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Abstract
Conjugated polymers such as polyaniline (PANI), polypyrrole, and polythiophene have attracted much attention owing to 
their good electrical conductivity, stability, ease of preparation, and high application potential. Among these conjugated 
polymers, PANI has attracted much attention in the field of photocatalysis owing to its ability to absorb visible light and 
rapidly separate the photoexcited electron–hole pairs. Recently, a large number of studies have shown that PANI can sub-
stantially increase the photocatalytic activity under both UV light and natural sunlight irradiation. Considering this most 
unique performance of PANI-based photocatalysis, the applications of PANI in the preparation of composite photocatalysts 
for the photocatalytic degradation of dyes, pharmaceuticals, and pesticides are summarized. In this review, the preparation 
methods, morphology, and photocatalytic properties of various composites are systematically studied. Synergistic effects 
between PANI and semiconductor nanomaterials or other carbon materials were found in many composite photocatalysts. 
Moreover, the mechanism of photocatalytic activity enhancement can be explained by analyzing the band structure of com-
posite photocatalyst.
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Introduction

In recent decades, the extensive use of organic dyes, 
antibiotics, pesticides, and other organic pollutants has 
caused large-scale environmental pollution [1–5]. To 
reduce water pollution, these pollutants are removed from 
wastewater using various technologies including biodeg-
radation, adsorption, ozonation, photocatalytic degrada-
tion, physicochemical treatment, catalytic reduction, and 
coagulation/flocculation [6]. Recently, advanced oxida-
tion processes (AOPs) have attracted much attention for 

the oxidation treatment of organic pollutants. In differ-
ent AOPs, multiphase photocatalysis is one of the green 
chemical methods for the removal of various pollutants 
with low cost, wide application, and eco-friendly charac-
teristic [7]. Electrons can be excited and transitioned from 
the valence band (VB) to the conduction band (CB), with 
irradiation at a certain wavelength on the surface of photo-
catalytic materials, leaving holes in the VB whose energy 
is equivalent to the band gap energy of the irradiated light 
[8]. The electrons and holes oxidize and reduce organic 
pollutants and mineralize these organic compounds into 
carbon dioxide, water, and inorganic acids [9]. Photocata-
lytic degradation of organic compounds using semicon-
ductor materials such as  TiO2, ZnO,  SnO2,  WO3,  ZrO2, 
 V2O5, CdS, CuO and  MoO3 has been reported [10–18]. In 
addition, semiconductor photocatalysts can also be used 
in photocatalytic hydrogen production and antimicrobial 
applications [19–21]. Although these traditional semi-
conductor photocatalysts have the advantages of high effi-
ciency, convenient preparation, high stability, reusability, 
and environmental friendliness, they have also numerous 
disadvantages as follows: (i) The surface of metal oxides 
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can only absorb less than 5% of visible and UV radiation 
for the wide bandgap, resulting in a quick recombination 
of the photoinduced electron–hole pairs and the limited 
ability to degrade organic pollutants [22]; (ii) organic 
pollutants can be completely degraded in the presence of 
semiconductor photocatalysts, but the formation of a large 
number of unwanted end products and intermediates is 
unavoidable in the oxidation of azo dyes [7]; (iii) agglom-
eration of metal oxide nanoparticles (NPs) decreases the 
surface area and active sites, reducing the photocatalytic 
performance and making it difficult to recover the catalyst 
[23]. To effectively solve the abovementioned problems 
and improve the photocatalytic activity, conductive mate-
rials have been used as electron acceptors to transfer pho-
togenerated electrons, effectively blocking the recombina-
tion of photogenerated electron–hole pairs. Among many 
conductive materials, conductive polymers with excellent 
processability, including polyaniline (PANI), polypyrrole 
(PPy), and polythiophene (PT), have been widely studied 
in basic research and industrial applications [24]. PANI 
is one of the most attractive members of the intrinsically 
conductive polymer family because of facile preparation, 
unique doping mechanism, low toxicity, low cost, large 
surface area/volume ratio, excellent environmental stabil-
ity, acid–base properties, and special redox properties [25]. 
For these reasons, PANI-based materials and composites 
have been used in numerous fields such as photovoltaics, 
anticorrosion, adsorption, biomedical equipment, sensors, 
electrochemistry, and electronics [26]. Particularly, PANI 
has a high absorption coefficient in the visible-light range 
and high mobility of charge carriers. In addition, PANI is 
an excellent electron donor and hole acceptor after irra-
diation [27]. Owing to these special properties, PANI has 
attracted much interest in photocatalysis. In this review, 

recent advanced compositions, preparation methods, test-
ing conditions, possible mechanism, and improvement in 
photocatalytic efficiency of PANI-based composites are 
summarized.

Photocatalytic decomposition of dyes

Photocatalytic degradation of organic pollutants mainly 
involves dyes such as rhodamine B (RhB), methylene blue 
(MB), methyl orange (MO), malachite green (MG), Congo 
red (CR), and crystal violet. They have become the primary 
sources of water pollution, and their toxicity and carcino-
genicity have attracted much attention [28–34]. Degradation 
of various dyes has been extensively studied in literature via 
the photocatalysis of pristine PANI or PANI-based compos-
ites [35–44].

Organic dyes can be divided in two basic groups [45]. 
Cationic dyes include a positive charge, usually localized 
on the nitrogen atom, which is balanced by a counter ion. 
MB, RhB, and safranin are important examples of cationic 
dyes and model pollutants in photodegradation. Anionic 
dyes usually carry a negative charge (sulfonic or carboxyl 
groups) and can be delivered as sodium salts. MO and CR 
are probably the most important members in this family, 
and they have been used as model substrates to evaluate the 
degradation reactivity of photocatalysts.

Degradation of MB using PANI composites

Rahman and Kar reported that the incorporation of PANI 
on  TiO2 efficiently degraded organic dye MB under UV-
light exposure, and the proposed mechanism is shown in 
Fig. 1 [46]. Under UV-light irradiation, both PANI and 

Fig. 1  Mechanism of PANI-
TiO2 photocatalytic dye 
degradation
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 TiO2 generated electron–hole pairs with synergistic effect. 
The LUMO electrons in PANI were transferred to the CB 
of  TiO2, while the photogenerated holes in the VB of  TiO2 
migrated to the HOMO of PANI. Moreover, the experi-
mental results show that 0.6 M PANI-TiO2 nanocomposite 
produced the highest dye degradation efficiency, with an 
improved efficiency of 2.5 times to pristine PANI and 3.1 
times to  TiO2.

Novel PANI-SrSnO3 (PANI/SrSnO3) binary nanocompos-
ites with different PANI contents (0 − 10 wt%) were success-
fully prepared using a simple and direct mechanical grinding 
process followed by an ultrasonic technique [47]. The XRD 
and FTIR studies exhibited the formation a standard single-
phase of orthorhombic  SrSnO3 and the presence of PANI 
with perovskite  SrSnO3. All PANI/SrSnO3 nanocomposites 
showed better photocatalytic efficiency on the degradation of 
MB dye than either free PANI or  SrSnO3 under UV irradia-
tion. Particularly, 5% PANI/SrSnO3 nanocomposite exhib-
ited excellent catalytic performance with 83% destruction 
rate of MB within 4 h, which was nearly four folds of activ-
ity than free  SrSnO3 with sufficient stability and durability.

Besides combining with semiconductor nanomaterials to 
prepare composite photocatalysts, PANI can also be used to 
construct metal-free photocatalysts. Graphitic carbon nitride 
(g-C3N4) nanosheets (CNns) were modified by codoping 
PANI with an inorganic acid (hydrochloric acid, HCl) and 

an organic acid (phytic acid, PA) [48]. As a result of the 
synergistic effect of HCl and PA codoping on PANI through 
intrachain and interchain connection (Fig. 2), PANI/CNns 
obtained the characteristics of high electrical conductiv-
ity, large specific surface area, inhibition of charge recom-
bination, and rich in free radicals, substantially improv-
ing the photocatalytic performance. When 1P1C sample 
(mPANI:mCNns = 1:1) was used, the degradation efficiency of 
MB reached 98% within 40 min under simulated sunlight 
irradiation.

Hosseini et  al. synthesized a ternary nanocomposite 
with in-situ oxidative polymerization, camphor sulfonic 
acid doped PANI-WO3-multiwall carbon nanotube (CSA 
PANI-WO3-CNT) [49]. The degradation rate of MB dye 
in 60 min illumination using this nanocomposite reached 
91.40%, higher than that of free  WO3 (43.45%), free CSA 
PANI (48.4%), and CSA PANI-WO3 binary nanocomposite 
(85.15%). A schematic illustration of MB photodegradation 
by CSA PANI-WO3-CNT is shown in Fig. 3. During light 
irradiation, the electrons of CSA PANI and  WO3 were simul-
taneously excited. The transfer of electrons from the LUMO 
of CSA PANI (− 1.63 V vs. NHE) to the CB of  WO3 (0.6 V 
vs. NHE) and the holes from the VB of  WO3 (3.58 V vs. 
NHE) to the HOMO of CSA PANI (0.8 V vs. NHE) occurred 
for the appropriate band alignment between the inorganic 
semiconductor  WO3 and the polymeric semiconductor 

Fig. 2  Schematic displaying the 
preparation of PANI/CNns and 
the doping behavior of PA and 
HCl with interchain, intrachain, 
and interchain/intrachain doping 
on PANI
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CSA PANI. Therefore, the electron–hole recombination 
was hindered. The transferred holes on the HOMO of CSA 
PANI reacted with  H2O to form hydroxyl radicals  (OH•), 
whereas the electrons in the CB of  WO3 reacted with oxy-
gen molecules and  H+, producing  H2O2 to further provid-
ing  OH• radicals. Finally, the  OH• radicals reacted in turn 
with MB molecules to produce  CO2 and  H2O. The CB of 
 WO3 was not conducive to the standard redox potential of 
 O2/O2

•− (− 0.046 V vs. NHE); therefore, superoxide anions 
 (O2

•−) cannot be obtained. The decomposition percentage of 
MB further increased in the presence of COOH-MWCNT, 
which could be the results of more negative energy position 
of CNT (− 0.1 V vs. NHE) than the standard redox potential 
of  O2/O2

•− and more  OH• radicals were generated.
Zhao et al. prepared a novel nontoxic  BiVO4-GO-TiO2-PANI 

(BVGT-PANI) composite with excellent photocatalytic perfor-
mance in a one-pot hydrothermal reaction [50]. Under visible-
light irradiation, PANI-modified BVGTA showed stronger 
photocatalytic activity for the degradation of MB than BVG 
 (BiVO4-GO) and BVGT  (BiVO4-GO-TiO2), indicating a syn-
ergistic effect in the hybrid materials of polymer chain, GO 
flakes, and metal oxides. BVGTA showed the highest kapp rate 
constant of about 1.06 ×  10−2  min−1, which was 1.63 times faster 
than BVG and 2.94 times faster than BVGT. In addition, in vitro 
toxicity tests against Bacillus subtilis and Staphylococcus aureus 
showed that the nanometer photocatalyst was nontoxic. A sche-
matic diagram of dye/phenol degradation using BVGT-PANI is 
shown in Fig. 4.

PANI can be combined with semiconductor nanomateri-
als such as titanium oxide, bismuth-based nanomaterials, 
ZnO, NiO,  WO3, and  SnO2 to prepare binary composite pho-
tocatalysts. Besides semiconductors, carbon-based materials 
such as carbon nanotubes (CNTs), graphene oxide (GO), and 
graphitic carbon nitride (g-C3N4) are suitable options for 
the hybridization of PANI. To achieve better photocatalysis, 

metal-oxide NPs, carbon-based materials, and other poly-
mers together with PANI have been used to synthesize ter-
nary or quaternary organo-inorganic photocatalytic nano-
composite materials to degrade MB under visible or UV 
light. The recently developed PANI-based materials as well 
as the photocatalytic testing conditions, and photodegrada-
tion efficiency for MB are shown in Table 1.

Degradation of RHB using PANI composites

RhB  (C28H31ClN2O3) is widely used as a model molecule in 
the photodegradation of cationic xanthene class dye.

Steplin Paul Selvin et al. prepared zinc oxide activated 
charcoal PANI (ZACP) nanocomposite using a simple 
precipitation method [77]. The as-synthesized photocata-
lyst exhibited more photocatalytic activity than free ZnO 
on the degradation of RhB under visible-light irradiation, 
as the results of photosensitization and electron–hole pair 
separation by PANI in the composites were obtained. Also, 
the minimum loss of activity in recycling three times sug-
gested good stability of the composite materials. Moreo-
ver, the mineralization of RhB was confirmed by evaluating 
chemicals and toxicity. A possible reaction mechanism of 
photocatalytic degradation of RhB in the presence of ZACP 
under visible-light irradiation is shown in Fig. 5. Com-
pared with the CB and VB positions of ZnO, the LUMO 
and HOMO levels of PANI are higher. Under visible-light 
irradiation, PANI transfers excited electrons from the π 
orbital to the π* orbital. These excited electrons are trans-
ferred from the LUMO of PANI to the CB of ZnO and react 
with water and oxygen to form hydroxyl and superoxide 
radicals. These hydroxyl and superoxide radicals react with 
the dye to form less toxic substances. Therefore, the addi-
tion of PANI can effectively separate rapid photogenerated 

Fig. 3  Schematic presentation of photocatalytic mechanism for MB 
degradation in the presence of CSA PANI-WO3-CNT

Fig. 4  Schematic diagram of dye/phenol degradation process
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electrons, thus improving the photocatalytic activity of 
ZACP nanocomposites.

In a pioneering work, Sayed et al. prepared  CeO2-PANI 
and  ZrO2-PANI composites in a solvent system of chloro-
form and 2-butanol [78]. The photocatalytic results showed 
that the degradation rate of RhB in 60 min of photolysis 
was 35 and 34% by  CeO2-PANI and  ZrO2-PANI, respec-
tively. Photosensitization mechanism of PANI–ZrO2/CeO2 

composite is shown in Fig. 6. The degradation products of 
RhB were quantitatively analyzed by LC–MS and GC–MS, 
and the specific degradation pathways were given. The 
degradation product at m/z of 415 is the deethyl product of 
RhB, probably due to the direct photolysis of RhB or the 
attack of •OH on RhB molecules. The degradation product 
with an m/z value of 387 can be attributed to the elimina-
tion of N substitutions in RhB molecule and the formation 

Table 1  Photocatalytic decomposition of MB on polyaniline composites

Photocatalyst Irradiation 
Source

Total Irradiation 
Time (min)

Optimal  
Degradation
Efficiency (%)

Optimal Rate 
Constant
(min−1)

References (Year)

Biotemplate-SnO2-PANI Visible 210 91.36 [28] (2016)
PANi-NiO Visible 300 76 0.005 [31] (2019)
GO/PANI/TiO2 UV 60 98.9 [34] (2020)
PAni-TiO2 UV 75 100 [40] (2020)
PANI-TiO2 UV 90 86.35 0.022 [46] (2020)
PANI/SrSnO3 UV 240 83 0.008 [47] (2019)
PANI/g-C3N4 Visible 40 98 [48] (2019)
CSA PANI-WO3-CNT Visible 60 91.40 0.044 [49] (2020)
BiVO4-GO-TiO2-PANI Visible 180 85 0.001 [50] (2019)
PANI/MS-TiO2 Visible 150 99.5 0.017 [51] (2016)
carbonized PANI/TiO2 UV 60 100 0.078 [52] (2017)
BiPO4-PANI UV 120 95.8 [53] (2018)

Visible 480 87.3
Pani/Fe-TiO2 UV 150 23 0.003 [54] (2019)
BaZn0.2Co0.2Sn0.4Fe11.2O19/PANI Visible 60 80 0.030 [55] (2019)
Pani/SiC-Fe UV 300 22 0.001 [56] (2019)
Fe2O3@PANI-o-PDA Visible 7200 95 0.001 [57] (2019)
MoSe2-PANI Visible 120 65 [58] (2019)
Co2TiO4/
CoTiO3/Polyaniline

Visible 120 94.5 [59] (2019)

PANI-capped ZnO UV 180 74 0.007 [60] (2020)
Fe3O4@TiO2-PANI-Ag Visible 90 100 0.004 [61] (2020)
BiVO4/GO/PANI Visible 180 73 0.001 [62] (2020)
PANI/ZnO Visible 80 99.99 0.140 [63] (2020)
PANI/WO3 Visible 120 84 [64] (2020)
PANI/BiVO4/cellulose aerogel Visible 60 99.72 [65] (2020)
g-C3N4-PANI-PPy Visible 50 95.5 0.006 [66] (2021)
PANI/NiO UV 30 100 0.168 [67] (2021)

Visible 30 100 0.182
Bi2O3/PANI Visible 150 96.4 0.016 [68] (2021)
ZnO–MoS2-PANI Visible 60 99.6 [69] (2021)
PANI-rGO-ZnO Visible 100 95 0.030 [70] (2021)
Bi2O3@PANI UV 120 98.3 [71] (2021)
PANI-ZnO-Ho2O3-Sm2O3 Visible 60 94.7 0.047 [72] (2021)
Ag/PANI/ZnTiO3 Visible 25 95.6 [73] (2021)
PANI UV 30 92 0.118 [74] (2021)
NPANI 83 0.048
PANI-ZnO UV 150 95 0.071 [75] (2021)
PANI-Ag/ZnS UV 60 94 0.651 [76] (2022)
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of N-deethyl degradation product. Then, it was replaced by 
•OH digestion to produce a degradation product with an 
m/z of 122. The degradation product with an m/z of 138 is 
formed mainly due to the two-step reaction between •OH 
and RhB molecules. The first step is hydrogen extraction 
reaction, and the second step is •OH addition reaction. A 
GC–MS analysis showed that the product with an m/z of 
154 was the hydroxylation degradation product. The struc-
ture of RhB is further damaged by •OH, and a degradation 
product with an m/z of 132 is formed, also indicating that 
the synthetic material makes the molecular degradation of 
RhB close to mineralization.

Feng et al. reported the in-situ polymerization of PANI 
on the surface of  Bi2MoO6 nanosheets to produce PANI/
Bi2MoO6 nanocomposites, and the application for the 
visible-light-driven degradation of RhB [79]. As shown in 
Fig. 7, the molecular PANI layers covered the surface of 
flower-like  Bi2MoO6 microspheres, which were composed 

of ultrathin nanosheets (13.8 ± 1.6 nm), and the intrinsic 
crystallinity of  Bi2MoO6 was preserved in the polymeriza-
tion of PANI. The optimized photodegradation rate for RhB 
reached up to ~ 100% in 120 min in the presence of  PANI0.5/
Bi2MoO6. The degradation was consistent with a first-order 
kinetics with a high apparent rate constant of 0.0335  min−1 
and acceptable recycling stability. Mechanism studies 
showed that both PANI and  Bi2MoO6 in the nanocompos-
ites can be excited to produce induced electrons and holes 
under visible-light irradiation.  Bi2MoO6 ultrathin nanosheets 
covered with PANI molecules provided sufficient active sites 
for the aggregation of these electrons to capture oxygen mol-
ecules and produce superoxide radicals. Both the holes and 
superoxide radicals can degrade organic pollutants directly 
and played an important role in improving the photocatalytic 
performance.

Recently, Yu et al. studied the removal of organic pol-
lutants such as RhB and phenol in high-salinity wastewa-
ter using  Ag3PO4/PANI/Cr:SrTiO3 ternary photocatalysts 
under visible-light irradiation [80]. Under the optimized 
conditions, the photocatalytic activities of  Ag3PO4/PANI/
Cr:SrTiO3 composites on RhB and phenol reached 100% 
within 10 min and 18 min, respectively. The cyclability 
test showed that the ternary photocatalysts still maintained 
92.25% catalytic activity after five cycles. With the increase 
in  SO4

2− concentration, the activity of  Ag3PO4/PANI/
Cr:SrTiO3 to RhB remained at a high level, indicating that 
the catalyst had good tolerance of sulfate. Further analysis 
indicated the important contribution of photoinduced holes 
and superoxide radicals to the visible-light photocatalytic 
activity.

A variety of composite photocatalysts based on PANI 
doped with semiconductors, carbon-based materials, or 

Fig. 5  Plausible photodegradation mechanism of RhB using ZACP 
under visible light irradiation

Fig. 6  Photosensitization mechanism of PANI–ZrO2/CeO2 composite

Fig. 7  Schematic diagram of the facile synthesis of PANI/Bi2MoO6 
nanocomposites for the visible-light-driven photocatalytic degrada-
tion of organic pollutants
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other polymers were synthesized for the efficient removal 
of RhB in wastewater. As shown in Table 2,  MoSe2-PANI 
nanocomposite was synthesized and used as a photocata-
lyst for the removal of RhB dye [93]. The results indicated 
that the nanocomposite had the highest degradation rate 
constant of 1.3205  min−1 under visible-light irradiation 
when the weight ratio of  MoSe2 to PANI is 2:1.

Degradation of MO using PANI composites

MO  (C14H14N3NaO3S), an anionic azo dye, remains in the 
environment for a long duration due to its low biodegra-
dability. Thus, MO was always selected as a model dye to 
assess the photocatalytic ability of composite photocata-
lysts. Table 3 shows the compositions, photocatalytic testing 

Table 2  Photocatalytic decomposition of RhB on polyaniline composites

Photocatalyst Irradiation 
Source

Total Irradiation 
Time (min)

Optimal  
Degradation
Efficiency (%)

Optimal Rate 
Constant
(min−1)

References (Year)

PANI-Bi2Se3 NFs Visible 25 97.7 0.147 [39] (2019)
Fe3O4/ZnO/BiOI/
PANI

Visible 180 99.2 0.023 [48] (2019)

PANI/MS-TiO2 Visible 99.8 120 0.031 [51] (2016)
carbonized PANI/TiO2 UV 90 96 0.033 [52] (2017)
PANI/BiVO4/cellulose aerogel Visible 60 98.24 [65] (2020)
PANI/NiO UV 30 100 0.183 [67] (2021)

Visible 30 100 0.198
Zinc oxide activated charcoal polyani-

line (ZACP)
Visible 120 95 0.031 [77] (2018)

ZrO2-PANI
CeO2-PANI

Visible 60 34
35

0.062
0.061

[78] (2018)

PANI/Bi2MoO6 Visible 120 100 0.034 [79] (2019)
Ag3PO4/PANI/Cr:SrTiO3 Visible 10 100 0.057 [80] (2020)
MnFe2O4/PANI Visible 80 100 0.081 [81] (2016)
PANI/V2O5 Visible 300 79.5 0.005 [82] (2017)
PANI/grey-TiO2 Visible 180 100 [83] (2017)
PANI/CeONP UV 120 91 0.086 [84] (2018)
PANI/g-C3N4 Visible 150 42.7 0.014 [85] (2018)
BiOCl/PANI Visible 25 99 0.153 [86] (2019)
Bi5O7I/PANI Visible 60 84 0.031 [87] (2019)
M-PANI@AgI Visible 180 99.64 0.030 [88] (2019)
PANI/Ag3PO4/NiFe2O4 Visible 40 100 0.133 [89] (2019)
Ta3N5@PANI Visible 90 100 0.041 [90] (2019)
PANI/RGO Visible 30 99.35 0.168 [91] (2019)
PANI–TiO2 UV 120 91.8 0.021 [92] (2020)
MoSe2-PANI Visible 150 83.3 1.321 [93] (2020)
PANI-TiO2/rGO Visible 90 90.5 0.025 [94] (2020)
PANI-CuFe2O4
PANI-YFeO3

Visible 70
110

100
100

0.081
0.048

[95] (2020)

ZnS/CdS/PANI Visible 135 96.5 0.017 [96] (2020)
PANI/GO/Cu2O Visible 150 68 0.007 [97] (2021)
rGH-PANI/BiOI Visible 90 100 0.065 [98] (2021)
GH/PANI/Ag@AgCl Visible 120 93.2 [99] (2021)
WO3@PANI Visible 120 90 0.018 [100] (2022)
Fe3O4@C/1D PANI/Ag@AgCl Visible 14 95.9 0.226 [101] (2022)
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conditions, and photodegradation efficiency of PANI-based 
composite photocatalysts on MO degradation in recent years.

Chen et al. developed a facile two-step route to synthesize 
one-dimensional (1D) ternary  Ag2CO3/Ag/PANI composite 
nanorods (CNRs) [102]. The structure of the as-prepared 
composite showed that  Ag2CO3 nanorod cores coated with 
an intermediate layer of AgNPs and a sheath of conduct-
ing polymer PANI. By degrading MO under visible-light 
irradiation, the ternary photocatalyst showed enhanced 
photochemical current response and photocatalytic activity. 
The enhanced visible-light-driven photocatalytic activity 
can be attributed to the intermediate Ag between  Ag2CO3 
and PANI, which facilitates the separation efficiency of 
photogenerated carriers, and a Z-scheme charge transfer 
model was also proposed to understand the charge separa-
tion behaviors.

Jung et al. prepared  Co0.5Mn0.5Fe2O4-PANI nanofibers 
through electrostatic spinning, heat treatment, and chemi-
cal polymerization, which had a 1D hollow heterostructure 
with a large surface area [103]. Irradiation of MO under 
visible-light irradiation showed that the photocatalytic deg-
radation efficiency reached 92% within 120 min, and the 
kinetic constant was 115 times higher than that of the hol-
low  Co0.5Mn0.5Fe2O4 nanofiber. In addition, the excellent 

magnetic properties of  Co0.5Mn0.5Fe2O4-PANI nanofibers 
were confirmed by characterizing the spinel structure, which 
was conducive to the recovery of photocatalyst.

Mousli et al. reported a novel photocatalyst for the miner-
alization of organic dye pollutants modified with diazonium 
salts [104], and a  TiO2-DPA-PANI nanocomposite was pre-
pared by in-situ oxidation after the diazonium pretreatment 
of  TiO2, which was used for the removal of MO under UV-
light irradiation. As shown in Fig. 8, the material was syn-
thesized in two pathways: preparation of PANI in an aqueous 
solution, and in the presence of pristine and diazonium-
modified  TiO2.  TiO2-DPA-PANI nanocomposite exhibited 
excellent catalytic performance, and the degradation rate 
constant was 0.133  min−1, much higher than 0.059  min−1 
and 0.085  min−1 of free  TiO2 and  TiO2-PANI, respectively. 
Moreover, because the thick coating of PANI protected the 
following  TiO2,  TiO2-DPA-PANI could be recycled for five 
times without losing any photocatalytic activity. However, 
 TiO2-PANI can only be recycled for three times, and bare 
 TiO2 can be reused for one time.

Mousli et al. designed a series of related composites of 
cotton fabrics (CF) modified with mixed oxides to catalyze 
the degradation of MO under visible-light irradiation [105]. 
To be specific, the photocatalyst  RuO2-TiO2 was coated on 

Table 3  Photocatalytic decomposition of MO on polyaniline composites

Photocatalyst Irradiation Source Total Irradiation 
Time (min)

Optimal  
Degradation
Efficiency (%)

Optimal Rate 
Constant
(min−1)

References (Year)

PANI-Bi2Se3 NFs Visible 30 96.31 0.100 [39] (2019)
MoSe2-PANI Visible 150 94 [58] (2019)
Co2TiO4/CoTiO3/Polyaniline Visible 120 65.6 [59] (2019)
PANI/WO3 Visible 120 86 [64] (2020)
PANI/Ag3PO4/NiFe2O4 Visible 25 94.97 0.154 [89] (2019)
Ag2CO3/Ag/PANI Visible 60 71.9 0.018 [102] (2017)
Co0.5Mn0.5Fe2O4-PANI Visible 120 92 0.023 [103] (2019)
TiO2-DPA-PANI UV 20 99.5 0.133 [104] (2019)
CF/RuO2–TiO2/DPA@PANI Visible 45 100 0.083 [105] (2020)
PANI/ZnO Visible 180 98.3 0.023 [106] (2016)
SiO2-BiOCl@PANI@Pd Visible 230 97 0.010 [107] (2017)
PANI-AlZnO Visible 150 92.5 0.018 [108] (2017)
PANI/h-BN UV 90 95 [109] (2018)
PANI/MgIn2S4 Visible 50 97 0.090 [110] (2019)
TiO2/PANI UV

Visible
120
240

90.9
97.1

0.016
0.013

[111] (2019)

PANI/SnS Visible 40 81.4 0.040 [112] (2020)
CeO2/PANI Visible 240 45 [113] (2020)
BiOBr/BiOCl/PANI@TCPP
BiOBr/BiOCl/PANI@SnTCPP

Visible
Visible

10
10

95
96

[114] (2020)

CPA/N-SWCNTS-GO-CE/CuO UV 100 100 [115] (2021)
PANI-CdS/CeO2/Ag3PO4 Visible 160 93.4 0.015 [116] (2021)
TiO2/PANI-KpF Visible 350 87.4 0.006 [117] (2021)
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CF using dip-coating method. A layer of PANI was pre-
pared by in-situ polymerization on 4-diphenylamine diazo-
nium salt (DPA) modified  RuO2-TiO2 NP coated CF. The 
CF/RuO2-TiO2/DPA@PANI hybrid photocatalyst exhibited 
better catalytic performance compared to other catalysts 
coated on CFs with a photodegradation rate constant of 
0.0828  min−1. Owing to the coupling action of the diphe-
nyl amino group from diazonium salts, the PANI film was 
attached to the surface of  RuO2-TiO2 and formed a strong 
O–N covalent bond with the fabric. The improvement in the 
catalytic performance was attributed to the strong interfacial 
interactions between the nanocomposite components and the 
synergistic effect of charge transfer between different inter-
faces of CF/RuO2-TiO2/DPA@PANI.

Photocatalytic decomposition 
of pharmaceuticals

From an environmental viewpoint, even the presence of 
a low concentration of pharmaceuticals in the wastewater 
effluent can be hazardous to aquatic organisms and human 
beings. However, the degradation of drugs is very difficult. 
The biological methods and physical precipitation methods 
such as centrifugation and flocculation are common tech-
niques, but they have their own disadvantages [118]. In 
recent decades, the use of photocatalysts has attracted much 
attention in the photocatalytic degradation of organic pol-
lutants because of its relatively low cost, environmentally 
friendly characteristic, sustainable treatment technology, and 
overcoming the shortcomings of conventional technologies 
[119]. The photodegradation efficiencies of PANI-based 

composite photocatalysts on different pharmaceuticals are 
summarized in Table 4.

PANI can also form a heterojunction photocatalyst with 
organic compounds in addition to inorganic semiconductor 
composite photocatalysts. Wang and Zhu et al. synthesized 
PANI/perylene diimide with a 3D structure (3D PANI/PDI) 
using an in-situ growth method, which was applied for the 
degradation of tetracycline (TC) under visible-light irradia-
tion [120]. 20% PANI/PDI showed excellent catalytic per-
formance and stability, mainly due to the following three 
aspects: (1) The incorporation of PANI skeleton enhanced 
the strength of PDI organic hydrogels, thereby increasing 
the stability of photocatalyst; (2) the 3D structure provided 
more active sites and electron transport channels; (3) the 
larger delocalized electron covalent structure and energy 
matching heterojunction structure formed between PANI and 
PDI improved the separation efficiency of photogenerated 
electrons. The proposed degradation mechanism included 
successive reaction with hydroxylation, dealkylation, aro-
matization, and ring-opening reactions of TC until complete 
mineralization under the attack of the main reactive species 
 (H2O2 and  h+).

Design and synthesis of green materials capable of 
green photocatalysis is an important future research direc-
tion. Kumar et al. synthesized metal-free carbon-based 
photocatalysts in a simple way and showed high photocata-
lytic activity driven by visible light and solar light [121]. 
The catalysts are based on acidified g-C3N4 (ACN), PANI, 
reduced GO (RGO), and biochar to form a nanocomposite 
ACN/PANI/RGO@Biochar (APRB). Among them, bio-
char acted as an adsorbent, and RGO acted as an elec-
tronic medium. Thus, an efficient heterojunction could be 

Fig. 8  General pathway 
for  TiO2-DPA-PANI and 
 TiO2-PANI nanocomposites
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produced with the appropriate position of CN, ACN, and 
PANI, and reduced the recombination of charge carriers 
to improve the photocatalytic activity. The experimental 
results show that the degradation rates of ibuprofen (IBN) 
and 2,4-dichlorophenoxyacetic acid (2,4-D) after 50 min 
irradiation under xenon lamp were 98.4% and 99.7%, 

respectively. The degradation pathway was analyzed by 
LCMS, and 40% and 42% of the total organic carbon was 
removed in 2 h for IBN and 2,4-D, respectively. Further-
more, the low toxicity of degradation products was deter-
mined by the cytotoxicity analysis of human peripheral 
blood cells.

Table 4  Photocatalytic decomposition of pharmaceuticals on polyaniline composites

Pharmaceutical Photocatalyst Irradiation 
Source

Total  
Irradiation 
Time (min)

Optimal 
Degradation
Efficiency 
(%)

Optimal Rate 
Constant
(min−1)

References (Year)

Ciprofloxacin PANI/ZrO2 UV 120 96.6 [4] (2020)
Gemifloxacin mesylate PANI/SrSnO3 UV 240 100 [47] (2018)
Tetracycline ZnO–MoS2-PANI Visible 60 94.5 [69] (2021)
Clavulanate potassium PANI-rGO-ZnO Visible 100 47 0.006 [70] (2021)
Ciprofloxacin ZrO2-PANI

CeO2-PANI
Visible 60 35

37
[78] (2018)

Propranolol
Amitriptyline

TiO2/polyaniline UV 60 23
45

[119] (2018)

Tetracycline PANI/PDI Visible 120 70 0.009 [120] (2020)
Ibuprofen ACN/PANI/RGO@Biochar Visible 50 98.4 0.080 [121] (2019)
Ampicillin ZnO/polyaniline Visible 120 41 [122] (2012)
Sulfaquinoxaline PANI/TiO2 UV 90 100 0.060 [123] (2019)
Ciprofloxacin Bi2WO6/PANI Visible 90 98 0.041 [124] (2020)
Thiamphenicol MIL-100(Fe)/PANI +  H2O2 Visible 120 100 0.024 [125] (2020)
Ciprofloxacin PAN@ZnONPs/MOF Visible 70 97.2 0.050 [126] (2020)
Oxytetracycline g-C3N4/PANI Visible 100 86.2 0.064 [127] (2021)
Ciprofloxacin rGO/Ag3PO4/PANI Visible 15 86.2 [128] (2021)
Ciprofloxacin CN-PANI-CQDs Visible 90 87.6 0.114 [129] (2021)

Table 5  Photocatalytic decomposition of pesticides on polyaniline composites

Pesticide Photocatalyst Irradiation 
Source

Total Irradiation 
Time (min)

Optimal  
Degradation
Efficiency (%)

Optimal Rate 
Constant
(min−1)

References (Year)

Monocrotophos Ag3PO4/polyaniline@g-C3N4 Visible 50 99.6 [5] (2020)
Diazinon Co2TiO4/CoTiO3/Polyaniline Visible 120 98.3 [59] (2019)
Sulcotrione
Clomazone

TiO2/polyaniline UV 60 94
32

[119] (2018)

Thiacloprid
Clomazone
Quinmerac
Sulcotrione

TiO2/polyaniline Visible 240 13
28
27
35

[130] (2019)

Chlorpyrifos CuO/TiO2/PANI Visible 90 95 0.032 [131] (2021)
Diuron ZnR@CGR/PANI Visible 40 100 0.009 [132] (2018)
Glyphosate PANI/ZnWO4/WO3 Visible 60 98.4 0.071 [133] (2021)
2,4-Dichlorophe-

noxyacetic acid
PANI/TiO2 UV 120 99.91 0.332 [134] (2022)

Triclopyr acid 90.72 0.217
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Photocatalytic decomposition of pesticides

Photocatalytic technology can also be used to deal with envi-
ronmental pollution caused by the extensive use of pesticides 
in agriculture, and the recent progress is shown in Table 5.

Photocatalytic degradation of several types of pesticides 
was achieved using  TiO2 NPs modified with PANI (TP 
nanocomposites) [130]. After simulating solar radiation 
for 240 min, the degradation rates of thiacloprid, cloma-
zone, quinmerac, and sulcotrione were 13%, 28%, 27%, and 
35%, respectively. The cytotoxicity was less than 11% in 
all the cases, and the photocatalytic degradation efficiency 
was higher in distilled water than in environmental water. 
Moreover, pH was the main factor affecting the efficiency 
of sulcotrione removal. In addition, the addition of  H2O2 as 
an electron acceptor decreased the degradation rate, whereas 
the addition of  KBrO3 increased the degradation rate.

A novel ternary CuO/TiO2/PANI was used as a photocata-
lyst to degrade 95% of extremely toxic pesticide chlorpyrifos 
in water within 90 min illumination [131]. The nanocom-
posite was synthesized using a simple oxidation method and 
characterized by XRD, EDX, PL, and HR-TEM analyses.

Conclusion

This review shows that PANI is useful to improve the perfor-
mance of composite photocatalysts for the photocatalytic degra-
dation of hazardous chemicals including dyes, pharmaceuticals, 
and pesticides, focusing on the roles of PANI. The loading of 
PANI can substantially improve the photocatalytic activity by 
enhancing the separation of photogenerated carriers, expanding 
the light absorption range, increasing the adsorption of reactants, 
inhibiting photocorrosion, and reducing the formation of large 
aggregates. This review provides a systematic concept about how 
PANI can improve the performance of composite photocatalysts 
[9, 24, 45].
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