
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10965-023-03506-y

REVIEW PAPER

PVDF‑based composites for electromagnetic shielding application: 
a review

Qingqing Qin1,2 · Yingmo Hu1   · Sufang Guo1 · Yuanyuan Yang2 · Ting Lei2 · Zhenyu Cui3 · Hongying Wang4 · 
Shuhao Qin2

Received: 27 October 2022 / Accepted: 27 February 2023 
© The Polymer Society, Taipei 2023

Abstract
With the rapid development of information technology, electromagnetic shielding materials are playing an increasingly 
significant role in electronic reliability, healthcare, and national defense security. Hence, developing high performance 
electromagnetic shielding materials with thin thickness, low density, wide bandwidth, and strong absorption has attracted 
great interests. Recently, polyvinylidene fluoride (PVDF) as high-performance electromagnetic shielding materials 
has grabbed considerable attention, owing to its low density, good flexibility, stable corrosion resistance and favorable 
shaping capability. In this review, we firstly introduce the theory of electromagnetic shielding. In the main part, the 
preparation and recent advances of PVDF-based electromagnetic shielding composites are summarized, including sin-
gle-, binary-, and multi-component filler composites, microstructure design of composites, and the factors influencing 
the EMI SE performance. The key point to enhance the EMI SE performance is to modulate the electromagnetic and 
dielectric properties of the composites to create diversified loss mechanisms. Finally, the shortcomings, challenges, 
and prospects of PVDF-based electromagnetic shielding materials are also put forward, which will be helpful to people 
working in the related fields.

Keywords  PVDF-based composites · Electromagnetic shielding materials · Electromagnetic shielding mechanism · 
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Introduction

As science and technology progresses by leaps and bounds 
in modern times, various electronic and electrical equip-
ment, such as cellular towers, wireless devices, smart-
phones, palm computer, a variety of household appliances 
and modern radar systems, have enabled more intimate 
connections between human within societies and brought 
great convenience for people’s daily life [1–3]. Nevertheless, 
electromagnetic radiations generated by electronics and elec-
trical equipment have become an unintended consequence 
as they create high-energy hot spots that can remarkably 
reduce the service life of electric components [4–7]. In addi-
tion, the rapid development of 5G industry makes the elec-
tromagnetic interference (EMI) between components and 
equipment more and more serious [8, 9]. Nowadays, EM 
waves have been identified as a new source of pollution, 
which not only disrupts normal communication, but could 
also pose a potential threat to human health [10, 11]. As 
electronics and electrical equipment become increasingly 
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digitized, integrated, and moving toward lower power to 
meet the requirements of high-speed, lightweight and min-
iaturization, they become more susceptible to external EMI 
[8, 12]. Thus, eliminating or blocking of the undesirable 
electromagnetic radiations has become an inevitable topic.

Metals such as Cu, Al, Ag, and stainless steel have been 
widely used against electromagnetic pollution owing to 
their high conductivity [13, 14]. However, their high den-
sity, difficult processability, and high corrosion susceptibil-
ity have limited their applications in highly integrated mod-
ern mobile electronics [15, 16]. Compared with traditional 
metal-based materials, polymer composites with fillers (such 
as metal fillers [17, 18], carbon fillers [19, 20], conducting 
polymers [21, 22], and dielectric [23, 24]/magnetic [25, 26] 
materials) have become the focus of contemporary research, 
owing to their low density, good flexibility, stable corrosion 
resistance, favorable shaping capability, high electrical and 
thermal conductivity and excellent EMI shielding effective-
ness (SE) performance [27–29].

The EMI SE performance of polymer composites depends 
on various factors such as the type [30, 31], morphology 
[32–34] and electromagnetic properties of fillers [35–37], 
the dispersion state of fillers in the polymer matrix [38–40], 
structure [41–44] and thickness [45–47] of composites. 
Therefore, high performance polymer electromagnetic 
shielding composites can be constructed by proper selection 
of filler types, preparation methods, and optimal structural 
designs.

polyvinylidene fluoride (PVDF), a semi-crystalline 
fluoropolymer with a repeating unit of CH2-CF2 [48–50], 
has been used in polymer sensors, heat exchangers, and 
housings for home appliances, due to its high mechanical 
strength, excellent chemical resistance, and good radia-
tion resistance [51–54]. In recent works, PVDF compos-
ites filled with a wide range of nanoparticles were used for 
EMI shielding [55–58]. The results showed that the strong 

polar fluorine atoms in PVDF would contribute a better 
interaction with nano-fillers [59–61]. Based on its unique 
structure and properties, PVDF has excellent application 
prospects in the field of electromagnetic shielding [14, 
62–64]. The design of efficient PVDF-based electromag-
netic shielding composite has gradually become a research 
focus in the field of electromagnetic shielding technology 
[50, 61, 65, 66].

In this paper, we were reviewed the mechanism of elec-
tromagnetic shielding and the preparation method of PVDF-
based electromagnetic shielding composites, on this basis, 
the research progress of lightweight flexible PVDF-based 
electromagnetic shielding materials are summarized from 
the proper selection of fillers to the factors influencing the 
EMI SE performances. Meanwhile, the future development 
prospects of lightweight flexible PVDF-based electromag-
netic shielding materials are also prospected, which will be 
helpful to staff working in the related fields.

Mechanism of EMI shielding effectiveness

Various theories such as electromagnetic field and trans-
mission line are usually used to explain the mechanism of 
electromagnetic shielding. In this paper, the transmission 
line theory with accurate and simple calculation is used to 
explain the mechanism of electromagnetic shielding [67]. 
In transmission line theory, electromagnetic shielding 
enclosure is usually regarded as a section of transmission 
line [68]. When the electromagnetic shielding enclosure 
is approached by electromagnetic wave, the electromag-
netic shielding enclosure attenuates the electromagnetic 
wave through three processes [69, 70] (as shown in Fig. 1). 
First, the electromagnetic wave is transmitted to the sur-
face of the electromagnetic wave shielding enclosure. Due 
to the impedance mismatch between the interface of the 

Fig. 1   Schematic illustration 
of electromagnetic wave strike 
process on protected device
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electromagnetic wave shielding enclosure and the free 
interface of the air, part of the electromagnetic wave is 
reflected off the surface of the electromagnetic wave shield-
ing enclosure, causing the reflection attenuation (SER) of 
the electromagnetic wave, and the electromagnetic wave 
entering the electromagnetic wave shielding enclosure 
will be relatively reduced. Second, the unreflected electro-
magnetic wave enters the electromagnetic wave shielding 
enclosure and transmits in the enclosure. As the energy of 
electromagnetic wave is absorbed (SEA) by the electro-
magnetic wave shielding enclosure, so the electromagnetic 
wave attenuated again. Third, when the remaining electro-
magnetic wave is transmitted to the edge of the electro-
magnetic wave shielding enclosure, it is reflected back into 
the electromagnetic wave shielding enclosure again. After 
energy is further absorbed by the multiple reflection (SEM) 
between the electromagnetic wave shielding enclosure 
interface and the free interface, the purpose of attenuating 
the transmitted electromagnetic wave is achieved, thus the 
protected components or environment are not subject to 
electromagnetic pollution. The shielding performance of 
the shielding materials is usually determined by the shield-
ing efficiency (SE) [70, 71], which can be expressed by 
Eq. (1).

EMI SE is closely related to the charge, current and polari-
zation phenomena induced on the surface of the shielding 
structure and inside of the shielding enclosure [69, 70]. When 
the electromagnetic wave is reflected and lost on the surface 
of the electromagnetic wave shield, there is a poor impedance 
matching effect between the surface of the shielding material 
and the free interface, and the electric charge can be induced 
in the magnetic field inside the shielding material, which 
requires the shielding material to have good conductivity 
[17, 72]; when the unreflected electromagnetic wave enters 
the electromagnetic shielding enclosure for absorption and 
attenuation, the shielding material has a large number of elec-
tric or magnetic dipole, causing dipole oriented polarization 
in the magnetic field, which requires the shielding material 
to have high permeability, high electromagnetic loss [26, 73] 
and suitable dielectric constant [23, 74]; when the remain-
ing electromagnetic wave is transmitted to the transmission 
edge of the electromagnetic shielding enclosure for multiple 
reflection attenuation, the shielding materials with porous 
structure accompanied by a large number of interfaces, can 
improve the multiple reflection and multiple scattering times 
of electromagnetic wave, thus the SE of shielding materials 
can be effectively improved [42, 44, 75]. Therefore, a suc-
cessful electromagnetic shielding materials should not only 
have good reflectivity, but also possess good electromagnetic 
wave absorption property [36, 59].

(1)SE = SER + SEA + SEM

Preparation and electromagnetic shielding 
performance of PVDF‑based composites

PVDF-based electromagnetic shielding composites are com-
posed of electrically insulated PVDF [76, 77], conductive 
fillers [78–80] (such as metallic fillers, carbon materials, 
intrinsically conducting polymers) and/or magnetic fillers 
[30, 81](e.g., Fe3O4, Fe2O3, and barium ferrite (BF) and/
or dielectric fillers [82, 83] (e.g., BaTiO3, barium strontium 
titanate, ZnO, MnO2, SiC, SiO2). PVDF-based nanocom-
posite materials were fabricated by melt blending [84, 85], 
solution blending [17, 51], and/or followed by hot press-
ing [18, 63], and so on. These materials can significantly or 
permanently reducing electromagnetic radiation [73, 86]. 
The fillers were the main factors of electromagnetic shield-
ing performance of electromagnetic shielding materials, and 
combined with proper preparation technologies and opti-
mized structural designs, the shielding effect of PVDF nano 
composites can be further improved [61, 87]. Researches 
on PVDF-based electromagnetic shielding composites are 
summarized in Table 1.

PVDF/pure conductive‑filler composites

As PVDF is an electrical insulator [84, 92], the electrical 
conductivity of fillers is one of the main factors affecting 
the EMI SE performance of shielding materials [63, 80, 99, 
124]. Conductive fillers such as metals [18, 47], carbons 
[112, 114], conductive polymers [21, 22], and MXenes [124, 
125] provides excellent electric conductivity. When these 
fillers blend with PVDF, they could make great contribution 
to the construction of a continuous conductive network and 
thus enhance the electrical conductivity and EMI SE perfor-
mance of PVDF-based composites [63, 80, 106].

PVDF/metal composites

Take the advantage of the excellent conductivity, metals 
were initially used as electromagnetic shielding materials 
[84]. However, due to the high density [85] and price [88] 
of pure metal electromagnetic shielding materials, easy of 
oxidation or reaction with chemicals [89], which may reduce 
the conductivity over time [89], as well as their poor wear 
resistance and scratch resistance [91], pure metal materials 
have great limitations in the application of electromagnetic 
shielding [72]. Therefore, metals are also compounded with 
other materials to achieve better electromagnetic shielding 
performance [47]. For example, the light weight electromag-
netic shielding material with better performance can be pre-
pared by compounding metal fillers with polymers [17]. The 
composites formed by incorporating a small amount of metal 
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Table 1   EMI SE performance of PVDF-based composites

materials thickness (mm) EMI SE (dB) Frequency Ref.

Matrix Filler loading

PVDF 10 wt% Cu - 40 3.06 EHz  [84]
PVDF 15 wt% Al - 20 2 EHz  [85]
PVDF 0.5 wt% AgNWs 0.098 107.2 8–12 GHz  [79]
PVDF 50 vol% CIP 1.2 20 8–12 GHz  [88]
PVDF 40 vol%µ-Ni 1.95 23 8–12 GHz  [89]
PVDF 35 vol% n-Ni 1.95 42.87 8–12 GHz  [72]
PVDF 35 vol% n-Fe 1.93 40.21 8–12 GHz  [35]
PVDF 6 wt% Ni chains 0.5 35.4 18-26.5 GHz  [47]
PVDF 30 wt% Ni chains 4.5 35 12–18 GHz  [17]
PVDF 9 wt% NiNWs 43 8–12 GHz  [90]
PVDF 10 wt% Ni chains 2 26.8 8–12 GHz  [63]
PVDF 15 wt% NiO 0.3 12 8–12 GHz  [91]
PVDF 50 wt% LMPA - 26.8 8–12 GHz  [18]
PVDF 10 wt% CF 0.9 12 0.1–1.6 GHz  [92]
PVDF/ PMMA 40 wt% CF 0.32 20 150–1200 GHz  [93]
PVDF 8 wt% CF 17.3 0.015–3 GHz  [94]
PVDF 8 wt% CF 10 0.015–3 GHz  [95]
PVDF 15 wt% FGS 2 45.6 8–12 GHz  [96]
PVDF/PVP 5 wt% MWCNTs 0.06 20 0.1–1.5 GHz  [97]
PVDF 40 wt% MWCNTs 6.8 30 8.2 GHz  [98]
PVDF 70 vol % graphite 2 93 8–26 GHz  [99]
PVDF 80 wt% carbonized charcoal 2.8 70.1 8–12 GHz  [100]
PVDF 80 wt% graphite 1.8 98.47 8–12 GHz  [101]
PVDF 50 wt% particulate nano carbon 9 50 8–12 GHz  [102]
PVDF 5 g/L graphene 0.652 20 1–8 GHz  [103]
PVDF 25 g/L graphene 0.598 31.2 100–3000 MHz  [104]
PVDF 10 wt% GPs 0.4 16 8–12 GHz  [51]
PVDF 15 wt% MWCNTs 0.02 47 8–12 GHz  [52]
PVDF 5 wt% graphene - 20 8–12 GHz  [87]
PVDF 2 wt% MWCNTs - 20 12–18 GHz  [105]
PVDF 0.5 wt% MWCNTs 0.3 98 1–18 GHz  [39]
PVDF 0.5 wt% MWCNTs 0.3 26.5 8–18 GHz  [40]
PVDF/ABS 3 wt% PMMA-MWCNTs - 32 8–18 GHz  [106]
PVDF PS/HDPE 1.6 vol% MWCNTs - 31 8–12 GHz  [20]
PVDF-HFP 40 wt% RGO - 30 8–12 GHz  [107]
PVDF 2 wt% MWCNTs - 25 12–18 GHz  [108]
PVDF/OBC 2.7 wt% MWCNTs 2 34 8–12 GHz  [109]
PVDF/PLA 0.25 wt% MWCNTs 1 7.86 1–6 GHz  [110]
PVDF/PS 3 wt% MWCNTs 1 19 8–12 GHz  [111]
PVDF/POK 2 vol% of MWCNTs 0.9 21 8–12 GHz  [112]
PVDF 3.5 wt% MWCNTs 1.1 17.7 8–12 GHz  [113]
PVDF 3.5 wt% MWCNTs 1.1 9.5 8–12 GHz  [33]
PVDF 2 wt% MWCNTs 0.05 7.77 8–12 GHz  [114]
PVDF 3.5 wt% MWCNs 1.1 20.3 8–12 GHz  [115]
PVDF 3.5 wt% MWCNTs 1.1 20.2 8–12 GHz  [34].
PVDF 3.5 wt% MWCNTs 1.1 16.7 8–12 GHz  [116]
PVDF 50 wt% Co@C 1 24.06 8–12 GHz  [77].
PVDF 50 wt% CoNi@C 1 27 8–12 GHz  [32]

130   Page 4 of 28 Journal of Polymer Research (2023) 30:130



1 3

Table 1   (continued)

materials thickness (mm) EMI SE (dB) Frequency Ref.

Matrix Filler loading

PVDF 50 wt%Fe3C@C 1 21 8–12 GHz  [117]
PVDF 50 wt%Ni@C 1 20.5 8–12 GHz  [118]
PVDF 9 wt% MWCNTs 0.3 25 8–12 GHz  [119]
PVDF 15 wt% MWCNTs 2 56.72 8–12 GHz  [42]
PVDF 10 wt% graphene 1.5 37.4 26.5–40 GHz  [120]
PVDF 8 wt% MWCNTs 4 132.6 26.5–40 GHz  [19]
PVDF 4 wt% graphene 0.02 50 8–12 GHz  [121]
PVDF 7 wt% MWCNTs 0.6 30.89 8–12 GHz  [122]
PVDF-co-HFP 52 wt% PANI 1 6 8–12 GHz  [21]
PVDF/ PEDOT 18 wt%PEDOT 0.014 40 8–12 GHz  [22]
PVDF-co-HFP 30 wt% PANI 1 5 8–12 GHz  [123]
PVDF 30 wt% PANI 1 65 8–12 GHz  [80]
PVDF 90 wt% MXenes 0.017 42.9 8–12 GHz  [124]
PVDF/PS 12 wt% MXenes 1.35 55 8–12 GHz  [125]
PVDF 5 wt% Ba0.2Mg0.8Fe2O4 1.5 20 2–8 GHz  [126]
PVDF 30 wt% CuFe2O4 - 5 8–12 GHz  [30]
PVDF 20 wt% BaFe12O19 0.21 97.6 8–18 GHz  [26]
PVDF 20 wt% Ba4Co2Fe36O60 0.122 83 8–18 GHz  [81]
PVDF 90 wt% BaFe11⋅7Al0⋅3O19 7 5.24 2.45 GHz  [25]
PVDF 50 wt% ZnO 0.13 8 8–12 GHz  [24]
PVDF 25 wt% h-BNNPs 5.6 11.2 8–12 GHz  [82]
PVDF 30 wt% CuS - 44 2–18 GHz  [23]
PVDF 50 wt% CuCo2S4 2.5 20 8–18 GHz  [83]
PVDF 50 wt% La0.8Sr0.2MnO3/La/Sr 1.75 20 8–18 GHz  [127]
PVDF/PVC 10 wt% SrTiO3 - 12.5 12–18 GHz  [74]
PVDF 5 wt%Ag-10 wt% graphite 0.5 29.1 8–12 GHz  [128]
PVDF 3 wt%Au–3 wt% MWCNTs 0.5 26.7 8–12 GHz  [86]
PVDF Fe@CF 0.6 54 12–18 GHz  [129]
PVDF 5 wt% MWCNTs/10 wt% CoNi 0.9 30 12–18 GHz  [130]
PVDF 3 wt% MWCNTs/50 wt% CoNi - 41 12–18 GHz  [131]
PVDF 3 wt% MWCNTs/50 wt% NiFe - 35 12–18 GHz  [132]
PVDF/SMA 5 wt% MWCNTs/30 wt% NiFe - 23 8–18 GHz  [38]
PVDF/TPU 5 wt% MWCNTs@ NiFe 1.4 35.7 8–18 GHz  [133]
PVDF 6 wt% MWCNTs@Co chains 0.3 41 18-26.5 GHz  [134]
PVDF 3 wt% CB/20 wt% CI 2 27 8–18 GHz  [135]
PVDF 5 wt% graphene/8 wt% Ni chains 0.6 57.3 8–18 GHz  [45]
PVDF 1 wt% MWCNTs/6 wt% Ni chains 0.6 55.8 8–18 GHz  [45]
PVDF 10 wt% graphene/10 wt% Ni chains 0.7 51.4 8–12 GHz  [14]
PVDF 2.0 mg/cm2 MWCNTs and1.9 mg/cm2 AgNWs 0.74 34 8–12 GHz  [37]
PVDF 3 wt% MWCNTs/10 wt% NiNWs 1.1 22 8–12 GHz  [136]
PVDF 3 wt% MWCNTs/10 wt% AgNWs 1.1 27 8–12 GHz  [136]
PVDF 4 wt% MWCNTs/IL 1.8 46 12–18 GHz  [137]
PVDF 10 wt% MWCNTs/12 wt% Ni@MWCNTs 0.5 46.6 8–18 GHz  [138]
PVDF 50 wt% Ni@CMS 2 20 8–18 GHz  [139]
PVDF 15 wt% AgNPs@CB/graphite 4 35 12–18 GHz  [140]
PVDF 50 wt% FeC 4.3 23.9 8–18 GHz  [73]
PVDF 10 wt% MXenes/10 wt% Ni chains 0.36 34.4 8–12 GHz  [36]
PVDF 10 wt% MXenes/5 wt% AgNWs 0.6 41.26 8–12 GHz  [141]
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Table 1   (continued)

materials thickness (mm) EMI SE (dB) Frequency Ref.

Matrix Filler loading

PVDF 0.5 mg/mL MXenes/1.28 wt % AgNWs - 47.8 8–12 GHz  [142]
PVDF/PETG 5 wt% long CF/15 wt% CB 4 30 0.1–1500 MHz  [143]
PVDF 0.5 wt% MWCNTs /10 wt% graphite 0.25 36.46 8–12 GHz  [144]
PVDF 0.5 wt% MWCNTs /10 wt% - 14.64 8–12 GHz  [145]
PVDF 2 wt% MWCNTs 1.1 11.6 8–12 GHz  [146]
PVDF 40 wt% graphene/NWF 2 48.5 0.03–1.5 GHz  [147]
PVDF 7.5 wt% CB/2 wt% graphite 1 16 8–12 GHz  [148]
PVDF/PC 3 wt% MWCNTs/30 wt% NF - 20 8–18 GHz  [149]
PVDF/SAN 2 wt% MWCNTs-5 wt%NF 5 26 8–18 GHz  [150]
PVDF/ABS 2 wt% MWCNTs-5 wt% Fe3O4 - 26.5 2–18 GHz  [151]
PVDF/PC 3 wt% MWCNTs-Fe3O4 0.9 31 8–18 GHz  [59]
PVDF/ABS 1 wt% MWCNTs-3 wt%Fe3O4 - 23 8–18 GHz  [152]
PVDF/PC 3 wt% MWCNTs-Fe3O4 0.9 32 8–18 GHz  [60]
PVDF/PC/PMMA 2 wt% MWCNTs/5 wt% BF 1 37 8–18 GHz  [153]
PVDF/PC 3 wt% MWCNTs/3 wt% Fe3O4 1 38 8–18 GHz  [154]
PVDF/PC 3 wt% MWCNTs/3 wt% Fe3O4 1 31 12–18 GHz  [155]
PVDF/PC 5 wt%MWCNTs/10 wt% manganese ferrite - 50 12–18 GHz  [156]
PVDF/PMMA 3 wt% MWCNTs/3 wt% NiFe2O4 - 27 12–18 GHz  [157]
PVDF 10 wt% RGO-SrFe12O19 3 33 8–12 GHz  [158]
PVDF 40 wt% RGO-SrAl4Fe8O19 2 42 8–12 GHz  [159]
PVDF 40 wt% RGO-CuAl2Fe10O19 1.5 60 8–18 GHz  [160]
PVDF 10 wt% RGO/10 wt% BaCo2Fe16O27 0.2 35.94 8–12 GHz  [161]
PVDF 10 wt% RGO/ 10 wt% BaZrFe11O19 0.2 48.59 8–12 GHz  [162]
PVDF 8 wt% MWCNT/5 wt% Fe3O4 1.1 32.7 18–26 GHz  [163]
PVDF 8 wt% graphene/5 wt%Fe3O4 1.1 35.6 18–26 GHz  [163]
PVDF/HDPE/PS 1 vol% MWCNTs/1 vol% Fe3O4 2.7 25 8–12 GHz  [164]
PVDF/PE 10 wt% MWCNTs/5 wt% Fe3O4 2.6 26.3 18–26 GHz  [165]
PVDF 30 wt% CB/40 wt% Fe3O4 0.37 55.3 8–12 GHz  [166]
PVDF 3 wt% FLG/15 wt% NF - 53 1–12 GHz  [167]
PVDF 10 wt% MWCNTs/5 wt% Fe3O4 0.9 53 8–12 GHz  [168]
PVDF 5 wt% exfoliated graphite /85 wt% BaFe11.7Al0.3O19 7 50 1–7 GHz  [169]
PVDF 30 wt% CB/40 wt% Sr3YCo4O10+δ 2.5 50.2 8–18 GHz  [170]
PVDF 40 wt% BT 1.2 9 8–12 GHz  [31]
PVDF 20 vol% BT /10 vol% Ag 1.2 26 8–12 GHz  [31]
PVDF 5 wt% NiO/20 wt% BaTiO3 - 11.5 12–18 GHz  [171]
PVDF 15 wt%NiO@SiO2 0.3 20 8–12 GHz  [76]
PVDF 2 wt% MWCNTs/2 wt% MnO2 - 20 8–12 GHz  [172]
PVDF 25 wt% RGO@MoS2 5 27.9 2–18 GHz  [173]
PVDF 15 wt% RGO@hollow ZnS - 40 8–18 GHz  [174]
PVDF 30 wt% RGO@ BT 5 8 2–18 GHz  [175]
PVDF 5 wt% MWCNTs@SiO2 0.4 24 8–12 GHz  [176]
PVDF 3 g/L graphene-MXenes 0.191 53.8 8–12 GHz  [177]
PVDF 5 wt%MWCNTs/40 wt%BN 2 8.68 8–18 GHz  [43]
PVDF 9.5 wt% graphene-SiCNWs 1.2 32.5 8–12 GHz  [62]
PVDF 2 wt%CB/8 wt%Zeolite 13X 0.08 8.4 8–18 GHz  [48]
PVDF 5 wt% MWCNTs/2.5 wt% ZnONWs 1.1 27.3 8–18 GHz  [178]
PVDF 12.5 wt% PPy-MTT 0.25 5 8–12 GHz  [179]
PVDF 25 wt% MXenes-PANI 0.012 21 8–12 GHz  [180]
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and metal oxide particles (e.g. nickel (Ni) [90], copper (Cu) 
[84], iron (Fe) [88], nickel oxide (NiO) [91] into the electri-
cally insulating PVDF matrix have good electrical conduc-
tivity and electromagnetic shielding performance [35].

Arranz-Andrés et al. prepared PVDF/Cu [84] and PVDF/
aluminum (Al) composites [85] through melt blending and 
hot pressing methods. They demonstrated that the reinforce-
ment effect for metal nanoparticles in the PVDF matrix had 
improved the EMI SE performance of PVDF/Cu and PVDF/

Al composites. Silver nanowires (AgNWs) have high aspect 
ratio and high conductivity, making them a research hotspot 
for electromagnetic interference shielding materials in recent 
years. Qian et al. prepared PVDF/AgNWs composites by 
dip-coating and spray-coating method, the three-dimensional 
(3D) networks and a two-dimensional (2D) layer structures 
were formed, respectively (Fig. 2). They explored that the 
3D AgNWs networks were beneficial to multiple reflections 
and interface scattering of EM waves, EMI SE of dip-coated 

Table 1   (continued)

materials thickness (mm) EMI SE (dB) Frequency Ref.

Matrix Filler loading

PVDF 30 wt% C-Fe3C 2 35 2–18 GHz  [181]
PVDF 30 wt% ferrite-C3N4 0.175 88 8–18 GHz  [182]
PVDF 30 wt% ferrite-C3N4 0.19 83 8–18 GHz  [183]
PVDF 3 wt% MWCNTs/5 wt% BT-GO - 30 8–18 GHz  [184]
PVDF 3 wt% MWCNTs/2.2 vol % CoNWs - 35 8–18 GHz  [184]
PVDF/PC 3 wt% MWCNTs/5 wt% RGO-ferrite 5.5 38 8–18 GHz  [185]
PVDF/PC PANI-MWCNTs-Fe3O4/BT 5 37 8–18 GHz  [186]
PVDF/PC 3 wt% MWCNTs-MnO2/5 wt% RGO@ Fe3O4 0.9 37 8–18 GHz  [187]
PVDF/PC 3 wt% MWCNTs/5 wt% RGO@BT@Fe3O4 0.9 35 8–18 GHz  [188]
PVDF 5 wt% CNS@Fe3O4@SiO2 - 42 8–18 GHz  [189]
PVDF 10 wt%PANI@Fe3O4@SWCNTs 2 29.7 12–18 GHz  [75]
PVDF 25 wt% PANI@Fe3O4@RGO 2 28.18 12–18 GHz  [44]
PVDF 2 wt% G-D-GQDsAg - 46 8–12 GHz  [78]
PVDF 1 wt% MWCNTs/1 wt% RGO/1 wt% Cu 0.5 28.5 8–12 GHz  [190]
PVDF 2.75 wt% graphene-2.75 wt% Ni-2.75 wt% MWCNTs 0.6 41.8 12–18 GHz  [46]
PVDF 10 wt% RGO-Fe3O4/3 wt% MWCNTs 0.48 26.3 8–26 GHz  [191]
PVDF 3 wt% MWCNTs/10 wt%RGO@CuS 1 25 12–18 GHz  [55]
PVDF 3 wt% MWCNTs/6 wt% graphene/8 wt%Ni 0.3 43.7 18–26 GHz  [192]
PVDF 2.5 wt% graphene/11.5 wt% TiO2/1 wt% MMT - 43.7 12–18 GHz  [193]
PVDF 5 wt% Ag-5 wt% Cu@MWCNTs 0.1 26 8–12 GHz  [194]
PVDF 5 wt% Ag-5 wt% Cu@RGO 0.1 29 8–12 GHz  [194]

Fig. 2   Schematic process for 
the construction of 3D and 
2D conductive networks in 
PVDF/AgNWs composites 
through dip-coating (Route D) 
and spray-coating (Route S) 
process. A PVDF membranes 
prepared by electrospinning. 
B Dip-coated PVDF/AgNWs 
hybrid membranes with differ-
ent dip-coating cycles prepared 
by 0.2 wt% AgNWs dispersion. 
C Spray-coated PVDF/AgNWs 
hybrid membranes with the 
same area density of AgNWs 
with those prepared by dip-
coating [79]
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sample was higher than that of the spray-coated sample at 
the same area density of AgNWs [79].

It can be observed that magnetic metal particles like Fe, 
Co, Ni and their alloy exhibit high saturation magnetiza-
tion, facilitating these particles as electromagnetic shielding 
materials in the gigahertz frequency region. Joseph et al. 
prepared PVDF/carbonyl iron (CIP) composites through 
solution blending and hot pressing methods. Due to conduc-
tive nature of metallic magnetic CIP, PVDF/CIP composites 
not only possess magnetic dipoles to produce magnetic loss 
and dielectric loss, but also has electrical conductivity to 
produce conductivity loss [88]. In Gargama’s group work, 
they prepared PVDF/micro-size of Ni (µ-Ni) [89], PVDF/
nanocrystalline Ni (n-Ni) [72] and PVDF/nanocrystalline 
iron (n-Fe) [35] composites through simple mechanical 
blending and hot pressing methods. They observed that the 
dielectric constant is substantially enhanced with the load-
ing of magnetic metal particles in the PVDF matrix due to 
the interfacial polarization from the interface between the 
magnetic metal particles and PVDF, and absorption loss was 
the dominant mechanism of the EMI SE. What’s more, Zhao 
et al. prepared PVDF/Ni chains composite films through the 
solution blending and hot pressing methods. They observed 
that three-dimensional conductive-magnetic Ni chains net-
works were formed after the addition of Ni chains in the 
PVDF matrix, which resulted a high EMI SE properties of 
composite films [47].

It is well known that usage of metal oxide nanoparticles 
can significantly improve the mechanical, electrical and 
magnetic properties of polymeric composite films with-
out sacrificing the flexibility of the composite films. Dutta 
et al. fabricated PVDF/NiO composites by solution blend-
ing method. They reported that NiO nanoparticles in PVDF 
can improve the β phase fraction and dielectric properties, 
and the β phase fraction and dielectric properties of PVDF 
increased with the increase in NiO nanoparticles content 
[91]. Besides the pure metal particles, alloys also show 
excellent electrical conductivity and can be used as con-
ductivity filler in PVDF composites. Low-melting-point 
alloys (LMPA) have attracted extensive attention due to their 
unique low melting point, high thermal conductivity coef-
ficient, excellent thermal stability, and high electrical con-
ductivity. Zhang et al. prepared PVDF/LMPA (SnBi58) com-
posites through solution blending and hot pressing methods. 
They claimed that the introduction of LMPA into PVDF 
resulted in a continuous LMPA network, which improved 
both the thermal conductivity and the EMI SE performance 
[18].

It can be concluded from the literatures that the com-
posites of electrically insulated PVDF and electrically 
conductive metal can improve the EMI SE performance 
of the shielding material than that of pure metal in the 
high frequency band. The composites show better EMI SE 

performance in the whole tested electromagnetic wave fre-
quency range, expanding the bandwidth of electromagnetic 
shielding, and reducing the cost of using pure metals or 
alloys. PVDF/metal composites can meet commercial and 
civil needs, and can even be used in the field of military 
industry. However, they also have some disadvantages. Gen-
erally, a higher content of metal fillers is always necessary 
to achieve good EMI SE performance, which will inevitably 
result in the reduction in the mechanical strength. In addi-
tion, the density of metal is high, so delamination or non-
uniformity is easy to occur in the molding process, which 
may affect the stability of the composites.

PVDF/carbon composites

Recently, carbon materials (e.g. carbon nanofiber [92, 94, 
95], carbon nanotubes [97, 105, 110, 119], graphite [101], 
graphene [96, 103, 104, 121], and carbon black [121] are 
popular fillers owing to their high aspect ratios and supe-
rior electrical properties. Therefore, carbon materials as the 
electrically conductive fillers added into the PVDF matrix 
could form a conductive network, leading to conductive 
loss. Interfacial polarization can be formed at the interface 
between the carbons and PVDF which will lead to dielectric 
loss. In addition, scattering and multiple reflections can also 
be formed due to the dielectric constant difference at the 
interfaces. Thus, the EMI shielding mechanism of PVDF/
carbon composites is caused by the synergistic effects of 
conductive loss, dielectric loss, interfacial scattering and 
multiple scattering [112, 120].

Carbon nanofibers (CF) with high aspect ratio have 
advantages in conductivity and specific surface area, which 
facilitated well EMI SE at lower filler loading, and have 
attracted the attention of researchers. Lee et al. prepared 
PVDF/CF composites through solution blending method 
[92]. Naseer et al. cast PVDF/poly(methyl methacrylate) 
(PMMA)/CF blend solutions on the cellulosic substrates 
through air spray painting method [93] to obtain the compos-
ites. Yilmaz et al. prepared PVDF/CF composites through 
melt blending and hot pressing methods [94]. Yuksek et al. 
obtained PVDF/CF composite fibers through melt spinning 
processing method and produced conductive woven fabrics 
with composite fibers using handloom machines. They found 
that the PVDF-based composites exhibited high EMI SE 
performance due to good dispersion of conductive CF which 
has relatively large specific surface area and high aspect 
ratio, and the EMI SE of composites increased with increas-
ing in CF content [92–95]. Multi-wall carbon nanotubes 
(MWCNTs) are regarded as prospective conductive filler 
for PVDF-based electromagnetic shielding materials, as 
their high aspect ratio, good mechanical strength and excel-
lent electrical conductivity at low filler concentration [97]. 
Kim et al. prepared PVDF/poly(vinyl pyrrolidone) (PVP)/
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MWCNTs composites through solution blending and coating 
methods [97]. Ram et al. prepared PVDF/MWCNTs com-
posites by solution blending technique [98]. They observed 
that the electrical conductivity and EMI SE were signifi-
cantly improved with increasing of the loading amount of 
MWCNTs due to its excellent conductivity and high aspect 
ratio [97, 98]. Graphite is also used as a conductive filler for 
PVDF matrix composites because it is highly conductive, 
economically viable, abundant in nature and light in weight 
[101]. Halder et al. prepared PVDF/carbonized charcoal 
[100] and PVDF/graphite [101] composites through solu-
tion blending and hot pressing methods. Carbon particles in 
the PVDF polymer layers formed a conductive network, thus 
exhibiting promising EMI shielding properties [100, 101]. 
Graphene nanosheets, as a new carbon-based nano material, 
has been widely studied due to its ultra-high specific surface 
area, excellent mechanical flexibility and electrical conduc-
tivity [103, 104]. Fan et al. prepared PVDF/graphene /non-
woven composites through a cyclic dipping-drying method. 
They reported that through the cyclic impregnation drying 
process, a large number of graphene were adsorbed on the 
nonwoven framework, forming an increasingly conductive 
network, thus the EMI SE performance was improved [103]. 
Additionally, they also fabricated PVDF/graphene /nonwo-
ven composites by a coating-drying method. The coating 
agent with high graphene content provided good viscosity 
and formed a bridge between fibers, which facilitated to 
the formation of interconnected conductive networks, thus 
improving the EMI SE performance of composites. Addi-
tionally, the nonwoven which coated with PVDF/graphene 
twice can further improve the loading amount of graphene 
and a 2-side coated nonwoven had a better EMI SE than a 
2-layer coated nonwoven [104].

The composites of PVDF and carbon fillers can improve 
the mechanical properties of pure carbon electromagnetic 
shielding materials. With a low loading of carbons, materials 
suitable for electromagnetic shielding applications can be 
obtained, and the cost will also be reduced compared with 
pure carbon nano shielding materials. Moreover, PVDF/
carbon composites have good film-forming and processing 
properties, which is help to the practical applications. How-
ever, compared with PVDF/metal composites, exploitation 
of high-performance PVDF/carbon composites remains a 
great challenge.

PVDF/conductive polymer‑filled composites

Conductive polymers (e.g., polyaniline (PANI), poly 
(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole 
(PPy) show good conductive properties. However, the poor 
mechanical and processing properties have limited their 
applications in electromagnetic shielding. By blending 
conductive polymer materials with PVDF, electromagnetic 

shielding materials with excellent mechanical properties and 
EMI SE performance can be obtained, due to the effects of 
conductive loss of conductive polymer and high mechani-
cal property of PVDF. Pontes et al. prepared PVDF/PANI 
composites by two procedures involving the in situ polym-
erization of aniline in the presence of PVDF and powder 
blending process using ball milling, followed by hot pressing 
method. They reported that the solvent-free powder blend-
ing approach using ball milling offered better application 
advantages and this process resulted a higher EMI SE than 
in situ polymerization [21]. Lee et al. prepared core-shell 
PVDF/PEDOT nanofiber composites with a conductive 
shell through the in situ polymerization and electrospunning 
method. They observed that the shell-conductive nanofiber 
exhibited high EMI SE performance and mechanical prop-
erties by incorporating low-density PEDOT. This was due 
to the enhanced conduction loss and multiple reflections 
of the incident EM waves caused by conductive shell and 
porous structure of the nanofiber composites, respectively, 
and absorption loss is the main shielding mechanism [22].

The PVDF/conductive polymer composites can not only 
enhance the electromagnetic shielding performance, but also 
improve the mechanical properties by interacting with each 
other to, to give shielding materials with good comprehen-
sive performance. However, the PVDF/conductive polymer-
filled composites with high loading content will increase the 
cost. Thus, it is necessary to modify the conductive filler 
and develop a new process to reduce the amount of filler 
while maintaining the conductive performance of composite 
materials.

PVDF/other conductive‑filled composites

MXenes are the family of two-dimensional (2D) transition 
metal carbides and/or nitrides with a formula of Mn+1XnTx 
[5, 6, 195], where M, X and Tx represent transition metal, 
carbon and/or nitrogen and the functional surface termi-
nations (such as -O, -F, -OH), respectively [196, 197]. In 
recent years, MXenes have attracted extensive attention from 
researchers in the field of electromagnetic shielding for their 
excellent conductivity, abundant surface heteroatoms and 
specific 2D characteristics like graphene [8, 198]. However, 
as the poor mechanical properties and oxidation capacity 
of pure MXenes would significantly limit their applications 
in wearable electromagnetic shielding [71, 199], blending 
MXenes with polymer such as PVDF to prepare polymer-
based conductive composites is a promising strategy to 
obtain better EMI shielding materials [124, 125].

Ti3C2Tx [6, 16, 200] is a representative type of MXenes, 
which can be used to prepared conductive compos-
ites with good EMI SE performance by blending it with 
PVDF. Li et al. prepared the flexible and durable PVDF/
Ti3C2Tx MXenes composites with compact hierarchical 

Page 9 of 28    130Journal of Polymer Research (2023) 30:130



1 3

brick-and-mortar structure through solution blending 
and blade coating methods. They claimed that the highly 
aligned MXenes nanosheets incorporated in PVDF matrix 
significantly improved the electrical conductivity and EMI 
SE performance of composites (Fig. 3). Also, due to the 
surface plasmon resonance and high electrical conductiv-
ity, the composites showed photo/electro-thermal heating 
abilities with rapid response to time, high stability and con-
trollability, enabling their application in special conditions 
[124]. Wang et al. prepared co-continuous PVDF/polysty-
rene (PS)/Ti3C2Tx composites through solution blending or 
hot pressing method. They found that PVDF/PS/Ti3C2Tx 
MXenes obtained by solution blending method had layered 
double-percolated structures which were beneficial to form 
conductive network and imporved the multiple radiation 
of electromagnetic wave inside the composites to elevate 
EMI SE performance. Additionally, due to the layered 

double-percolated structures, the composites showed better 
EMI SE performance under low filler content [125].

The combination of PVDF and MXenes with excellent 
electrical conductivity can give high-performance shield-
ing materials with good mechanical properties. However, 
due to the high price of MXenes, though the composites 
with high loading of MXenes (> 50%) have good shield-
ing performance, the high cost would limit their production 
and application. Therefore, it is necessary to explore better 
preparation process and develop PVDF/MXenes composites 
with high performance and low cost [125].

PVDF/pure magnetic‑filler composites

It is well known that magnetic fillers such as ferrites [126] 
(e.g., Fe3O4 [163, 164], M-type barium hexaferrite [26], 
U-type hexaferrite [81]) have good ferromagnetic properties, 

Fig. 3   a EMI shielding performance at X band, b average SET, SEA and SER. c Schematic illustration of EM wave transfer in PVDF/MXenes 
composites. d Comparison of SSE/t as a function of thickness with previous reports [124]
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and possess high permeability and a certain permittivity, 
enabling them suitable for design high-performance EMI 
SE materials. Therefore, introducing ferrite particles fillers 
into PVDF matrix could help to increase the EMI SE perfor-
mance of PVDF-based composites, which is attributed to the 
good dielectric and magnetic loss ability of ferrite particles. 
Hence, PVDF-based magnetic composites with high EMI 
SE performance have been widely reported in recent years.

Revathi et al. prepared PVDF/barium-substituted mag-
nesium ferrite (Ba0.2Mg0.8Fe2O4) composite fibers through 
electrospinning method. Barium magnesium ferrites were 
added to PVDF matrix to significantly improve the magnetic 
property of the PVDF-based composites, and electrospin-
ning could improve the ferroelectric properties of PVDF, 
which resulted in a good EMI SE performance due to the 
dielectric loss and magnetic loss [126]. In Sutradhar’s work, 
they reported the preparation of PVDF/M-type barium hexa-
ferrite (BaFe12O19) (BaH) nanocomposites [26] and PVDF/
Co2U-type hexaferrite (Ba4Co2Fe36O60) nanocomposites 
[81] through solution blending method. Incorporation of 
hexaferrite in PVDF matrix have significantly improved the 
relative permeability and permittivity, and enhanced elec-
troactive β phase of PVDF. This was beneficial to improve 
the dielectric loss of nanocomposites, resulting in a higher 
EMI SE performance [26, 81]. In addition, Darwish et al. 
prepared PVDF/BaFe11⋅7Al0⋅3O19 (HF) composites [25] 
through mechanical blending and hot pressing method; 
Halder et al. prepared PVDF/copper ferrite (CuFe2O4) com-
posites through resolution blending method [30]. They also 
observed that these PVDF/ferrite composites could control 
the EMI SE efficiency by tuning their magnetic properties 
without considering the conductivity values, so as to sup-
press electromagnetic interference [25, 30].

PVDF/pure dielectric‑filler composites

Beside conductive and magnetic materials, some dielectric 
materials (such as barium carbonate (BaTiO3), strontium 
titanate (SrTiO3) [74], silicon carbide nanowires (SiC) [62], 
boron nitride (BN) [43, 82], copper sulfide (CuS) [23], zinc 
oxide (ZnO) [24]) possess high dielectric constant and high 
dielectric loss, are promising candidates for electromagnetic 
shielding materials. Many researchers have been studied on 
the development of PVDF-based dielectric-filler compos-
ites with high EMI SE performance. Dielectric properties 
of dielectric-filler and the interfacial polarization between 
the PVDF and fillers are thought to contribute significantly 
to the EMI SE performances. Studies have also shown 
that these composites can be used under harsh conditions 
because of their high corrosion resistance, electrical insula-
tion, and superior thermal stability.

Aepuru et al. prepared PVDF/Flower-like radial ZnO 
(RZnO) composites through solution blending method. 

Introduction of RZnO into PVDF matrix significantly 
improved the dielectric property of the PVDF/RZnO 
nanocomposites and the dielectric constant increased with 
increasing of RZnO content, resulting in the improve-
ment in the EMI SE performance of composites. The 
domination shielding mechanism was absorption loss [24]. 
Sankaran et al. obtained PVDF/hexagonal BN nanoparticles 
(h-BNNPs) composites through solution blending method. 
They observed that h-BNNPs was uniformly distributed in 
the PVDF matrix leading to improvement in the dc electri-
cal conductivity and EMI SE performance. The dc electrical 
conductivity increased with increasing in h-BNNPs loadings 
and the domination shielding mechanism was absorption 
loss [82]. Biswas et al. reported the PVDF/‘wool-ball’ like 
hollow copper sulfide (CuS) composites obtained through 
solution blending and hot pressing methods. They claimed 
that PVDF/CuS composites possessed a high EMI SE per-
formance due to dielectric heating and polarization loss. The 
composites also exhibited good thermal energy dissipation 
at a certain time frame due to the good thermal conductiv-
ity of CuS [23]. What’s more, Peymanfar et al. prepared 
PVDF/CuCo2S4 composites through solution blending and 
hot pressing methods. They found that the increase in size 
of CuCo2S4 enhanced the complex permittivity and mag-
netic loss, resulting in improvement in EMI SE performance 
of composites [83]. Joseph et al. obtained PVDF/polyvinyl 
chloride (PVC)/strontium titanate (SrTiO3) nanocompos-
ite films through solution blending method. They reported 
SrTiO3 uniformly distributed in the matrix which enhanced 
the dielectric constant and dielectric loss of composites[[[ [74].

PVDF/multiple‑component filler composites

As we all know, the excellent EMI SE performance of 
shielding materials is usually determined by the high con-
ductive loss, dielectric loss and magnetic loss [184, 187]. In 
spite of extensive research efforts, single-component fillers 
such as conductive, dielectric or magnetic materials, with 
high EMI SE performance under low loading of fillers and 
minimum thickness of films still remains a challenge [86, 
130]. This is mainly because of the difficulty in obtaining 
high EMI SE performance by a single shielding mechanism. 
Without losing processability, the shielding performance can 
be significantly improved by the introduction of multiple-
component fillers. This involves the design and formation 
of shielding interfaces of conductive, magnetic and/or die-
lectric hybrid materials to alleviate harmful impact of EM 
waves [187, 188]. The system includes binary-component 
and multi-component fillers, i.e. Conductive filler, dielectric 
filler or magnetic filler are added to the PVDF matrix in 
coupled or multiple combinations, to form a heterogeneous 
system that maintains its essential properties, which forming 
a large interface that generates multi-interfacial polarization 

Page 11 of 28    130Journal of Polymer Research (2023) 30:130



1 3

and improves the dielectric loss, thus further enhancing the 
EMI SE performance [60, 76, 117, 138, 180, 182].

PVDF/binary conductive‑filler composites

The conductivity of PVDF can be improved by adding large 
amounts of conductive fillers, however, higher loadings 
degrade the flexibility, increase the product weight and result 
in poor processability. The designed binary conductive fill-
ers not only promote the uniform dispersion of each fillers 
in PVDF matrix and lower percolation threshold [144, 201], 
but also is more effective in improving the electrical conduc-
tivity of PVDF-based composites than a single conductive-
filler [14, 38, 147].

PVDF/metal‑carbon composites  In Dinakaran’s group, they 
prepared PVDF/Ag–Graphite[[[ [128] composites and PVDF/
Au-MWCNTs [86] composites through solution blending 
method. They observed that compared to single carbon fill-
ers, the presence of metal fillers significantly elevated the 
dielectric constant and lowers the dielectric loss of compos-
ites [86, 128]. Sang et al. introduced MWCNTs and AgNWs 
into PVDF casted commercial nonwoven fabrics (NWF) to 
obtain PVDF/MWCNTs/AgNWs/NWF composites (Fig. 4). 
They observed that the synergetic effects between the 
AgNWs and MWCNTs networks yielded the ideal electrical 
conductivity and mechanical strength [37]. Lakshmi et al. 
synthesized graphene quantum dots decorated graphene 
(G-D-GQDs) and G-D-GQDs that decorated with conduct-
ing Ag nanoparticles (G-D-GQDsAg) by a solvothermal 
method, and prepared PVDF/G-D-GQDs and PVDF/G-D-
GQDsAg composites. They found that the latter showed bet-
ter EMI SE performance than that of the former, due to the 
presence of Ag nanoparticles that increased the electrical 
conductivity [78]. Ertekin et al. added Ag nanoparticles into 

PVDF/carbon black (CB) and PVDF/graphite composites. 
They also found that the EMI SE performance was signifi-
cantly improved due to the synergetic effects of metal parti-
cles and carbons [140].

Materials with high permeability and high electrical 
conductivity always exhibit good EMI shielding proper-
ties. Therefore, high-magnetic metal particles together with 
high-electrical conductivity carbon materials being added 
to PVDF matrix can yield good electromagnetic shielding 
materials. In Bose’s group, they prepared PVDF/Fe@CF 
[129], PVDF/MWCNTs/CoNi [130, 131], PVDF/MWC-
NTs/NiFe [132], PVDF/styrene maleic anhydride (SMA)/
MWCNTs/NiFe [38], and PVDF/thermoplastic polyurethane 
(TPU)/ MWCNTs@NiFe [133] composites through solu-
tion blending and hot pressing method. They concluded that 
the incorporation of magnetic metal particles or alloys in 
PVDF/MWCNTs composites not only improved the electri-
cal conductivity, but also enhanced the magnetic and die-
lectric properties, resulting in significantly improvement in 
absorption-dominated EMI SE performance of composites. 
What’s more, Li et al. reported the preparation of anisot-
ropy-shaped Co (MWCNTs@Co) decorated PVDF/MWC-
NTs composites (PVDF/MWCNTs@Co) through solution 
blending and hot pressing methods. They claimed that the 
presence of MWCNTs@Co significantly improved the EMI 
SE performance due to the high conductivity (from MWC-
NTs and Co), magnetic loss (from Co), interfacial polariza-
tion and multiple reflections and scattering of EM waves 
(from MWCNTs, Co and PVDF) [134]. Wang et al. prepared 
PVDF/CB/carbonyl iron (CI) composites [135], Kumar et al. 
prepared PVDF/FeC composites[[[ [73], Zhao et al. prepared 
PVDF/carbon (MWCNTs or graphene)/Ni chains compos-
ites [45] and Liang et al. prepared PVDF/graphene/Ni chains 
composites [14] through solution blending and hot pressing 

Fig. 4   Schematic illustration of fabrication steps of the as-prepared PVDF/ MWCNTs/AgNWs /NWF composites [37]
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methods. Peymanfar et al. synthesized wrinkled Ni@grapy 
carbon microsphere nanosheet (CMS) particles (Ni@CMS) 
via co-precipitation and hydrothermal complementary 
method, and PVDF/Ni@CMS composites through solution 
blending and hot pressing method [139]. Both works identi-
fied that combining carbon materials with magnetic metal 
particles resulted in good absorption-dominated EMI SE 
performance [14, 45, 73, 135, 139].

PVDF/binary carbon‑filled composites  Song et al. prepared 
PVDF/poly(ethylene terephthalateco-1,4-cylclohexylenedi-
methylene terephthalate) (PETG)/CF/CB composites [143], 
Halder et al. prepared PVDF/MWCNTs/graphite composites 
[145], and Leão et al. prepared clean polyvinylidene fluo-
ride scrap (PVDF)/CB/expanded graphite composites [148] 
through melt blending and hot pressing methods. Zhao et al. 
prepared PVDF/MWCNTs/graphene composites through 
solution blending and hot pressing methods [144]. They 
found that compared to single-component carbon fillers, the 
addition of binary carbon-fillers in the PVDF matrix exhib-
ited higher conductivity and EMI SE performance due to the 
synergistic effect between the binary carbon-fillers, and an 
increase in EMI SE performance with increasing the amount 
of carbon fillers was observed [143–145, 148]. Additionally, 
Mei et al. prepared a flexible NWF which consisted of CF 
and polypropylene/polyethylene (PP/PE) core/sheath bicom-
ponent fibers, and immersed them into the PVDF/ graphene 
solution to fabricate PVDF/graphene/NWF composites. The 
PVDF/graphene/NWF composites exhibited high EMI SE 
performance due to the formation of 3D conducting network 
in the present of a high percentage of graphene, and the syn-
ergistic effect between NWF and graphene [147].

PVDF/conductive filler‑MXenes composites  PVDF/MXenes 
composites exhibit high electrical conductivities and EMI 
SE performances under a high MXenes loading (≥ 50 wt%) 
[124]. However, the exorbitant loading may cause the poor 
mechanical and processing properties, which would seri-
ously hinder their application in flexible devices. Some stud-
ies have shown that combination of MXenes with conduc-
tive fillers can improve the high EMI SE performance under 
lower loading of Mxenes.

Wang et al. and Cheng et al. prepared PVDF/MXenes/
Ni chains composites [36] and PVDF/MXenes/AgNWs 
composites [141], respectively, through solution blending 
method. They observed that compare to those only using 
MXenes or metal particle fillers, PVDF/MXenes/metal com-
posites exhibited higher EMI SE. A low loading amount of 
MXenes or metal particles (not exceeding 10%) gave maxi-
mum EMI SE values in X band, due to the synergistic effects 
between high conductivity of MXenes and high conductiv-
ity and aspect ratio of metal particles. Additionally, Yang 

et al. prepared sandwich-sturctured PVDF/MXenes/AgNWs 
composites by hot pressing method, with the electrospun 
PVDF film as the battom layer, vacuum-filtrated AgNWs as 
a conductive inner layer, and filtrated MXenes as top layer. 
They observed that except for the establishment of conduc-
tive AgNWs pathways, the introduction of MXenes further 
improved the electrical conductivity and multiple reflection 
between neighboring conductive layers, resulting in an out-
standing EMI SE performance at a low fillers content [142].

Besides metal particles, carbons or polymer conductive 
fillers combining with MXenes could also improve the EMI 
SE performance of PVDF-based composites. Raagulan et al. 
perpared PVDF/graphene-MXenes composites through low-
cost spray coating and solvent blending methods. They found 
that PVDF/graphene-MXenes composites showed high con-
ductive properties and excellent EMI SE performance [177]. 
Xu et al. synthesized MXenes-PANI composites by in situ 
polymerization and added them into the PVDF matrix to 
obtained a porous structure PVDF/MXenes-PANI compos-
ites through solution blending method. Then Au was evapo-
rated on the surface of PVDF/MXenes-PANI to gave PVDF/
MXenes-PANI/Au (MPPA) composites, and MPPA compos-
ites as the top electrode to prepared of the functional device. 
Due to the highly efficient conductivity of porous structure 
MPPA composites, the device exhibited a superior EMI SE 
performance [180].

PVDF/conductive–magnetic filler composites

As mentioned above, PVDF/magnetic-filler composites have 
poor conductivity loss due to the relatively poor electrical 
conductivity performances of magnetic ferrite particles [73], 
thus it is difficult to obtain high electromagnetic shielding 
performance. On the other hand, PVDF/conductive-filler 
composites with good conductivity [79, 120] makes the 
dielectric constant different on the interface between the 
composites and free space, resulting in the poor impedance 
matching, which easily leads to the reflection of the incom-
ing electromagnetic wave on the surface of composites and 
cause a secondary pollution in free space [202]. In order 
to address the above problems, combination of conductive-
filler with magnetic-filler is an effective strategy to improve 
the absorption-dominated EMI SE performance [60]. Actu-
ally, incorporation of conductive-filler and magnetic-filler in 
PVDF-based composites can induce multi-interfacial polari-
zation to improve the dielectric loss as well as the conductiv-
ity and magnetic properties [163].

Acharya et  al. synthesized reduced graphene oxide 
(RGO)-strontium ferrite (SrFe12O19) (SF), RGO-strontium 
aluminium ferrite (SrAl4Fe8O19) (SAF) and copper alu-
minum ferrite (CuAl2Fe10O19) (CFA) particles by one pot 
chemical reduction method, and prepared PVDF/RGO-
SF [158], PVDF/RGO-SAF [159] and PVDF/RGO-CAF 
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[160] composites through solution blending and hot press-
ing method. Cheng et al. prepared PVDF/carbon (MWC-
NTs or graphene)/Fe3O4 composites [163], Lalan et  al. 
prepared PVDF/CB/Fe3O4 composites [166], Ramazanov 
et al. prepared PVDF/MWCNTs/Fe3O4 composites [168], 
and Darwish et al. prepared PVDF/exfoliated graphite/HF 
composites [169] through solution blending and hot pressing 
method. Anand et al. prepared PVDF/RGO/barium hexafer-
rite (BaCo2Fe16O27) [161] and PVDF/RGO/Zr doped barium 
hexaferrite (BaZrFe11O19) composites [162], Ahmed et al. 
prepared PVDF/few layered graphene (FLG)/CF composites 
[167] through solution blending method. They reported that 
carbon and ferrite in PVDF matrix formed network struc-
ture through their effective interaction which increased the 
conductive loss and magnetic loss. In addition, a large num-
ber of capacitive regions are accumulated on the interfaces 
formed by carbon and ferrite, resulting in high dielectric 
loss, thus endowing the excellent absorption-dominated EMI 
SE performance of the composites [158–163, 166–169]. Li 
et al. prepared PVDF/high density polyethylene (HDPE)/
PS/MWCNTs/Fe3O4 composites by melt blending and hot 
pressing methods, in which HDPE and PS displayed a core-
shell structure. By changing the order of adding materials 
during melt blending, can tailor Fe3O4 in PVDF matrix or 
HDPE core, and led MWCNTs selectively localized in PS 
phase. They found that with the incorporation of Fe3O4 and 
MWCNTs, the EMI SE performance was enhanced, while 
by incorporating Fe3O4 in the HDPE core, this composites 
exhibited higher EMI SE performance [164]. Zhao et al. 
prepared PVDF/polyethylene (PE)/MWCNTs/Fe3O4 com-
posites through melt blending, hot pressing and supercriti-
cal CO2 foaming methods. The EMI SE of composites was 
significantly enhanced by virtue of the selective localization 
of MWCNTs and Fe3O4 as well as directionally arrange-
ment of MWCNTs in the cell wall during foaming pro-
cess. The composites possessed a high electric conductiv-
ity and magnetic permeability, and the special honeycomb 
internal structure caused multiple reflections [165]. Lalan 
et al. prepared PVDF/CB/room-temperature ferromagnetic 
Sr3YCo4O10+δ(SYCO) composites through solution blending 
and coagulation methods. They observed that the addition 
of CB and SYCO facilitated the improvement of electrical 
conductivity and increased the β phase of PVDF, which also 
significantly enhanced the permittivity and permeability of 
composites, resulting in the highest absorption-dominated 
EMI SE performance reported so far [170]. What’s more, 
Gao et al. synthesized a two-dimensional C-Fe3C nano-
particles which possess dielectric and magnetic properties, 
and obtained PVDF/C-Fe3C composites through solution 
blending and hot pressing methods. They reported that inte-
grating C-Fe3C nanoparticles into PVDF matrix effectively 
improves the dielectric and magnetic properties of the com-
posites resulting in excellent EMI SE performance [181].

PVDF/conductive‑dielectric filler composites

Although dielectric fillers such as ceramics have a high die-
lectric constant, the effective dielectric constants of PVDF/
ferroelectric ceramic composites remain low [74, 82]. This 
is mainly caused by the low dielectric constant of PVDF, and 
the difficulty in obtaining composites with more than 50% 
ceramics. In this regard, incorporation of both conductive 
and dielectric fillers into PVDF matrix may be a promising 
method to improve EMI SE performance, because the pre-
sent of both conductive and dielectric fillers in PVDF matrix 
not only improve the conductivity and dielectric properties, 
but may also enhance the β phase of PVDF which could lead 
to the better dielectric properties of the composite [31, 171].

PVDF/metal–ceramic composites  Joseph et al. added Ag 
particles into PVDF/BaTiO3 (BT) composites and obtained 
PVDF/Ag/BT composites through solution blending and hot 
pressing methods. Compare to BT single filler, the incorpo-
ration of a small amount the Ag significantly improved the 
conductivity of PVDF/Ag/BT composites, leading to a bet-
ter EMI SE properties [31]. Muzaffar et al. prepared PVDF/
NiO/BT composites through solution blending method. They 
found that NiO and BT particles in PVDF matrix formed a 
conductive network and interacting surfaces which enhanced 
the EMI SE properties of the composites [171]. Dutta et al. 
synthesized NiO@SiO2 particles and added them into PVDF 
matrix to obtain PVDF/NiO@SiO2 composites through solu-
tion blending method. They claimed that the presence of 
NiO@SiO2 particles in PVDF matrix led to the increment 
of the effective surface area and the interfaces, resulting in 
enhancement in the dielectric and conductivity properties of 
the composites [76].

PVDF/carbon–ceramic composites  Eswaraiah et  al. pre-
pared PVDF/MWCNTs/MnO2 composites [172], Guo et al. 
obtained PVDF/RGO@BT composites [175], Zeraati et al. 
prepared PVDF/MWCNTs/ZnO nanowire composites [178], 
respectively, through solution blending and hot pressing 
methods. The preparation of PVDF/RGO@MoS2 compos-
ites [173], PVDF/RGO@hollow ZnS composites [174], 
PVDF/MWCNTs@SiO2 composites [176], PVDF/CB/Zeo-
lite 13X composites [48] through a solution blending method 
were also reported. They found that carbons and ceramics in 
the PVDF matrix contributed to the improvement in EMI SE 
performance of composites due to the interfacial polariza-
tion (from carbons, ceramics and PVDF), high conductivity 
(from carbons) and good dielectric (from ceramics) proper-
ties. Additionally, special geometry structures of carbons or 
ceramics would further improve the EMI SE performance of 
composites. For example, the hollow ZnS particles and ZnO 
nanowire with high aspect ratios are helpful to enhance mul-
tiple reflections of the electromagnetic wave and interfacial 
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polarization, leading to high EMI SE performance of com-
posites. Zhang et al. synthesized PVDF@MWCNTs micro-
spheres and blended them with BN particles to give seg-
regated PVDF@MWCNTs/BN composites through melt 
blending and hot pressing methods. They reported that 
MWCNTs in the segregated composites formed an electrical 
conductive micro-network, and BN micro-network provided 
thermal conductivity and dielectric properties, leading to 
the improvement of permittivity of composites [43]. Liang 
et al. synthesized poly (diallyldimethylammonium chloride) 
(PDDA) modified SiC nanowires (SiCNWs) and mixed them 
with PVDF/graphene solutions via electrostatic assembly 
followed by hot-pressing to obtain PVDF/graphene-SiC-
NWs composites. They observed that SiCNWs was located 
between the graphene nanosheets by self-assembly. This was 
beneficial to the dispersion of graphene, interfacial polariza-
tion as well as multiple reflections, resulting in the improve-
ment of dielectric properties and EMI SE performance of 
composites [62].

PVDF/conductive polymer–ceramic composites  It has 
reported that introduction of layered inorganic guest 
materials into conductive polymers result in high electri-
cal conductivity, large surface areas and improved dielec-
tric properties of the composites [179]. Schiefferdecker 
et al. using in situ polymerization synthesized polypyrrole 
(PPy)-montmorillonite (MTT) particles and added into 
the PVDF matrix to obtain PVDF/PPy-MTT composites 
through electrospun method. They reported that the for-
mation of a conducting network (from PPy) and dielectric 
properties (from MTT) of composites endowing superior 
EMI SE performance. The maximum EMI SE of 5 dB was 
achieved in X band for the PVDF/12.5 wt% PPy-MTT 
composites [179].

PVDF/ferrite–ceramic composites

In this direction, many articles have been published in 
recent time where magnetic fillers and dielectric materi-
als have been considered inside the matrix of PVDF for 
the co-modulation of magnetic and dielectric properties of 
PVDF-based composites [182]. In Sutradhar’s group, they 
synthesized X-type hexaferrite (Ba2Co2Fe28O46)-C3N4 and 
Ni-Zn-Cu-ferrite (Ni0.50Zn0.30Cu0.20Fe2O4)-C3N4 binary 
filler by the solid-state reaction method, and obtained 
PVDF/X-type hexaferrite-C3N4 [182] and PVDF/Ni-
Zn-Cu-ferrite-C3N4 [183] composites through solution 
blending method. They found that the loading of mag-
netic–ceramic binary fillers endowing the enhancement of 
interfacial polarization and the dielectric properties (from 
C3N4) and the magnetic properties (from ferrite) of com-
posits [182, 183].

PVDF/multi‑component filler composites

As mentioned, the efficiency of EMI shielding materials are 
determined by their high electrical conductivity, large dielec-
tric and magnetic loss. Thus, some studies have shown that 
a careful selection of multi-component fillers, which with 
conductivity, dielectric or magnetic properties are helpful to 
design enhanced EMI SE materials.

Sharma et al. obtained PVDF/MWCNTs/RGO@CuS flower 
composites through melt blending and hot pressing methods 
[55]. Zeng et al. prepared PVDF/MWCNTs/Ni@MWCNTs 
composites through solution blending and hot pressing methods 
[138]. The preparation of PVDF/MWCNTs/RGO/metals (Ag, 
Au, Cu) composites [190], PVDF/Ag-Cu@MWCNT or RGO 
composites [194] and PVDF/MWCNTs/graphene/Ni compos-
ites through solution blending method [192]. They observed that 
the incorporation of mutli-component conductive fillers in the 
PVDF matrix contributed to the improvement in EMI SE per-
formance of composites, resulting from the synergistic between 
the multiple phase conductive fillers [138, 167, 190, 192, 194]. 
Moreover, The preparation of PVDF/MWCNTs/BT-GO compos-
ites [184], PVDF/MWCNTs/RGO-MnFe2O4 composites [185], 
PVDF/PANI@Fe3O4@SWCNTs [75], PVDF/PANI@Fe3O4@
RGO composites [44], and PVDF/HFP/MWCNTs/Fe3O4/ionic 
liquid (IL) composites [137] through solution blending method. 
Peymanfar et al. obtained PVDF/La0.8Sr0.2MnO3/La/Sr nanocom-
posites through solution blending and hot pressing methods [127]. 
Both works identified that the binary component conductive fillers 
combined with either dielectric fillers or magnetic fillers can pro-
duce higher EMI SE preformance [44, 75, 127, 184, 185]. Kumar 
et al. prepared PVDF/graphene/TiO2/MTT composites through 
solution blending method. They reported that conductive filler 
combined with binary-component dielectric fillers are embedded 
into the PVDF matrix, which will be helpful to obtain an good 
EMI shielding materials [193].

What’s more, Biswas et al. prepared PVDF/MWCNTs/RGO@
BT@Fe3O through melt blending method [189], Bhattacharjee 
et al. prepared PVDF/MWCNTs/carbon nanosphere (CNS)@
Fe3O4@SiO2 composites through solution blending and hot press-
ing methods. They also found that in addition to excellent conduc-
tivity (from MWCNTs, RGO, CNS), dielectric (from BT, SiO2) and 
magnetic property (from Fe3O), RGO@BT@Fe3O4 and CNS@
Fe3O4@SiO2 particles possess good heterogeneous boundaries 
with multiple scattering and interfacial polarization, resulting in 
exhibiting excellent EMI SE performance of composites.

Influence factors on the EMI SE performance 
of PVDF‑based composites

According to theory of electromagnetic wave shielding 
effectiveness, many factors influence the shielding effec-
tiveness of the material, containing electrical conductivity, 
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magnetic conductivity, dielectric constant, thickness and 
structure of the material, etc. Thus, the factors affecting 
the shielding performance of PVDF-based composites 
mainly containing filler (such as content, type, morphol-
ogy, size, synthesis conditions, dispersion state in the 
PVDF matrix), the β phase fraction and content of PVDF, 
thickness and structure of composites.

The filler factors

Type and content of filler

As an electrical insulator, PVDF has a poor EMI SE per-
formance, incorporating conductive, dielectric or magnetic 
fillers in the PVDF matrix will obtains different EMI SE 
performance. Sabira et al. obtained PVDF/graphene com-
posites, the maximum EMI SE of 47 dB in X band [52]. 
Meher et al. prepared PVDF/PANI composites, the maxi-
mum EMI SE of 65 dB in X band [80]. Sutradhar et al. 
prepared PVDF/Co2U-type hexaferrite composites, the 
maximum EMI SE of 60 dB in X band [81]. Zhang et al. 
prepared PVDF/Ni chains composite, the maximum EMI 
SE of 26.8 dB in X band [63]. Aepuru et al. prepared 
PVDF/RZnO composites, the maximum EMI SE of 8 dB 
in X band [24].

In addition, some studies show that the addition of more 
component fillers in PVDF matrix exhibited higher EMI 
SE performance. Liang et al. prepared PVDF/graphene/Ni 
chains composites, the maximum EMI SE of 51.4 dB in 
X band [14]. Zeng et al. obtained PVDF/MWCNTs/Ni@
MWCNTs composites, the maximum EMI SE of 51.4 dB 
in X band [138]. What’s more, Biswas et al. studies the 
effect of the addition of different magnetic phase (here 
inverse-spinel ferrites, MFe2O4 (M = Fe, Co, Ni)) on EMI 
SE performance of PVDF/PC/MWCNTs composites. They 
found that Fe3O4 particles possess high magnetic prop-
erties than CoFe2O4 and NiFe2O4, have more helpful to 
improve the absorption-dominated EMI SE performance 
of composites [155]. This indicated that the careful selec-
tive of fillers type plays a crucial role in determining prod-
uct performance.

It’s worth noting that the content of fillers also affects 
the EMI SE performance of PVDF-based composites. 
Zhao et al. prepared PVDF/Ni chains composites, they 
found that when the Ni content increased from 3 wt% to 
6 wt%, the σDC electrical conductivity was increased by 
9 orders of magnitude resulting from the conductive net-
work of Ni chains had formed within the PVDF matrix 
with the 6 wt% Ni content, and with a further increase 
in the Ni chains content (12 wt%), the composite’s elec-
trical conductivity of correspondingly was marginally 
increased. Moreover, the increase in the interface areas 

as the increased Ni chains content, led to the formation 
of greater amounts of equivalent micro-capacitors in the 
PVDF composites, resulting in a higher permittivity. Thus, 
with a high concentration of Ni (12 wt%), the higher EMI 
SE performance emerged [47]. Sutradhar et al. prepared 
PVDF/BH composites, they observed that 20 wt% of BH 
loaded PVDF-based composite shows better EMI SE per-
formance than 10 wt% of BH, due to higher concentration 
of magnetic fillers leads to excellent permeability, per-
mittivity, and dielectric loss [26]. Aepuru et al. prepared 
PVDF/RZnO composites, they also reported that as the 
increase in RZnO percentage, leads to higher permittiv-
ity, resulting in improvement on the EMI SE efficiency 
of PVDF/RZnO composites [24]. Therefore, in practical 
application, it is necessary to comprehensively consider 
the conductivity, mechanical properties and EMI SE per-
formance of shielding materials, to determine the type and 
optimal dosage of fillers.

Morphology and size of fillers

The EMI SE performance of the composites also depend-
ing on the morphology and size of the introduced fillers. 
Arief et  al. prepared PVDF/MWCNTs composites with 
micro flowers rods, and microspheres structure Co-Ni par-
ticles, they found that due to the higher surface roughness 
of Co-Ni micro flower have good dispersibility and uni-
formity in the polymer matrix, PVDF/MWCNTs/micro 
flower structure Co-Ni composites shown the best EMI SE 
performance[[[ [79]. Li et al. prepared PVDF/ MWCNTs@Co 
flowers or Co chains composites, they observed that with the 
same Co content, the EMI SE performance of PVDF/MWC-
NTs@Co chains is superior to that of PVDF/MWCNTs@Co 
flowers, resulting from the unique dimensional chain-like 
structure of Co chains, which was beneficial for improves 
conductive interface between MWCNTs and PVDF and ori-
entation polarization [134]. Zeraati et al. prepared PVDF/
MWCNTs/metal nanoparticles composites, they investi-
gated the effect of geometry of metal nanoparticles such as 
nickel nanowires (NiNWs), AgNWs, nickel nanoparticles 
(NiNPs), and silver nanoparticles (AgNPs) on EMI SE per-
formance of composites [136]. They found that the metal 
nanoparticles added into the PVDF/MWCNTs blends leads 
to the improvement of dispersions state of MWCNTs, and 
the high aspect ratio of nanowires of metal nanoparticles 
was beneficial to formed a strong interconnected conductive 
network, resulting in higher EMI SE performance. Carbons 
with high aspect ratio have advantages in both electrical con-
ductivity and specific surface area, so the influence of the 
aspect ratio of carbon on EMI SE performance cannot be 
ignored. Lee et al. prepared PVDF/CF composites, and they 
reported that the EMI SE performance decreased with the 
decrease in the filler’s aspect ratio [92]. Song et al. prepared 
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PVDF/poly(ethylene terephthalateco-1,4-cylclohexylen-
edimethylene terephthalate) (PETG)/CF/CB composites, 
they observed that PVDF/PETG/long CF/CB composites 
exhibited better EMI SE performance than PVDF/PETG/
short CF/CB composites, due to the better synergistic effect 
between long CF and CB [143].

Additionally, the size of fillers also could can affect the 
EMI SE performance of PVDF-based composites. Biswas 
et al. prepared PVDF/PC/MWCNTs/Fe3O4 composites, and 
studied the effect of shape (like spherical, cubic, cluster, 
flower) and size (15 nm, 25 nm,75 nm, 100 nm, 150 nm) 
of the Fe3O4 nanoparticles on the EMI SE performance of 
composites. They reported that PVDF/PC/MWCNTs com-
posites with spherical shaped Fe3O4 (15 nm) nanoparticles 
exhibits excellent EMI SE, due to the smaller size spherical 
shaped Fe3O4 nanoparticles provides excellent dispersibility 
in PVDF matrix [154]. Gargama et al. prepared PVDF/µ-Ni 
composites [89] and PVDF/n-Ni composites [35], they 
found that the maximum EMI SE of 23 dB and 42.87 dB 
was achieved in X band for the PVDF/40 vol% µ-Ni and 
PVDF/35 vol% n- Ni composites respectively, while the 
thickness of composites was 1.95 mm. Ram et al. obtained 
PVDF/particulate nano carbon composites, they reported 
that particulate nano carbon filler which with smallest par-
ticle size and the highest surface area incorporated into 
PVDF matrix, resulting in highest conductivity and EMI 
SE performance [102]. Moreover, Joseph et al. prepared 
PVDF/micron sized BT composites and PVDF/nano sized 
BT composites, they found that the PVDF/ nano sized BT 
composites exhibits better dielectric properties and EMI SE 
performance, due to the small size of nanoparticles was ben-
eficial to the increase of the number of dipoles and the effec-
tive dispersion of BT in the PVDF matrix [31]. Interesting, 
Peymanfar et al. prepared PVDF/CuCo2S4 composites, they 
found that the largest particle size of CuCo2S4 showed better 
EMI SE performance, due to its high complex permittivity, 
magnetic loss, and impedance [83]. The above research indi-
cated that the fillers with different morphologies can exhibit 
exciting behavior, resulting from their distinct properties 
associated to various size and shape anisotropies.

Synthesis conditions of filler

As we all known, the morphology and performance of fillers 
is governed by that of synthesis conditions. In Sundararaj’s 
group work, they synthesized nitrogen-doped nanotubes(N-
MWCNTs) and undoped MWCNTs by chemical vapor depo-
sition technique, then prepared PVDF/N-MWCNTs com-
posites and PVDF/MWCNTs, they reported that the types 
of the N-MWCNTs which synthesized by Co catalyst shows 
superior electrical and EMI SE performance, resulting from 
its high synthesis yield, high aspect ratio, low nitrogen con-
tent, numerous polarizable centers of N-MWCNTs and good 

dispersion of N-MWCNTs [33]. In addition, the synthesis 
temperature has an effect on the and EMI SE performance of 
PVDF-based composites [32, 118]. In addition, they found 
that the electrical conductivity of MWCNTs could optimized 
by varying the synthesis temperature (550 oC, 650 oC, 750 
oC, 850 oC and 950 oC), the relatively low synthesis tempera-
ture of MWCNTs was benefit to obtained a good electrical 
conductivity and EMI SE performance [34, 115, 116]. More-
over, Choudhary et al. prepared PVDF/MWCNTs compos-
ites, they observed that the lower synthesis temperature (800 
oC) of MWCNTs leads to superior electrical conductivity 
and EMI shielding behavior [32]. The results indicated that 
the lower synthesis temperature of carbons would causing 
better shielding performance. On the contrary, for PVDF/
carbon-metal composites, the higher carbon-metal synthesis 
temperature was more help to obtain good EMI SE perfor-
mance. In Sahoo’s group work, they obtained PVDF/Co@C 
composites [77], PVDF/Ni@C composites [118] and PVDF/
Fe3C@C composites [117], they found that the higher syn-
thesis temperature(1000 oC) would leads to higher amounts 
of graphitic carbon and high saturation magnetization, which 
corresponding to produce higher electrical conductivity and 
magnetic permeability, resulting in better EMI SE perfor-
mance [77, 117, 118].

State of dispersion of fillers

Some studies were showed that higher loadings of fillers 
tend to agglomerate thereby leading to detrimental effects 
on the structural and EMI SE performance of the PVDF-
based composites [40]. Therefore, achieving higher EMI SE 
at lower fractions of fillers is the current challenge as this 
also ensures the structural integrity of the nanocomposites. 
To address this challenge, taking some measures including 
processing method of composite, orientation distribution, 
surface functionalization, the designing of co-continuous 
structures and the selective localization of fillers, to facilitate 
better dispersion of fillers in the PVDF matrix.

The orientation distribution fillers had remarkable influ-
ences on the percolation threshold, dielectric and electrical 
properties of PVDF-based composites [17, 40, 87, 105]. 
Xu et al. fabricated PVDF/oriented Ni chains nanocompos-
ites, they reported that rotational orientation method was 
beneficial for improve the dispersion of magnetic materials 
in the polymer matrix, thus enhancing in both microwave 
absorption and EMI SE performance [17]. Kumar et al. pre-
pared PVDF-hexafluoropropylene (HFP)/aligned asymmet-
ric conducting RGO composites, they reported that due to 
the good dispersion of RGO in PVDF-HFP matrix and the 
strong specific interaction between RGO and PVDF-HFP 
matrix, the RGO was oriented and asymmetric distributed in 
PVDF-HFP matrix, and this asymmetric highly electrically 
conducting composites exhibited high EMI SE profermance 
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[107]. Gebrekrstos et al. prepared PVDF/oriented MWCNTs 
composites, they also found that the alignment of MWCNTs 
was beneficial to improve the electrical conductivity and 
EMI SE performance [108]. The results demonstrated that 
ordered arrangement of fillers in the PVDF matrix can be 
used to design an efficient EMI shielding materials.

The surface functionalization of fillers was help to 
facilitate better dispersion of fillers in the PVDF matrix. 
Eswaraiah et al. prepared PVDF/acid-functionalized gra-
phene composites [87], Kumar et al. prepared PVDF/acid 
functionalization of MWCNTs composites [39, 40], Sharma 
et al. prepared PVDF/MWCNTs modified with IL compos-
ites [105]. The results observed that the surface function-
alization of carbons obtains a good dispersion, resulting in 
an efficient EMI SE with lower loadings of the fillers [39, 
40, 87, 105]. Besides, solution blending composites showed 
better EMI SE properties than melt blending composites 
[39, 40]. This indicated that a good dispersion of fillers and 
selects the appropriate processing method would ensure 
good EMI shielding of PVDF-based composites to design 
flexible EMI shielding materials which can find use in com-
mercial applications.

Moreover, dispersing the fillers in the interface of binary 
polymer blends, the electromagnetic shielding materials 
with excellent EMI SE performance can be obtained [111]. 
Sultana et  al. prepared co-continuous structure PVDF/
PS/MWCNTs composites, they observed that the MWC-
NTs mainly selective locates in PVDF phase resulting in 
increased EMI SE of composite [111]. Since most of the 
polymers are immiscible with each other, selective localiza-
tion of fillers takes place depending on relative affinity of 
fillers towards different polymer phases [112, 187]. Yang 
et al. prepared co-continuous structure PVDF/polyketone 
(POK)/MWCNTs nanocomposites, they reported that 
MWCNTs mainly selective locates in POK phase due to 
MWCNTs has the better compatibility with POK, resulting 
in low percolation threshold and high EMI SE performance 
[112]. Biswas et al. prepared PVDF/PC/MWCNTs-MnO2/
RGO@Fe3O4 composites, they found that all particles were 
selectively localized in PVDF phase, resulting in higher 
adsorption-dominated EMI SE peofermance [187]. These 
results indicated that the selective localization of fillers in 
one phase, which facilitate well EMI SE at lower loadings. 
In addition, the thermodynamic and kinetic factors could 
influence selective localization of fillers [110]. Salehiyan 
et al. prepared PVDF/PLA blends by MWCNTs interfacial 
localization, they observed that MWCNTs localized at the 
interface of PVDF/PLA blends by kinetic driving [110]. 
Besides binary polymer blends, the designs of ternary 
continuous structures could also help to improve the EMI 
shielding performance of composites. Dou et al. prepared 
tri-continuous structure PVDF/PS/HDPE ternary blends 
containing MWCNTs, they found that MWCNTs can be 

selective located in interfacial PS phase by tuning the ther-
modynamic and kinetics conditions which leading to an 
ultralow percolation threshold of 0.022 vol%, and obtained 
an excellent EMI SE performance at lower content of MWC-
NTs [20]. Zha et al. obtained PVDF/ethylene-α-octene block 
copolymer (OBC)/MWCNTs composites, they reported that 
due to the affinity between OBC and virgin MWCNTs, the 
filler of MWCNTs was distributed in the interface of PVDF/
OBC blends [109].

Furthermore, the combination of surface functionaliza-
tion of fillers and continuous structures not only improves 
the dispersion of fillers in the polymer matrix, but also 
could help to selective localization of fillers in the target 
position, resulting in high EMI SE performance at lower 
content of fillers. Kar et al. synthesized PMMA wrapped 
MWCNTs (PMMA-MWCNTs) via in situ polymerization 
and prepared PVDF/acrylonitrile butadiene styrene (ABS)/
PMMA-MWCNTs to constructing ternary continuous, they 
reported that PMMA wrapped MWNTs not only improved 
the dispersion, but also can be localized at the interface of 
the PVDF/ABS blends to increase the local concentration 
of MWCNTs, resulting in significantly improvement in EMI 
SE performance [106]. Additionally, In Bose’s group work, 
they modified MWCNTs with pyrenebutyric acid (PBA), 
3,4,9,10-perylenetetracarboxylic dianhydride (PTCD), 
hydrazono methyl phenol (AHB) or IL via π–π stacking to 
facilitates its better dispersion in PVDF matrix, the surface 
of magnetic particles (such as /nickel ferrite (NF), cobalt 
ferrites (CFs), or Fe3O4 ) were introduced amine-terminal 
groups to chemically grafted onto modified-MWCNTs 
(MWCNTs-magnetic particles), and obtained PVDF/PC/
MWCNTs/NF composites [149], PVDF/poly(styrene-co-
acrylonitrile) (SAN)/MWCNTs-NF or CFs composites 
[150], PVDF/ABS/PTCD-MWCNTs-Fe3O4 composites 
[151], PVDF/PC/MWCNTs-Fe3O4 [59], PVDF/ABS/MWC-
NTs-Fe3O4 composites [152] and multi-layered PVDF/PC/
MWCNTs- Fe3O4 composites [60]. They found that the 
MWCNTs-magnetic particles selectively localized in the 
PVDF phase, the modification of MWCNTs can improves 
its dispersion and connectivity between the MWCNTs and 
synergy with co-continuous structures which further result-
ing in enhanced electrical conductivity and low percolation 
value, which leading to ideal EMI SE performance. These 
results indicated that modification of MWCNTs and selec-
tively localizing through co-continuous blends could be sig-
nificantly enhances the EMI SE performance [59, 149–151].

In addition, the fillers were selectively localized in dif-
ferent phases, the EMI SE performance was many folds 
higher than when they were localized in the same phases 
[38, 149, 153, 186, 188]. Thus, it is also a noteworthy 
method that modify the surface of fillers of different com-
ponents and distribute them in the different target polymer 
phase. In Bose’s group work, they prepared PVDF/PC/
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PANI-MWCNTs-Fe3O4/BT composites which BT posited 
in PC phase and PANI-MWCNTs-Fe3O4 selectively local-
ized in PVDF phase [186], and PVDF/SMA/MWCNTs/
NiFe composites [38] which MWCNTs was amine func-
tionalized on the surface to posited in the SMA phase (due 
to amine–anhydride coupling), NiFe particles localized on 
the PVDF due to thermodynamics, they obtained PVDF/
PC/MWCNTs/RGO@BT@Fe3O4 composites [188], PVDF/
PC/MWCNTs/NF composites [149] and PVDF/PC/PMMA/
MWCNTs/barium ferrite (BF) composites [153] which 
MWCNTs selectively localized in PVDF phase, and RGO@
BT@Fe3O4, NF or BF posited in PC phase. They observed 
that the dispersion of conductive fillers and magnetic fill-
ers in different polymer phases generates a large number of 
interfaces leading to improve dielectric properties, which 
facilitated to improve the EMI shielding performance of the 
composites, except for the high electrical conductivity (from 
conductive fillers) and magnetic properties (from magnetic 
particles). The result showed that the designs of continu-
ous structures and the selective localization of fillers will be 
helpful to the improvement in EMI SE performance at lower 
loadings of the nanofiller [149, 153, 186, 188].

β Phase fraction and content of PVDF

Many research showed that the β phase of PVDF exhibited 
a better piezoelectric, ferroelectric and pyroelectric proper-
ties, which was beneficial to improve dielectric properties 
and EMI SE performance. As a consequence, there many 
researchers are more tend choose the suitable fillers to 
improve the β phase content in PVDF matrix. Kar et al. fab-
ricated PVDF/exfoliated graphite submicron platelets (GPs) 
composites, they reported that 0.5 wt% GPs in the PVDF 
matrix significantly improving the β phase of PVDF result-
ing in the improvement on the dielectric properties, which is 
responsible for the good EMI SE performance [51]. Sabira 
et al. obtained PVDF/graphene composites, they observed 
that the filler of graphene can improve the β phase of PVDF, 
resulting in a high EMI SE performance [52]. What’s more, 
Meher et al. prepared PVDF/PANI/IL composites, they 
reported that the presence of IL resulting in the improvement 
of β phase of PVDF, and the dielectric properties and EMI 
SE performance of the composites have been increased with 
the development of β phase of PVDF [80]. Additionally, 
Soares et al. added IL to PVDF-co-HFP/PANI composites, 
they found that the addition of PANI in the amount of 30 
wt% and the presence of IL could improves the β phase of 
PVDF originating a good dielectric properties, resulting in 
an excellent EMI SE performance [123].

In addition, the content of PVDF could affects the 
mechanical properties and EMI SE performance of com-
posites. Lee obtained core-shell PVDF/PEDOT nanofiber 
composites [22], they found that the relatively poor fillers 

doping when the PVDF with lower content, while the high 
resistance measured in the higher content of PVDF, and the 
nanofiber composites composed of 16 wt% PVDF, resulting 
in the highest SE and superior mechanical properties. The 
results indicated that the EMI SE performance of composites 
can be adjusted by changing the PVDF content.

Thickness and structure of composites

According to the mechanism of EMI shielding effective-
ness, the entering power was reflected, and it had been 
scattered and absorbed several times at the polymer and 
the filler’s interface. A larger interface area and fillers con-
tent would produce higher EMI SE [41, 203]. Thus, for the 
PVDF-based composites, the EMI SE performance were 
effectively tuned by controlling the composite’s thick-
nesses [45]. Zhao et al. prepared PVDF/Ni chains com-
posites, they observed that the EMI shielding performance 
of composites was increased with increasing thickness, 
and the average EMI performance of the PVDF/6 wt% 
Ni chains composites at thicknesses of 0.2 mm, 0.3 mm, 
0.4 mm, and 0.5 mm were 15.4 dB, 24.7 dB, 30.3 dB, and 
35.4 dB, respectively [47]. What’s more, they prepared 
PVDF/carbon (MWCNTs or graphene)/Ni chains compos-
ites, they reported that increasing the thickness of compos-
ites can significantly improves the EMI SE performance, 
due to the increase of composites thickness, the concentra-
tion of conductive fillers and the interface area between 
fillers and PVDF was increased, causing the improvement 
in the reflection and absorption effect of composites on 
electromagnetic wave, and the total shielding of the PVDF/
graphene/6 wt% Ni chains composites increased from 23.6 
to 57.3 dB and, as their thicknesses were increased from 
0.3 to 0.6 mm [45]. In addition, Bhaskara Rao et al. pre-
pared PVDF/MWCNTs composites and design multilayer 
structure by stacking techniques [119]. They reported that 
the multilayer stacking can increase the EMI SE of com-
posites, due to the introduction of multilayer structure not 
only increases the thickness of composites and fillers con-
tent, but also can obtain a large the interface area between 
each layer leading to multiple reflections and dielectric 
loss, which was beneficial to the improvement in EMI SE 
performance of composites. The maximum EMI SE of 
25 dB was obtained for 1 layer sample of 0.3 mm thick-
ness and further improving to 32 dB by 3 layers stack it 
(0.9 mm thickness). This result indicated that apart from 
adjusting thickness of composites, an effective structural 
design also can further improve EMI SE performance of 
composites.

Studies have shown that different structure (multilayer 
structure, sandwich structure, porous structure, segregated 
structure) of PVDF-based composites have different EMI 
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SE performance. Sandwich structures is a kind of multi-
layer structure which has different outer and inner layers, 
and individual performance of composites of each layer can 
be tailored to achieve the right combination of performance. 
Qi et al. prepared PVDF/graphene, PVDF/MWCNTs and 
PVDF/Ni composite layers and make a 3-layered sandwich 
structure composites [46]. They found that the overall shield-
ing performance could be further improved by increasing the 
thickness of the EMI shielding layer and the number of lay-
ers, and the novel 3-layered sandwich structure composites 
possess a high EMI SE performance, especially 3-layered 
sandwich structure composites which with a unique order 
of graphene-Ni-MWCNTs. Yang et al. prepared sandwich 
structure PVDF/MXenes/AgNWs composites [142]. They 
observed that the multiple reflection between neighboring 
conductive layers, resulting in an outstanding EMI SE of 
sandwich structure composites. Sushmita et al. obtained 
multilayered sandwich structure composites, which blend-
ing individually with unique order of PVDF/10 wt% RGO-
Fe3O4 or PVDF/10 wt% MoS2-Fe3O4 composites-PMMA 
composites-PC/3 wt% MWCNTs composites. They found 
that this unique arrangement of a multilayered assembly sup-
pressed EMI primarily by absorption [191]. In Bose’s group 
work, they obtained sandwich-structured composite films by 
layer-wise assembly, which the PVDF/Fe@CF composites 
in the top and bottom, PVDF/MWCNTs composites in the 
middle layer, they also observed that the sandwich structured 
composites showed a significant improvement in EMI SE 
performance, resulting from the synergistic effect of each 
individual layer [129]. In particular, they prepared PVDF/
MWCNTs composites and designed sandwich-structured 
composites via stacking method, they found that careful con-
trol of different layers in this layer-wise assembly, facilitate 
significantly improves EMI SE performance [130]. And, 
they obtained multilayered thin polymer composites through 
stacking method [156], the PVDF/PC/MWCNTs/manganese 
ferrite composites as the outer layers, the porous structure 
PVDF/PC/MWCNTs composites as the inner layers. They 
reported that the composites possess excellent EMI absorp-
tion, sandwich structure and the middle porous layers also 
could exhibit multiple reflections. The result indicated that 
the sandwich structure composites can be fabricated with 
tailor-made composites through design different inner struc-
tures (sandwich structure or porous structure) and multi-
layer assembly, sandwich structure or porous structure could 
improve dielectric properties, resulting in a good EMI SE 
performance [46, 129, 130, 142, 156, 191]. Thus, porous 
construction composites potential to be used as lightweight 
high EMI shielding materials [2, 5, 15, 204].

Sharma et al. obtained porous structure PVDF/PMMA/
MWCNTs composites which selectively etching PMMA 
phases from composites, and then prepared porous struc-
tures PVDF/MWCNTs/NiFe2O4 composites through vacuum 

filtration method [157]. They found that the porous struc-
ture of composites was beneficial to improve the interfacial 
polarization and multiple reflections, resulting in a signifi-
cant improvement in the absorption-dominated EMI SE. 
As the same processing, Wang et al. prepared 3D network 
porous PVDF/MWCNTs [42], due to the unique 3D con-
struction, the porous PVDF/MWCNTs composites exhibit 
high EMI SE performance by reflecting and scattering waves 
many times in the interior of the composites, and absorption 
loss was the dominant contribution to the shielding mecha-
nism. These results indicated that porous structure was help-
ful to enhance the multiple-reflection effect and interfacial 
polarization, leading to improvement in the shielding per-
formance [42, 157]. What’s more, in Khatua’s group work, 
they prepared PVDF/PANI@Fe3O4/carbon [75] and PVDF 
PANI@Fe3O4/RGO [44] composites with porous structure 
by leaching out of the NaCl out from the composites. They 
found that the porous structure combined with continuous 
conductive network and magnetic particles resulting in an 
excellent EMI SE performance at low loading of fillers [44, 
75].

Apart from the selective etching or salt leached method, 
physical foaming such as injection molding foaming, batch 
foaming and supercritical CO2 foaming method has been 
demonstrated to be the most efficient way to prepare porous 
composites. Zhao et al. prepared PVDF/graphene nanoplate-
let (graphene) [120] and PVDF/MWCNT [19] nanocom-
posites with microcellular structure through batching foam-
ing. They reported that the microcellular structure in the 
PVDF foams could cause multiple reflection and scattering, 
which facilitated to improve the absorption-dominated EMI 
SE performance [19, 120]. Jia et al. prepared microcellular 
PVDF beads through supercritical CO2 foaming method, and 
fabricated microcellular PVDF/carbon-based filler (carbon 
black or graphene) composites by induced phase separation 
technique [121]. They reported that due to multiple reflec-
tions which resulting from the large interfacial area and the 
microporous structure of composites, the composites possess 
high EMI SE performance. Moreover, Zhang et al. prepared 
PVDF/Ni chains composites by foaming method [63]. They 
reported that due to the foaming would induce a more effi-
cient segregated structure to build the conductive pathway, 
and the microcellular structure was not only immensely 
lower the percolation threshold, but also promoted multiple 
reflections, resulting in good absorption-dominated EMI SE 
performance. Wang et al. prepared segregated PVDF/MWC-
NTs composites [122], they observed that the electrical 
MWCNTs was only lie on the interfaces of PVDF grains to 
formed the segregated structure, which forming the conduc-
tive networks and introducing numerous interfaces with the 
PVDF matrix, leading to the improvement in the conductive 
loss, and multiple reflections. Thus, the segregated struc-
ture is a very promising processing method to facilitated 
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composites possess an excellent EMI SE performance at low 
loading, resulting from the fillers was mainly lie on the inter-
faces of polymer grains in segregated composites.

Conclusion and outlook

Based on the above generalization of the PVDF-based elec-
tromagnetic shielding materials, it can be concluded that the 
application of PVDF-based composites in the field of elec-
tromagnetic shielding has been more and more extensive, 
and the research of the PVDF-based electromagnetic shield-
ing materials is indeed a very attractive work. This review 
highlighted the recent developments related to PVDF-based 
composites as promising electromagnetic shielding materials. 
Some studies show that the single fillers such as conductiv-
ity, magnetic or dielectric materials was incorporated in the 
PVDF matrix could obtain effective electromagnetic shield-
ing performance. There also have been more tremendous 
interests in PVDF-based composites with multiple-compo-
nent fillers which including binary fillers and multiple fillers, 
for electromagnetic shielding applications. The integration 
of binary fillers in the PVDF matrix, could generally create 
obvious synergetic effects and complementary behaviors, 
as well as more loss mechanisms (e.g., various polarization 
loss), which contribute to the electromagnetic shielding per-
formance greatly. To further upgrade the shielding for inci-
dent EM waves, the EMI SE performance of PVDF-based 
composites could be optimized by incorporating multiple fill-
ers (ternary or quaternary fillers). Therefore, PVDF-based 
composites with ternary or quaternary fillers are making 
breakthroughs and are becoming a popular approach for high-
performance electromagnetic shielding materials. Addition-
ally, there are many factors influence the shielding effective-
ness of the PVDF-based composites containing fillers (such 
as the content, type, morphology, size, synthesis conditions, 
dispersion state of fillers in the PVDF matrix), the β phase 
fraction of PVDF, thickness and structure of composites and 
so on. In spite of extensive research efforts, the PVDF-based 
composites with high EMI SE performance under lower load-
ing of fillers and minimum thickness still remains challeng-
ing. Significantly, designing of binary or ternary continuous 
structures and the selective localization of fillers facilitated 
the improvement of EMI shielding performance at low load-
ings. Moreover, designing the multilayer structure, sand-
wich structure, porous structure or segregated structure of 
PVDF-based composites could obtain excellent adsorption-
dominated EMI SE performance. Therefore, in the future, 
the research trend of PVDF-based electromagnetic shielding 
materials tends to the preparation of PVDF-based with mul-
tiple fillers, plays the multi factors synergy, and make it have 
better shielding performance by reasonable preparation meth-
ods and optimal structural designs. In addition, functional 

particles can also be introduced to endows the PVDF-based 
electromagnetic shielding composites with special functions, 
such as flame resistance, superhydrophobicity, antiultraviolet 
aging, and so on, so as to makes them develop in the direction 
of higher performance, more intelligence and more environ-
mental protection.

Nowadays, a large part of achievements has been made 
with regard to the PVDF-based composite shielding mate-
rials. However, more and more research interest has been 
paid to the design of new structure to obtain satisfactory 
electromagnetic shielding performance, and it is still highly 
necessary to study the related fundamental scientific issues. 
For instance, it is important to understand the shielding 
mechanisms of the structure and to investigate the physi-
cal/chemical properties of interfaces as well as their effects 
on the shielding performance. Thereafter, we can reveal the 
interactions between the PVDF and other component fillers 
in composite materials and the interrelations of the electro-
magnetic shielding effects from several component fillers, 
and thus prepare the novel PVDF-based composite shielding 
materials with meeting the requirements. It is believed that 
novel PVDF-based composites with ideal compositions and 
optimal microstructures will present a bright future in the 
field of microwave shielding.
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