
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10965-021-02660-5

ORIGINAL PAPER

Enhanced mechanical, crystallisation and thermal properties 
of graphene flake‑filled polyurethane nanocomposites: the impact 
of thermal treatment on the resulting microphase‑separated structure

Muayad Albozahid1   · Haneen Zuhair Naji2 · Zoalfokkar Kareem Alobad3 · Alberto Saiani4

Received: 10 May 2021 / Accepted: 8 July 2021 
© The Polymer Society, Taipei 2021

Abstract
The present work investigates the combined effect of the addition of graphite nanoplatelets (xGNPs) to polyurethane copoly-
mer (PUC) and thermal treatment was employed. The PUC reinforced by xGNP were synthesized by in-situ polymerisation, 
which leads to an effective performance of the PUC/xGNP system. Meanwhile, X-ray diffraction (XRD) and Raman spectros-
copy tests displayed the inter-spacing planar quality of xGNP nanofillers. The thermal stability of PUC was seen to increase 
with addition of xGNP. Additionally, the dynamic storage modulus (Eʹ) showed better performance after thermal treatment 
than in the untreated samples. However, a relationship between the microphase-separated morphology of PUC induced by 
thermal treatment and the addition of xGNP has been observed. Consequently, the crystallinity percentage increased after 
thermal treatment @ 80 ˚C for 4 days, presuming a re-ordering of amorphous hard segments during the heating in a packed 
microphase conformation. On the other hand, better dispersion and interaction of xGNP can play a crucial role in enhancing 
the thermal and mechanical properties, and thus a significant reinforcement for PUC. The tensile properties such as modulus 
and tensile strength showed significant enhancement with xGNP incorporation, while the elongation steeply dropped. On 
the contrary, a deterioration in modulus and tensile strength resulted from thermal treatment, likely due to the restacking of 
xGNP during segmental movement and thus increasing the amorphous phase rather than the crystalline phase. A modified 
Halpin–Tsai model was utilised to predict the mismatch between the empirical and theoretical results. Consequently, the 
findings displayed the divergence of the nanocomposite modulus of PUC with greater amounts of xGNP nanofillers.

Keywords  Polyurethane copolymer · PUC · Microphase-separated structure · Thermal and mechanical properties · Halpin–
Tsai models

Introduction

Polyurethane copolymer (PUC), classified as a type of ther-
moplastic polyurethane, has attracted tremendous attention 
among the research community as well as in industrial fields. 
Commonly, polyurethane is considered one of the most ver-
satile plastic materials derived from different kinds of raw 
chemicals such as MDI. The MDI is responsible for hard 
domains and polyether or polyester polyol which represents 
the soft domain and thus reflects the PUC flexibility that 
is needed for different applications [1–5]. Phase separation 
between hard and soft segments, as well as hydrogen bond-
ing that exists between urethane bonds, have a high impact 
on the resultant mechanical properties of this polymer [6–8].

Polymer nanocomposites (PNCs) are a good candidate for 
use instead of virgin polymers. They have a massive inter-
facial area between the polymer matrix and the additives 
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due to the minute thickness of those materials. Thus, this 
huge interfacial area creates a significant volume fraction of 
polymer in close proximity to the interface with behaviour 
that differs entirely from the original properties of the pure 
polymer. This affects the properties substantially, even at 
low concentration of nanoscale filler [9, 10]. However, the 
mixing method is important in order to gain an optimised 
interface through enhanced dispersion and distribution of 
nanofillers within polymer matrices [10, 11]. The disper-
sion and distribution of nanofillers within polymers is the 
main challenge in the fabrication of nanocomposites and 
substantially influences their final performances. Since most 
polymer nanocomposites are synthesised using in situ poly-
merisation, solution mixing and melt compounding. Solu-
tion mixing includes the addition of solvent to dissolve the 
polymer and the dispersion of the nanofiller into the poly-
mer–solvent solution. When the mixing is complete, the 
polymer nanocomposites can be obtained by abstracting the 
solvent through casting and drying. While, melt compound-
ing utilises high temperatures applied to a mixing machine. 
Generally, melt compounding can apply high shear forces 
by rotating screws or rotors to disperse the nanofillers in a 
molten polymer matrix [12–14].

However, the in-situ polymerisation method is the most 
effective method to disperse nanofillers within polymer 
matrices from the literature [15, 16]. The nanofillers and 
monomers are polymerised together, thus leading to more 
effective interaction between the matrix and nanofillers. 
Nanocomposites prepared using this method often possess 
enhanced mechanical properties and show much lower per-
colation thresholds compared to the solution mixing and 
melt compounding methods[17, 18]. PUC as a thermoplas-
tic copolymer material was modified to compensate for the 
poor properties demanded in various extensive applications 
[19–22]. That is to say, most types of improved PUC com-
posites in the literature are based on different raw materials, 
such as MDI [23] or TDI [24], as primary chemicals, which 
are responsible for the hard phase formation. Besides that, 
polyether [25, 26] and polyester polyol [27] were responsible 
for the soft phase. The change in the morphology (micro-
phase separation of PUC) imposed by the annealing might 
exhibit a positive or detrimental effect on the performance 
of PUC with added nanofillers reaching the desired proper-
ties [28, 29]. Recently, the chain extender types that have 
been used in PUC production have varied. However, few 
attempts have been made to examine the use of different 
chain extenders such as1,5 PD accompanied with the effect 
of thermal treatment on the properties of PUC filled with 
xGNP nanoparticles. On this basis, the current study will 
focus on the relationship between the resulting properties 
and structural configuration of resultant PUC/xGNP nano-
composites before and after annealing treatment. Herein, 
1,5 pentane-diol was exploited to fabricate this PUC via a 

two-step polymerisation (pre-polymer) approach with dif-
ferent weight contents of xGNP.

Graphene nanoplatelets (xGNPs) are two-dimensional 
atomic layers of sp2 hybridised carbon atoms with extraor-
dinary electrical, mechanical and thermal properties. These 
properties lead to potential applications relevant to sensors, 
storage components or even packaging applications [30, 
31]. As previously reported, studies have been conducted 
on xGNPs as a reinforcement additive with different types 
of materials such as polypropylene [32, 33], polyethylene 
[34], PVA [35], PC [36], and so on. Meanwhile, thermoset-
ting polymeric materials were also tailored by incorporating 
various kinds of xGNP, such as epoxy [10]. The authors An 
Huang et al. [37] reported various characterisation analyses 
based on the addition of graphite particles to thermoplas-
tic polyurethane (TPU) using a novel dispersion method. 
These measurements include thermal behaviour including 
DSC thermograms, SEM morphology evaluation, tensile 
performance and rheology test. The researchers found that 
CO2 usage would consolidate the dispersion quality and pre-
vented the graphite from becoming aggregated at the loading 
(3 Wt.%). Good tensile and rheology results were obtained 
by employing this novel approach. Furthermore, the xGNP 
were considered to be an excellent reinforcement material 
for improving the shape-memory properties of PU, as has 
been suggested by another previous study [38]. Remarkable 
enhancements were observed for PU/GNP samples regard-
ing dynamic storage modulus as well as glass transition tem-
perature. However, xGNPs were used in this study with a 
minimum concentration of 0.8%.

In this article, the evaluation of the effective reinforce-
ment of xGNP dispersion within PUC was conducted 
through a new route of in situ polymerisation method. For 
this purpose, wide range of loading contents of xGNP was 
inserted during this fabrication method. Thus, a compari-
son between experimental and theoretical results will be 
evaluated based on tensile performance using modified 
Halpin–Tsai equations.

Experimental set‑up

Materials

Polyurethane block copolymer (PUC) with a relatively high 
amount of hard segments was used in this work. The PUC 
was synthesised from polyether polyol based on a polyeth-
ylene glycol-block-polypropylene glycol-block-polyethyl-
ene glycol structure (EO-PPO-EO) as a soft segment with 
Mn = 2000 g/mol and functionality of 2.0. The isocyanate, 
MDI (4,4’-methylenebis phenyl isocyanate) was purchased 
as solid flakes with a solution-based chain extender (1,5 
pentene-diol). A catalyst of 1,4-diazabicyclo[2.2.2]octane 
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(DABCO-S) and N,N dimethylene-acetamide (DMAC) sol-
vent were also used as solvent for the PUC-based solution. 
All of these chemicals were supplied by Sigma-Aldrich. The 
M-grade xGNP (graphene nanoplatelet) nanofillers were 
purchased from Lansing, MI USA – XG sciences, Inc., and 
were characterised with an average thickness of 6–8 nm 
(18–24 layers of graphene) and possessed a nominal surface 
area of 120 to 150 m2/g.

Preparation of graphite nanoplatelets (xGNPs)

In order to minimise the tendency of xGNP clusters to 
aggregate, the xGNP powder was initially dried using an 
aluminium pan inside an oven; the thickness of the xGNPs 
was around 5 mm. After 24 h, the dried xGNPs were left 
to cool down at room temperature in a vacuum atmosphere 
to minimise reaction with the ambient atmosphere. After-
wards, xGNP powder was dissolved with DMAC solvent 
with a solution concentration of 2 g/ml. Lastly, this xGNP 
solution was placed in a round container and sealed tightly 
and inserted in the ultrasound bath machine for 2 h to obtain 
highly dispersed xGNP before usage for in-situ polymerisa-
tion of PUC synthesis.

Approach to PUC synthesis

A two-step polymerization method was used to synthesize 
the PUC polymer as reported in previous study [39]. Briefly, 

a laboratory flask was used with a nitrogen inlet since the 
first step contained the reaction between MDI and polyol in 
an oil bath at a temperature of 80 ˚C chemical stoichiometry 
equivalent to a 6:1 ratio. After 10 min later from the addition 
of MDI, the polyol was inserted gradually and the reaction 
was left for at least 2 h with vigorous mechanical stirring 
to obtain the pre-polymer (MDI bonded with polyol) with 
excess MDI. In the second step, the chain extender (CE) of 
1,5 Pentane-diol was added. Then, continuous mixing of 
the mixture with drop-wise addition of the prepolymer was 
performed. After the drop-wise addition of the prepolymer, 
the reaction continued with stirring for at least two hours 
until completion. The final PUC solution was kept in glass 
jars for the next step of nanocomposites synthesis.

Preparation of PUC/ xGNP nanocomposites

The xGNP solution was mixed with prepolymer during the 
PUC in-situ polymerisation process. When the synthetic pro-
cess finished, the PUC/xGNP nanocomposite solution was 
poured into rectangular cavity moulds and put in a furnace 
to dry in order to obtain solid sheets. The PUC /xGNP pieces 
were dried in a vacuum oven at 80 °C for 24 h before sample 
fabrication.The injection moulding was performed to make 
test samples using is a Haake Minijet II (Thermoscientific). 
The machine is connected with a barrel controlled by a con-
trol panel to set the barrel temperature at 200 °C with a 
mould temperature of 50 °C. The injection pressure of the 

The produced sheet 
after dryingInjection-moulding 

machine

Tensile Sample 
specimens

N2 gas inletDMAC solvent 
insertion

Pre-polymer- inlet
(MDI linked)

As-received GNP-
M15

Water-bath sonication

A vacuum oven to dry the 
final PUC/xGNP 
nanocomposites

Synthesis system of PUC/xGNP (two-
stage polymerisation)

Oil bath @80 ˚C

Mold

Fig. 1   Schematic representation of the PUC/xGNP nanocomposite fabrication steps using a sonication bath and in-situ polymerised system with 
an oven and nitrogen inlet to maintain the inert atmosphere environment inside the reaction vessel

Page 3 of 16    302Journal of Polymer Research (2021) 28: 302



1 3

molten PUC/xGNP material was set at 500–1200 bar for 10 s 
in addition to the holding pressure being set at 400–1000 bar 
for an additional period of 5–10 s before the sample was 
removed. The fabrication route of PUC/xGNP samples is 
shown in Fig. 1. The final samples of PUC/xGNP were 
injected samples as tensile-shape samples as shown in Fig. 2.

Measurements and characterisations

X‑ray diffraction (XRD)

An X-ray diffraction (XRD) machine (X’Pert X-ray dif-
fractometer) was used alongside a Cu Kα radiation source 
(λ = 1.542 Å) at a generator voltage of 35 kV and a genera-
tor current of 25 mA to identify the basic xGNP structure. 
The crystallinity of the PUC/xGNP nanocomposites was 
also tested to reveal the intercalation/exfoliation pattern by 
using injection-moulded samples with a rectangular shape 
measuring 1 mm × 0.5 mm.

Raman spectroscopy

The Raman spectrum was obtained using a Renshaw InVia 
Raman spectrometer with a laser wavelength of 514 nm and 
a × 100 objective lens. The xGNP and graphite powder was 
put on a glass slide to investigate the quality of xGNP com-
pared to graphite as a base material. These samples were 
handled carefully to prevent distortion of the laser signal 
during the test.

Thermogravimetric analysis (TGA)

A TGA analyser (Q-500, TA Instruments) was utilised to 
investigate the thermal stability of PUC/xGNP nanocom-
posites with a heating rate of 10 °C/min under an N2 gas 

atmosphere. The degradation temperature (Tonset) was deter-
mined from weight loss data. In addition, the derivative 
weight curves were employed to measure both the first and 
second stages of degradation of PUC.

Differential scanning calorimetric analysis (DSC)

The thermal properties of PUC/xGNP nanocomposites were 
investigated using an auto-sampler (Q100, TA Instruments) 
and the Indium calibration standard. The weight of the sam-
ples was around 7–11 mg, and the custom type protocol that 
was employed consisted of a cool/heat/cool/heat sequence 
with a heating range of -90 °C to 200 °C and a rate of 10 °C/
min under an N2 atmosphere.

Dynamic mechanical thermal analysis (DMTA)

Dynamic mechanical analysis of the PUC and its nano-
composites was conducted using TA Instruments equip-
ment (Q800 series DMTA) at a heating rate of 3  °C/
min in a single-cantilever mode. The samples’ size was 
30 mm × 5 mm × 1.6 mm (by cutting the middle part of the 
tensile specimen), and it was heated from -120 to 150 °C 
for at least 3 samples. The sample was deformed at a con-
stant amplitude of 15 μm and an experimental frequency 
of 1 Hz.

Mechanical properties

The tensile properties of the neat PUC and PUC/xGNP 
nanocomposites were measured using a universal testing 
machine (an Instron 1122) inside a controlled room (tem-
perature ~ 25 °C, humidity ~ 50%, with a crosshead speed 
of 10 mm/min. The dumbbell-shaped test specimens were 
moulded (by tensile test) according to the ISO 527–2 1BA 

Fig. 2   PUC/xGNP sample tensile preparation processes, (a) the injection moulding machine, (b) the tensile specimen mould, and (c) the final 
shape of PUC/xGNP samples
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standard. The samples were kept for 24 h before testing and 
at least 5 samples were tested and their average results taken, 
with a load cell of 0.5 kN and a distance between grips of 
55 mm.

Results and discussion

XRD and raman spectroscopy of xGNP

The XRD pattern and Raman spectroscopy of the xGNP 
flakes compared to graphite as a reference material are 
illustrated in Fig.  3. The XRD characteristic peaks of 
pristine graphite indicate the intense diffraction peaks at 
26.52˚ and 54.64˚, which correspond to the reflections of 
the basal planes of (002) and (004) of xGNP with d-spac-
ing of 1.73 nm and 0. 95 nm, respectively [40, 41]. This 
was calculated according to the Bragg equation via wave 
length = 1.5419 nm. A slight shift was observed in the 2θ 
values for xGNP particles, proving the increase in inter-
gallery spacing due to the exfoliation process. The xGNP 
structure was also reported by Jin Lin et al. with similar 
expected diffraction peaks showing highly exfoliated graph-
ite nanoplatelets [42]. Furthermore, the Raman spectrum 
showed the basic crystallographic structure of xGNP cor-
responding to graphite as a reference to elucidate the dif-
ferential variations. The most prominent feature of these 
materials is related to the first-order peak (G band) at a 
wave number of 1636 cm−1 and relatively high intensity. In 
addition, surface defects and disorder in the basal structure 
of these nanofillers showed at the band D, with the Raman 
position at approximately 1300 cm−1. However, the 2D band 

represented the second-order status of graphitic materials 
and lay between 2500 cm−1 to 2800 cm−1. This Raman shift 
can reflect several quality characterisations of these nanofill-
ers, owing to the ratio between the D and G bands [32, 41].

Thermal stability of PUC/xGNP nanocomposites

Figure 4a displays the normal TGA curves of pure PUC and 
its nanocomposites with xGNP to determine the variation in 
its thermal stability. Initially, the weight loss at 100 °C could 
result from the water evaporation that was found in the sam-
ples [38, 43]. It was also observed that the onset tempera-
ture (Tonset) of pure PUC started at a temperature of around 
295 °C. Compared to pure PUC, the PUC/xGNP samples 
showed a good enhancement in thermal stability (~ 305 °C), 
except the sample with xGNP loading at 15 Wt.%. Such an 
improvement in the thermal stability of PUC resulted from 
the advantage of high thermal stability of added xGNP with 
good attachment with PUC chains [44, 45]. Interestingly, the 
average constant weight losses of pure PUC and PUC/xGNP 
nanocomposites at T0.05 (onset temperature) were observed 
to increase. This result can provide evidence of the quality 
of the PUC/xGNP nanocomposites produced. Meanwhile, 
the percentage of residual weight at 600 °C displayed a large 
amount of values, particularly for higher concentrations (8 
Wt.% and 15 Wt.%). The residual weight tended to increase 
from 8.9433% for pure PUC to 16.75% and 19.88% of PUC 
containing (8–15) Wt.% of xGNP, respectively. Overall, all 
PUC filled with xGNP exhibited better thermal stability per-
formance due to the high stability of the xGNP nanofillers, 
which tended to act as a good barrier due to the tortuous 
path effect. This tortuous effect prevented the escape of all of 
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Fig. 3   Characterisation of xGNP nanoplatelets compared to graphite: (a) XRD pattern and (b) Raman spectrum
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the gases generated during the heating process and released 
from the samples [46, 47].

Figure 4b shows the DTG curves to detect the rate of 
weight degradation of PUC upon temperature increase. In 
general, the DTG curves of PUC and their nanocomposites 
consist of a two-stage mechanism of thermal degradation. 
The first stage constitutes the dissociation of urethane link-
age, converting to isocyanate and alcohol. Conversely, the 
second stage of degradation is associated with the mass loss 
of soft segments [28, 40]. However, by adding xGNP, these 
temperatures are shifted to a higher value, owing to the deg-
radation inhibition effect of xGNP [48].

DSC Thermograms of PUC/xGNP nanocomposites

In order to further study the thermal behaviour (especially 
melting temperature (Tm) and crystallisation temperature 
(Tc) of PUC and PUC upon the incorporation of xGNPs, 
thermal investigation was conducted using DSC thermo-
grams. The crystallinity was also calculated with respect to 
morphology change due to microphase separation induced 
by xGNP and thermal treatment. The DSC scans were con-
ducted with various PUC nanocomposites containing xGNP 
at different weight loadings. In the first heating curves, as 
shown in Fig. 5, the endothermic peaks related to melting 
temperature (Tm) occurred around 171 °C for pure PUC and 
then rose to 175 °C for PUC containing xGNP at percent-
ages of 0.5 Wt.% and 2 Wt.%. However, this Tm was seen 
to fall at greater loadings (8 Wt.% and 15 Wt.%) and Tm is 
almost recorded at 165 °C-170 °C, respectively. This reduc-
tion in Tm values could be related to the incapability of the 
melt-mixing process to achieve better dispersion and thus 
good interaction between the xGNP and PUC chains to gain 
better thermal properties. In addition, a sharp and abrupt 
endothermic peak of Tm was observed for the second heat-
ing scan due to the removal of thermal history, followed by 

a sufficient period of time to re-crystallise all samples at a 
constant cooling rate [49, 50].

The broader endothermic peaks refer to the dissimilarity 
of the PUC microphases that formed even though strong 
crystallisation peaks indicate a wide range of crystal size 
domains [51–53]. The Tm values started from 176 °C for 
pure PUC and increased to 184 °C for xGNP-filled PUC at 
two concentrations of 0.5 Wt.% and 2 Wt.%, then decreased 
to 177 °C beyond this limit. Furthermore, the crystallisation 
behaviour during cooling revealed that crystallization of the 
Tc of pure PUC ~ 123 °C began earlier, rising to 127 °C, 
132 °C, 138 °C and 142 °C of PUC containing xGNP at 0.5, 
2, 8 and 15 Wt.%. This phenomenon is due to the action of 
xGNPs as nucleation sites during the cooling process [47, 
51, 52], which facilitates crystal formation of hard domains 
(HDs). This finding was also concluded in the study by Jun 
Bian et al. [46], who found that the Tc of nanocomposites 
containing MEGO nanofillers would act as positive hetero-
geneous nucleation sites and thus trigger the early crystal-
lisation process within the cooling scan. There are more 
nucleation locations as xGNP incresed, but the mobility and 
diffusion of the PUC chains is also reduced, restricting the 
probability of crystallites growth of PUC.

In order to quantify the performance of both pure PUC 
and its nanocomposites during thermal treatment, a thermal 
investigation was carried out for PUC filled with xGNPs to 
reveal their response to the microphase separation process 
that could occur within two phases of PUC (hard and soft 
phases) which include xGNP nanofillers. A comparison of 
the thermal properties relevant to both Tm and Tc was under-
taken to investigate untreated and thermally treated PUC 
nanocomposites. As was already known, the phase-separated 
PUC showed better performance in terms of thermal and 
mechanical properties compared to untreated pure PUC 
[54, 55]. A high quality xGNP nanofiller used in polymer 
matrices is not the crucial factor in order to achieve greater 
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performance or even multifactorial polymer nanocompos-
ites. The challenge throughout incorporation of such nano-
fillers is obtaining sufficient interaction or adhesion between 
both surfaces of nanofillers and polymer chains [48]. Thus, 
better load transfer might occur during load exposure. More-
over, the problem is studied in the present work in order to 
understand whether or not it affects the final properties of 
PUC nanocomposites.

Figure 6 illustrates the thermal performance of PUC/
xGNP nanocomposites after thermal treatment correspond-
ing to neat PUC. Generally, both melting and crystallisation 
temperatures (Tm, Tc) seem to be improved after thermal 
treatment, reaching 183 °C and 142 °C for Tm and Tc, respec-
tively. On the contrary, the Tm tended to reduce beyond 2 
Wt.% of the xGNP limit and were ~ 176 °C and ~ 178 °C 
for loadings of 8 Wt.% and 15 Wt.%, respectively. In com-
parison, the Tm of pure PUC was 174 °C, owing to the 

assumption of greater disordering of HDs due to the xGNPs 
restacking during thermal treatment. Nonetheless, these var-
iations were seen only for the Tm of thermally treated PUC 
nanocomposites in the second heating scan. This restacking 
of xGNPs could lead to reduced efficiency of the interaction 
at the interfacial surfaces of xGNP and PUC chains [48], and 
thus, lower effectiveness in terms of stress transfer, result-
ing in a reduction in the final performance of xGNP/PUC 
nanocomposites [56, 57].

While Tm reduces at higher amounts of xGNP, the crys-
tallisation peaks (Tc) of the nanocomposite samples were 
slightly increased, proving that xGNP nanofillers act as a 
nucleation agent at any loading. These results are in agree-
ment with other previous works [56, 58, 59]. For exam-
ple, Liang et al. found that when GNP was incorporated 
in polypropylene polymer, it could play a role in heteroge-
neous nucleation, leading to an increase in the degree of 
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Fig. 5   Thermal behaviour (heating rate of 10 °C/min) of PUC/xGNP nanocomposites compared to pure PUC: (a) first heating scan, (b) second 
heating scan, and (c) cooling scan

Page 7 of 16    302Journal of Polymer Research (2021) 28: 302



1 3

crystallinity, and to improve the inherent stiffness of the 
resultant systems, particularly at relatively low GNP loading.

Crystallinity, Xc, is a key point for PUC/xGNP nanocom-
posites, which can be determined using a second heating 
scan after removing all thermal history from the first scan 
and according to the equation of crystallinity obtained from 
previous studies [41, 52, 60]:

The degree of crystallinity of the pure PUC and its 
counterparts containing xGNP increased from 13.63% to 
15.14%, 16%, and 15.9% for PUC nanocomposites con-
taining 0.5, 2, 8 and 15 Wt.% of xGNP, respectively. The 
hindrance of the crystallinity of PUC upon xGNP addition 
was remarkably seen at a loading of 15 Wt.%, reaching 
12.4%. As indicated, the best values of crystallinity of 

(1)Xc =
ΔHm

(1 − Φ)ΔH100%

PUC/xGNP nanocomposites were at 0.5 and 2 Wt.% xGNP 
incorporation. This indicated a decline in the volume of 
crystals formed within the hard segments of PUC, which 
confirmed the hypothesis of xGNP aggregation. On the 
other hand, the counterparts of those samples after ther-
mal annealing exhibited a slight decrease in crystallinity 
percentage, except at a loading of 15 Wt.% of xGNP. The 
microphase-separated structure was suppressed by nano-
fillers and prevented the HDs from arranging themselves 
in uniform patterns [61]. It was reported by Bourque et al. 
that the increase in crystallinity with the addition of xGNP 
has a limit. The researchers found that after 5% of xGNP 
the crystallinity tended to decrease, due to the assumption 
of the diffusion barrier effect by xGNP and thus higher 
disruption to the ordering of chains, even though the pres-
ence of xGNPs encouraged the creation of nucleation sites 
[51, 62].
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DMTA analysis of PUC/xGNP nanocomposites

The dynamic mechanical properties of PUC/xGNP nano-
composites in comparison with pure PUC were calculated 
using a DMTA instrument. The storage modulus (Eʹ) and 
loss tangent (tanδ) as a function of temperature ranging 
between -90 °C and 150 °C are given in Fig. 7. All data for 
Eʹ and tanδ at different temperatures are shown in Table 1. 
With the addition of xGNP, the Eʹ of the PUC nanocompos-
ites increased remarkably for all loadings. The Eʹ enhance-
ment can be attributed to the high modulus of xGNP that 
was added [63, 64]. Meanwhile, an improvement in Eʹ was 
exhibited by several magnitudes at the temperature below 
the Tg (glassy region) of HDs. A strong fillermatrix inter-
action can give more restication for PUC chains; since the 
addition a small amount of xGNP can increase the micro-
phase separation of PUC [65, 66]. At room temperature, a 
clear decrease in Eʹ values of PUC/xGNP behaviour was 
exhibited prior to thermal treatment of PUC/xGNP samples 

compared to their counterparts before this treatment. This 
trend indicates the aggregated xGNPs leaded to decrease the 
aspect ratio and thus weak interfacial interaction between 
the filler and polymer [67]. That is to say, microphase sepa-
rated morphology can be restricted due to this phenomenon. 
However, the subsequent response becomes closer and even 
plateaus at the temperature above the Tg of HS (rubbery 
region) due to the enhanced mobility of both the soft and 
hard segments. This reveals the substantial mobility of the 
PUC segments including both HDs and SDs with increasing 
temperature [68]. In fact, the thermal treatment presumably 
exhibited lower values of Eʹ due to the possibility of a huge 
aggregation of nano-scale fillers (xGNP) which preferred 
to locate themselves in the hardphase regions rather than 
soft-phase regions, consequently  preventing the effective 
load transition from hydrogenbonded PUC chains to xGNP 
clusters [69, 62].

On the other hand, the prominent tan δ showed a certain 
shift in its values to lower magnitude with respect to pure 
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PUC. This also implies the disruption that took place in the 
3D network structure of PUC/xGNP nanocomposites [70]. 
The tan δ peak represents the transition temperature (Tg) 
of the produced PUC nanocomposite materials. Thus, an 
improvement in Tg has been obtained from DMTA analy-
sis, which is mainly attributed to the better dispersion of 
exfoliated high modulus xGNP particles and strong inter-
connection with the effective chains. This observation is 
particularly the case in the hard phase of PUC, resulting 
from the inter-molecular forces such as hydrogen bonding 
[67]. Similarly, a study was conducted by [64], who found 
that interfacial interaction would restrict the mobility of 
PUC chains. On the contrary, the dissipation factor (tanδ) 
showed a low magnitude when the nanocomposite sam-
ples were annealed. This result implied the assumption of 
restacking xGNP during the attempt of hard segments to 
be rearranged in a packed or ordering pattern. This could 
also be affected by the disruption of microphase separation 
in regions possessing large amounts of aggregated xGNP 
[28]. Such DMTA findings match with DSC results when 
crystallinity is calculated.

Tensile properties of PUC/xGNP nanocomposites

For a comparative study of xGNP-filled PUC nanocompos-
ites before and after thermal treatment, the tensile behaviour 
of PUC when xGNP was incorporated using in-situ poly-
merisation displayed outstanding improvement compared 
to pure polymer. These enhancements in tensile properties 
such as tensile modulus and yield strength were from stress-
strain curves, as shown in Fig. 8. Several factors affect the 
efficiency of this property, including xGNP dispersion as 
well as interfacial compatibility between xGNP and PUC 
polymer [57, 71]. To some extent, the annealed PUC/xGNP 
samples exhibited slightly lower values in both tensile 
modulus and tensile strength. This occurred as a result of 
the suppression of the microphase-separated structure of 
PUC due to the restacking of xGNPs. Reduced tensile per-
formance for annealed specimens is found to correspond to 
untreated counterpart samples. The overall addition process 
of xGNPs to untreated PUC significantly increases the ten-
sile performance with the limit of 8 Wt.% of xGNP, while at 
15 Wt.% of xGNP, the tensile properties relatively reduced 
the tensile response. This deterioration is also in agreement 
with the results of DSC through  crystallinity measurements 
[47]. The reduction occurs with the ultimate strength at 8 
Wt.% due to the nanofillers restacking, which suppresses 
the strain hardening during tensile testing [40]. It is clear 
that elongation at break showed minimum magnitude for all 
nanocomposites before and after treatment.

The efficiency of stress transfer can significantly affect 
tensile properties due to the action of better compatibil-
ity between filler and polymers and vice versa [41]. This Ta
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key factor of adequate compatibility can create better and 
more uniform stress transfer. However, in the present case, 
this reduction in tensile properties after thermal treatment 
reflects the hypothesis of the restacking and aggregation ten-
dency of xGNPs [71]. As is known, xGNP tends to aggre-
gate through the addition of large amounts. The stress–strain 
curve of PUC/xGNP samples is represented the strength 
performance compared with pure PUC, three clear regions 
relevant to the microstructure of PUC were identified. The 
regions consist initially of the quasi-linear elastic deforma-
tion due to re-crystallisation and the ordering trend of hard 
segments. The second regime of the curve was observed as 
corresponding to the deformation of soft segments and rep-
resented as a plateau region in addition to some alignment 
of short ordered hard segments. Finally, the strain hardening 
region was observed, due to the crystallisation induced by 
the tensile loads and then the break-up of the PUC chains 
[72]. The advantages of the reinforcing effect exist when the 
effective interaction happened between the polymer- filler 
interface [73, 74].

Halpin–Tsai equations

The mechanical properties (elastic modulus) of nanofiller-
reinforced composites can be estimated using different mod-
els that are enormously affected by the geometry, orienta-
tion, and volume fraction, as well as the elastic properties 
of both matrices and fillers. A defined H-T model predic-
tion was employed to verify the mechanical performance 
of PUC/xGNP nanocomposites. A conventional compari-
son was assigned to a 3D random H-T model and a 2D H-T 
model. As is known, graphene is a perfect material with 
a higher aspect ratio (length to thickness) and thus has a 

larger modulus compared to other fillers [75]. Dispersion 
and distribution of such kinds of xGNP play a crucial role 
in obtaining an efficient interaction between PUC and those 
xGNPs [76]. Thus, the main function for enhancement by 
the xGNP usage can be vanished due to aggregation ten-
dency at certain limits addition [77]. This is reflected in the 
quality of the final resultant materials through increasing the 
thickness of this filler compared to similar lengths (diam-
eter). Herein, an alternative calculation micromechanical 
model (H-T model) was used in order to predict the shape-
fitting factor, which is directly relevant to the aspect ratio 
of stacked xGNP particles [33]. This model is developed 
from elasticity conditions, and is diverse and quite accurate 
in comparison with other models [33]. Theoretically, the 
modulus of the PUC/xGNP nanocomposites increases as E 
of xGNP increases. The highest and lowest modulus val-
ues were represented by the ‘P’ and ‘S’ lines, which related 
to longitudinal modulus and the transverse modulus. The 
equations used to estimate the filler modulus variation with 
respect to the results obtained from the realistic tensile test 
experiments are as follows [78]:

where Ef, Em and Ec are the elastic modulus of the fillers, 
matrix and composites, respectively; Vf is the volume frac-
tion of fillers; and ξ is the shape factor that depends directly 
on the filler geometry and loading direction. In general, 
ξ = 2(L/d) for fibres, where L is the fibre length and d is the 

(2)
EC

Em

=
1 + ��Vf

1 − ��Vf

(3)where � =
(Ef∕Em) − 1

(Ef∕Em) + �
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Fig. 8   Typical stress–strain data for conditioned (25 °C, 50% humidity), (a) non-annealed, and (b) annealed (80 °C for 4 days) samples of pure 
PUC and PUC-xGNP nanocomposites
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fibre diameter, and ξ = 2 (L/t) for disc-like platelets, which 
are adopted in this study, where L is the GNP length and t is 
the GNP thickness [78]. The shape factor ξ, which relates to 
the aspect ratio of reinforcement, has provided good agree-
ment with the longitudinal modulus; conversely, the trans-
verse modulus was found to be comparatively insensitive to 
aspect ratio [33].

For composites with unidirectional or discontinuous fill-
ers, the modified Halpin–Tsai models can predict the com-
posite elastic modulus in the longitudinal (EL) and transverse 
(ET) directions according to the equations below:

where the parameters ηL and ηT can be expressed in the 
following equations:

To follow the modified Halpin–Tsai models, the below 
assumptions should be applied to PUC nanocomposites 
filled with xGNPs: i: Both xGNPs and PUC are isotropic 
and firmly bonded to each other; ii: the GNPs are asym-
metrical, identical in shape and size, homogeneously dis-
persed and aligned; iii: the GNPs are fully exfoliated and 
perfectly oriented [66]. A clear difference between the 

(4)EL = Em

(

1 + ��LVf

1 − �LVf

)

(5)ET = Em

(

1 + 2�TVf

1 − �TVf

)

(6)�L =
Ef∕Em − 1

Ef∕Em + �

(7)�T =
Ef∕Em − 1

Ef∕Em + 2

predicted modified Halpin–Tsai elastic moduli and the 
real behaviour of the PUC/xGNP system was observed. 
This outcome resulted from the optimised parameters 
that were assumed for the reinforcement mechanism [79]. 
However, to study the effects of filler direction within the 
PUC matrix, the modified Halpin–Tsai equations have 
been adjusted with respect to the probable filler direction, 
which may be 2D or completely 3D and which may be 
randomly oriented.

The modified Halpin–Tsai (MH-T) equations for 2D and 
3D random orientations can be written as shown below:

In this study, the Em of PUC is 0.19 GPa; the aspect ratio 
(L/t) of GNP-M15 is 1875 when L and t represent the length 
and average thickness of GNP, which were taken as 15 μm and 
8 nm respectively according to the supplier specifications [80]. 
Finally, ξ was taken as 2(L/t); in this case, it is equal to 3750.

Figure 9 illustrates the comparison between predicted 
and experimental data of the elastic modulus of xGNP-
reinforced PUC. From this figure, a deviation between the 
predicted and experimental values of the elastic modu-
lus of nanocomposites can be clearly observed. The pre-
dicted theoretical modulus of PUC/xGNP increases with 
increasing Ef and Vf. In particular, it can be observed 
that the experimental results fit at Ef = 300 GPa at load-
ing < 1 Wt.% and lie between 200 and less than 50 GPa at 
a loading of > 8 Wt.%. It can then be seen that this trend 
decreases upon further GNP at the highest loadings, equal 
to 15 Wt.%. This does not fit with experimental results 
at higher loadings due to xGNPs aggregating and being 
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randomly distribute [41]. However, further calcula-
tions using the 3D H-T model were conducted to dem-
onstrate the optimised correlation via experimental data. 
It is clear that there is good agreement of filler moduli 
(Ef = 1000–200 GPa) between the calculated and experi-
mental values for PUC nanocomposite modulus at lower 
GNP levels (≤ 1–8 Wt.%). Similarly to the 2D prediction, 
this trend is observed to reduce upon further GNP load-
ings. The reduction in Ef at high loading could be a result 
of non-homogeneity in dispersion, misalignment and size 
increments of the xGNP, resulting in the agglomeration or 
poor dispersion of nanofillers in the authentic behaviour 
of PUC/xGNP [81]. On the other hand, earlier work by M. 
M. Shokrieh et al. [82] reported the effective elastic modu-
lus of GNP reinforced with epoxy polymer. The results of 
their study showed that non-uniform dispersion could be 
the major reason for divergence between the experimen-
tal and theoretical findings; this conclusion is compatible 
with the present results, in spite of the differences in GNP 
aspect ratio and processing methods.

As mentioned previously in these findings, the values of 
Ef at 300 GPa and 1000 GPa with respect to 2D and 3D 
predictions were selected to conduct further modelling to 
predict the elastic modulus of PUC/xGNP nanocomposites. 
This value will be extrapolated by varying the GNP aspect 
ratio (L/t) as shown in Fig. 10 with the assumption PUC 
moduli of 0.19 GPa. The lines marked U and L represent 
the calculations of predicted elastic modulus using the upper 
and lower bounds (series and parallel) of the rule of mix-
ture models. A remarkable difference in both the 2D and 
3D predictions of modulus have been observed, owing to 
the assumption of strong interface adhesion between xGNPs 
and the PUC matrix. Thus, the modulus seen was directly 
proportional to the ratio of L to t, which, it is suggested, can 

be attributed to the poor dispersion, rolling up or folding of 
the GNP platelets as well as aggregation [41].

The correlation between the aspect ratio and modulus 
with respect to xGNP loading can be seen in Fig. 10. This 
relation reflects the status of xGNP exfoliation, since bet-
ter exfoliation can result from an optimal mixing process 
and hence higher resultant modulus [83]. It was observed 
for the 2D estimation that at the essential minimum loading 
of GNPs (< 1 Wt.%) the empirical data matches with the 
line denoted as L/t = 5000 and then drops at a loading of > 1 
Wt.% to lie exactly between L/t = 500 and even less than 
L/t = 20. At higher loading, the reduction in the aspect ratio 
of GNPs is in all probability due to the tendency of xGNPs 
to agglomerate and even to restack [84]. It is likely that the 
3D calculation could be more accurate than the 2D model 
and thus better fit of prediction for the theoretical modulus 
based on the modified H-T equation [84].

Conclusions

PUC was considered a good candidate for many applica-
tions, and xGNPs were considered a useful reinforcement 
filler and inherently good modifier of the poorer proper-
ties of this PUC. Moreover, the architecture of PUC as a 
copolymer and the fact that its features are greatly affected 
by thermal treatment were the motivations to investigate the 
different properties with these two kinds of parameters. The 
incorporation of xGNPs increased most mechanical thermo-
mechanical and thermal properties. The thermal and thermo-
mechanical analysis including TGA and DMA displayed 
good thermal stability, and crystallinity increased due to 
xGNPs acting as a heterogeneous nucleation factor as well 
as possessing high barrier properties. Thermal transition was 
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also investigated by DSC thermograms to reveal the melting 
and crystallization peaks for PUC and their composites. In 
fact, the second scan of heating gave better thermal transi-
tion consistency due to erasure of the thermal history of 
PUC samples. On the other hand, the mechanical response 
of PUC filled with xGNPs was significantly raised accord-
ing to the dispersion and interaction status. However, it was 
also of great importance to examine the effect of xGNPs on 
the microphase-separated structure of this polymer, which 
showed a positive effect on the final properties of the PUC/
xGNP nanocomposites. A theoretical comparison was con-
ducted to observe the aggregation tendency, especially at 
higher concentrations. The results showed that the increase 
in divergence corresponds to the increase in xGNP loadings.
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