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Abstract
In this study, the effect of the amount of maleic anhydride grafted polypropylene (PP-g-MA) (0–10 by weight %) com-
patibilizer on the thermal and mechanical properties of polypropylene/post-consumer poly (ethylene terephthalate) (PP/
rPET) (70/30 by weight %) blends are investigated by means of melt blending method. Post-consumer PET bottle waste was 
recycled by means of bottle-to-bottle recycling method. The interactions between the polymers of the blends and PP-g-MA 
were investigated by means of Fourier transform infrared spectrometer (FTIR). The scanning electron microscope (SEM) 
results showed that the interfacial interactions of the polymers of studied blends improved with the increasing amount of 
PP-g-MA. The effect of the amount of PP-g-MA on the mechanical properties of the blends were investigated by means of 
tensile and flexural tests. It was obtained from mechanical tests that the tensile strength, tensile modulus, flexural strength and 
flexural modulus increased while elongation at break decreased with the increasing amount of PP-g-MA. The best mechani-
cal performances were obtained by compatibilized PP/rPET blends with a tensile modulus value of 1795 MPa and flexural 
modulus value of 2515 MPa. The effect of the amount of PP-g-MA on the thermal properties of the blends were investigated 
by means of differential scanning calorimeter (DSC) and heat deflection temperature (HDT) tests. It was observed that the 
crystallization temperature  (Tc) and HDT of the blends increased with the increasing amount of PP-g-MA.
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Introduction

Poly (ethylene terephthalate) (PET) is a semi-crystalline 
thermoplastic that is widely used in many applications such 
as automotive, textile and food packaging because of its 
good physical, chemical and mechanical properties [1–3]. 
The increase in the accumulation of post-consumer PET 
waste all over the world leads to various environmental 
and economic concerns [4, 5]. PET wastes are recycled by 
means of chemical and mechanical recycling methods to 
prevent their environmental problems [6, 7]. Nowadays, 
there is a growing interest in corresponding studies for the 
mechanical recycling of post-consumer PET wastes [8, 9]. 
Especially, bottle-to-bottle recycling increases the remold-
ing potential of post-consumer PET wastes in many indus-
trial applications [10].

The recycling method play an important role in that the 
intrinsic viscosity of the PET is not decreasing too much 
in comparison with a conventional mechanical recycling 
process [11]. Also, manufacturing beverage bottles from 
recycled PET (rPET) rather than pure PET reduces carbon 
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footprint and contributes a cost reduction in plastic packaging 
[12, 13]. The thermal, mechanical and chemical degradations 
are a serious problem during the recycling because limiting 
reuse of rPET decreases the molecular weight and intrinsic 
viscosity. In general, the properties of rPET can be improved 
by adding various fillers and also by modification with the 
use of different methods [14]. The polyolefin/rPET blends 
prepared by using simple and economical methods have 
started to attract attention in recent years because of over-
coming the shortcomings of mechanical recycling [15, 16].

Polypropylene (PP) is the most widely preferred poly-
olefin in many applications such as automotive, packaging, 
construction and textile [17]. The production market of PP is 
rapidly growing especially in the automotive industry due to 
its various properties such as light-weighting, low cost and 
easy processability [18, 19].

PP, which is a commercial thermoplastic, can be used in 
place of engineering plastics when processed with various 
additives and fillers [20, 21]. PP blends prepared by physical 
compounding with at least one different polymer without 
chemical interaction play an important role in innovative and 
sustainable applications [22]. Accordingly, PP/rPET blends 
stand out due to their properties such as low cost, high per-
formance and recyclability [23]. Recycling of post-consumer 
PET wastes with PP by a feasible method can be a gain for 
various plastic industries [24].

PP and rPET are immiscible during blending due to the 
differences in the chemical structure and polarity of the pol-
ymers. The immiscibility of PP/rPET blends leads to phase 
separation and poor interfacial properties between the com-
ponents in the blends [25, 26]. Poor interfacial properties of 
immiscible blends have an adverse effect on the mechani-
cal performance. The interfacial properties of PP/rPET 
blends are generally improved by means of compatibilizing 
with copolymers having different functional groups such 
as maleic anhydride (MA), acrylic acid (AA) and glycidyl 
methacrylate (GMA) [27, 28]. PP-g-MA is a very commonly 
used compatibilizing agent for improving miscibility in poly-
olefin blends [29]. Coupling process during compatibiliza-
tion occurs by the interaction of the hydroxyl (-OH) and 
carboxyl (-COOH) functional end groups of PET in PP/rPET 
blends [30, 31]. Mi et al. [32] determined that the phase sep-
aration of blends was partially eliminated and the interfacial 
tension of the components of the blends was reduced when 
PP/PET blends were compatibilized with maleic anhydride 
functionalized copolymers [33]. The interfacial properties of 
PP/PET blends may be changed with subject to parameters 
such as process conditions, the amounts of compatibilizer 
and components of blends. Papadopoulou and Kalfoglou 
[34] used three types of SEBS-g-MA [35], PP-g-MA [36, 
37] and LLDPE-g-MA copolymers [38] having maleic anhy-
dride functional groups for the compatibilization of PP/PET 
blends. It was reported that PP-g-MA was more effective in 

comparison with the compatibilizers of SEBS-g-MA and 
LLDPE-g-MA in improving the interfacial properties of PP/
PET blends. Yi et al.[39] reported that compatibilizing of 
PP/PET blends led to a reduced interfacial tension between 
PP and PET phases resulting in more homogeneous blends 
[40]. The type and the amount of compatibilizer have signifi-
cant effects on the mechanical, morphological, rheological 
and thermal properties of PP/PET blends [41]. Lima et al. 
[42] determined that the immiscibility of PP/PET blend was 
eliminated with the increasing amount of compatibilizer and 
that changed the crystallization behavior of PP. Jahani et al. 
[43] reported that the size of the dispersed polymer phase 
in the matrix was reduced and more homogeneous PP/rPET 
blends were attained with the increasing amount of compati-
bilizer. Taepaiboon et al. [44] indicated as a result of their 
studies that PP/rPET blends compatibilized with 2–7 wt.% 
PP-g-MA had higher tensile strengths compared to pure PP. 
Friedrich et al. [45] reported that the improvement in the 
fiber-matrix adhesion properties of PP/PET blends com-
patibilized with ethylene glycidyl methacrylate improved 
the mechanical properties of the blends. Razak et al. [46] 
determined that the flexural and tensile strengths of PP/PET 
blends were improved when the blends were compatibilized 
with the maleic anhydride functionalized copolymer. Song 
and Pang[47]reported that the weight fraction of interphase 
and tensile strength increased by addition of the compatibi-
lized PP/PET (75/20 wt. %) blends. Inoya et al. [48] reported 
that the presence of 5 wt.% compatibilizer was very effective 
in improving the mechanical properties of PP/rPET blends 
prepared using PET bottle wastes. Nonato and Bonse [49], 
investigated PP/rPET composites with the addition of PP-
g-MA as a compatibilizer that the tensile strength of the 
composites increased with the increasing amount of com-
patibilizer due to the increase of adhesion between the PP 
matrix and recycled PET fiber.

There are various studies in literature investigated the 
effect of the process parameters, compatibilizer type and 
amount of compatibilizer on the morphological [50], 
thermal [51] and mechanical [52] properties of PP/PET 
blends. However, there seems to be limited number of 
studies on the preparation of PP/rPET blends in preced-
ing literature [53]. The aim of this study is to improve the 
thermal and mechanical properties of PP blends prepared 
by using bottle-to-bottle recycled post-consumer PET 
(rPET) and by the inclusion of PP-g-MA compatibilizer. 
The blends were mixed with a weight percentage ratio 
of 70/30 (wt. %) throughout this study by melt blending 
method. In addition, isotactic polypropylene was used in 
the preparation of the blends. The blends were injection 
molded after being prepared in a twin-screw extruder in 
the presence of various amounts of PP-g-MA. The effects 
of amounts of PP-g-MA on the thermal stability behav-
iors, crystallization behaviors, microstructures, tensile and 

433   Page 2 of 13 Journal of Polymer Research (2022) 29: 433



1 3

flexural behaviors of the blends were investigated. While 
examining the effect of compatibilizer on the properties of 
the prepared PP/rPET blends, the results were also com-
pared with the PP/PET blends.

Experimental

Materials

Bottle grade PET with the commercial name of RAMAPET 
N1 having an intrinsic viscosity of 0.80 dl/g and melting point 
of 247 °C was supplied by Indorama Ventures PET Inc., Tur-
key. rPET was supplied by Kaptan Recycling Company, Tur-
key. PP with the commercial name of PETOPLAN MH-418 
having a melt flow rate of 4.5 g/10 min (at 230 °C and 2.16 kg), 
melting point of 163 °C and density of 0.905 g/cm3 was sup-
plied by PETKIM Inc., Turkey. PP-g-MA was supplied by 
Acar Chemicals Inc., Turkey. Antioxidant with the commercial 
name of Irganox  1010® having a density value of 1.15 g/cm3 
in addition to the heat stabilizer with the commercial name of 
Irgafos  168® having a density value of 1.03 g/cm3 were sup-
plied by Ciba Specialty Chemicals Inc., Switzerland.

Preparation of Blends

The post-consumer PET waste is recycled by means of 
bottle-to-bottle recycling method. The PET granules were 
prepared by twin screw extruder at temperatures of 250, 260, 
270 °C by melt blending method. rPET and PET granules 
were first dried under vacuum at 100 °C for 4 h. Prior to the 
melt blending process, the components of the blends (PET, 
rPET, PP, PP-g-MA, antioxidant and heat stabilizer) were 
pre-mixed according to the composition given in Table 1. 

In addition, 0.2% (by weight) antioxidant and heat stabilizer 
were used in the preparation of all blends. A co-rotating 
twin screw extruder (D = 16 mm, L/D = 24; Gulnar, Turkey) 
was used for the preparation of the blends. The blend gran-
ules were prepared by twin screw extruder at screw speed 
of 200 rpm and temperatures of 260, 250, 240 °C by melt 
blending method. Before the molding process, the blend 
granules were dried under vacuum at 80 °C for 4 h. The 
PP/PET and PP/rPET granules were molded using Engel/
Spex Victory 80 model injection moulding machine with 
an injection speed of 65 mm/s and molding clamp force of 
300 kN at temperatures of 265, 250, 240 and 230 °C, respec-
tively. Preparation procedure and set-up of PP/rPET blends 
are shown in Fig. 1.

Characterization of Blends

Fourier transform infrared spectrometer (FTIR) analysis 
of blends were carried out by Perkin Elmer Spectrum 100 
brand ATR-FTIR device. FTIR analysis of PP/PET and PP/
rPET blends were performed in order to observe the inter-
actions between functional groups of PP-g-MA and the end 
groups of polymers.

The effect of the amount of PP-g-MA on the interfacial 
properties of the blends was investigated by Inspect/S50 
model scanning electron microscope (SEM). The surfaces 
of tensile fractured samples of the blends were examined 
for SEM analysis. The samples were coated with gold under 
vacuum prior to the analysis to prevent arching.

The effect of the amount of PP-g-MA on the mechanical 
properties of the blends was investigated by tensile and flex-
ural tests (Fig. 2). The tensile tests of the blends were con-
ducted at a rate of 50 mm/min at room temperature by means 
of Zwick/Roell model universal testing device with 20 kN 
load cell according to ISO 527 standard. The flexural tests 
of the blends were also carried out by Zwick/Roell model 
three-point bending device at room temperature according 
to ISO 178 standard.

Heat deflection temperature (HDT) and differential scan-
ning calorimeter (DSC) analysis of blends were performed for 
determining the thermal properties of the blends. HDT analy-
sis of blends were carried out according to ISO 75 A standard 
using Instron/Ceast HV3 model device (1.8 MPa, 10 °C/min). 
SII Nanotechnology ExStar 7020 model DSC device was used 
for performing the melting and crystallization flow analyses of 
the blends. The samples were first heated from 25 °C to 280 °C 
under nitrogen atmosphere at a heating rate of 10 °C/min and 
kept at 280 °C for 5 min to erase the thermal history. Then, the 
samples were reheated from 25 °C to 280 °C at a heating rate 
of 10 °C/min after being cooled down from 280 °C to 25 °C at 
a cooling rate of 10 °C/min. Percent crystallization  (Xc, %) of 
PP in the blends was calculated according to the relationship 

Table 1  Composition of the blends

Sample name PP
(wt. %)

PET
(wt. %)

rPET
(wt. %)

PP-g-MA
(wt. %)

Pure PP 100 0 0 0
PP/PET/PP-g-MA0 70 30 0 0
PP/PET/PP-g-MA1 70 30 0 1
PP/PET/PP-g-MA3 70 30 0 3
PP/PET/PP-g-MA5 70 30 0 5
PP/PET/PP-g-MA10 70 30 0 10
PP/rPET/PP-g-MA0 70 0 30 0
PP/rPET/PP-g-MA1 70 0 30 1
PP/rPET/PP-g-MA3 70 0 30 3
PP/rPET/PP-g-MA5 70 0 30 5
PP/rPET/PP-g-MA10 70 0 30 10
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given in Eq. 1 using the data for the melting enthalpy of the 
polymer (ΔHm), weight fraction of the polymer in the blend 
(∅) and melting enthalpy of the polymer at 100% crystal-
line phase (ΔH°m). The thermal data were obtained from the 
second melting run of the DSC thermograms. The melting 
enthalpy of 100% crystalline PP is 209 J/g [54]. The melting 
enthalpy of 100% crystalline PET is 140 J/g.

Results and Discussion

Structural Properties of Blends

FTIR was used to monitor the interactions between the -OH 
and -COOH end groups of rPET and PP-g-MA (Fig. 3). 
The characteristic peaks of rPET and PET were also inves-
tigated according to peak of; -CH2 stretching at 2970  cm−1, 
C = O stretching at 1719  cm−1 [55], C = C bond stretching 
at 1580  cm−1, C–C stretching at 1410  cm−1 and -CH2 rock-
ing at 720  cm−1. The characteristic peaks of pure PP were 
investigated according to peak of, bending of methyl groups 
at 1455–1370  cm−1, asymmetric aliphatic -CH2 stretching at 
2918  cm−1, symmetric –CH stretching at 2838  cm−1, asym-
metric -CH3 stretching at 2970  cm−1 and symmetric -CH2 
stretching at 2868  cm−1. The weak peak intensity of the car-
bonyl (C = O) group of the ester group at 1719  cm−1 indi-
cates that the PP/PET and PP/rPET blends are immiscible 
[56]. The increase in peak intensity at 1719  cm−1 is an indi-
cation that there are interactions between the maleic anhy-
dride group of PP-g-MA and the functional end groups of 
rPET and PET [57]. It is implied that PP-g-MA copolymer 
is an effective compatibilizer for the current blends studied.

PP-g-MA
rPETPP

Injec�on molding

Test 
sample

Granula�on

Extrusion Cooling bath
process

Drying

Bo�le-to-bo�le
recycling

PET flakes

rPET granules

PP/rPET

Drying

Fig. 1  Preparation of PP/rPET blends

Fig. 2  Mechanical properties of the blends were measured by tensile 
and flexural tests
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The SEM micrographs of tensile fractured surfaces 
of the pure PP, PP/PET and PP/rPET blends are shown 
in Fig. 4. Rupture related fibrillation is observed in the 
micrograph of pure PP (Fig. 4a). It was observed that 
the PP/PET and PP/rPET blends display different micro-
structural geometry. The dimension, shape and distribu-
tion properties of PET and rPET in the PP matrix were 
observed to be different in both compatibilized and 
uncompatibilized blends. It was observed in uncompatibi-
lized PP/PET blends that the interfacial interaction is quite 
poor for PP and PET polymers (Fig. 4b). The addition of 
PP-g-MA in the PP/PET blends leads to a decrease in the 
diameter of PET domains and to improve the interfacial 
adhesion between PP and PET phases. It is related to the 
PET phase being distributed more homogeneously in PP 
matrix. It was observed in PP/PET blends that PET droplet 
size decreased with the increasing amount of PP-g-MA. 
The interfacial properties of PP/PET blends improved with 
compatibilization [58].

It was observed in uncompatibilized PP/rPET blends 
that rPET was distributed in the PP matrix in fibril form 
and that the interfacial properties are poor (Fig. 4g). This 
proves that the PP/PET and PP/rPET blends were immis-
cible blends. It was observed due to the poor interfacial 
interaction of PP/rPET blends that the rPET phase sepa-
rates from the PP matrix thereby resulting in voids. The 
fact that the decrease of voids within the structure with 
the increasing amount of PP-g-MA is due to the improve-
ment of the interfacial interaction between PP and rPET 
polymers. It is observed that the increase in the amount 
of PP-g-MA leads to a more homogeneous distribution 
of rPET in the PP matrix. Similar results have also been 
obtained in literature indicating that the presence of the 
compatibilizer changes the geometry of the PET phase and 
results in average particle size reduction. In the presence 

of the PP-g-MA, PP and rPET interaction was improved 
because of the hydrogen bonding interactions between the 
hydroxyl groups of the MA-g-PP and the end groups of the 
rPET (Fig. 4). It is concluded that the PP-g-MA enhances 
interfacial adhesion between two immiscible phases within 
the blends [59].

Mechanical Properties of Blends

The mechanical properties of PP/PET and PP/rPET blends 
have been determined by means of tensile and flexural tests 
[60]. The effect of the amount of PP-g-MA on the ten-
sile behavior of the blends is shown in Fig. 5 and Fig. 6. 
The tensile test data are also given in Table 2. It has been 
observed that the tensile strength of uncompatibilized PP/
PET and PP/rPET blends are lower than that of pure PP. 
This is due to the poor interfacial interaction between the 
polymers in PP/PET and PP/rPET blends. It was observed 
that the tensile strength of PP/PET and PP/rPET blends 
increased with the increasing amount of PP-g-MA [61]. It 
was observed from SEM micrographs evaluated together 
with the tensile test results that the results were compat-
ible. This indicates that tensile properties are improved 
owing to the enhanced interfacial properties of the blends. 
The improvement of the interfacial properties between 
the two phases are resulted in a better stress transfer. The 
highest tensile strength and tensile modulus were obtained 
with PP/rPET/PP-g-MA10 and PP/PET/PP-g-MA5 blends 
(Fig. 5a, c). Generally, the increase in the amount of PP-
g-MA in PP/PET blends were effectively enhanced the 
mechanical properties of the blends [62]. In our study, 
addition of PP-g-MA up to 5 wt. % tensile strength 
(36.1 MPa) and tensile modulus (1805 MPa) of the PP/PET 
blend increased. However, after the amount of PP-g-MA 5 

Fig. 3  FTIR spectra of a rPET, 
PP-g-MA and b PP/PET/PP-g-
MA0, PP/PET/PP-g-MA5, PP/
rPET/PP-g-MA0 and PP/rPET/
PP-g-MA5

Page 5 of 13    433Journal of Polymer Research (2022) 29: 433



1 3

Fig. 4  SEM micrographs of tensile fractured surfaces of the a  pure 
PP, b  PP/PET/PP-g-MA0, c  PP/PET/PP-g-MA1, d  PP/PET/PP-g-
MA3, e PP/PET/PP-g-MA5 f PP/PET/PP-g-MA10, g PP/rPET/PP-g-

MA0, h PP/rPET/PP-g-MA1, i PP/rPET/PP-g-MA3, j PP/rPET/PP-g-
MA5 and k PP/rPET/PP-g-MA10

433   Page 6 of 13 Journal of Polymer Research (2022) 29: 433



1 3

wt. % they were a little decreased. These results were also 
supported by tensile stress–strain curves (Fig. 6) and SEM 
images (Fig. 4). While elongation at break was not signifi-
cantly affected by PP-g-MA incorporation, tensile strength 

and modulus were noticeably improved. It is observed that 
pure PP exhibits higher elongation at break in comparison 
with that of PP/PET and PP/rPET blends. This is due to the 
brittle structure of PET additive in comparison with pure 

Fig. 5  Mechanical properties 
of PP/PET and PP/rPET blends 
with respect to the amount of 
PP-g-MA includes a tensile 
strength, b flexural strength, 
c tensile modulus and d flexural 
modulus

Fig. 6  Tensile stress–strain curves of a PP/PET and b PP/rPET blends
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PP. The highest elongation at break of the PP/rPET blends 
are achieved with the addition of 10 wt.% PP-g-MA. The 
tensile strength of PP/PET blends improved when compati-
bilized with a copolymer.

The effect of the amount of PP-g-MA on the flexural 
behavior of PP/PET and PP/rPET blends are shown in 
Fig. 5. The flexural test data are also given in Table 2. It 
is observed that the flexural strength and flexural modu-
lus of PP/PET and PP/rPET blends with the presence and 
absence of PP-g-MA are higher than that of pure PP. While 
the flexural strength of pure PP is 34.0 MPa, the flexural 
strength of uncompatibilized PP/PET and PP/rPET blends 
were obtained as 50.3 MPa and 48.3 MPa, respectively. This 
is due to the high flexural property of PET and rPET. It was 
observed that the flexural strength and flexural modulus of 
the blends were increased with the increasing amount of 
PP-g-MA (Fig. 5b, d). The flexural strength of the compati-
bilized blends were determined respectively to be 52.2 MPa 
and 50.3 MPa. The highest flexural strength was obtained for 
the blends compatibilized with the addition of 10 wt.% PP-
g-MA. It was observed that the flexural strength and flexural 
modulus of PP/PET blends are greater in comparison with 
PP/rPET blends. The flexural strength and flexural modulus 
of PP/rPET blends improved with the increasing amount of 
compatibilizer [63]. This is due to the fact that the addition 
of PP-g-MA increases the interfacial interaction of rPET and 
PP polymers within the blends [64].

Thermal Properties of Blends

The effect of the amount of PP-g-MA on the melting and 
crystallization behavior of PP/PET and PP/rPET blends were 
investigated by DSC analysis. The second heating and cool-
ing thermograms of pure PP and PP/PET and PP/rPET blends 

are shown in Fig. 7. The crystallization temperature  (Tc), 
melting temperature  (Tm), supercooling temperature  (Tc-Tm), 
melting enthalpy (∆Hm) and crystallization percentage  (Xc) 
of PP are shown in Table 3. It is observed from the cool-
ing thermograms that the presence of PP-g-MA affects the 
crystallization temperature of PP. The  Tc of PP in uncom-
patibilized PP/PET and PP/rPET blends are higher than pure 
PP. While the  Tc of pure PP is 107.9 °C, the highest  Tc of 
PP obtained is measured to be 122.0 °C in compatibilized 
PP/PET blends. This is due to the fact that PET and rPET 
phases distributed in PP act as a nucleating agent [65, 66]. 
Whereas the highest  Tc of PP was obtained as 121.8 °C in 
compatibilized PP/rPET blends. A decrease is observed in 
the crystallization temperature of PP in PP/rPET blends 
with the increasing amount of PP-g-MA. The crystalliza-
tion peak width of PP is observed to get narrower with the 
increasing amount of PP-g-MA. This is due to the fact that 
the polar maleic anhydride groups increase the interfacial 
interaction of rPET and PP polymers within PP/rPET blends. 
The increase in the crystallization temperature of PP reduces 
the injection molding cycle time as well as the product cost. 
Moreover, the fact that PET acts as a heterogeneous nucle-
ating agent which further results in reduced supercooling 
temperature. It leads to a fast crystallization of PP during 
injection molding [67]. Nucleating agents increased the crys-
tallization temperature of injection molded polymers while 
decreasing the supercooling temperature [68]. It is observed 
from the second heating thermograms that the presence of 
PP-g-MA affects the crystallization percentage of PP in the 
blends. The lowest crystallization percentage of PP in the PP/
PET blend is obtained as 44.6% in the presence of 10 wt.% 
PP-g-MA. The lowest crystallization percentage in PP/rPET 
blend is obtained as 34.6% in the presence of 10 wt.% PP-g-
MA. The crystallization percentage of PP in PP/rPET blends 
decreased more with the increasing amount of PP-g-MA in 

Table 2  Mechanical properties of pure PP, PP/PET and PP/rPET blends

Sample name Tensile strength
(MPa)

Tensile modulus
(MPa)

Elongation 
at break
(%)

Flexural strength
(MPa)

Flexural modulus
(MPa)

Pure PP 31.9 ± 0.20 1595 ± 4.21  ≥ 20 34.0 ± 0.50 1700 ± 20.52
PP/PET/PP-g-MA0 30.2 ± 0.80 1510 ± 34.87 4.7 ± 0.87 50.3 ± 0.40 2515 ± 58.96
PP/PET/PP-g-MA1 31.6 ± 0.10 1580 ± 27.47 5.2 ± 0.10 50.4 ± 0.80 2520 ± 16.17
PP/PET/PP-g-MA3 33.8 ± 0.30 1690 ± 14.91 5.4 ± 0.37 51.6 ± 1.47 2580 ± 35.55
PP/PET/PP-g-MA5 36.1 ± 0.15 1805 ± 2.95 6.0 ± 0.10 51.8 ± 0.60 2590 ± 24.33
PP/PET/PP-g-MA10 33.0 ± 1.90 1650 ± 23.75 5.0 ± 0.64 52.2 ± 0.70 2610 ± 30.02
PP/rPET/PP-g-MA0 28.4 ± 0.35 1420 ± 14.04 4.8 ± 0.06 48.3 ± 2.30 2415 ± 22.26
PP/rPET/PP-g-MA1 31.4 ± 0.46 1570 ± 18.48 5.1 ± 0.06 48.6 ± 0.17 2430 ± 9.23
PP/rPET/PP-g-MA3 33.4 ± 0.90 1670 ± 36.30 5.6 ± 0.15 49.7 ± 0.30 2485 ± 12.00
PP/rPET/PP-g-MA5 33.5 ± 0.25 1675 ± 10.06 5.1 ± 0.25 50.1 ± 0.20 2505 ± 8.00
PP/rPET/PP-g-MA10 35.9 ± 0.35 1795 ± 14.04 6.1 ± 0.06 50.3 ± 0.17 2515 ± 9.23
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comparison with PP/PET blends. This is thought to be due 
to the restricted movement of PP chains and the different 
distribution variation of the rPET and PET phases in PP [69].

While melting temperature of PP in the blends was not 
significantly affected by PP-g-MA incorporation, crystal-
lization temperature was noticeably increased. The melt-
ing behavior of PP was observed to be changing with the 
amount of PP-g-MA in second heating thermograms. It was 
observed that the  Tm of PP in the blends was lower than 

pure PP. It was determined that the crystallization behavior 
of PP in the blends changed with the increasing amount of 
PP-g-MA [70].

The HDT of PP/PET and PP/rPET blends are shown in 
Table 3 and Fig. 8. While the HDT of pure PP is 57.4 °C, 
the HDT of PP/PET and PP/rPET blends are determined 
respectively as 64.4 °C and 64.6 °C. It is observed that the 
HDT increased by 8 °C in compatibilized blends in com-
parison with pure PP. This is considered to be due to the fact 

Fig. 7  DSC thermograms at 
a second melting of pure PP and 
PP/PET blends, b cooling stages 
of pure PP and PP/PET blends, 
c second melting of pure PP and 
PP/rPET blends and d cooling 
stages of pure PP and PP/rPET 
blends

Table 3  Thermal properties of 
pure PP, PP/PET and PP/rPET 
blends

Sample name Tm
PP

(°C)
Tm

PET

(°C)
Tc

PP

(°C)
Tc-Tm

PP

(°C)
∆Hm

PP

(J/g)
Xc

PP

(%)
∆Hm

PET

(J/g)
Xc

PET

(%)
HDT
(°C)

Pure PP 170.5 - 107.9 62.6 93.6 44.8 - - 57.4 ± 0.44
PP/PET/PP-g-MA0 165.7 251.1 123.2 42.5 79.1 54.1 7.0 15 64.4 ± 0.66
PP/PET/PP-g-MA1 165.9 251.1 123.0 42.9 72.1 49.3 6.3 13.5 64.3 ± 0.51
PP/PET/PP-g-MA3 164.9 250.5 122.7 42.2 85.6 58.5 3.8 8.1 64.1 ± 0.44
PP/PET/PP-g-MA5 163.3 251.6 120.9 42.4 87.6 59.9 3.0 6.4 64.8 ± 0.55
PP/PET/PP-g-MA10 165.7 244.8 122.0 43.7 65.2 44.6 11.6 25.5 63.7 ± 0.47
PP/rPET/PP-g-MA0 167.3 252.2 122.5 47.5 63.8 43.6 10.9 25.9 64.7 ± 0.66
PP/rPET/PP-g-MA1 168.4 252.1 121.1 47.9 58.4 39.9 6.5 13.9 65.8 ± 0.51
PP/rPET/PP-g-MA3 166.5 251.5 121.9 45.8 52.0 35.5 13.4 28.7 64.6 ± 0.34
PP/rPET/PP-g-MA5 168.3 253.1 120.8 51.2 57.2 39.1 14.0 33.3 65.2 ± 0.55
PP/rPET/PP-g-MA10 168.3 252.4 121.8 55.1 50.6 34.6 13.7 29.4 64.8 ± 0.47
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that both rPET and PET act as nucleating agent in the PP 
[49, 66]. The results demonstrate that the addition of rPET 
significantly improves the thermal performance of PP. The 
highest HDT in PP/PET and PP/rPET blends is obtained 
with the addition of 5 wt.% PP-g-MA. It is determined that 
the amount of PP-g-MA is not more effective than PET 
and rPET in improving the HDT of the blends. While it is 
observed that the HDT of the blends are close to each other, 
it is determined that rPET can be used instead of PET. Simi-
lar results were obtained with those in literature and it was 
observed that the thermal stability of PP improved by the 
preparation of compatibilized PP/rPET blends [71].

Conclusions

In this study, the effect of amount of PP-g-MA on the ther-
mal and mechanical properties of PP/rPET blends (70/30) 
were investigated. FTIR analysis showed that the functional 
end groups of rPET exhibited an interaction with the maleic 
anhydride group of PP-g-MA. According to SEM micro-
graphs, rPET phase dimensions decreased with the increas-
ing amount of PP-g-MA and that the interfacial properties 
of the blends were improved. Mechanical test results showed 
that tensile modulus, tensile strength, flexural strength and 
flexural modulus increased due to the interfacial interaction 
between phases with the increasing amount of PP-g-MA. 
DSC results showed that the  Tc of PP in the blends increased 
with the increasing amount of PP-g-MA compared to pure 
PP. The fact that the HDT of compatibilized PP/rPET blends 

being higher than pure PP showed that final PP products 
obtained had long-lasting shelf duration. In conclusion, it 
was observed that the addition of 5 wt% PP-g-MA was effec-
tive in improving the thermal and mechanical properties of 
PP/rPET blends and hence rPET can be used as an alterna-
tive sustainable material in place of bottle grade PET.
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