber blends. The 
results demonstrate that the rubber particle size in the polymer matrix is an important parameter for designing optimized 
thermoplastic elastomers.
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Introduction

Thermoplastic elastomers (TPEs) are promising materials 
for a variety of applications, including automotive parts, 
footwear, roofing materials, and medical products, due to 
their outstanding thermal properties, chemical resistance, 
and easy processability [1–4]. In particular, the TPE used 
as a vehicle airbag cover requires excellent toughness and 

needs to be deployed with proper tearing, i.e., without scat-
tering the pieces and breaking in case of direct collision. 
Consequently, since the initial commercialization of ther-
moplastic polyurethanes in the 1950s, the improvement of 
TPE toughness has been vigorously studied by mixing with 
soft elastomers such as styrene block copolymer, vulcanized 
polymer, and polyolefin elastomer (POE) [5–8]. Among the 
various impact modifiers, ethylene butene random copoly-
mer (EBR) and ethylene octene random copolymer (EOR) 
have been widely accepted for TPE airbag cover application, 
with the benefit of good impact stiffness balance.

In the present study, EOR or EBR are added to the poly-
propylene (PP) matrix to examine the effect of rubber parti-
cle size upon the toughness of the PP composite. The TPE is 
prepared by melt-mixing, thereby resulting in two different 
phases while retaining the properties of both the thermoplas-
tic and the elastomer [9]. In the 1980s, Wu demonstrated the 
relationship between phase structure and impact toughness 
using nylon/rubber blends [10]. Therefore, PP/POE compos-
ites are prepared herein with various rubber compositions in 
order to determine the optimum PP composite for improved 
impact strength. In addition, the morphologies of the PP/
POE composites are observed via scanning electron micros-
copy (SEM), and impact strength tests are employed. The 
present work is mainly focused on the effect of the rubber 
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flowability upon the phase formation in the PP matrix, with 
the aim of improving the toughness of the PP composite.

Materials and methods

Materials

Due to its excellent elastic behavior, a POE was used as an 
impact modifier for improving the mechanical properties of 
the TPE. Further, to investigate the influence of POE type 
and flowability upon the properties of the PP/POE com-
posites, a high-crystallinity impact PP (HCPP) with a melt 
index (MI) of 10 g/10 min was used as the base polymer, 
where the MI is a measure of the ease of flow of the poly-
mer. Six types of POEs were used, including two types of 
EBR (labelled EBR1 and EBR2 in Table 1) and four types 
of EOR (labelled EOR1–4 in Table 1), with MI values of 
0.5 or 5.0 g/10 min (measured at 2.16 kg and 190 ℃ accord-
ing to ASTM D1238). All POEs were obtained from Dow 
Chemicals (Korea). In particular, EOR 3 and 4 exhibit low 
glass transition temperatures due to a special copolymeriza-
tion process.

Sample preparation

Samples of the raw materials with diameters of 40 mm 
were prepared by compounding in a co-rotating twin 
extruder (HS40, Changsung). The extruded TPE pel-
lets were then molded with a 220-ton injection machine 
(WIZ220E, LS Mtron).

Characterization

PP and POE morphology was analyzed by Nova Nano630 
SEM with Everhart–Thornley Detector (ETD) at an 
accelerating voltage of 5 kV. Size analysis of rubber 
domain in PP/POE composites was performed using 
Image J software. Izod impact strength was obtained by 
using a low-temperature impact tester (In-Chamber type; 
No 258-L, Yasuda).

Results and discussion

Phase morphology

In order to understand influence of the rubber contents and 
thermal properties upon the mechanical properties, various 
PP/EOR composites with rubber contents of 20 wt.% (des-
ignated PP/EORX-20, where X = 1 or 2) or 40 wt.% (desig-
nated PP/EORX-40, where X = 1, 2, 3, or 4) were prepared, 
where the PP/EOR3 and PP/EOR4 types have correspond-
ingly lower glass transition temperatures (Tg). In each case, 
the PP had an MI of 10 g/10 min (measured at 2.16 kg and 
230 ℃ based on ASTM D1238), and the POE had an MI 
of either 0.5 or 5.0 (measured at 2.16 kg and 190 ℃ based 
on ASTM D1238), as summarized in Table 2. In addition, 
composites containing 20 wt.% EBR with MI values of 0.5 
(PP/EBR1-20) and 5.0 (PP/EBR1-20) were prepared.

As the mechanical properties of the TPE depend on the 
phase structure of the composite [10], the phase morpholo-
gies of the PP/EOR and PP/EBR composites made with 
rubber contents of 20 and 40 wt.% are presented in Figs. 1 
and 2. As shown in Fig. 1, the POE domains (dark phase) 
are dispersed in the PP matrix (light phase), identical red 
circles are put in Figs. 1 and 2 to compare the size of rubber 
domains. In Fig. 1, samples a and c with an MI of 5.0 are 
compared with samples b and d with an MI of 0.5, it was 

Table 1   The main characteristics of the various polyolefin elastomers used in the present study

Sample EOR1 EOR2 EOR3 EOR4 EBR1 Sp EBR2

Grade name ENGAGE 8180 ENGAGE 8207 ENGAGE 11547 EXGAGE XLT 
8677

XUS 38676.00 ENGAGE 7447

MI
(g/10 min)

0.5 5.0 0.5 5.0 0.5 5.0

Density
(g/cm3)

0.863 0.870 0.866 0.870 0.861 0.865

Tg (℃) –55 –53 –62 –65 –56 –53

Table 2   The preparation conditions of the various polypropylene/
polyolefin elastomer (PP/POE) composites

Sample POE loading (%) POE MI
(g/10 min)

PP/EOR2-20 20 5.0
PP/EOR1-20 20 0.5
PP/EBR2-20 20 5.0
PP/EBR1-20 20 0.5
PP/EOR2-40 40 5.0
PP/EOR1-40 40 0.5
PP/EOR4-20 20 5.0
PP/EOR3-20 20 0.5
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found that the higher the flowability of POE, the smaller 
the rubber domain size. This trend is consistent with the 
results for the other PP/EOR composites in Fig. 2. In addi-
tion, the size of rubber domains according to POE types 
was compared. The types of POE used in Fig. 1 were a and 
b for EOR, and c and d for EBR. When the MI is the same, 
the size of the rubber domain is not significantly affected 
by the type of POE. Figure 2 compares the size of rubber 
domains according to the ratio of POE. The proportion of 
EOR in the composite is 40 wt% for a and b and 20 wt% 
for c and d. The size of the rubber domain increased as the 
POE content increased, which was confirmed regardless of 

flowability. These results are attributed to the flowability of 
the rubber in the PP matrix under the melt state. In theory, 
the size of the dispersed phase depends on the rheological 
and interfacial properties during melt blending, while the 
dispersed phase is smaller when the viscosity ratio is close 
to unity in the PP/POE composites [11–14]. Therefore, the 
POEs with MI values of 0.5 (such as EOR1, EBR1, and 
EOR3) have low mobility in the PP matrix, which results in 
more coarsening and a larger size of the rubber phase than 
those observed in the rubbers with MI values of 5.0 (EOR2, 
EBR2, and EOR4). This effect is shown schematically in 
Fig. 3. In Fig. 3, there are chemical structures of EOR and 
EBR. Since there is no difference in the rubber domain 
according to the type of POE, it was confirmed that there is 
no effect depending on the carbon length of the monomer. 
Also, in the case of PP/POE composites with high flowabil-
ity, the size of rubber domains is small, and in the case of 
low flowability, the size of rubber domains increases.

Impact strength

The effects of domain size upon the mechanical properties of 
the PP/POE composites are further revealed by the analyti-
cal results in Fig. 4. Here, the rubber domain size in the PP 
matrix is seen to increase with decreasing MI of the rubber, 
and with decreasing EOR content, due to the flowability of 
the rubber. However, although a difference in flowability was 
expected due to the difference in side-chain length [15], no 
effect on the domain size is observed due to the difference 
between the EOR and EBR. This is probably due to the low 
dispersion of the EBR in the PP matrix, which will be fur-
ther described in the following paragraphs.

The toughnesses of the various as-prepared PP/POE com-
posites are indicated by the impact strength results obtained 
under different temperature conditions (23 and –30 ℃) in 
Fig. 5. In detail, the toughness of a polymer/rubber com-
posite is determined by the interparticle distance between 
adjacent rubber particles [10, 16]. In accordance with the 
interparticle distance model, the critical rubber volume frac-
tion (φc) is given by the following equation:

where dr is the rubber particle diameter, and τc is the critical 
interparticle distance, which is proportional to the brittle 
fracture strength of the matrix polymer [17]. According to 
the work of Wu, the impact strength should improve with 
decreasing rubber domain size and with increasing critical 
distance [10]. The impact strength of PP/POE increases as 
the tough brittle transition of the composite occurs and is 
related to the ratio (L/d) of center-to-center particle separa-
tion (Lc) and diameter (d) of the rubber domain. Currently, 
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Fig. 1   The SEM images of the various PP/EOR and PP/EBR com-
posites made with 20 wt.% POE: a PP/EOR2-20, b PP/EOR1-20, c 
PP/EBR2-20, and d PP/EBR1-20. Scale bars = 3 μm

Fig. 2   The SEM images of a the PP/EOR2-40, b the PP/EOR1-40, c 
the PP/EOR4-20, and d the PP/EOR3-20. Scale bars = 3 μm
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the maximum L/d at which the tough brittle transition of the 
composite occurs is called the critical ratio, and is given by 
the following equation:

The L value is the sum of the interparticle distance 
T and the rubber domain diameter d and is converted to 
L/d = T/d + 1 accordingly and can be obtained through 
Eq. (1). As φc increases, (L/d)c tends to decrease, reach-
ing an interparticle distance that corresponds to the criti-
cal interparticle distance of the composite when d is of a 
similar size. This causes a tough-to-brittle transition of the 
composite and increases the impact strength of the PP/POE 

(2)(L∕d)
c
= {

�

(6φ
r
)
}
1∕3

composite. PP/POE composites made by increasing the vol-
ume of POE or mixing POE with high MI increase φc and 
increase impact strength. Indeed, the results in Figs. 4 and 5 
demonstrate that the impact strengths of the PP/EOR com-
posites depend on the rubber domain size at temperature of 
23 ℃. Moreover, the composites containing 40 wt.% EOR 
exhibit greater impact strengths than those containing 20 
wt.% EOR, whereas the effects of glass transition tempera-
ture and the type of rubber are insignificant. In addition, 
the impact strength at -30 ℃ of the composite containing 
40 wt% of EOR remarkably increased, confirming that the 
impact strength at low temperature is affected by the change 
in τc and dr due to the increase in the volume fraction in 
the φc equation. As mentioned above, the low dispersion of 

Fig. 3   The chemical formula 
(top) of the PP/POE composite 
components, and schematic 
diagrams (bottom) showing 
the phase morphologies of the 
composites with high (left) and 
low (right) flowabilities

Fig. 4   The average size analysis of the POE domains in the PP matrix 
for the various rubber compositions. The blue and grey bars represent 
the number average diameter (Dn) and weight average diameter (Dw), 
respectively Fig. 5   The impact strengths of the various PP/POE composites
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the rubber in the polymer matrix of the PP/EBR1-20 needs 
to be overcome in order to achieve better toughness [18]. 
Notably, both the PP/EOR1-40 and PP/EOR2-40 compos-
ites show excellent impact strengths of 40.3 and 76.0 kJ/
m2, respectively, under the low temperature condition. The 
observed increase in impact strength occurs because the 
polymer chains become increasingly entangled as the EOR 
content increases [19–21]. In other words, the smaller the 
rubber size, and the more overlap between the rubber par-
ticles in the PP matrix, the better will be the toughness of 
the composite.

Conclusions

Herein, polypropylene/polyolefin elastomer (PP/POE) com-
posites with various rubber compositions were prepared in 
order to investigate the effects of the rubber particle size 
upon the toughness, with the aim of designing a thermo-
plastic elastomer (TPE) composite with enhanced impact 
strength. Morphological analysis showed that the PP com-
posites containing rubber with a higher melt index (MI) have 
a smaller domain size, thereby resulting in improved impact 
strength. Among the POEs used for the PP composites, eth-
ylene octene random copolymer (EOR) exhibited better 
dispersion than ethylene butene random copolymer (EBR), 
while the PP/EOR1-40 composite (i.e., that containing 40 
wt.% EOR and having an MI of 0.5) had the highest impact 
strength of 56.5 and 76.0 kJ/m2 at temperatures of 23 and 
–30 ℃, respectively. These results suggest that the toughness 
of the PP/POE composite is improved by increased overlap 
between the rubber particles due to the increased entangle-
ment among the molecular chains. The results of this study 
are expected to provide new insights for the preparation of 
optimized TPEs.
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