
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10965-021-02463-8

ORIGINAL PAPER

Covalent triazine based polymer with high nitrogen levels for removal 
of copper (II) ions from aqueous solutions

Mohammad Dinari1  · Nazanin Mokhtari1 · Mohammad Hatami1

Received: 4 December 2020 / Revised: 11 February 2021 / Accepted: 18 February 2021 
© The Polymer Society, Taipei 2021

Abstract
The tremendous popularity of porous organic polymers in all fields of Science is irrefutable these days. The current study inves-
tigates the application of an accessible covalent triazine-based polymer (CTP) synthesized from 2,4,6-tris(hydrazino)-1,3,5-
triazine (THT) and terephthaldehyde (TA) in a Pyrex sealed tube. The prepared CTP can efficiently remove the  Cu(II) ions 
from aqueous solutions. After the successful CTP synthesis, it was characterized using different methods, including FE-
SEM, XRD,  CO2 adsorption isotherm, and TGA. A wide range of pH with different adsorbate concentrations and times 
were investigated to study the batch adsorption experiment. The excellent adsorption of  Cu(II) ions at the optimal pH of 7 
with a maximum capacity of 86.95 mg.  g− 1 and excellent thermal stability makes it the right industrial investigation choice. 
Moreover, the obtained data reveal that the adsorption isotherm obeys the Langmuir model, and the adsorption kinetics 
obeys the pseudo-second-order model.

Keywords Porous organic polymers · Covalent triazine‐based polymer · Adsorption · Copper

Introduction

  In recent years, water pollution and the shortage of water 
sources have become significant concerns [1–4]. The most 
severe threats to water sources are heavy metals regard-
ing their persistency in nature, bio-accumulation tendency, 
and toxicity [5, 6]. During the past years, different removal 
methods have been developed for heavy metals, including 
electrolysis [7], filtration [8], reduction [9], precipitation 
[10], and adsorption [11–14]. The simplicity, as well as the 
efficiency, made adsorption one of the most reliable meth-
ods [15]. Mercury, zinc, chromium, nickel, arsenic, copper, 
cadmium, and lead are known as the most harmful heavy 
metals existing in water sources [16, 17]. Copper is one of 
those toxic heavy metals widely used in various industries 
including, paint and pigment, mining, fertilizer, electroplat-
ing, and metal finishing industries [18]. The rapid industrial 
development caused the accumulation of a large amount of 
copper into the environment [19]. Heavy metals are non-
biodegradable, making them existing in nature for long times 

[20]. Going beyond the limiting tolerance of Cu(II) ions in 
water and wastewater would cause serious health problems. 
Therefore, removing Cu(II) ions from industrial wastewa-
ter is necessary [21]. In recent years, considerable attention 
has been concentrated on designing effective and low-cost 
methods for the adsorption of Cu(II) ions from Cu (II)-rich 
effluents [19].

Various materials have been used in water treatment as 
the adsorbents such as polymers [22], clays [23], metal 
oxides [24], carbon aerogel [25], and activated carbons 
[26]. The lack of chemical bonds to metal ions in these tra-
ditional adsorbents decreased their metal removal perfor-
mance [27]. Thus, finding new materials acting as effec-
tive adsorbents is of significant interest. Lack of enough 
active surface sites, diffusion limitation, high cost, as well 
as, separation and regeneration difficulties caused unsat-
isfactory results for most of these adsorbents. Developing 
new structures with easy recovery, high adsorption capac-
ity, low diffusion resistance, and large surface area is a 
long-lasting challenge in green chemistry. Considering the 
mentioned properties, covalent triazine polymer (CTPs) 
are gaining vital interests in heavy metal removal from 
aqueous solutions [28, 29].

Porous organic polymers (POPs) are a fascinating class 
of porous materials made of organic molecules connecting 
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via strong covalent bonds. Regarding their unique proper-
ties, such as a variety of structures, well-defined porosi-
ties, and high surface areas, POPs found diverse applica-
tions in different branches of science [30, 31]. The ability 
to use various chemical functionalities in their structure 
makes them become designable and task-specific materials. 
Among the different classes of POPs, CTPs have gained 
interest in the synthesis of organic nanostructures [32]. 
Metal-organic frameworks (MOFs) have common proper-
ties to CTPs, such as high specific surface area. However, 
the superiority of the CTPs can be explained as the chemi-
cal stability in acidic solutions [33–37].

CTPs are materials with nitrogen-rich porous frame-
works with surface basicity and large surface area [38]. 
The presence of C-N-C six-membered rings caused CTPs 
to have broad applications in gas storage [38], sensing 
[28], catalysis [39], and water treatment, especially in the 
removal of heavy metals [28, 29]. Tunable surface essen-
tial functions, large pore volume, high surface area, as 
well as high thermal and chemical stability made CTPs 
excellent materials for metal removal [28, 29].

The present study introduced a hydrazone-based CTP 
as a suitable adsorbent to remove Cu(II) ions from aque-
ous solutions. Using available and cost-efficient materials 
(hydrazine, terephthaldehyde, and 2,4,6-trichloro-1,3,5-
triazine) and a simple preparation method made it a good 
model of industrialization.

Experimental details

Materials

All the chemicals were purchased from Sigma Aldrich 
and Merck chemical companies and used without further 
purification.

Synthesis of 2,4,6‑tris(hydrazino)‑1,3,5‑triazine (THT)

A modified procedure from the literature was used to 
prepare THT [40]. In a typical procedure, a solution of 
0.552 g of 2,4,6-trichloro-1,3,5-triazine (TCT) in 5 mL 
of 1,4-dioxane was prepared and slowly added to a solu-
tion of 18 mmol of hydrazine hydrate (HZ) in 5 mL of 
1,4-dioxane for 1 h. The mixture stirred for 2 h at room 
temperature. In the end, the precipitated product was fil-
tered and washed with distilled water and 1,4-dioxane sev-
erally, then dried at 70°C under vacuum for 12 h (yield: 
80 %). Elemental analysis (experimental/ theoretical): C: 
19.75/ 21.05 ;H: 6.02/ 5.30 ;N: 70.94/ 73.65.

Synthesis of porous N‑riched CTP (THT‑TA‑CTP)

To prepare THT-TA-CTP, a pyrex tube charged with THT 
(0.64 mmol), terephthaldehyde (TA) (0.96 mmol), mesi-
tylene (1.0 mL), 1,4-dioxane (1.0 mL), and 100 µL aqueous 
acetic acid (6 M). Then it was sonicated for 5 min, vacu-
umed, flame sealed, and heated to 120°C for 72 h. The yel-
low precipitated product separated by centrifugation, washed 
with chloroform (5 mL), THF (5 mL), and acetone (5 mL), 
respectively. The product was then purified using a Soxhlet 
extractor to remove all the oligomers from the structure. 
Finally, the product was vacuum dried at 70°C.

Characterization

The X-ray diffraction (XRD) patterns were recorded on a 
Bruker (Advanced D8 Bruker AXS, Berlin, Germany) using 
Cu Kα in the range of 2–80°. The field-emission scanning 
electron microscopy (FESEM) images were recorded on 
a HITACHI (S-4160, Tokyo, Japan) device for studying 
the surface morphology of the THT-TA-CTP structure. A 
JASCO FT-IR (680 plus, Tokyo, Japan) impact spectrometer 
was used to obtain Fourier transform infrared (FT-IR) spec-
tra for studying the functional groups presented in the THT-
TA-CTP structure. The thermal stability of the THT-TA-
CTP was investigated with the thermal gravimetric analysis 
(TGA) on an STA (503, Hüllhorst, Germany) device. The 
samples were heated to 800°C with a ramp of 10°C/min. 
The surface porosity parameters were investigated by  CO2 
adsorption isotherm, which is recorded on a MicroActive 
TriStar II plus 2.03 (Micrometrics, USA). The concentration 
of  Cu(II) ions was studied with a Flame atomic adsorption 
spectrophotometer (FAAS; PerkinElmer 2380-Waltham) 
equipped with a Cu (II) hollow cathode lamp.

Batch adsorption experiment: kinetic and isotherm 
investigation

The THT-TA-CTP ability in the adsorption of metal ions 
was studied using  Cu(II) metal ions. An appropriate amount 
of copper nitrate trihydrate was dissolved in distilled water 
to prepare a stock solution of 100 mg.  L− 1  Cu(II) ions. A 50 
mL polyethylene bottle was charged with 10 mg of adsor-
bent and 25 mL of 10 mg.  L− 1 solution of  Cu(II) ions. The 
universal buffer was used to adjust the pH in the range of 
2–12. Then, the bottles were shaken at 174 rpm at room 
temperature for 240 min. Afterward, the solutions were 
centrifuged to remove the adsorbent, and the concentra-
tion of  Cu(II) ions was evaluated using FAAS techniques. 
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Moreover, polyethylene bottles containing solutions with 
concentration ranged (2-150 mg.  L− 1) was charged with 
10 mg of the adsorbent at the optimized condition, were 
used to investigate the adsorption isotherm.

Regarding the FAAS data, the adsorption capacity  (qe) 
and the removal efficiency  (Re) determined from the fol-
lowing equations (Eqs. 1 and 2):

In these equations,  Ci (mg.  L− 1),  Ce (mg.  L− 1), V (L), and m 
(g) is the initial concentration of  Cu(II) ions, the final equi-
librium concentration of  Cu(II) ions, volume of the solutions, 
and the mass of adsorbent, respectively [41].

To investigate the kinetics of the adsorption reaction, 
25 mL of 80 mg.  L− 1 solution of  Cu(II) was prepared and 
charged with 10 mg of the adsorbent at pH = 7 as the opti-
mized pH. The solutions were shaken for 20–180 min. 
Finally, the mixtures were centrifuged to remove the 
adsorbent, and the supernatant was analyzed with the 
FAAS device.

(1)Re =

[
(

Ci − Ce

)

Ci

]

× 100

(2)qe =
V

m

(

Ci − Ce

)

Results and discussion

Characterizations

The overall synthesis procedure of THT-TA-CTP was illus-
trated in scheme 1. The substitution of chlorine atoms with 
hydrazine in an  SN2 like mechanism led to the formation of 
THT. Then, THT-TA-CTP was prepared with the reaction 
with TA in a sealed pyrex tube. The presence of nitrogen 
atoms in the structure increased heavy metal removal via a 
pincer type complexation to the metal center.

Functional group changes were identified using FT-IR spec-
troscopy (Fig. 1). The FT-IR spectra of THT, TA, and their cor-
responding CTP were shown in Fig. 1. The primary vibrations 
of TA are the aldehyde C-H bond stretching and the aldehyde 
carbonyl group, which are appeared at 2756–2864  cm− 1 and 
1694  cm− 1 (Fig. 1b), respectively. Besides, in the THT spec-
trum, the bands at 3279–3312  cm− 1 and 2924  cm− 1 are corre-
sponding to the –NH2 and –NH– bonds vibration, respectively 
[42]. Also, the main stretching modes of the s-triazine ring were 
observed at 1541–1567  cm− 1 (Fig. 1c). In the case of THT-TA-
CTP, the carbonyl band of the TA at 1694  cm− 1 was disappeared 
due to the completion of the reaction with THT. More impor-
tantly, the formation of new –C = N– bonds at 1619  cm− 1 proves 
the formation of THT-TA-CTP (Fig. 1a).

Scheme 1  Schematic illustration of THT-TA-CTP preparation and  Cu(II) removal
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To investigate the crystallinity of the THT-TA-CTP, its 
XRD pattern were recorded (Fig. 2). The pattern shows 
the semi-crystalline nature of the THT-TA-CTP. The bands 
observed at 15–35°, especially those at 18.5° and 25.3° are 
related to the π- π stacking interactions presented between 
the THT-TA-CTP layers [43, 44]. Also, the crystal size 

was determined with the Scherrer equation. The crystal 
size was found to be 28.82 nm from the peak presented 
at 25.3°.

The thermal stability of the THT-TA-CTP was studied 
using TGA. The obtained data, including the decomposition 
temperature of 5 % wt.  (T5 %), the decomposition temperature 
of 10 % wt.  (T10 %), and char yield was found to be 160°C, 
320°C, and 50 %, respectively (Fig. 3). The limiting oxygen 
index (LOI) for halogen-free compounds can be calculated 
through the Van Krevelen and Hoftyzer equation [45]. LOI 
was found to be 37, which is a sign of being a self-extin-
guishing material corroborating the high thermal stability 
of the THT-TA-CTP (Fig. 3).

The surface porosity parameters of the THT-TA-CTP 
were studied using the  CO2 adsorption isotherm. Using 
 CO2 instead of  N2 is a standard method for microporous 
materials. The specific surface area of the BET isotherm of 
 CO2 adsorption (Fig. 4) was found to be 100.79  m2  g− 1. The 

Fig. 1  FT-IR spectra of (a) THT-TA-CTP, (b) TA, (c) THT, (d) 
hydrazine, and (e) TCT 

Fig. 2  XRD pattern of THT-TA-CTP

Fig. 3  TGA pattern of THT-TA-CTP

Fig. 4  CO2 adsorption isotherm of THT-TA-CTP
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mean pore diameter and total pore volume were also found 
to be 0.5 nm and 0.03  cm3  g− 1 using the Horvath-Kawazoe 
method [46].

For the next investigation, the surface morphology of the 
THT-TA-CTP was studied using FE-SEM images. These 
images revealed a stable spongy, porous structure for THT-
TA-CTP (Fig. 5).

Effects of pH on the performance of adsorption

To study the effect of pH on the adsorption experiment, the 
universal buffer in the range of 2–12 was used. The con- 
centration of the remained  Cu(II) ions in the solutions after 
the equilibrium was studied using FAAS. The removal effi-
ciency of  Cu(II) ions from 10 mg.  L− 1 solutions in different  
pH are explored and shown in Fig. 6 (Eqs. 1 and 2). The adsorption  
is not efficient in acidic pH values, which might be related 
to the deactivation of active nitrogen sites in the presence 
of acidic protons. Also, pH values above 7 can induce the 
precipitation of  Cu(II) ions as the hydroxide, which is not 
satisfactory; thus, the pH of 7 selected as the optimal pH 
to reach the highest removal efficiency (Fig. 6).

Isotherms and the kinetic equation for adsorption 
equilibrium values of adsorption

Isotherm equations

The adsorbent characteristics, including the equilibrium val-
ues of adsorption and the maximum amount of  Cu(II) ions 
(mg) adsorbed per adsorbent mass unit (g), can be calculated 
by fitting the adsorption data into the Langmuir, Freundlich, 
Tempkin, and Dubinin-Radushkevich isotherm models. The 
monolayer adsorption of  Cu(II) ions on the external surface 

of THT-TA-CTP was studied using the Langmuir isotherm 
equation (Eq. 3) [47]

.
In this equation,  KL (L.  mg− 1) is the Langmuir isotherm 

constant,  qm (mg.  g− 1) is maximum monolayer coverage 
capacity,  qe (mg.  g− 1) is the amount of metal adsorbed at 
equilibrium, and  Ce (mg.  L− 1) is the equilibrium concentra-
tion of the  Cu(II).

The heterogeneous surface characteristics can be 
described with the Freundlich isotherm (Eq. 4) [48].

where  KF is the Freundlich isotherm constant, n is the 
adsorption intensity,  qe (mg.  g− 1) is the amount of metal 

(3)
1

qe
=

(

1

KLqm

)

1

Ce

+
1

qm

(4)lnqe = lnKF +
1

n
lnCe

Fig. 5  FE-SEM images of THT-
TA-CTP

Fig. 6  The effects of the pH of the solution on the Cu(II) removal
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adsorbed at equilibrium, and  Ce (mg.  L− 1) is the equilibrium 
concentration of the  Cu(II).

The interaction between the  Cu(II) ions and the THT-TA-
CTP was explored by ignoring the too high or too low con-
centration with the Temkin isotherm (Eq. 5) [49, 50]. The 
adsorption heat of all molecules is linearly reduced and can 
be calculated from this equation.

in the above equation, R (8.314 J.  mol− 1.  K− 1) is the univer-
sal gas constant, T is the temperature (here 298 K),  bT is the 
Temkin isotherm constant,  AT (L.  g− 1) is the Temkin isotherm 
equilibrium binding constant,  qe (mg.  g− 1) is the amount of 
metal adsorbed at equilibrium, and  Ce (mg.  L− 1) is the equi-
librium concentration of the  Cu(II).

The adsorption mechanism was investigated with the 
Dubinin-Radushkevich (Eq.  6) [47] isotherm equation 
using the Gaussian energy distribution on the surface of 
THT-TA-CTP.

(5)qe =
RT

bT
lnAT +

RT

bT
lnCe

(6)lnqe = lnqs − Kad.�
2

In this equation, ε is the Dubinin − Radushkevich isotherm 
constant,  Kad  (mol2.  kJ− 2) is the adsorption equilibrium 
constant,  qs (mg.  g− 1) is the theoretical isotherm saturation 
capacity, and  qe (mg.  g− 1) is the amount of metal adsorbed at 
equilibrium.

These isotherms were studied, and their results are 
summarized in Table 1. By comparing the  R2 values, it 
was found that the Langmuir model was best fitted to the 
adsorption data. The  qm value shows the maximum adsorp-
tion capacity of THT-TA-CTP and found to be 86.95 mg. 
 g− 1. The spontaneity of the reaction was investigated by 
studying the  RL value. The  RL value of the adsorption 
found to be 0.3–0.7, revealing the fact that the adsorption 
was spontaneous.

Kinetic investigation

The adsorption kinetics were explored based on the Lagergren 
equations [51]:

Pseudo-first order:

(7)ln
(

qe − qt
)

= lnqe − k
1
t

Fig. 7  (a) Adsorption isotherm for  Cu(II) removal at optimal condition, (b) Langmuir plot of adsorption, (c) pseudo-second-order kinetic model, 
and (d) Intra-particle diffusion model
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Pseudo-second order:

In these equations,  k1 and  k2 are the rate constants,  qe (mg. 
 g− 1) is the adsorption capacity, and  qt is the adsorption at time t.

Moreover, the Intra-particle diffusion model was also stud-
ied [52] (Eq. 9):

Kid (mg.  g− 1.  min− 1/2) stands for the intra-particle diffu-
sion rate constant in this model.

Finally, the Elovich model can be expressed as following 
[53] (Eq. 10):

The adsorption process was completely studied by the 
intra-particle diffusion model and the Weber-Morris plot 
(Fig. 7d). The adsorption of  Cu(II) ions starts with fast 
removal of ions followed by a linear plateau. It shows 
that the adsorption has two separated processes. In the 
first one,  Cu(II) ions were diffusing through the aqueous 
solution to reach the external surface of THT-TA-CTP, 
which is mainly a result of electrostatic interactions 
between the ions and the nitrogen-riched surface, then, 
at the second one, by the formation of equilibrium, the 
concentration reached a plateau. [54–56]. A quick com-
parison between the regression coefficient of Eqs. 7 and 
8 shows that the adsorption of  Cu(II) ions with THT-TA-
CTP obeys the pseudo-second-order equation. The order 
was independent of  Cu(II) ions concentration. Moreo-
ver, these results reveal that the adsorption is chemical 
interaction rather than the physical (Table 1) [57, 58] 
(Fig. 8).

Comparison with recent studies on  cu(II) removal

The performance of THT-TA-CTP was compared to the 
recent studies in  Cu(II) ion removal presented in Table 2. 
Different materials were studied in the case of copper 
adsorption, including aminated polyacrylonitrile (entry 1), 
hierarchical magnetic nanostructures (entry 2), mesoporous 
alumina (entry 3), nano-composites (entries 4–6), natural 
polymers (entry 7), hyper cross-linked polymers (entry 8), 
and microporous polymers (entry 9). However, their results 
were not satisfactory in the case of time and pH. The pres-
ence of nitrogen atoms in the THT-TA-CTP structure and a 
pincer type interaction to the metal centers made THT-TA 
an excellent copper adsorbent compared to the materials 
reported in Table 2.

(8)
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Fig. 8  (a) adsorption curve vs. contact time, (b) Freundlich, (c) Dubinin–Radushkevich, (d) Temkin isotherm model, (e) pseudo-first-order 
kinetic model, and (f) Elovich kinetic model
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Conclusions

In summary, THT-TA-CTP was successfully synthesized 
through a condensation reaction between THT and TA. It 
was then fully characterized by different techniques such 
as FE-SEM, XRD,  CO2 Adsorption isotherm, and TGA. 
The presence of nitrogen atoms in the THT-TA-CTP made 
it a suitable adsorbent for metal ion removal. The ability 
of THT-TA-CTP in removing metal ions from aqueous 
solution was proved using it in  Cu(II) ion adsorption with a 
maximum adsorption capacity of 86.95 mg.  g− 1. Moreover, 
`the obtained data reveal that the adsorption isotherm obeys 
the Langmuir model, and the adsorption kinetics obeys the 
pseudo-second-order model. By the rapid growth of reticular 
chemistry and its application in environmental issues, more 
about covalent organic polymers will be heard in the world 
of Science. Further studies in preparing new structures with 
application in water treatment were under investigation by 
our group.
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3 protonated mesoporous alumina (PMA) 20 420 8.6 5.8 306 [61]
4 porous geopolymeric sphere 50 2880 52.6 5 53.9 [62]
5 nanocomposite of magnetic hydroxyapatite 10 250 48.8 5 101.2 [63]
6 FCGd 100 750 75.4 5 2.53 [64]
7 Cross-linked chitosan

beads
5 60 45.94 6 -e [65]

8 melamine-based microporous polymer 10 300 72.9 3.5 548 [66]
9 EDTA functionalized silica 60 20 37.59 5.5 - e [67]
10 THT-TA-CTP 80 240 86.9 7 100.8 This work
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