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Abstract
Poly(glycolic acid) (PGA) is an essential biopolymer due to its thermal and mechanical properties and biodegradability which
provide utility for medical applications and renewable industry. For biomedical applications, production of PGA with high
molecular weight is an essential factor to possess adequate mechanical stability. Primary pathways for PGA synthesis are
ring-opening polymerization of glycolide (ROP), direct polycondensation of glycolic acid, and solid-state polycondensation of
halogen acetates. For PGA synthesis, different systems have been developed with using varying parameters including catalysis,
initiators, solvents, and reaction temperature. This review summarizes the different synthesis pathways and physicochemical
properties of PGA. Biomedical applications of PGA are also discussed.
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Introduction

Biopolymers have been used in a wide range of applications
such as surgical operations and regenerative medicine [1].
Synthetic biopolymers may have better mechanical properties
and thermal stability compared to some natural polymers [2].
Poly(α-hydroxy acids) group of synthetic biopolymers has
been studied extensively and the most widely used polymers
in this category are poly(lactic acid) (PLA), poly(glycolic ac-
id) (PGA), and poly(lactic-co-glycolic acid) (PLGA) which
are degradable under in vivo conditions and serve as proper
matrix for regenerative medicine. Among them, PGA is pre-
cious biopolymer because of the its high cost regarding no
technology found for cost-efficient high-scale production.

PGA is a highly crystalline polymer (45–55%) with a high
melting point (220–225 °C) and a glass-transition temperature

(Tg) about 35–40 °C [3, 4]. PGA has a faster degradation rate
and higher mechanical properties compared to PLA and
PLGA with different PGA/PLA ratio. PGA is insoluble in
many solvents due to its high crystallinity but just soluble in
highly fluorinated solvents such as hexafluoroisopropanol
(HFIP) until a molar mass of 45,000 g/mol [5]. Synthesis of
PGA and its industrial production is challenging especially in
the case of obtaining high molecular weight due to unstable
and easily degradable nature of PGA [6]. Glycolic acid and
glycolide are used as monomers for PGA synthesis (Fig. 1). A
method for synthesizing high-molecular-weight PGA via
ring-opening polymerization of glycolide is valid however it
allows small quantity of PGA at high cost [7]. Yamane and
coworkers reported that PGA can be also produced via con-
densation of glycolic acid using a dehydrating reaction which
is a comparatively cost-efficient method. However, obtaining
of high-molecular weight PGA with this method has an ob-
stacle due to the equilibrium between glycolide and chain
extension for the hydroxyl termination of PGA [8].
Additionally, the ring-opening polymerization of glycolide
was appeared for synthesizing high-molecular-weight PGA.
However, there are still obstacles in the industrial scale of
high-molecular-weight PGA such as deposition of glycolide
on the inside wall of the distillation lines [8].

According to the reported market research by Global
Market Insights Inc., the PGA is estimated to grow with a
value of more than $6 billion to over $9 billion by 2024.
The global PGA market is becoming increasingly important
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especially in the medical industry. The main applications of
the PGA in the medical area are absorbable sutures and other
advanced materials such as biodegradable bone grafts, dental
materials, scaffolds in tissue engineering and drug delivery
vehicles. It is estimated that PGA market will increase in near
future with the advances of PGA in different applications such
as packaging industry and shale gas extraction [9].

The first application of PGA as a biomaterial has been
declared in 1954 [10], and synthetic and biodegradable su-
tures made of PGA called Dexon® was developed in 1962
by American Cyanamide company [11, 12]. Dexon® suture
loses its mechanical stability in up to several weeks and
quickly absorbed by body [13]. Dexon® as an biomedical
application of PGA has been approved by the US Food and
Drug Administration (FDA) in 1969 and interest in PGA
has rapidly increased over time in terms of its use in other
biomedical applications [14–17]. PGA and its copolymers
have been used in medical fields such as in drug delivery
systems, dental and orthopedic applications due to their
good biocompatibility and biodegradability in addition to
the sufficient mechanical characteristics [1]. PGA is used in
the production of medical materials like screws, stents, and
grafts for regenerative medicine applications. Higher mo-
lecular weight reduces the degradation rate of the biopoly-
mer and this feature is crucial for tissues having longer
regeneration period such as bone and cartilage [18]. In ad-
dition, the polymer gains mechanical stability with increase
in molecular weight and crystallinity [19]. Applications of
PGA was restricted to the medical field because of the high
price of PGA. By decreasing the cost, new applications area
can appear related to the certain characteristics of PGA

including high gas-barrier properties and mechanical
strength.

Achieving and producing high molecular weight PGA
(Mn > 45,000 g/mol and Mw > 93,000 g/mol) is important
for further processes [20]. In addition, sufficient mechani-
cal stability of PGA is generally obtained at molecular
weights >30,000 g/mol [20, 21]. It is very hard to achieve
to the desired molecular weight with direct condensation
method. For this purpose, the glycolide chain opening po-
lymerization is used. However, there are some difficulties
in this method such as necessity of high temperature and
expensive raw material [22]. Additionally, catalysis used
during ring-opening polymerization of glycolide could in-
dicate toxic effect. For example, tin (II) octanoate/benzyl
alcohol catalyst system give high molecular weight PGA
but tin compound is known to be toxic and should rather
be removed from the produced PGA [23].

Despite its importance and use in clinical applications,
when we look at the literature there are fewer reports on
PGA because PGA and glycolic acid are more expensive that
compared to lactic acid and PLA and PGA have highly crys-
talline properties that it is almost insoluble in widely used
organic solvents such as tetrahydrofuran, chloroform, tolu-
ene, or dimethyl sulfoxide thus it is hard to characterize and
process [22, 24]. However, PGA remains the most remark-
able material among biopolymers due to its high mechanical
strength and biocompatibility and obtaining high molecular
weight has been a focus of researchers. Different approaches
have been developed for PGA synthesis. Those synthesis
approaches can be divided into three main parts: Ring-
opening polymerization of glycolide, direct polycondensation

Fig. 1 Chemical structure of
PGA and monomers used for
PGA synthesis
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of glycolic acid and solid-state polycondensation of
halogenoacetates [7] (Fig. 2).

PGA with different physicochemical properties can be ob-
tained according to the selected reagents, reaction initiators
and synthesis procedures which affect the characteristics of
the PGA including hydrophilicity, crystallinity, melting and
glass transition temperatures, molecular weight, distribution
of molecular weight, terminal end groups, and the residual
monomers and additives [19]. Different approaches have been
investigated for the production of high molecular weight PGA
[7, 22, 23]. As mentioned above, high molecular weight PGA
has unique properties, which opens the door to new applica-
tions of PGA. In this study, synthesis procedures and biomed-
ical applications of PGA will be reviewed. The copolymers of
PGA such as PLGA is not concern of this review.

Different pathways for the synthesis of PGA

There are various polymerization approaches in PGA syn-
thesis depending on factors such as initiator catalysis, sol-
vent, pressure, and temperature. Because the mechanical
properties of PGA were directly related to the molecular
weight, researchers have mainly focused on obtaining high
molecular weight PGA. Synthesis approaches of PGA are
shown in Fig. 3.

Synthesis of PGA by direct polycondensation

This commonly usedmethod for obtaining PGA is simple, but
it is not an effective approach for high molecular weight PGA
production. This method is based on the procedure of
obtaining PGA by heating the glycolic acid to 175-200 °C
under atmospheric pressure and then maintaining the pressure
at 150mm-Hg for up to 2 h. PGA obtainedwith this procedure
has low molecular weight less than 10,000 g/mol due to the
water appeared during the synthesis which is hard to remove
from the polycondensation process [25, 26]. Zhaoyang and his
colleagues have stated that the synthesis of low-molecular
weight PGA by conducting the reaction at 165 °C and 70 Pa
during 10 h in the presence of tin(II) chloride as catalyst [27].
The obtained PGA with low molecular weight could be suit-
able for use in drug delivery systems.

Synthesis of PGA by azeotropic polycondensation

High molecular weight-PGA (Mw > 930,000 g/mol) can be
obtained by polycondensation in azeotropic solution called
azeotropic condensation polymerization [22, 28–30]. In this
method, the problem of removing the water formed during the
reaction is overcome with the selected organic solvent. In
addition, azeotropic distillation has some advantages for in-
dustrial production such as low cost and high efficiency [22,
31]. In the patent study US5444143A stated that,

Fig. 2 Different pathways for PGA synthesis
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polyhydroxcarboxylic acid having a high molecular weight
(Mw = 20,000–460,000 g/mol) can be obtained by dehydra-
tion condensation of hydroxycarboxylic acid with azeotropic
distillation method [32]. In another patent study high molec-
ular weight (Mw = 50,000–200,000 g/mol) polyhydroxy acids
were also obtained by using dean stark apparatus via
azeotropic distillation method [33]. However, glycolic acid
and lactic acid blend was used as hydroxycarboxylic acid in
these studies and therefore, these studies give us an idea for
obtaining high molecular weight PGA. In a recent study, high
molecular weight-PGA (Mn = 32,100 g/mol) with high crys-
tallinity (77%) and high solubility (147.3 mg/mL) was obtain-
ed from glycolic acid by azeotropic distillation with Dean
stark apparatus. In this study, solvent-catalyst binary interac-
tions are found to be more effective than temperature of
azeotropic distillation reaction [22].

Synthesis of PGA by acid and enzyme-catalyzed

Acid-catalyzed and enzyme-catalyzed reactions have been de-
veloped for the production of PGA. Masuda et al. conducted
acid-catalyzed reaction with trioxane and paraformaldehyde
used as reagent compounds and formaldehyde and carbon
monoxide used as sources respectively, in the presence of
chlorosulfonic acid as catalyst. The reaction is conducted at
about 180 °C for 2 h which finally give a mixture of low and
high molecular weight-PGA [34, 35]. Enzyme-catalyzed re-
actions are eco-friendly approach due to the non-synthetic
pathway which carries out PGA synthesis via isolated

enzymes. Kataoka et al. used ethylene glycol with Pichia
naganishiiwhich is a bacterium from isolated soil and obtain-
ed high molecular weight PGA [36].

Synthesis of PGA by oligomerization of glycolic acid
and chain coupling reactions

A different approach to increase the molecular weight of PGA
is oligomerization and chain coupling. In this method, a vari-
ety of chain linking and esterifying agents which react with
hydroxyl or carboxyl functional groups on the molecular
structure can be used [37]. However, the main drawback of
this method is being a multi-step procedure including flam-
mable solvents [38].

Synthesis of PGA by solid-state polycondensation of
halogenoacetates

Another pathway for PGA synthesis is thermally induced
solid-state polycondensation of halogenoacetates which is
a solvent-free process. The homopolymerization of PGA is
accompanied by the creation of sodium chloride. In this
method, the obtained polymers usually have a lower degree
of polymerization than from solution- or melt polymeriza-
tion methods [39]. PGA can be obtained from 11 different
halogenoacetate precursors with the general formula of
MOOCCH2X which the composition of metal varies
(M = Li, Na, K, Rb, Ag, Cs) and halogen (X = Cl, Br, I)
[40]. In the study of Subramanyam, high molecular weight

Fig. 3 Synthesis approaches of
PGA
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PGA (Mn = 100 ,000 g /mol ) was ob ta ined f rom
halogenoacetates [41].

Synthesis of PGA by ring-opening polymerization

As to the ring-opening polymerization of glycolide method,
which was first used by Carothers in 1932 to obtain poly(α-
hydroxy acids), the product was low molecular weight PLA
[42]. So far, different approaches have carried out on ring-
opening polimerization for high molecular weight polymer
synthesis and first attempt was high- molecular-weight-PLA
obtained in 1950 using ring opening polymerization (ROP)
technique with efficient monomer purification [31]. In a recent
study, Schmidt and coworkers performed high-molecular-
weight-PGA synthesis in supercritical carbon dioxide using
ROP method. In this study, supercritical carbon dioxide
(scCO2) was used as a reaction medium because of scCO2

allowed for a reduction in reaction temperature compared to
conventional processes. Finally, they obtained PGA with
number average molecular weight of 31,200 g/mol [43].
ROP process can be divided into four reaction subtypes ac-
cording to the catalyst, initiator or reaction conditions and
these are melt and/or bulk polymerization of glycolide, sus-
pension or emulsion polymerization of glycolide, solution po-
lymer iza t ion of glycol ide , ca t ionic and anionic
polymerization.

Melt or bulk polymerization of glycolide

Regarding melt or bulk polymerization of glycolide reaction
mechanism, in first step, the water is removed from polymer
and oligomer is obtained low molecular weight polymer.
Oligomer is heated under high vacuum and to prepare raw
monomer is uses proper catalysts which known as chain cou-
pling agents. Finally, high molecular weight polymer is ob-
tained after several purification steps. The most important is-
sue in this process that water must be removed which com-
posed in the reaction process otherwise water molecules attack
ester bond on the polymer, which occur decreases molecular
weight of polymer. Takahashi and colleagues used the melt/
solid state polycondensation method of glycolic acid to obtain
high molecular weight PGA [20]. In this method, firstly, low
molecular weight oligomer was obtained from glycolic acid at
190 °C and then suitable catalysts were selected and continued
reaction at the same temperature finally obtained PGA which
possess high molecular weight. After scanning catalysis, they
found that zinc acetate dihydrate is the most suitable catalyst
and as a result, they have been synthesized PGA with an
average molecular weight of 91,000 g/mol. Shen et al. were
achieved using two different catalysis, zinc acetate dihydrate
and tin dichloride dehydrate, the PGA with a molecular
weight of 45,000 g/mol in their work [44].

Solution polymerization

Although the melt/bulk polymerization method has a simple
procedure and high molecular weight polymer is obtained
according to the selected reaction conditions, the high temper-
ature formed during synthesis cannot be removed due to poor
heat conduction. In a study by Leenslag and Pennings, it is
stated that the heat produced during the reaction reduces the
molecular weight [45]. There are two types of polymerization
methods where this problem is relatively uncommon. These
are suspension and solution polymerization methods. In one
study [46], solution and suspension polymerization methods
of lactide and glycolide were studied, advantages or disadvan-
tages of these studies were compared with melt and/or bulk
polymerization methods.

In the solution polymerization process, the reaction is ini-
tiated with a relatively low concentration of monomer than
compared melt/bulk polymerization and as the lower viscosity
allows mixing during the reaction, heat transfer takes place
and thus the heat generated in exothermic reactions can be
avoided. However, this method has some disadvantages as
in other polymerization methods. For example, the solvent
used should be removed after the polymers has been synthesis.
Another disadvantage is that racemization occurs during solu-
tion polymerization. In this study by Nieuwenhuis, they stated
that obtained 90,100 g/mol molecular weight polymer by
using solution polymerization method with a yield between
96 and 100% [46].

Suspension or emulsion polymerization

The basis of the suspension or emulsion polycondensation
methods is the vigorous mixing of water-insoluble or slightly
soluble monomers to prevent the particles from interacting
with each other during the polymerization process. Larger
particles (20 μm and above diameters) are obtained compared
to emulsion polymerization, which can be easily isolated by
filtration or sedimentation [47]. British patent GB825335A is
describes a suspension polymerization method for the poly-
merization of lactide and glycolide. In this study, inert liquid
hydrocarbons with boiling point between 80 °C and 250 °C
were used. However, the explosive effects of these liquids
make it difficult to study. Silicone-oil was selected for stabi-
lizer and one, two, four, five, six and seventh groups of metal
halides were used as catalyst and low molecular weight poly-
mer was synthesized at the end of the reaction [48].
Nieuwenhuis carried out various suspension polymerization
studies based on the system mentioned in the patent study.
In one experiment, he used gasoil-L lactide stannous octoate
system, maintained the reaction temperature between 80 and
160 °C and continued the reaction time which a period of 1–
2 h to 20–30 h, after that was obtained polymer which have
175,000 g/mol molecular weight [46].
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Cationic and anionic polymerization

In polymerization there is a direct link between the selected
catalysis and the quality of the final product. Cationic and
anionic compounds can be used in the polymerization of
glycolic acid or glycolide as the monomer and are separated
as cationic-anionic polymerization methods. Protonic acids
such as sulfuric acid and phosphoric acid are used in cationic
polymerization, also Lewis acids such as zinc chloride, ferric
chloride, aluminum chloride, titanium tetrachloride, boron
triflouride etherate, and antimony trifluoride can be used,
which provide high mass polymers [49].

There are a few studies in the literature for the polymeriza-
tion of glycolide with cationic and anionic compounds used as
catalysts, but there are many methods with lactone. Studies
with lactones may provide ideas for preparing PGA [50]. In
another study carried out recently, high molecular weight
PGA (Mn = 600,000 g/mol) was synthesized in two steps by
carbon monoxide (CO) and formaldehyde cationic copoly-
merization method [7]. In this study, biomethanol or biogas
was used as a sustainable raw material source for carbon mon-
oxide (CO), while trioxane was used as a source of formalde-
hyde. In first step, oligomer (Mn ∼ 1800 g/mol) obtained from
cationic polymerization esterification and then Zn(OAc)2·
2H2O was used as catalysis in the second step of this study.
Surprisingly, polymer having a molecular weight of approxi-
mately Mn ∼ 600,000 g/mol was synthesized with this meth-
od. However, they explained that this number must be juxta-
posed with the solubility limits of PGA in HFIP [7]. In other
study based on the previous study, under the same reaction
conditions, additionally epoxides derived from long-chain fat-
ty acids were used this study and approximately, obtained
PGA with number average molecular weight 49,000–
132,000 g/mol in this study and it has also been stated that
massively advanced the solubility and reduced the melting
temperature of the PGA [23]. Reyhanoglu and Gokturk, sim-
ilar to their previous studies, they have been used polyethyl-
ene glycol (PEG) as an epoxy derivative in the system com-
pared previous studies and finally, were produced up to
weight average molecular weight 194,000 g/mol PGA [51].

As regards anionic polymerization, catalysts which are ef-
fective for lactones include alkali metals, alkali metal oxides,
alkali metal naphthalene complexes and crown ethers can be
given sample. The reaction is initiated by a nucleophilic attack
of a negatively charged initiator to the carbon of the carbonyl
group or alkyl-oxygen, resulting in linear polyester formation
[52]. Anionic polymerization of lactic and glycolide have
been less studied than the coordination-insertion approach.
In a study conducted with alkali metal solutions, in polymer-
ization of ß-lactone, it is stated that a polymer having with
number average molecular weight 110,000 g/mol and with
over 90% yield is obtained [53]. In addition to the
abovementioned methods, PGA was synthesized by different

polycondensation methods using clay, ionic liquids, diphenyl
bismuth bromide as catalysis [6, 54, 55]. Different approaches
have been developed for PGA synthesis and low or high mo-
lecular weight PGA synthesis has been made with these
methods (Table 1).

Although the ring-opening polymerization method of
glycolide has drawbacks such as expensive raw material and
the toxic effects of the catalysis, this method has been used
still industrially. However, the relatively expensive monomer
limits production of PGA and synthesis methods of PGA
which have low cost, high yield and high mass has always
been of interest to researchers and leads to new alternative
approaches. Azeotropic condensation polymerization method
with Dean-Stark apparatus is remarkable and stands out as an
alternative approach for industrial applications. This method
can replace ring-opening polymerization method in the future.

Evaluation of physicochemical properties
of PGA

PGA and its degradation products has been shown to be non-
toxic and biocompatible. The importance of PGA comes from
its physical and chemical properties provided that opportunity
to use of this material in different regions where are from
range pharmaceutical and biomedical applications to packag-
ing targets [57]. The properties of PGA are associated with its
high molecular weight, highly crystalline structure, melting
temperature, glass-transition temperature, modulus, tensile
strength, elongation-at-break, and actually it is the most hy-
drophilic molecule according to other polyesters (Table 2).

Effect of chemical structure
on the degradation rate of PGA

The degradation rate of biopolymers depends on some signif-
icant factors such as the implanted area, molecular weight and
distribution, mechanical properties, chemical structure, crys-
tallinity, morphology, surface roughness, porosity, surface
charge, surface free energy, pH, presence of additives etc.
As such, biopolymers displays dissimilar degradation rates
from each other, give rise to different degradation duration
range from days to months [19]. The degradation characteris-
tics of PGA depend on many factors such as accessibility to
amorphous phase and degree of crystallinity. X-ray diffrac-
tion, Raman and Infrared spectroscopy can give us informa-
tion about crystalline structure of PGA. Two glycolic units
depends on each other through orthorhombic cell. Glycolic
acid macromolecules form a planar zigzag conformation pass-
ing the orthorhombic unit cell with the dimensions of a =
5.22 Å, b = 6.19 Å, and c = 7.02 Å being the fiber axis. High
density of PGA (1.69 g/cm3) demonstrate that it has crystallite
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structure which consist of the strict molecular packing and the
close access of the ester groups can stabilize the crystal cage
and lead to the high melting point of this polymer.
Additionally, the configuration lead to the insolubility of
PGA in common organic solvents [61, 62].

Glycolic acid which is degradation product of PGA is a
natural metabolite. This feature, with PLA, give rise to make
its attractiveness among biopolymers in medical applications
(Fig. 4). PGA degrades in mainly two processes: Firstly, water
penetrates in the amorphous regions of the PGA matrix and
hydrolytic chain scission occurs in main chains. In the second

stage, when the amorphous regions are corroded, its biodeg-
radation process maintain with degradation of the crystalline
regions. The first stage of biodegradation of Dexon® sutures
continued along 21 days, while the second stage continued
28 days under in vitro conditions. Weight of polymer de-
creased almost 42% at the end of the biodegradation stage
and PGA losses all of mechanical properties [63] due to the
bulk degradation of PGA leading to rapidly reduce of mechan-
ical properties. In addition, PGA can degrade enzymatically in
the presence of enzymes which display esterase activity [64].
Degradation product (glycolic acid) is removed via urinary
system from the body. Despite of natural characteristics of
glycolic acid, it has an acidic nature and decrease pH of the
area at which the degradation process occurs and may led to
necrosis.

Thermal and mechanical properties of PGA

Different synthetic pathways and catalysts supply options to
modify the molecular properties of PGA such as molecular
weight, molar mass dispersion, end groups, form of GA units,
and chain structure. Those factors decide substantially the
physico-chemical features of PGA such as, elongation-at-
break, tensile strength, modulus, thermal properties and den-
sity [65]. Thermal properties includingmelting, crystallization
and glass transition temperature are essential for processing
conditions of polymers, although they are not directly relevant

Fig. 4 Biodegradation of PGA

Table 2 Characteristics of PGA

Property Amount Reference

Glass-Transition Temp (Tg) 35–40 °C [3]

Melting Point (Tm) 225–230 °C [3]

Crystallization Temp (Tc) 180 ~ 200 °C [58]

Crystallinity Degree (Xc) 45–55% [3]

Melting Enthalpy (ΔHm) 103.5 J/g [58]

Degradation Duration 6 weeks [59]

Density (ρ) 1.50–1.71 g/cm3 [60]

Tensile strength (σ) 60–99.7 MPa [60]

Tensile modulus (E) 6.0–7.0 GPa [60]

Elongation-at-break (ε) 1.5–20% [60]

Specific tensile strength (σ*) 40.0–45.1 Nm/g [60]

Specific tensile modulus (E*) 4.00–4.51 kNm/g [60]
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to biocompatibility. Differential scanning calorimetry (DSC)
is used to determine the thermal properties of polymers which
are important for polymers applications and give information
about mechanical behavior and degradability. Glass transition
temperature (Tg) value is relevant to biodegradability of bio-
polymers. If the Tg of a biopolymer is close to the body tem-
perature, biopolymers can be more elastic in implanted area
[66]. Melting temperature (Tm) is also another significant pa-
rameter of thermal characteristics. Upon Tm, whole polymer
chain mobility happens and mechanical features of a biopoly-
mer are nearly decreased to zero [67]. With regard to crystal-
lization temperature (Tc), the rate of crystallization a polymer
is affected by Tc [68]. High crystallinity of polymer indicate
that it has high Tc at the same time [58].

Mechanical properties (Young’s modulus, tensile strength,
and elongation-at-break) are another important properties for
biopolymers applications [69]. The mechanical properties and
crystallization behavior of PGA are very dependent on theMw

and its molecular chain structure [21]. Characteristics of PGA
including thermal, mechanical and degradation properties are
given in Table 2. Tg of PGA is in the range of the body
temperature (37 °C) which gives elasticity at the implanted
area. Both Tm and Tc of PGA are high due to the its high
crystallization structure.

Biomedical applications of PGA

The developments in regenerative medicine and drugs as well
as requirements for biocompatible and safer materials have
accelerated the tendency towards use of biodegradable mate-
rials for medical applications (Fig. 5). The general purposes of

biodegradable materials use in medical applications include
drug release (anti-infection, anti-tumor), operative assist (he-
mostasis, blood flow arrest), damage healing (organ regener-
ation, tissue growth), isolation (anti-adhesion), synthesis (su-
ture, surgical bonding), reinforcement (regeneration of liga-
ment), scaffold (cartilage, vessels), and incorporation (slow
release) [70]. PGA is one of the typical biodegradable synthet-
ic material used in medical applications through its biocom-
patible nature and toxicological safety due to being metabolic
molecules found in humans [70, 71]. However, there are sig-
nificant concerns about PGA due to its rapid degradation caus-
ing loss of mechanical strength [71]. Besides, high levels of
glycolic acid leads to an inflammatory response after being
resorbed by cells via the citric acid cycle [72]. PGA is also
unsuitable for preventing intra-pericardial adhesions [73] and
facilitating colonic anastomosis formation [74]. The studies
related to the medical applications of PGA are explained in
detail below.

Barrier membranes

Polymer barrier membranes are necessary for methods of
guided tissue regeneration (GTR) and guided bone regenera-
tion (GBR) [75]. A barrier membrane has important role
which prevents epithelial or undesirable tissues migration in
healing process of GTR and GBR applications [76]. Many
barrier membranes have been improved, which are generally
used in clinical applications [77]. A barrier membrane should
possess specific properties such as biocompatibility, space-
making, cell-occlusiveness, tissue integration and clinical
manageability [78]. Also, the barrier membrane must match

Fig. 5 Reported medical
applications of PGA
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mechanical properties of the target tissue. Generally, these
membranes are divided according to their degradation as re-
sorbable and non-resorbable membranes [75, 77]. Non-
r e s o r b a b l e m e m b r a n e s i n c l u d e e x p a n d e d
polytetrafluoroethylene material and titanium mesh which
have restriction due to the requirement of a second surgical
procedure to remove the biomaterial [79, 80]. Collagen and
polyhydroxy acids such as polyglycolic acid (PGA) or
polylactic acid (PLA) are the most used polymers in degrad-
able membranes [81]. Their main advantage is non-
requirement for a second surgical procedure to remove the
biomaterial in addition to the elimination of potential effects
of stress shielding of the regenerated tissue [82].

A barrier membrane such as artificial skin should maintain
the humidity inside and should resistant to infection without
inducing inflammation [70]. For this purpose, bio-based poly-
mers like collagen and chitosan are preferred due to their high
cell affinity and antimicrobial properties. However, biode-
gradable synthetic polymers like PGA is also used as artificial
skin [83] successfully formed a joint like tissue including bone
and cartilage by seeding chondrocytes and tenocytes into
PGA scaffold. Besides, McVicar et al. proposed a self-
reinforced PGA membrane for orbital floor repair [84]. The
authors indicated that nobody faced clinical consequences be-
cause of hydrolysis of self-reinforced PGA membranes. In
these applications, the tensile strength of self-reinforced
PGA reduces within 4 weeks because the membrane is re-
placed by reorganizing tissue [85].

Drug delivery applications

A range of different materials have been employed for con-
trolled release of drugs with a desirable physical property. The
general requirement for a material to be used in drug delivery
system includes being inert, free of impurities, having appro-
priate physical structure, and processability. In recent years,
biodegradable polymers have been chosen as drug carriers for
various formulations and medical use due to their deradable
nature within the body [86]. These materials have been ac-
cepted due to the fact that the properties can be enhanced or
changed by incorporating varius molecules such as ester,
orthoester, anhydride, carbonate, amide, urea, and urethane
in their basic structure [87]. Langer has studied various poly-
mers for drug delivery and characterized the release of mac-
romolecules from polymers [88]. Generally, PLA, PGA and
their copolymers PLGA have been designed for drug delivery
applications [89]. It is also possible to modify the mechanical,
thermal, and biological properties of these polymers by alter-
ing its stereochemistry.

PGA has been widely used as absorbable sutures as a step
for controlled drug delivery systems [90–92]. The advantage
of PGA use as a drug delivery material is that PGA is broken

down into metabolized molecules by body and removed from
body through normal metabolic pathways. On the other hand,
the insolubility in many common solvents, highmelting point,
cannot forming films/rods/capsules, unsuitable for solvent or
melting based methods, and rapid degradation of PGA has
resulted in limited studies on drug delivery systems [71, 93].

The release behavior of PGA, and thus degradation, de-
pends on its’ initial molecular weight, crystallinity, and poros-
ity [94]. The drug delivery rates of PGA can be altered by
controlling the molecular weight distribution via changes in
the routes of PGA synthesis or via addition of crystals to
change particle size distribution [40]. Moll and Ries explained
that the release from a low molecular weight structure oc-
curred over within a few hours rather than days, suggesting
that the polymer was solubilized immediately [95]. Hurrel and
Cameron showed that the release of a model drug, theophyl-
line, from polyglycolide also depended on buffer concentra-
tion, pH and particular buffer ions on the hydrolysis reaction
[96]. PGA has a great potential on and widely use as wound
closure materials, surgical sutures, and tissue engineering
scaffolds. However, its limited potential on drug release sys-
tems was also studied by researchers by using different pa-
rameters [97–99].

Dental applications

Biodegredable polymers are generally used for two different
dental applications: as a void filler and as a guided tissue
regeneration membrane. Tooth extraction is followed by
packing into the cavity as a healing agent with the help of
porous polymer particles [100]. On the other hand,
biodegredable polymers are applied as in the film form for
GTR membrane applications. The polymer film is positioned
by periodontal surgery to exclude epithelial migration with the
aim of supporting, slower growing tissue (also connective and
ligament cells) to proliferate [101]. The crystalline structure
and high molecular weight of PGA limits the clinical use of
PGA for some dental applications such as osteosynthesis due
to being susceptible to degradation [102, 103]. A typical com-
plete bone healing requires more than 7 weeks, however with-
in 4–7 weeks PGA generally loses its mechanical strength
[104, 105]. On the other hand, it has been reported some
negative effects arising from the difficulties in clearing the
accumulated acid-degradation products [102, 105].
Okuyama and colleagues studied PGA sheets using fibrin glue
to cover open wounds after resection of oral mucosal lesions
of selected patients between 2010 and 2016 [106]. The au-
thors observed a significant risk for granuloma like neoplasm
(GLN) development when PGA was used on the raw surface
of the tongue while no immediate abnormal postoperative
bleeding (APB) was observed. It was stated that among these
minor complications, GLN did not involve the recurrence of a
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tumor. However, APB occurred due to PGA sheets with fluc-
tuating adhesive forces and fibrin glue might sometimes in-
duce life threatening situations.

The physico-chemical properties of PGA made it suitable
for sustaining drug release under in vivo conditions. However,
its faster degradation rates and solubility problem have limited
the use of PGA-based drug delivery systems [107]. During the
degradation of PGA, glycolic acid released to medium and
inflammatory response might occur. Thus, medical structures
including anti-inflammatory drugs, surface modifiers, or
agents for enhancement of periodontal regeneration would
be beneficial [108]. The mechanical integrity of PGA can be
lost easily due to the rapid degradation, allowing to the release
of glycolic acid, which might cause inflammatory response
[107]. PGA in different forms such as fiber meshes has been
accepted as attractive candidate to transplant cells however the
resistance of PGA to compressional forces have been found as
low [109]. Thus, PGA has been stabilized by different tech-
niques such as copolymerization. The tensile strength and
modulus of PGA are around 89 MPa and 7 GPa, respectively
[110] and shows strong and flexible structure with a potential
use in periodontal and oral mucosa grafts [111]. For instance,
Mizutani et al. studied the suitability of polymers such as PGA
as screw post materials in primary teeth and reported that PGA
had appropriate strength and hydrolysis ability [112].

Orthopedic applications

Human bone exposes to differentmechanical forces such as daily
activities, exercises, weight bearing in a dynamic environment
[113]. Bone tissue engineering and orthopedics have some suc-
cessful application in addressing issues associated with three-
dimensional scaffold materials and architecture [114]. PGA and
their copolymers have been widely used for orthopedic applica-
tions such as bone, tendon, ligament, articular-cartilage scaffolds
[113]. PGA degrades by simple hydrolysis or non-specific en-
zymes and produced some molecules, which can be excreted in
urine or enter the tricarboxylic acid cycle [115].

A tissue-engineering alternative to cancellous bone have
been developed towards mimicking structure and properties
by some researchers with bioresorbable polymers such as
polymer microspheres [116, 117] and porous polymer scaf-
folds [118, 119]. The biodegradable polymers used for ten-
dons and ligaments replacements should maintain their tensile
strength for at least 12 months for fibrous tissue to regenerate
[113]. Cooper and Lu reported PGA implant showed the
highest time zero mechanical strength but showed the lowest
cell attachment in tendon and ligament applications [120,
121]. PGA was evaluated for tendon and ligament repair due
to the limit of strength of widely used collagen [113]. On the
other hand, nonwoven structures such as PGA has been also
studied for cartilage repair [122]. Mikos et al. have studied a

coated PGA nonwoven mesh to overcome the loss of mechan-
ical strength arising from proliferation and reported greater
mechanical properties [123]. Besides, Moran et al. showed
the effect of coating on strength and degradation and reported
a less chondrocyte attachment on coated scaffold compared
with PGA controls [124].

PGA is one of the suitable material for bone internal fixa-
tion devices however the hydrolytic degradation of PGA leads
to the loss of mass within 12 months and loss of strength
within 2 months [16]. Some researchers reported a lack of
sufficient mechanical integrity in vivo with significant de-
crease in performance within 4 weeks when a more soluble
form of PGA was used [125, 126]. On the other hand, Liu
et al. indicated that PGA produced granulomatous inflamma-
tion after brain resection [127]. In the study of Hosseini et al.,
PGA microfibrillar scaffold was coated with poly(4-
hydroxybutirate) (PHB) acid and then aligned before heating
above the glass transition temperature [128]. The heat appli-
cation is followed by stretching the coated scaffold to obtain
an aligned and three dimensional (3D) porous fibrillar scaf-
folds. The authors aimed to obtain a partial welding of ran-
domly orientedmicrofibers at their intersection points by coat-
ing polymer to a non-woven mesh (Fig. 6). The results
showed that fibroblasts cell alignment along the direction of
the PGA fibers was increased under in vitro conditions.

Kodama et al. studied islets tissue engineering from cul-
tured cells for pancreatic islet transplantation for treatment of
type 1 diabetes [129]. For this purpose, the authors enzymat-
ically dissociated rat pancreatic islets into a single-cell suspen-
sion followed by seeding onto a PGA scaffold. To collect the
tissue engineered islets, PGA and cells were isolated from
medium including epidermal growth factor, nerve growth fac-
tor, and insulin-like growth factor to suspend in a thermos-
reversible gelatin polymer (TGP) with insulin, transferring
and selenous acid. Collected cells were transplanted beneath
the kidney capsule of Streptozotocin-induced diabetic nude
mice. Authors concluded that the use of PGA and TGP has
high potential implications for the treatment type 1 diabetes.

The enhancement and changes in molecular weight and crys-
tallinity degree of PGA cause differences in mechanical strength.
Generally, it was reported that PGA lost its mechanical strength
within 6 weeks and resorbed in a few months depending on the
molecular weight, purity, crystallinity and the size and shape of
the implant [130]. In clinical applications, PGA structures should
retain adequate tensile strength over the critical period requiring
suitable conditions. Thus, it is necessary to determine the me-
chanical properties of PGA structures such as tensile strength,
stiffness, toughness, etc., before, after or during implantation. For
instance, the increase in crystallinity of PGA will increase the
brittleness of implant, thus altering the resistance during healing
[131]. In orthopedics applications, PGA has been also used to
form a controlled release medium for drugs and other bioactive
agents. Controlled release of active agents is achieved during the
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degradation of PGA over time. In scaffold applications, a porous
structure releasing growth factor for repair could be obtainedwith
a simultaneous loss in mechanical properties [132]. Braunecker
et al. studied PGA scaffoldswith drug release ability and reported
that decreasing the molecular weight in addition to the increasing
the pore size and volume led to accelerated drug release [94].

Stents

Stents made of biodegradable polymers have been used as a
support of the arterial wall only during vessel healing. These
materials gradually transfer the mechanical load to the tissue

while the stent mass and strength decrease over time without a
necessity for a second surgery to remove the device. They also
provide longer-term delivery of drug and/or gene therapy to the
vessel wall from an internal reservoir [133]. PGA is one of the
most frequently used materials for biodegradable stents [134,
135]. PGA has less strength, but faster degradation rates among
the other biodegradable polymers. PGA has been successfully
combined with other materials as copolymers/blends to improve
its flexibility [136, 137]. These materials can degrade by simple
hydrolysis of the ester bond in the polymer backbone [133]. In
typical formulations, PGA degrades over a period of 6–
12months. Van der Giessen et al. have studied the effects of five

Fig. 6 F-actin (magenta) and cell nuclei (cyan) alignment analysis of cells
on pre-stretched PGA scaffolds after 1 week in cell culture: aMaximum
z-projection intensity of multi-plane confocal images of cells, b
Respective actin fiber alignment quantifications, c %actin fibers and d)

%cell nuclei within ±10° of the strain axis [128]. PGA fiber autofluores-
cence are indicated as cyan. Copyright 2017. Reproduced with permis-
sion from Wiley Online Library
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different biodegradable polymers, including PGA and reported
extensive inflammatory responses within the coronary arterial
wall, which might be due to the parent polymer compound,
additives of polymer, biodegradation products, the implant ge-
ometry or bacterial or nonbacterial contamination [137].

Sutures

The first absorbable polymeric surgical sutures were made of
PGA and have been introduced in 1970’s. All polyesters are
degradable however, aliphatic polyesters such as PGA, can
degrade over time required for suture materials [16]. PGA
has beenwidely used as suturematerials due to its lowmelting
temperature (>200 °C) and impressive tensile strength
(≈12.5 GPa) [138, 139]. However, the degradation can occur
faster than expected, as in the case of infected urogenital tract.
The reason for this behavior was explained as that the bacterial
enzymes digests urea and decreases the pH, leading an accel-
eration on the degradation rate of PGA suture [140].

In pulmonary surgery, non-woven fabric made of PGA is
preferred instead of non-degradable materials since foreign
body granuloma often occurs due to non-degradable poly-
mers. To overcome these problems, PGA has been developed
as a reinforcing agent for suturing native tissues [141].
However, Munteanu et al. diagnosed foreign body granuloma
at PGA suture site after 10 months from resection of a cerebral
glioblastoma [142]. Chu studied the effect of buffer on the
degradation of PGA in terms of mechanical properties [63].
The results of this study indicated that the tensile strength of
buffered PGA reduced, probably due to Na2HPO4, which in-
creases hydrolysis and loss of strength. Besides, the buffers
with lower pH presented higher degradation rates, as in the
case of tied-chain segments of macromolecules theory. Chu
and Campell analyzed the morphological changes of PGA
sutures when exposed to different dosages of γ irradiation
(0, 2.5, 5, 10, 20, and 40 Mrad) at different immersion days
(0, 7, 14, 28, 48, 60, and 90 days) by using scanning electron
microscopy (Fig. 7) [143]. The authors reported that the in-
crease in γ irradiation caused an increase in surface cracks on

the filaments with the suture hydrolytic degradation whereas
there were no cracks on the irradiated suture surface when any
hydrolytic degradation was not applied. Additionally, Chu
studied the effect of γ irradiation (0–20 mrad) on the enzy-
matic (esterase,α-chymotrypsin, and trypsin) and in vivo deg-
radation of PGA sutures [144]. These sutures were and im-
planted in inbred black-and-white hooded hister rats
(Liverpool strain). Different from in vitro study results, im-
planted PGA sutures maintained slightly higher tensile
strength after in vivo degradation.

Jang et al. prepared PGA mesh to prevent T postoperative
pancreatic fistula (POPF) after distal pancreatectomy and test-
ed its effect on 97 patients (aged 20–85 years) with curable
benign, premalignant, or malignant disease of the pancreatic
body or tail between, on November 2011 and April 2014
[145]. The authors applied PGA with fibrin glue followed
by wrapping the PGA mesh around the remnant pancreatic
stump. It was reported that the rate of clinically relevant
POPF was significantly lower in the PGA group than in the
control group with the help of wrapping of the cut surface of
the pancreas with PGA mesh. It was also stated that there was
no significant difference between the PGA and control groups
by means of male to female ratio, malignancy, pancreatic duct
diameter, soft pancreatic texture, and thickness of the transec-
tion margin parameters.

Tissue engineering

In recent years, PGA has been utilized as fillers combined
with other degradable polymers and has been used in short-
term tissue engineering scaffolds such as scaffold for bone
[146–149], tendon [150, 151], tooth [152], cartilage [153,
154], vaginal [155], intestinal [74], lymphatic [156], and spi-
nal regeneration [157]. The archetypal tissue engineering
technology using a biodegradable synthetic polymer scaffold
involves seeding cultured cells onto a preformed porous scaf-
fold, which is chemically designed to degrade over time in the
physiological environment [158]. In vascular applications,
PGA is one of the most commonly used degradable polymer

Fig. 7 SEM images of Dexon sutures subjected to 90, 14 and 40 days-degradation under in vitro conditions (PBS at pH = 7.4, 37 °C), respectively: a
unirradiated 2–0 Dexon sutures, b 10 Mrad irradiated 2–0 Dexon sutures, c 20 Mrad irradiated 2–0 Dexon sutures. Adapted from [143]
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scaffolds. PGA–polyglactin copolymers seeded in stages with
autologous fibroblasts, smooth muscle cells and endothelial
cells have been the first attempt in an ovine model [159]. In
this study, the scaffold had been completely degraded in
11 weeks under in vivo conditions, but the resulting tissues
were not deemed suitable for implantation in the higher pres-
sure systemic circulation [159]. In another study, PGA has
been used with polyhydroxyalkanoate to augment the longer
term mechanical properties of the construct [160]. On the
other hand, Niklason et al. showed that bovine and porcine
cell seeded PGA scaffolds implanted into a porcine model had
very promising results. In this study has used a bioreactor
system, which showed that these engineered vessels could
remain patent for up to 4 weeks, and that application of pul-
satile strain in vitro improved patency rates as well as graft
morphology and function [161]. Other studies include the
modification of PGA scaffold to guide cell function and better
control the biological response [162–164]. On the other hand,
the degradation products of these systems may have some
negative effects such as changing the environment by decreas-
ing the pH leading damage to nearby cells [165] or activating
the inflammatory and immune responses [165]. Wang et al.

reported that PGA degraded in vitro and changed the tissue
reconstruction inducing fibrosis [166]. Aghdam et al. im-
proved a polymer composite made of poly(ɛ-caprolactone)
(PCL) and PGA for soft tissue engineering applications
[167]. The authors found that PGA inclusion into PCL caused
an increase in the average diameter of the nanofibers (Fig. 8).
Thus, PGA increased the hydrophilicity and water uptake of
the nanofibrous scaffolds while improving the mechanical
properties of prepared scaffold with a potential for soft-
tissue engineering applications.

Bailey et al. studied about a treatment for the temporoman-
dibular joint (TMJ) disorders [168]. The authors used a spin-
ner flask to seed PGA scaffolds with either TMJ condylar
chondrocytes or mesenchymal-like stem cells derived from
human umbilical cord matrix (HUCM). It was reported that
HUCM constructs revealed higher amounts of collagen I and
little amount of collagen II while TMJ constructs revealed
little collagen I and no collagen II. This means that HUCM
stem cells may therefore be an attractive alternative to condy-
lar cartilage cells for TMJ tissue engineering applications.
Weiser et al. utilized a model system based on 3 T3-L1 cells
and tested this model for long term in vivo development of

Fig. 8 SEM images of
electrospun: a PCL, b PCL/PGA
(80/20), c PCL/PGA (65/35), d
PCL/PGA (50/50), and e PGA
nanofibers [167]. Copyright
2012. Reproduced with permis-
sion from Wiley Online Library

208    Page 14 of 19 J Polym Res (2020) 27: 208



cellular constructs with varying stages of adipogenic develop-
ment [169]. The authors used blank PGA fiber meshes, scaf-
folds seeded with uninduced 3 T3-L1 preadipocytes, and cell–
polymer constructs precultivated under adipogenic conditions
to implant subcutaneously into nude mice. It was reported that
no fat formation occurred in constructs without adipogenic
precultivation and implantation of mature fat pads resulted
in adiponecrosis within the constructs. Besides, these
engineered adipose tissues showed long-term survival over
the period of 24 weeks.

Conclusions and future perspective

PGA is one of the most important biopolymer which has bio-
compatible, mechanically strong and biodegradable character-
istics. The demand to PGA has an increasing trend with en-
couragement of environment-friendly polymer for packaging,
increasing use of medical devices and extraction of shale gas.
On the other hand, still, there is a few industrial producer of
PGA due to extinction of cost-effective industrial scale pro-
duction method. Thus, to make intense research activities, the
main challenge is cost-effective production of high molecular
weight PGA. Future studies will obviously focus on obtaining
high molecular weight (Mn ≥ 45,000 g/mol) PGA with cost-
efficient approaches. Different application areas and novel
composites or processes will also be focus of the research in
PGA in future.
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