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Abstract
Polycaprolactone is a biodegradable, biocompatible, and versatile polymer commonly used in the pharmaceutical and bio-
medical industry and the development of new catalysts that allow for the synthesis under milder reaction conditions and in 
shorter reaction times is an appealing alternative. The iron-containing imidazolium-based ionic liquid 1-n-butyl-3-methyl-
imidazolium heptachlorodiferrate was able to efficiently catalyze the ring-opening polymerization of ε-caprolactone under 
mild reaction conditions. Polymerization yields higher than 80% were obtained after 4 h of reaction at temperatures up to 
85 °C, using low ionic liquid:ε-caprolactone molar ratios (1:720 − 1:1500), in the absence of solvent and without an inten-
tionally added alcohol as an initiator. Semi-crystalline polycaprolactones, with molecular weights up to 14 kDa and narrow 
molecular weight distributions were synthesized. The chemical structure of the polymer was confirmed by Nuclear Magnetic 
Resonance (1H NMR) and Fourier Transform Infrared (FTIR) spectroscopy, and its crystalline content was estimated from 
the enthalpy of melting of the differential scanning calorimetry (DSC) thermogram. Finally, a caprolactone-activated ROP 
mechanism mediated by the ionic liquid was suggested.
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Introduction

Poly(ε-caprolactone) (PCL) has been widely used as a drug 
delivery system and scaffolds for tissue engineering appli-
cations due to its biodegradability, biocompatibility, and 
tailorability; Also, its slow degradation rate, and its rubbery 
property makes it a preferable biomaterial for biomedical 
applications [1, 2]. However, the biodegradability and suit-
ability for use in biomedical applications are tied to the 
degree of crystallinity and also molecular weight [3]. Usu-
ally, polymers with higher molecular weight display a lower 
rate of hydrolytic degradation. Functional PCL nanoparti-
cles loaded with a biologically active agent and explored 
as drug delivery systems can be obtained by dispersion of 

preformed polymers or in-situ polymerization techniques; 
however, the choice of the encapsulation method is highly 
dependent on the physicochemical properties of the poly-
mer and the biologically active agent [4], and also on the 
required nanoparticles characteristics, such as particle size 
which influence the biodistribution and cellular uptake 
[5]. Low molecular weight polymers facilitate the emul-
sification process decreasing the viscosity of the system 
and consequently promoting the achievement of smaller 
particles. PCL can be synthesized either by step-growth 
(polycondensation) or by chain-growth polymerization, in 
this latter case by the ring-opening polymerization (ROP) 
of the ε-caprolactone (CL) [1]; The mechanism for this ROP 
is generally classified according to the catalyst used: ani-
onic, cationic, monomer-activated, or coordination–inser-
tion ROP [6].

A large number of catalytic systems have been stud-
ied to improve the physical, thermal, and mechanical 
properties of the PCL, and also to soften the experi-
mental synthesis conditions. Metal-based [7], enzymatic 
[8, 9], inorganic acid [10, 11], and organic systems 
[10, 12] are the most reported. Metal-based catalysts 
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are commonly used due to their availability and assort-
ment. Depending on their chemical properties they show 
some specific characteristics, such as high activity, and 
in some cases, low toxicity (e.g. alkaline earth-based); 
other metals like tin (post-transition metal) allow good 
control of the reaction when used together with a nucle-
ophilic agent (alcohol) as an initiator, whereas the con-
trol of the reaction using alkali metal-based catalysts 
is hampered due to transesterification [1]. Enzymatic 
polymerization of CL using lipases has been proposed 
by several authors, including the physically immobi-
lized form of Candida antarctica lipase B (CALB) – the 
commercial enzyme Novozyme-435 [13, 14]. Though 
the enzymatic polymerizations carry numerous environ-
mental benefits and usually proceed under mild reaction 
conditions, the high cost, the large quantity of enzymes, 
and the formation of relatively low molecular weight 
polymers should be considered [15]. Less common 
catalytic systems, organic compounds and inorganic 
acids may not require the addition of an initiator if they 
have a hydroxyl group or amine group present on their 
chemical structures [1].

Ionic liquids (ILs) used as solvents in polymerizations 
promote higher reaction rates and molecular weights, good 
yields, and the easy separation of products [16]. They are 
widely used as solvents and/or catalysts in many organic 
reactions; However, there are still few reports of their use 
as catalysts for polymerization reactions. Kaoukabi et al. 
[17] reported the ROP of ε-caprolactone (CL) in bulk 
using different ILs as catalysts and alcohols as initiators. 
The ILs 1-butyl-3-methylimidazolium hexafluorophosphate 
– [bmim][PF6] and 1-methyl-3-methylimidazolium hexafluo-
rophosphate – [Memim][PF6] led to a linear increase of the 
molecular weight during the reaction, and low dispersity 
(up to 1.15 Ð). Using a CL:[bmim][PF6]:benzyl alcohol 
molar ratio of 200:1:1 at 120 °C for 48 h, PCLs of about 
18.75 kDa (Mn) were obtained. Abdolmaleki and Mohamadi 
[18] also evaluated different ILs as catalysts using benzyl 
alcohol as an initiator in toluene (solvent); the IL morpho-
linium bisulfate [H-Mor]HSO4 promoted the synthesis of 
PCL of 13.6 kDa (Mv) after 48 h at 52 °C. Combining the 
previous data about the catalytic efficiency of the N,Nʹ-
dialkylimidazolium-based ionic liquids for the ring-opening 
polymerization of CL [17], and the experience of our group 
related to the ability of the 1-n-butyl-3-methylimidazolium 
heptachlorodiferrate (BMI.Fe2Cl7) ionic liquid to mediate 
the cationic polymerization of styrene [19–22], this work 
aims to evaluate the efficiency of the iron-containing N,Nʹ-
dialkylimidazolium-based ionic liquid BMI.Fe2Cl7 as a 
catalyst for the ring-opening polymerization of CL. Iron-
containing catalysts are an attractive alternative to replace 
other toxic and more expensive metal-containing catalysts. 
Iron is an essential element of various metabolic processes 

in humans, then iron-containing catalysts can be considered 
resorbable [23]. Additionally, iron is one of the cheapest and 
most abundant metals on Earth.

Experimental section

Materials

Polymerization reactions were performed using 
ε-caprolactone (97%, Sigma-Aldrich) and the ionic liq-
uid 1-n-butyl-3-methylimidazolium heptachlorodiferrate 
(BMI.Fe2Cl7), synthesized as reported by Rodrigues et al. 
[19]. After polymerization, the reaction medium was dis-
solved in chloroform (P.A. 99.8%, Neon Comercial) and 
the polymer obtained was precipitated in ice-cold ethanol 
(P.A. 99.8%, Neon Comercial). Tetrahydrofuran (HPLC 
Grade, J.T. Baker) and deuterated chloroform (99.8%, 
0.5% TMS, Sigma-Aldrich) were used as solvents in the 
GPC and NMR analyses, respectively.

Polymerization reactions

Bulk polymerization reactions were performed under mag-
netic stirring and inert atmosphere in a Schlenk round-
bottom flask (50 mL). BMI.Fe2Cl7 (20 μmol) was directly 
weighted into the reaction flask, and then the system 
was subjected to successive vacuum/argon cycles. CL 
(20 mmol) was added to the reaction flask with a syringe 
through the septum. After a predetermined time, the reac-
tion medium was solubilized in chloroform. Then, the PCL 
was precipitated in ice-cold ethanol under magnetic stir-
ring, filtered, and dried under reduced pressure at 50 °C 
until constant mass. Different reaction temperatures (60, 
70 and 85  °C) and IL:CL molar ratios (1:720, 1:800, 
1:1000, 1:1500, 1:1600 and 1:2000) were evaluated.

Characterization

Polymerization yield was determined by gravimetric anal-
ysis, discounting the mass of ionic liquid from the dry 
polymer mass. It is important to mention that the PCL 
recovery step via the precipitation in ethanol also acts as 
a purification step since the ionic liquid is soluble in the 
alcohol. However, the very low amount of IL used in these 
reactions does not affect the yield value.

Molecular weight distributions were determined by gel 
permeation chromatography (GPC). GPC analyses were 
conducted in a high-performance liquid chromatography 
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instrument (HPLC, model LC 20-A, Shimadzu) equipped 
with a PLgel MiniMIX-C (PL1510-1500) guard col-
umn, and 2 × PLgel MiniMIX-C (PL1510-5500) HPLC 
column, from Agilent. Tetrahydrofuran (THF) was used 
as eluent with a volumetric flow rate of 0.3 mL‧min−1 
at 40 °C. The PCL samples (0.02 g) were dissolved in 
THF (4 mL) and filtered through a nylon syringe filter 
(0.45 μm). The calibration was performed using polysty-
rene standards with molecular weights ranging from 580 
to 9.225 × 106 g‧mol−1.

The polystyrene calibration was converted into one for 
PCL using the universal calibration method, by Eq. 1 [24]:

where K and a are the Mark-Houwink parameters. For poly-
styrene (PS),  K = 0.932 × 10–4 dL‧g−1 and a = 0.740 and 
for polycaprolactone (PCL) K = 1.395 × 10–4 dL‧g−1 and a 
= 0.786.

The chemical structure of the PCL was determined by 1H 
NMR spectroscopy acquired using a 600 MHz NMR spec-
trometer. Chemical shifts are reported in ppm relative to 
tetramethylsilane (TMS, δ = 0.00 ppm). All samples were 
solubilized in CDCl3 (δ = 7.26). The functional groups of 
the PCL were identified by infrared spectroscopy (IR). 
The attenuated total reflectance–Fourier transform infrared 
(ATR-FTIR) spectrum of the polymer samples in KBr pellets 
were collected on a Shimadzu spectrometer, model IRPres-
tige-21, in the range of wavenumber 4000 − 600 cm−1 by 
accumulating 32 scans at a resolution of 4 cm−1.

The PCL melting temperature (Tm) and melting enthalpy 
(ΔHm) were determined by differential scanning calorim-
etry – DSC (Jade-DSC, Perkin Elmer) using 5 mg of dried 
polymer. The samples were heated from 0 to 140 °C at a 
heating rate of 10 °C‧min−1, under a nitrogen atmosphere 
(20 mL‧min−1). Tm and ΔHm were recorded from the second 
heating ramp.

(1)logM
PCL

= (1 + a
PCL

)−1log
K
PS

K
PCL

+
1 + a

PS

1 + a
PCL

logM
PS

Results and discussion

The catalytic activity of the 1,3-dialkylimidazolium based 
ionic liquid BMI.Fe2Cl7 for the ring-opening polymerization 
of CL was evaluated. The homopolymerizations were car-
ried out in bulk using different reaction conditions. Table 1 
summarizes the yield of the polymerizations conducted at 
different temperatures (T) and reaction times (t) using dif-
ferent molar ratios between the IL and the ε-caprolactone 
(IL:CL), and the number-average molecular weight (Mn) and 
molecular-weight dispersity (Ð) of the polycaprolactones 
obtained. The molecular weight data are reported from the 
gel permeation chromatography analyses (GPC, polystyrene 
calibration), and also using the universal calibration method 
for PCL (Eq. 1). However, the results will be discussed con-
cerning polystyrene calibration data.

Reaction yields show that the BMI.Fe2Cl7 efficiently 
catalyzed the CL polymerization under mild reaction condi-
tions, this is at temperatures below 85 °C, using low IL:CL 
molar ratios (1:720 − 1:1600), in the absence of solvent 
and without an intentionally added alcohol as an initiator. 
Polymerization yields higher than 80% were obtained using 
IL:CL ratios of 1:720, 1:800, 1:1000, and 1:1500 at 70 and 
85 °C for 4 h, Runs T1 and T3 – T6 (Table 1). Lower IL 
concentrations (1:2000, Run T8) were not able to catalyze 
these polymerizations, even increasing the reaction time 
to 72 h.

The effect of IL:CL molar ratio on polymerization yield 
and, therefore, on the PCL molecular weight was studied 
for the reactions conducted at 70 °C for 4 h (T1, T3, T4 and, 
T6). There were no substantial differences in polymeriza-
tion yield and on PCL molecular weight when IL:CL molar 
ratios of 1:1000 or 1:1500 were used. However, increasing 
the amount of ionic liquid to 1:720, the polymerization yield 
decreased as described by Patrocinio et al. [21]. When the IL 
amount increased from 1:1500 to 1:720, yield and molecular 
weight decreased from 88 to 80% and from 13.7 to 8.2 kDa, 

Table 1   Polymerization yield, 
molecular weight (Mn), and 
dispersity index (Ð) of the 
PCL obtained by the bulk 
homopolymerization of CL 
mediated by BMI.Fe2Cl7, at 
different temperatures (T) and 
reaction times (t) using different 
IL:CL molar ratios

a  PCL molecular weight using the universal calibration method (Mark-Houwink); b Mn T1(a), NMR = 6.2 kDa; 
Mn T1(b), NMR = 6.3 kDa; c The reaction was conducted with half of the monomer added at the beginning of 
the reaction and the other half after 4 h. All polymerization reactions were performed in duplicate

Run IL:CL
(mol:mol)

t
(h)

T
(°C)

Yield
(%)

Mn
(kDa)

Ð
(-)

Mn
a

(kDa)

T1b 1:720 4 70 81.5 ± 1.2 8.2 ± 0.5 1.5 ± 0.1 5.2
T2 1:800 4 60 62.8 ± 1.5 5.9 ± 1.0 1.6 ± 0.2 3.8
T3 1:800 4 70 80.2 ± 1.0 8.5 ± 1.3 1.3 ± 0.1 5.4
T4 1:1000 4 70 85.9 ± 1.7 12.7 ± 1.6 1.5 ± 0.3 7.9
T5 1:1000 4 85 87.3 ± 0.3 12.9 ± 0.3 1.3 ± 0.1 8.1
T6 1:1500 4 70 87.9 ± 1.2 13.7 ± 0.5 1.4 ± 0.1 8.6
T7 1:1600c 8 70 54.6 ± 1.2 8.3 ± 2.0 1.5 ± 0.1 5.2
T8 1:2000 72 70 - - - -
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respectively. Once water act as initiator, this behavior is 
partly due to the water content of ionic liquid and CL, and 
also due to the increase in intramolecular transesterifica-
tion which led to cyclic oligomers formation, as observed 
by Abdolmaleki and Mohamadi [18]. Though some of these 
oligomers may not be recovered by precipitation, and also 
be smaller than the smallest polystyrene GPC standard 
(580 Da). Abdolmaleki and Mohamadi [18] obtained PCL 
with comparable molecular weight using different acidic 
ionic liquids as catalysts (pyrrolidinium bisulfate, pyrroli-
dinium chloride, and morpholinium bisulfate). The reactions 
were carried out in toluene at 52 °C, using benzyl alcohol 

(BnOH) as an initiator. However, these molecular weights 
were reached after longer reaction times (36 h), while reac-
tions T1 to T6 in Table 1 were performed in only 4 h and 
without solvent.

Kaoukabi et al. [17] performed the PCL synthesis in bulk 
at 120 °C using BnOH as initiator and the ionic liquid [bmim]
[PF6] as catalyst, among others. Using a 50:1:1 ratio of 
CL:[bmim][PF6]:BnOH, the molecular weight (Mn) of PCL 
ranged from 3.2 to 6.6 kDa depending on reaction time which 
increased from 15 to 28 h. Decreasing the amount of ionic 
liquid and alcohol to a ratio of 200:1:1 and increasing the 
reaction time to 48 h, monomer conversion increased and the 

Fig. 1   Molecular weight dis-
tributions of PCL obtained by 
ROP of CL mediated by BMI.
Fe2Cl7 at 70 °C, using a molar 
ratio IL:CL of 1:800 for 4 h 
(sample T3, Table 1), and using 
a molar ratio IL:CL of 1:1600, 
with the half of the monomer 
added at the beginning of the 
reaction and the other half after 
4 h (sample T7, Table 1)

Fig. 2   Yield evolution of ε-caprolactone ROP mediated by BMI.
Fe2Cl7 at 70 °C for 4 h using an IL:CL molar ratio of 1:1000 (sample 
T4, Table 1)

Fig. 3   Effect of the reaction time on molecular weight distributions of 
PCL obtained by ROP of CL mediated by BMI.Fe2Cl7 at 70 °C using 
an IL:CL molar ratio of 1:1000 (sample T4, Table 1)
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molecular weight reached 22.1 kDa. Although the molecular 
weights obtained with the ionic liquid BMI.Fe2Cl7, displayed 
in Table 1, were slightly lower, these were reached under 
milder reaction conditions, a 50 °C lower temperature (70 vs 
120 °C), a considerably shorter reaction time (4 vs 48 h), and 
also a much smaller IL:CL ratio (1:1500 vs 1:200).

A temperature increase of 10 °C, from 60 to 70 °C, using 
an IL:CL molar ratio of 1:800 (T2 and T3) led to an increase 
in the polymerization yield, and as expected, also increased 
the molecular weight of the PCL. However, using an IL:CL 
molar ratio of 1:1000, a temperature increase of 15 °C, from 
70 to 85 °C (T4 and T5), did not increase the reaction yield 
which was close to 86 – 87%. Thus, the polymer molecular 
weight that is conversion-dependent did not increase either. 
The effect of temperature on polymerization yield and thus 

on the molecular weight of the polymer was also described by 
Sobczak [25]. Using a molar ratio of CL:SnOct2:choline of 
100:0.5:1 for 24 and 48 h and increasing the reaction temper-
ature from 120 to 160 °C the author reported a sharp increase 
in the polymerization yield that was reflected in an increase 
of the molecular weight of the polymer. However, for 72 h of 
reaction, the temperature increase did not affect the polym-
erization yield, which was already close to 87%, keeping the 
polymer molecular weight constant at about 10 kDa.

Reaction T7 was conducted with half of the monomer 
added at the beginning of the reaction and the other half 
after 4 h. As the ionic liquid was entirely added at the 
beginning of the reaction, during the first 4 h the real 
IL:CL ratio was 1:800 such as in reaction T3, and then 
decreased to 1:1600. The reaction yields of T3 and T7 
were 80% and 55%, respectively. Supposing that in the 
first 4 h 80% of the monomer polymerized, then 40% of the 
monomer polymerized in the first half and the other 15% in 
the second half. Although the yield of T7 was lower than 
that of T3, the molecular weight of the PCLs was similar, 
around 8 kDa. Figure 1 shows the molecular weight dis-
tribution of PCL of T3 and T7.

The PCL synthesized under the conditions of reaction 
T3 displayed a monomodal and narrow distribution, char-
acteristic of controlled polymerization reactions, whereas 

Table 2   Effect of the reaction 
time on molecular weight (Mn) 
and dispersity index (Ð) of 
PCL obtained by ROP of CL 
mediated by BMI.Fe2Cl7 at 
70 °C using an IL:CL molar 
ratio of 1:1000 (sample T4, 
Table 1)

Reaction 
time (h)

Mn (kDa) Ð (-)

1 5.3 1.2
2 7.1 1.2
3 10.1 1.3
4 13.8 1.7

Fig. 4   DSC thermogram of the PCL obtained by ROP of CL medi-
ated by BMI.Fe2Cl7 at 70  °C using an IL:CL molar ratio of 1:1000 
(sample T4, Table 1)

Fig. 5   1H NMR (600 MHz, 
CDCl3) of PCL obtained by 
ROP of CL mediated by BMI.
Fe2Cl7
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the PCL synthesized by T7 presented a wider distribution, 
with a low molecular weight shoulder.

The kinetic behavior of the ε-caprolactone ROP medi-
ated by BMI.Fe2Cl7 was evaluated at 70 °C for 4 h using an 
IL:CL molar ratio of 1:1000 (sample T4, Table 1), Fig. 2.

In the first hour of reaction, approximately half of the 
mass of the final product is formed, and then the yield 

increases almost linearly between the first and third hours. 
After this time the yield increases slightly, reaching 86% at 
4 h. Figure 3 shows a displacement of the molecular weight 
distribution of PCL samples to higher values when the reac-
tion time increases.

The number-average molecular weight (Mn) and the dis-
persity (Ð) are summarized in Table 2.

The DSC thermogram of PCL (sample T4, Table 1), 
Fig. 4, shows a crystalline profile, with a crystalline con-
tent of 60%. The crystalline content was estimated from the 
enthalpy of melting (ΔHm) of the DSC thermogram using the 
heat of fusion of a 100% crystalline PCL sample, obtained 
from the literature [26]. The synthesized PCL presented a 
melting temperature (Tm) of 55 °C, in good agreement with 
the range (56 – 65 °C) described in the literature [1].

A typical 1H NMR spectrum of the resulting polymer 
(Fig. 5) shows the signals assignable to the hydrogens of the 
CH2OH end group (a) at 3.65 ppm and the hydrogen signals 
of the methylene unit near to the ester group (–CH2–O–CO–, 
b) at 4.06 ppm. The peaks between 1.3 and 1.7 ppm are 
assigned to the methylene hydrogens (CH2), and the peaks 
around 2.31 ppm are assigned to the α-carboxyl methylene 
hydrogens.

The FTIR spectrum of the polymer, Fig. 6, is in good 
agreement with the PCL structure. FTIR (KBr, cm−1): 
2946 νas(CH2), asymmetric CH2 stretching; 2864 νs(CH2), 
symmetric CH2 stretching; 1726 ν(C=O), carbonyl 

Fig. 6   FTIR spectrum of PCL obtained by ROP of CL mediated by 
BMI.Fe2Cl7

Scheme 1   ROP of ε-caprolactone catalyzed by metal-containing imidazolium ionic liquids
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stretching; 1294 νcr, C−O and C−C stretching in the crys-
talline phase; 1239 νas(COC), asymmetric COC stretching; 
1195 ν(OC−O), OC−O stretching [27].

According to the IR and NMR spectra of PCL, a mono-
mer-activated ROP mechanism involving the activation of 
the caprolactone molecules by the ionic liquid is suggested 
(Scheme 1). The polymerization reaction initiates by the 
formation of the primary alcohol from the lactone by water 
in an acidic medium. The primary alcohol may be found in 
equilibrium with the cyclic ester (lactone), especially under 
acidic reaction conditions. Upon substrate activation by the 
imidazolium-based dual activation catalyst, the alcohol per-
forms an addition reaction with the activated lactone. Anion-
cation cooperative catalysis is commonly noted for several 
ionic liquids [28]. In the current work, both the cation and 
the anion may help in the C=O activation, in accordance 
with the literature [29–32]. The processes take place repeat-
edly affording the desired polymer.

Other ionic liquids have already been tested to promote 
the polymerization of CL [17]. The reaction required ben-
zyl alcohol as the initiator and to enable breaking the ionic 
liquid H-bond network and then to facilitate the catalytic 
action of the ionic fluid. This breaking of the ionic liq-
uid H-bond network causes a significant induction reac-
tion period. In this work, however, significant differences 
should be highlighted. The developed catalytic system 
required no intentionally added alcohol as an initiator 
mostly because the anions have an acidic character instead 
of a basic character noted for the commonly tested ionic 
liquids [17]. The cation-anion interactions are therefore 
less energetic than those with basic anions rendering the 
tested ionic liquid in this work a more effective availability 
to promote the polymerization reactions. Metal-contain-
ing (as anions) ionic liquids are known to display weaker 
H-bonds [28].

Conclusions

The iron-containing imidazolium-based ionic liquid BMI.
Fe2Cl7 efficiently catalyzed the synthesis of PCL by the 
ring-opening polymerization of ε-caprolactone under mild 
reaction conditions in bulk, even at low IL concentrations 
(up to 1:1500 IL:CL molar ratio), and without an inten-
tionally added alcohol as an initiator. High yields were 
observed in 4 h of reaction at 70 °C. Under these reac-
tion conditions and using a molar ratio IL:CL of 1:1000, 
a semi-crystalline PCL (60% of crystalline content) was 
obtained with narrow molecular weight distribution and 
number-average molecular weight (Mn) and dispersity (Ð) 
of 12.7 kDa and 1.3, respectively. It was observed that the 
polymer molecular weight was conversion-dependent, and 
the lower the amount of IL the higher the yield, and thus 

the molecular weight. However, no substantial differences 
were observed between 1:1000 and 1:1500 IL:CL molar 
ratios. Besides, when an IL:CL molar ratio of 1:800 was 
used, a temperature increase from 60 to 70 °C affected the 
yield and the molecular weight, but when the IL:CL molar 
ratio was decreased to 1:1000 no effect was observed when 
the reaction temperature was increased from 70 to 85 °C, as 
the yield was already around 86% in the reaction at 70 °C. 
A caprolactone-activated ROP mechanism mediated by the 
ionic liquid was suggested based on the imidazolium-based 
dual activation mode (anion-cation cooperative catalysis), 
and without any intentionally added alcohol as an initiator 
mostly due to the acidic character of the anion and weaker 
H-bond networks.
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