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Abstract
This work reports one-step synthesis process of LiOH-castor oil based polyurethane foam (PU) by completely replacing 
synthetic polyol. The reaction involved reacting varying weight percentage of lithium hydroxide with castor oil along with 
isocyanate. The successfully synthesized stable PU foams were characterized for density, sol fraction, cellular morphology, 
polymer phase morphologies and thermo-mechanical properties. The properties of the LiOH-castor oil based PU foams were 
compared with the conventional PU foam. Flexibility of the synthesized foams was observed to be lower than conventional 
PU foam for 0.05%, 0.1% and 0.5% LiOH due to the presence of closed cells with pin holes. Whereas, presence of open 
cellular structure in 0.3% LiOH-castor oil based PU foams showed flexible nature. Sol fraction of all the synthesized foams 
was found low (~ 5%) indicating improved reactivity. Thermal conductivity, glass transition temperature, thermal stability 
and mechanical properties of the synthesized PU foams suggest the possibility of replacing conventional PU foams for vari-
ous applications.
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Introduction

Polyurethanes (PU) foams are widely used polymers which 
find applications in upholstery, automotive seating, mat-
tresses, and heat insulations etc.[1]. Other novel applica-
tions were addressed by enhancing the properties of PU 
foam [2–4] upon adding nanoparticles in the polymer 
matrix, such as in oil–water separation, electromagnetic 
shielding, medical cushioning, etc.[5–7]. Vegetable oils 

and their derivatives are being used as an alternative polyol 
in polyurethane foam synthesis since last 5 decades [1, 8, 
9]. Although, vegetable oil derivatives, such as fatty acids, 
fatty acid esters, etc.can be obtained by transesterification or 
hydrolysis of vegetable oils, these modified oils have failed 
to replace the synthetic polyol completely in the polyure-
thane foam formulation. PU foam synthesis from renewable 
resources such as soybean oil, castor oil, palm oil, rapeseed 
oil, cardanol oil etc. [10–25] suggests possibility of partial 
replacement of synthetic polyol. Among these vegetable 
oils, castor oil is the only naturally hydroxylated seed oil 
which makes it a feasible candidate for the complete replace-
ment of synthetic polyol without further modification [26]. 
Synthetic polyol when completely replaced with castor oil 
in PU foam synthesis results in collapsed foam [18]. Vari-
ous reasons have been attributed to the instability of foam; 
among them some major points are slow reaction between 
castor oil and isocyanate, low transient viscosity build-up 
during polymerization reaction, hard domain aggregation 
in the polymer phase, and slow modulus development of 
the reacting foaming blend [18]. Only few works has been 
reported in the literature addressing the issues mentioned 
above to overcome the causes of instability in the PU foam. 
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Sharma et. al. initially investigated the foam stability upon 
gradual introduction of castor oil in the foaming blend. It 
shows that the complete replacement of synthetic polyol 
with castor oil resulted in collapsed foam [18]. Shaik et al. 
has reported the synthesis of stable PU foam using castor 
oil as a polyol and glycerol as crosslinking agent [27]. This 
work shows that the stability of the foam was restored by 
adding glycerol at varying concentration in the castor oil 
blend. Introduction of glycerol has found to increase the 
reactivity as it has high hydroxyl value. Foams synthesized 
were found rigid in nature with closed cells as observed in 
the cellular morphology. Sharma et. al. has reported the use 
of n-butlylithium for the modification of castor oil before 
being used as a bio based polyol in the synthesis of PU foam 
[28]. The study reports the successful synthesis of stable 
PU foam by reacting castor oil with n-butlylithium at sub-
zero temperature resulting in splitting the ricinoleic acid into 
two fragments thereby increasing the hydroxyl index of the 
modified castor oil. This resulted in the faster and complete 
reaction of castor oil with isocyanate producing stable PU 
foam. Also, the Li+ ions produced during the reaction were 
found to disrupt the H-bonding between the urea-urea hard 
domains, thereby, overcoming the hard domain aggregation 
[29]. Hence, literature suggests that a probable solution to 
overcome instability of vegetable oil-based PU foams is to 
introduce Li+ ion in the foaming blend. The earlier work [28] 
involves multiple and complex steps of modification of cas-
tor oil with n-butyllithium which makes it difficult to process 
at large scale. Therefore, coming up with a simple process 
of synthesis can possibly make the technology feasible at 
commercial scale.

In this work, we report a successful one-step synthesis 
process of PU foam production using LiOH and castor oil 
blend for the generation of Li+ ion in the foaming blend. 
The foams were synthesized and were characterized for bulk 
density, sol fraction, cellular morphology, polymer phase 
morphology and thermo-mechanical properties and were 
compared with the conventional PU foam.

Materials and methods

Chemicals used

Isocyanate (polymeric 4,4 diphenyl methane diisocyanate, 
Suprasec 6456) was taken from Huntsman. Conventional 
polyol used (polypropylene glycol based, Konix FA 505, 
KPX Chemicals, S. Korea) was having approximate func-
tionality, hydroxyl value and molecular weight of 3.0, 
35 mg KOH/g polyol, and 4700 g/mol, respectively. Castor 
oil used (Molychem) had an approximate functionality of 
2.7, hydroxyl value of 163 mg KOH/g oil and molecular 
weight of 930. Foam additives used was a blend of surfactant 

(Tegostab 87348734 LF, Evonik), catalysts which contains 
bis(2-dimethylaminoethyl) ether (Niax A1, Momentive), 
diethanolamine (Sigma-Aldrich) and a mixture of triethyl-
enediamine, and dipropyleneglycol (Dabco 33LV, Air Prod-
ucts). Lithium hydroxide monohydrate used (Molychem) 
having a molecular weight of 41.95 and purity 99%. Distilled 
water was used as a chemical blowing agent.

Blending of lithium hydroxide and castor oil

Before starting the foaming process, castor oil was blended 
with lithium hydroxide. Castor oil blend contains 0.05%, 
0.1%, 0.3% and 0.5% (w/w of Castor oil) of LiOH which 
were stirred using magnetic stirrer at 2000 rpm for 5 min. 
The resultant mixture was used as a polyol in the PU foam 
synthesis.

PU foam synthesis

The lithium hydroxide blend castor oil (93.3 parts by weight 
(pbw)), distilled water (4.2 pbw), catalyst blend (2.0 pbw) 
and surfactant (0.5 pbw) are poured into a paper/plastic 
cup of volume 300 mL. The blend was homogenized with 
a high speed mechanical stirrer at an approximate speed of 
3000 rpm till it turns cream in colour. Further, isocyanate 
was added to the blend maintaining NCO index as 1 and 
stirred at high speed  (3000 rpm) for around 20 s. The foam 
was then allowed to expand freely inside the paper cup act-
ing as the mould and was then kept for curing at room tem-
perature for 2 h.

Characterizations

Foam density was measured by taking foam of size 1 × 1 × 1 
cm3 and there weights were measured using a high preci-
sion weighing machine. For each foam, five samples of men-
tioned dimension were taken from different areas of foam 
and their average was considered. The sol fraction in the 
polymeric phase was estimated by solvent extraction. Ini-
tially three samples were cut from each synthesized foams 
and their weight was measured. Further the dried samples 
were immersed in dimethyl formamide (DMF) for a period 
of 3 days. The samples were then kept in a vacuum oven at 
80 ℃ for 24 h. Finally the sol fraction was calculated based 
on the ratio of difference in weight to that of the original 
weight. The cellular foam morphology was imaged by scan-
ning electron microscope (ZEISS SEM). Samples of dimen-
sion 5 × 5 × 2 mm3 were cut and placed on sample holder. 
It is then placed into gold sputtering machine for about 
30 min for coating the sample with gold. Further, the sam-
ple is placed into SEM and the micrographs were obtained. 
Finally, mean cell diameter (MCD), cell number density 
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(CND), and mean strut thickness (MST) were calculated 
from scanning electron micrographs, using image analysis 
software (ImageJ). The thermal conductivity of the synthe-
sized foam samples are carried out by a thermal properties 
analyser (KD2 Pro, Decagon Devices, Inc.). Foam samples 
of dimension 10 × 3 × 3 cm3 were cut and the probe of the 
instrument was inserted vertically into the samples. A differ-
ential scanning calorimeter (Q20, TA Instruments) was used 
to find the glass transition temperature. Approximately 2 mg 
of crushed PU foam sample was kept into an aluminum pan 
before inserting into the instrument. Samples were cooled 
from 80 °C to –60 °C at a rate of –5 °C/min. Thermogravi-
metric analysis of the foam samples were performed under 
inert atmosphere (by using nitrogen gas) using TGA instru-
ment (SDT Q600, TA Instruments, USA). Approximately 
3 mg of crushed PU foam samples were heated from room 
temperature to 800 °C at a rate of 10 °C/min. Final weight 
of the samples was noted upon completion for measuring the 
derivative weights of the foam samples. The tensile strength 
of the synthesized foam samples are carried out by a Univer-
sal Testing Machine (INSTRON 5960, dual column). Mini-
mum of three foam samples of dimension specified under 
ASTM D3574 were cut and clamped in UTM. Further the 
loading is done at the rate of 10 mm/min till fracture point 
of foam is attained.

Results and discussion

Foam density, sol fraction and cellular morphology

Bulk density of PU foams may vary slightly according to 
the type of foam prepared. Rigid foams have a higher den-
sity than flexible foams as they have closed cells [30]. The 

density of the conventional PU foam is 0.032 ± 0.3 g/cc 
[31]. Fig. 1(a) shows the bulk density of foams prepared 
from castor oil. 0.05% and 0.1% LiOH based foams have 
high densities of around 0.13 g/cc and 0.18 g/cc respec-
tively. Furthermore, the foams prepared from 0.3% and 
0.5% LiOH have densities around 0.04 g/cc and 0.06 g/cc 
respectively. This implies that 0.3% LiOH based foams have 
bulk density comparable to that of conventional PU foams 
due to the presence of open cells as verified by the SEM 
image (Fig. 2(d)). On the other hand, due to closed cell 
structure in other samples (Fig. 2(b),(c),(e)), the bulk den-
sity is found relatively higher. The variation of bulk density 
can also occur due to the variation of cell number density 
(CND) of the foams [18]. Higher the CND more will be the 
bulk density of the foam. In order to find the percentage of 
loose molecules present after the reaction in the samples 
sol fraction was measured. It is well known in the litera-
ture that the reactivity of castor oil with isocyanate is very 
low, which contributes to the instability of PU foams [18]. 
Therefore, sol fraction is an important measurable param-
eter which indicates the extent of the reaction between the 
reactants. Sol fraction of conventional PU foam is around 
1.4% [18]. Fig. 1(b) indicates the sol fraction of the synthe-
sized PU foams. Sol fraction of foam with pure castor oil 
was found to be around 36% which is in agreement with the 
literature. However, sol fraction of LiOH based PU foams 
is found to have drastically reduced (around 5%) as shown 
in Fig. 1(b). This indicates the improved reactivity between 
castor oil and isocyanate in presence of LiOH.

Figure 2 shows the scanning electron micrographs of 
foam specimens. The scanning electron micrographs of 
0.3% LiOH-castor oil based foams (Fig. 2(d)) show open 
cellular structure implying flexible nature of foam simi-
lar to the micrograph obtained for petro based PU foam 

Fig. 1   (a) Bulk density and (b) sol fraction of LiOH-Castor oil based PU foams (trend line is guide to eyes)
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(Fig. 2(a)). On the other hand, scanning electron micro-
graphs of 0.05%, 0.1% and 0.5% LiOH-castor oil (shown 
in Fig. 2(b), 2(c), 2(e) respectively) based PU foams show 
closed cellular structure with presence of pin holes imply-
ing semi-rigid nature of foam [28].

Segmental polymer phase morphology

The stability of the foam also depends on the polymer 
phase morphology, which in turn decides the modulus 
development of the stretching polymer film while the 

Fig. 2   Scanning electron micrographs of (a) Conventional PU foam, (b) 0.05%, (c) 0.1%, (d) 0.3% and (e) 0.5% LiOH based PU foams
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foaming takes place [32]. The polyurethane consists of 
two phases namely urethane soft phase and poly-urea hard 
phase. Poly-urea (thermodynamically originated) dis-
perses in the soft urethane matrix. A well dispersed hard 
phase causes uniform modulus development throughout 
the polyurethane film during cell growth, resulting in 
stable polyurethane foams [18, 33]. Hydrogen bonding in 

polyurethanes plays a significant role in determining the 
phase segregation [34, 35]. Aggregation of hard phase 
is the result of hydrogen bonding between the urea-urea 
phases, which causes uneven stretching film modulus 
resulting in rupture or failure of foam [36]. In order to 
evaluate the hydrogen bonding between urea-urea hard 
domains FTIR was performed on the foam samples. 

Fig. 3   FTIR of LiOH-castor oil 
based PU foams

Fig. 4   Thermal gravimetric 
analysis of LiOH-castor oil 
based PU foams
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Figure 3 indicates that FTIR spectra of foams, where 
H-bonded urea peak appears around 1660 cm−1[18]. Pure 
castor oil based PU foam (0%) shows a prominent peak at 
1660 cm−1 indicating the presence of hydrogen bonding 
between the hard domains, causing foams to collapse. 
On the other hand, introduction of Li+ molecules in the 
castor oil blend has significantly reduced the H-bonding 
between the hard domains as indicated by the disap-
peared peak at 1660 cm−1. This disruption of hydrogen 
bonding by Li+ ion is due to its smaller molar volume and 

stabilization energy of O–-Li+ complex [29, 37]. Thus, 
all the foams were found stable.

Thermogravimetric analysis

From the analysis of the TGA results of LiOH-castor oil 
based PU foams shown in Fig. 4, it is observed that there 

Table 1   Thermal conductivity of PU foam with varying % of LiOH

Sl.No PU foam sample
wt% LiOH

Thermal Conductivity (W/mK) 
at room temperature ~ 28 °C

1 0.05 0.032 ± 0.004
2 0.1 0.037 ± 0.005
3 0.3 0.027 ± 0.003
4 0.5 0.030 ± 0.006

Table 2   Mechanical properties of PU foam with varying % of LiOH

PU foam 
sample

Tensile 
Modulus 
(MPa)

Tensile Stress at 
break (MPa)

% Elonga-
tion at 
break

wt% 
LiOH

 PU foam 0.05 1.04 0.26 25
0.1 0.89 0.42 47
0.3 0.31 0.18 58
0.5 0.15 0.06 40

Fig. 5   Differential scanning calorimetry of (a) 0.05%, (b) 0.1%, (c) 0.3% and (d) 0.5% LiOH based PU foam samples
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are three peaks in the mid abscissa range of the data curve. 
These illustrate three degradation zones. Each of the peaks 
corresponds to breakage of certain bond present in the pol-
yurethane foam. The first peak refers to the breakage of C-H 
bonds in the range of 230 °C – 350 °C. At this temperature 
the foam starts to break up into smaller fragments from the 
original body. The second peak signifies the breakage of 
the C = O bond in the urea segment and the (N–H) link-
ages of the polymer matrix. This happens at a temperature 
range of 410 °C – 460 °C. The final peak represents the 
breakage of the C–C bonds in the polymer, which results in 
the total collapse of the polymer [38]. A significant result 
can be obtained from the thermogravimetric analysis is the 
derivative weight loss. It throws light on various tempera-
ture range where significant apparent weight is lost due to 
thermal degradation. A material is considered thermally 
stable as long as its weight does not change considerably 
with the increase in temperature. From Fig. 4 it is observed 
that the synthesized PU foams were found stable till 225 °C 
which is comparable with respect to the synthetic PU foam, 
where the 1st degradation occurs at ~ 217 °C [39], beyond 
which thermal disintegration begins.

Thermal and mechanical properties

PU foams find wide application as a thermally insulating 
material in various industries [40, 41]. Conventional flexible 
and rigid PU foams have thermal conductivity of ~ 0.026 W/
mK and ~ 0.033  W/mK (approximately) respectively 

[42–44]. The thermal conductivities of the prepared foams 
were measured and tabulated in Table 1. The thermal con-
ductivity of 0.3% LiOH-castor oil based foam is found to be 
0.027 W/mK which is comparable to that of the conventional 
flexible PU foam. On the other hand, thermal conductivity 
of 0.05%, 0.1% and 0.5% lithium modified castor oil based 
foam is found to be 0.032, 0.037 and 0.030 W/mK respec-
tively which is comparable to that of conventional rigid PU 
foam. Higher values of thermal conductivity were obtained 
for 0.05%, 0.1% and 0.5% LiOH based samples is due to the 
presence of closed cells. Variation of the thermal conductiv-
ity values among these samples can be correlated with the 
bulk density values. Wherein, a sample with higher bulk 
density is showing higher thermal conductivity. Thus, LiOH-
castor oil based PU foams can be used as potential thermal 
insulating material for suitable applications.

Glass transition temperature (Tg) of the synthesized PU 
foams were extracted from the DSC curves shown in Fig. 5. 
The figure indicates the temperature below which the poly-
mer chains become completely crystalline. Thus, for flexible  
PU foam it indicates the temperature below which the foams 
become stiff. It can be observed from the plots, that with 
increase in LiOH in the sample, the peaks observed contin-
ued to flatten, indicating that the degree of crystallization 
of the LiOH based PU foam to decrease. The sharp peaks 
indicate a higher degree of cross-linking between the poly-
mer chains [45]. As the Tg of all the synthesized samples are 
well below 0 °C. These foams can be suitably used under 
different ambience with varying temperatures. A variation 

Fig. 6   Stress vs strain plot for 
PU foams
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in Tg values of 0.05%, 0.1% and 0.5% with respect to 0.3% 
LiOH based samples can be attributed to the type of the 
foam produced (i.e. rigid and flexible). The rigid foams have 
a Tg values ~ 22 °C, whereas flexible foam is having a value 
of 14 °C.

Table 2 showing tensile modulus, tensile strength at break 
and percentage elongation at break of all LiOH-castor oil 
PU foam samples were determined using the tensile stress 
(MPa) versus strain (%) curve  (shown in Fig. 6). Percentage 
elongation of 0.3% lithium modified castor oil foam is found 
to be 57% which is lower than that of conventional PU foam 
having a value of 79% [18]. This reduction in percentage 
elongation is because of low molecular weight of castor oil 
as compared to that of synthetic polyol [46]. On the other 
hand, tensile strength for 0.3% LiOH-castor oil PU foam 
is found to be 0.31 MPa which is much higher than that of 
conventional PU foam having a value of 0.048 MPa [18]. 
Thus, the mechanical properties of 0.3% LiOH-castor oil 
based PU foam can be compared to conventional flexible PU 
foam which is a probable alternative against conventional 
PU foams.

On the other hand, tensile strength of 0.5% Li modified 
castor oil is found to be 0.15 MPa which is much lower than 
that of conventional rigid PU foam. The tensile stress of 
0.05% and 0.1% LiOH-castor oil based foams are 1.04 MPa 
and 0.89 MPa respectively is comparably higher with respect 
to the conventional rigid foam (0.4255 MPa). Thus it can be 
concluded that 0.05%, 0.1% and 0.5% LiOH-castor oil foam 
has much lower tensile strength than that of conventional 
rigid PU foam.

Conclusion

Stable polyurethane foam was successfully synthesized via 
one-step process using LiOH-castor oil blend by completely 
replacing synthetic polyol. The synthesized PU foams were 
characterized for density, sol fraction, cellular morphol-
ogy, polymer phase morphologies and thermo-mechanical 
properties. Sol fraction of the foams indicates improved 
reactivity. Density of the foams was relatively higher as 
compared to conventional flexible polyurethane foam. Cel-
lular morphology suggests presence of closed cells with pin 
holes for 0.05%, 0.1% and 0.5% LiOH-castor oil based PU 
foams and open cellular structure for 0.3% LiOH-castor oil 
based PU foams. Thermal conductivities of the foams were 
approximately same as compared to both flexible and rigid 
conventional PU foams. Glass transition temperature of all 
the foams were found below – 10 °C. Thermogravimetric 
analysis shows foams were stable till 225 °C. The tensile 
strength of LiOH-castor oil based PU foam was found to be 
much higher than the conventional foams (tensile strength 
of 0.3% Li based PU foam is 0.31 MPa). Therefore, one step 
synthesis process of the LiOH-castor oil based PU foams 

suggests the possibility of replacing synthetic polyols in the 
synthesis process of PU foams at commercial scale.
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