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Abstract
The investigation on bio-based polymer electrolytes (BBPEs) system based on alginate doped with a various composition of
glycolic acid (GA) were carried out and prepared using solution casting technique. The BBPEs complexes were characterized by
using fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential
scanning calorimetry (DSC) and electrical impedance spectroscopy (EIS). The complexation was observed to have taken place
between alginate and GAwith apparent changes of the peakwavenumber, specifically at the –COO− of alginate functional group.
Moreover, from the impedance analysis, it is evident that the sample which contains 20wt. % of GA possessed the optimum ionic
conductivity of 5.32 × 10−5 S cm−1 at room temperature with the lowest activation energy. The ionic conductivity increased by
incorporating GAwas demonstrated via the enhancement of their thermal stability as well as amorphousness. The findings of the
present investigation suggest that alginate polymer has the potential to be applied as an electrolyte system for electrochemical
devices applications.
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Introduction

In recent years, the global demand for energy storage devices
have increased significantly primarily due to the rapid increase
in portable power-consuming devices, for instance, cellular
phones, laptops, and computers, amongst others. Therefore,
in order to meet the aforesaid demand, polymer electrolytes
(PEs) has shown appreciable traits as an alternative candidate
owing to its high flexibility, lightweight nature, as well as,
exceptional energy and power density storage. PEs have
drawn considerable interest from the research community
due to its conductive properties in applications such as solid-
state battery [1], solar cell [2], electrochromic devices [3],

electrical double-layer capacitor (EDLC) [4] and fuel cell
[5]. It is also worth to note that, a dramatic increase in the
usage of renewable and biodegradable resources has been
demonstrated in the past couple of decades, mainly to cater
for a sustainable future. Such resources have and are still being
extensively investigated to replace synthetic polymers that are
detrimental to the environment.

Therefore, to mitigate this issue, bio-based polymers have
been introduced in PEs development, which evidently has
been reported to have more superior properties as compared
to the conventional synthetic polymer [6]. Amongst its desir-
able traits are biodegradable, non-toxic, low-cost, abundant
and eco-friendly [7]. A plethora of bio-based polymer electro-
lytes have been discovered, for instance, carboxyl methylcel-
lulose (CMC) [8], chitosan [9], starch [10], cornstarch [11],
and carrageenan [12]. These bio-polymers have been reported
to provide a favorable ionic conductivity (~10−6 to
10−4 S cm−1 at ambient temperature). Alginate has exhibited
a plausible candidate as the backbone polymer matrix in a bio-
based polymer electrolytes (BBPEs) systemYang et al. [13]. It
was reported to have good conduction and mechanical stabil-
ity when added with appropriate ionic dopants. Alginate is
anionic polysaccharides, which consists of both homopoly-
meric block (M- and G-) and heteropolymeric block (MG-)
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[14, 15]. Alginate is also known as alginic acid, where linear
copolymer of uronic acid β-(1–4)-D-mannuronic (M), and α-
L-gluronic (G) are residue [16]. Due to their exceptional ad-
hesive properties and non-toxicity, it has been used in a vari-
ety of industries, for example, food, pharmaceutical, packag-
ing, and textile industries [17]. Besides, alginate has recently
been used in the application of edible films to avoid the usage
of conventional packaging plastics, which advertently non-
environmental friendly [18].

The concept of dissolving inorganic salts in functional
(polar) biopolymer and experimentally creating ion-
conducting electrolytes is known as bio-based polymer
electrolytes (BBPEs). The interaction between polymer
host and doping salt is crucial in determining the ionic
conductivity achieved, chemical stability as well as the
mechanical strength of the mixture. There are some im-
portant factors that may have affect the polymer-ion in-
teractions, such as; (i) molecular weight, (ii) composi-
tions and distance between functional groups, (iii) nature
of the functional groups attached to the polymer back-
bone, (iv) degree of branching, (v) charge of cation, and
(vi) counter ions [19]. The ionic conductivity of BBPEs
is attributed to the low lattice energy of the complexing
salt; thus, increasing the stability of the polymer matrix
in BBPEs [20]. Many works have been reported on the
various ionic dopant in BBPEs including ammonium salt
(ammonium bromide (NH4Br) [21] and ammonium io-
dide (NH4I) [22]), lithium salt (lithium nitrate (LiNO3)
[23] and lithium chloride (LiCl) [24]) and acidic salt
(phosphoric acid (H3PO4) [25] and oxalic acid
(C2H2O4) [26]).

In the present work, the investigation on proton
conducting materials based bio-based polymer electrolytes
(BBPEs) system has been carried out by using alginate as
biopolymer host and doped with glycolic acid (GA).
Glycolic acid (GA) is the simplest form of carboxylic acid,
which contains highly polar organic groups and two im-
portant H-bonding sites; (i) carboxyl C=O and (ii) hydrox-
yl O-H. This would promote the formation of amorphous
complexes through intra- and inter- molecular attraction
with the polymer chain [27]. GA is considered as an ionic
dopant that can provide a conduction pathway for the
conducting species to migrate through the polymer matrix
under the influenced of an electric field [28]. The structural
and ionic conduction properties of BBPEs were character-
ized by using Fourier Transform Infrared (FTIR) spectros-
copy, X-Ray Diffraction (XRD), Thermal Gravimetric
Analysis (TGA), Differential Scanning Calorimetry
(DSC) and Electrical Impedance Spectroscopy (EIS).
Furthermore, the ionic transport properties were investigat-
ed via FTIR-deconvolution technique for analyzing the de-
tails on the ionic conduction behavior of alginate-GA
based BBPEs system.

Experimental

Preparation of bio-based polymer electrolytes

In this work, bio-based polymer electrolytes (BBPEs) sample-
based alginate (Sigma Aldrich with M.W.: ~120,000) and
glycolic acid, GA (Merck Co. with M.W.: 76.05 g/mol has
been prepared by using solution casting technique. For the
preparation, alginate was dissolved in distilled water, and
then, different compositions (in wt.%) of GA were added into
the alginate solution. The mixture was stirred until a homog-
enous solution was obtained and poured into a petri dish. The
solution was left in the oven at 60 °C for overnight until the
film was formed. The film was further drying in desiccators
filled with silica gel to prevent any solvent trapped in BBPEs
system. The summarized of sample preparation, physical ap-
pearance and designation of the sample are illustrated in
Fig. 1.

Characterization of alginate-GA BBPEs system

Fourier transform infrared spectroscopy (FTIR)

Fourier Transform Infrared (FTIR) spectroscopy measure-
ment was carried out to identify the complexation between
alginate and GA in the BBPEs system. The infra-red spectra
were obtained using Perkin Elmer Spectrum 100 with an at-
tenuated total reflection (ATR) accessory with a germanium
(Ge) crystal. The infra-red light was passed through the sam-
ple with the frequencies in the range between 700 cm−1 until
4000 cm−1 with spectra resolution of 2 cm−1.

Thermal gravimetric analysis (TGA)

TGA was carried out by using TG-DTA2010SA (NETZSCH
Japan K.K., Japan). The measurements were recorded in a
nitrogen gas atmosphere at a flow rate of 100 ml min−1. The
BBPEs system was weighing with ~2 mg and placed into the
aluminum pan. The samples were tested at different tempera-
ture ranging from 30 to 550 °C at a heating rate of
10 °C min−1.

Differential scanning Calorimetry (DSC)

DSC was carried out by using NETZSCH DSC 214 Polyma
model. The measurements were recorded in a nitrogen gas
atmosphere at a flow rate of 62 ml min−1. The BBPEs system
was weighing with ~2 mg and placed into the silica crucible.
The samples were tested at different temperature from 30 to
200 °C at a heating rate of 30 °C min−1.
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X-ray diffraction (XRD)

X-ray diffraction (XRD) is the technique to determine the
phase of crystalline and amorphous of polymer-salt com-
plexes. X-ray diffraction depends on constructive interference
of monochromatic x-rays and a sample by using Bragg’s law.
MiniFlex II from Rigaku had performed to run out the nature
of the present sample (amorphous/crystal) at different angles
of 2θ between 5° and 80° with 1.5406 Å wavelength gener-
ated by a Cu Kd source. The XRD deconvolution analysis was
carried out using OriginPro 9.0 software. Based on the as-
sumption of Gaussian’s peak function, the crystalline and
amorphous peaks were deconvoluted to ensure that all peaks
fit with the original spectra. The percentage crystallinity of the

BBPEs system is calculated by using the following equation:-

X c ¼ Ac

AT
� 100% ð1Þ

Where Ac is the area covered under crystalline region, AT is
the total area covered under the whole diffractogram (total of
area of crystalline and amorphous region), and Xc is the degree
of crystallinity in percentage.

Electrical impedance spectroscopy (EIS)

Electrical Impedance Spectroscopy (EIS) is used to evaluate
the ionic conduction properties of BBPEs system. The present
samples were cut into a suitable size and sandwiched between

Fig. 1 Samples preparation,
designation of sample, and
physical appearance of alginate-
GA BBPEs system
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Fig. 2 FTIR spectra of pure
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Inset shows the optimized
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glycolic acid using Material
Studio 2017
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the stainless steel (SS) electrodes and left into the oven in
order to control the humidity of the environment [29]. The
prepared samples were measured using a HIOKI 3532–50
LCR Hi-Tester with frequencies ranging from 50 Hz to
1 MHz. The ionic conductivity of sample-based alginate-GA
BBPEs system was calculated using equation:

σ ¼ t
RbA

ð2Þ

Where t (cm) is the thickness of sample, A (cm2) is the
electrode-electrolyte contact area and Rb (Ω) is bulk resistance
of BBPEs system which can be obtained from the Cole-Cole
plot of EIS.

Transport parameter study

The transport properties of the thin film based alginate-GA
BBPEs system were determined using FTIR deconvolution.
Deconvolution was analyzed using Gaussian-Lorentz func-
tion, which was adapted to the OriginPro 9.0 software. In this
method, the FTIR peaks due to complexation of alginate and
GA were carefully selected based on dominant ionic move-
ment. Besides, the sum of all the intensity of the deconvoluted
peaks was ensured to fit the original spectrum. The absor-
bance peaks were fitted to a straight baseline and the area
under the peaks was determined [30]. The free ions percentage
(%) were calculated using the equation [31, 32]:-

Percentage of free ions %ð Þ ¼ Af

Af þ Ac
� 100% ð3Þ

Where Af is an area under the peak representing the free
ions region, Ac is the total area under the peak representing the
contact ions. The transports parameter such as number density
(ƞ), mobility (μ) and diffusion coefficient (D) of the ions were
calculated following this equation [22, 33]:-

η ¼ MNA

VTotal
� free ions %ð Þ ð4Þ

where:

VTotal ¼ weight
density

alginateð Þ� þ weight
density

GAð Þ�
��

ð5Þ

μ ¼ σ
ηe

ð6Þ

D ¼ KTμ
e

ð7Þ

Where M is number of moles of GA used, NA is the
Avogadro’s constant (6.02 × 1023mol−1),Vtotal is total volume
of BBPEs system, k is the Boltzmann constant (1.38 ×
10−23 J K−1), T is the absolute temperature in Kelvin and e is
the electric charge (1.602 × 10−19 C).

Result and discussion

FTIR analysis

In the present work, the structural arrangement of alginate and
glycolic acid were studied using density functional theory. By
using DMol3 modules of Material Studio 2017 software, the

Scheme 1 Schematic diagram of alginate having interacted with GA.
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Fig. 3 FTIR spectra of alginate-GA BBPEs system between range (a)
900 cm−1 to 1200 cm−1 (b) 1300 cm−1 to 1800 cm−1 (c) 3000 cm−1 to
3700 cm−1
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alginate model and glycolic acid was optimized through ge-
ometry optimization and energy minimization. The FTIR
spectrum of alginate and GA were presented in Fig. 2, and
the inset figure depicts the optimized structure of alginate
monomer and glycolic acid (GA). The FTIR spectra con-
firmed the alginate structure as all characteristic peaks were
observed at 1025 cm−1, 1409 cm−1, 1595 cm−1, 2325 cm−1

and 3389 cm−1 which are attributed to glycoside bond (C–O–
C) [34], symmetric stretching of –COO− [35], antisymmetric
stretching of –COO− [36], and stretching –OH group [37]
respectively. From the spectra of pure GA, strong absorption
peaks at 1074 cm−1, 1229 cm−1, 1414 cm−1, 1701 cm−1, and
3258 cm−1 that correspond to the stretching of C-O [38], bend-
ing O-H [39], stretching of the –COO− [40], stretching of C=O
[41], and stretching O-H group [42], respectively were
observed.

Figure 3 shows the highlighted FTIR spectrum for the bio-
based polymer electrolytes (BBPEs) system, which represents
the complexes of alginate-GA. The complexation between
host polymer and ionic dopant can be identified through the
changes of the wavenumber or the peak intensity in the FTIR
spectrum. In this present system, it is expected the group of

interest that would lead to the complexation between alginate
and GA is at the polar groups of C–O–C, –COO− and –OH in
the biopolymer matrix due to the presence of lone pair elec-
trons of the coordinating site (O) that attract the cation from
the salt molecule [43].

Figure 3 (a) shown the peak at 1025 cm−1 for ALGA-1
which corresponds to the C–O–C stretching vibration [44]
has shifted to 1030 cm−1 (higher wavenumber) which is be-
lieved due to the coordination of proton (H+) to the glycoside
group (C–O–C) of alginate [45]. This glycoside band of poly-
saccharide alginate molecule was shown to further shifted
until 1081 cm−1 for ALGA-6, which indicates that the com-
plexation at the C–O–C via weak van der Waals attraction of
dipole-dipole forces upon the inclusion of acidic salt become
apparent.

Another significant peak was observed between 1300 to
1700 cm−1 belonged to symmetrical and asymmetrical car-
boxylate, –COO− as shown in Fig. 3 (b). This region was
expected to exhibit strong affinity towards the GA due to
highly nucleophilicity of the carboxylate ion [46]. The in-
creasing salt composition leads to change in wavenumber
for ALGA-1 until ALGA-6. In the present work, H+ cation

Table 1 Summary of peak changes in wavenumber for alginate-GA in BBPEs system

Wavenumber (cm−1) Assignments (functional group)

GA ALGA-
0

ALGA-
1

ALGA-
2

ALGA-
3

ALGA-
4

ALGA-
5

ALGA-
6

– 1025 1030 1031 1035 1035 1080 1081 C–O–C stretching

1074 – – – – – – – C-O stretching

1229 – – – – – – – O-H bending

– 1409 1415 1411 1417 1413 1417 1417 (–COO−) symmetric stretching

1414 – – – – – – – –COO− stretching

– 1595 1595 1596 1596 1597 1595 1594 (–COO−) asymmetric stretching

1701 – – 1708 1715 1721 1727 1730 C=O stretching

3528 3389 3350 3342 3328 3335 3305 3298 O-H stretching
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Fig. 4 Thermal spectra of
alginate-GA in BBPEs system
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from GA acts as a function of an electrophile positive ion. It
could interact with the oxygen atom of carboxylate anion
group present in alginate biopolymer via electrostatic attrac-
tion to form [H+—−OOC], thus prominent to the increment of
intensity peak of BBPEs system [47, 48]. Notably, due to this
strong attraction, the wavenumber has shifted from 1409 to
1413 cm−1 and 1595 to 1597 cm−1 for symmetry –COO− and
asymmetry –COO− respectively [49]. This interaction was
expected due to the coordination interaction of (–COO−) moi-
ety in alginate with H+ ion of [-COOH] substructure in GA
which reflects the protonation between the cation (H+) and the
carboxylate group of alginate and triggers the ion hopping

phenomenon called Grotthuss mechanism [50]. The H+ ion
hopping from hydroxyl moiety to the carboxylate group of
each monomer of alginate electrolyte and affect the changes
in crystallinity phase and ionic conductivity.

Furthermore, upon addition of more GA, (more than
20 wt. %) the peak shifted to 1417 cm−1 and 1594 cm−1 for
symmetry –COO− and asymmetry –COO− respectively.
Rasali and Samsudin [33] reported that the phenomenon of
shifted in wavenumber at –COO− at BBPEs system might be
due to salt aggregation, which may affect the conductivity of
the polymer electrolyte. The new peak was observed by the
addition of GA as shown in Fig. 3 (b). The peak at ~1710 cm−1

belongs to C=O stretching of GA. The same phenomenon was
founded in Chai and Isa [51] work, where new appearance
peak at ~1710 cm−1 belongs to C=O stretching of GA.

The broad band was identified at 3389 cm−1 as shown in
Fig. 3 (c) is known for the stretching O-H group in alginate
monomer. It could be seen that it was shifted towards a lower
wavenumber 3350 cm−1 when GA was introduced. This find-
ing was found to be similar to Alakanandana et al. [52] where
they observed the occurrence of intermolecular hydrogen
bonding has occurred between polyvinyl alcohol (PVA) and
succinic acid. Overall, the FTIR result has revealed and con-
firmed various interactions during the complexation between
alginate and GA that are favorable in the conductivity
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Fig. 5 DSC thermograms for (a)
ALGA-0 (b) ALGA-2 (c) ALGA-
4 and (d) ALGA-6 of BBPEs
system

Table 2 Thermal properties of alginate-GA in BBPEs system

Sample Weight loss (Δ %) Maximum temperature (°C)

1st stage 2nd stage 1st stage 2nd stage

ALGA-0 15.80 32.82 207.81 255.14

ALGA-1 13.70 36.39 183.34 259.43

ALGA-2 13.00 37.38 170.92 266.79

ALGA-4 13.35 38.92 169.84 287.82

ALGA-5 8.27 43.69 156.23 294.58

ALGA-6 15.97 40.57 163.56 297.20
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enhancement. Schematic mechanism of the interaction be-
tween H+ of GA and interaction site of alginate is expected
to occur based on Scheme 1, and all the functional groups
change in wavenumber is presented in Table 1.

Thermal behavior

Thermogravimetric analyses (TGA) was carried out to figure
it out the effect of the GA on the thermal stability in BBPEs.
TGA curves of alginate BBPEs system doped with various
composition of glycolic acid was shown in Fig. 4. Two major
decomposition stages were observed in the temperature range
of 30 °C until 550 °C and tabulated in Table 2.

The initial weight loss for BBPEs system at 30 °C to 70 °C
is attributable to the loss of the moisture where the alginate
biopolymer tends to absorb the water and solvent for entire
samples [53, 54]. The first decomposition was observed at an
intermediate temperature range from 70 °C to 200 °C and
involved small weight loss (10–15%) due to the decomposi-
tion of glycolic acid. It can be seen that decomposed temper-
ature, Td for alginate doped with GAwas relatively lower than
pure alginate. This finding was supported by Qu et al. [55],
where the addition of GA, resulting in the lower Td value,
which is attributed to the low thermal stability of GA side
chains. For the second stage of decomposition, un-doped sam-
ple (ALGA-0) has lost approximately 32.82% of its weight, at
temperature ~ 250 °C. The weight loss is due to the loss of –
COO− from the polysaccharide of alginate matrix [56].
Though, the Td was observed to increase linearly upon the
addition of GA may be attributed to the complexation that
has been taken place, which required a higher temperature
for the disruption of H-bonding [57, 58]. A similar finding
has been reported by Fadzallah et al. [26] for the system based

on chitosan complexed with oxalic acid where the addition of
acid salt enhances the thermal stability of BBPEs system.
Therefore, it shows that the increment composition of GA in
BBPEs system has a good thermal stability, which is benefi-
cial in the fabrication of the device application.

It can be observed that prolong heating beyond 550 °C of
decomposition temperature BBPEs system resulting in the
carbonization and ash formation [59, 60]. This result reveals
that the alginate can be used as a host polymer at various
temperature, which is suitable for BBPEs system [61].

DSC analysis

Differential scanning calorimetry (DSC) was used to charac-
terize the thermal behavior of materials, which can further
confirm the miscibility of alginate and GA by measuring the
changes in the heat capacity as the polymer matrix goes from
the glass state to rubber state as known as Tg [62, 63]. Figure 5
displayed DSC thermograms obtained for BBPEs system and
the glass transition temperatures (Tg) are depicted by arrows as
shown in the figure. Based on Fig. 5(a), The Tg value for
ALGA-0 was not detected at this range of temperature study.
However, endothermic peaks were found at ~80 °C indicates
further removal process of loosely bound water present in
sodium alginate. As reported by Ghosal et al. [64] and
Rezvanian et al. [65], the endothermic peak observed at tem-
peratures 80.02 °C attributed to the evaporation of adsorbed
moisture and dehydration of the cross-linked polymer matrix.

In BBPEs system, The Tg started to appear when glycolic
acid (GA) added to alginate. From Fig. 5(b), the addition of
10 wt. % GA started to show the Tg value due to the formation
of coordination between the polymer chain segments and ions
formation from ionic dopant which increases the energy
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barrier to the segmental motion of the polymer chains; thus,
the stiffening of the polymer chains may occur [66]. The low-
est Tg value of ALGA-4 (Tg = 47.60 °C) indicates an increase
in the flexibility of alginate chains; hence, the ALGA-4 was
expected to exhibit the highest ionic conductivity value [67].
Further increase in the composition of GA leads to the

increment of Tg value (Tg = 63.30 °C) for sample ALGA-6.
It can be attributed to the formation of ion aggregates in the
alginate polymer matrix, which reduced the flexibility of the
polymer chain [68]. A similar trend has been observed by
Moniha et al. [69] for the system based on iota carrageenan
complexed with ammonium nitrate (NH4NO3).

Fig. 7 XRD deconvolution patterns for (a) ALGA-1 (b) ALGA-2 (c) ALGA-3 (d) ALGA-4 (e) ALGA-5 and (f) ALGA-6 of BBPEs system
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X-ray diffraction analysis

Figure 6 shows typical x-ray diffractogram for alginate-GA
BBPEs system. It can be seen that ALGA-0 has a broad amor-
phous peak occur at the central position with 2θ = 37.56°.
This indicates that pure alginate has two different regions of
amorphous [70]. The crystalline peak at 13.50° and 22.40°of
ALGA-0 is observed in the present system which shown the
characteristic of alginate and found to be similar to other re-
search works [71, 72].

The XRD pattern of BBPEs system show an increase in
broad peak with the addition of 0–20 wt. % GA. The broad
peak is a typical characteristic of amorphous material [67].
According to Yusof et al. [73], no crystalline peaks found
might be due to complete salt dissociation in the polymer
matrix. Therefore, an increase in ionic conductivity of the
alginate-GA BBPEs system is expected due to the changes
of amorphousness and low glass transition in the samples
[74]. Based on Fig. 6, it can be seen that the intensity of the
broad peak reduced upon the addition of 20 wt. % GA indi-
cating that complexation occurred significantly between algi-
nate and GA. This might be attributed to the greater ionic
diffusivity, where the addition of GA managed to enhance

the intramolecular and intermolecular interaction through hy-
drogen bonding in BBPEs system, and thus exhibiting the
amorphous characteristic [75, 76].

It shows that, above the addition of 20 wt. % GA, the
intensity XRD pattern start to increase with small crystalline
peaks at 2θ = 24.80° was observed. The increment of peak
intensity was expected to decrease the number of mobile ions
and hence affecting the ionic conductivity of the BBPEs sys-
tem. According to Shukur et al. [77], the increment of the
crystalline peak of BBPEs system will be correlated to the
ionic conductivity and could be due to recombination of the
ions, where the polymer host was incapable of accommodat-
ing the ionic dopant [78].

Figure 7 presents the XRD deconvolution patterns for
BBPEs system. The percentage of crystallinity for un-doped
alginate is obtained at 45.35% nd when added with 5 wt. % of
GA, it demonstrated a decrement to 37.29%. The incorpora-
tion of GA into the host biopolymer induces a small increase
in the amorphous structure, which attributed to the decrement
of percentage crystallinity in BBPEs system. Based on the
calculated value in Table 3; ALGA-4 depicts the lowest per-
centage of crystallinity which is 26.99% and this stimulates
the segmental motion of the polymer matrix by reducing the
energy barrier; hence, high ionic diffusivity is expected to
enhance the ionic conductivity of the BBPEs system [66].
However, the increment percentage of crystallinity was ob-
served for the composition of GA above ALGA-4. This may
be due to the recombination of ions, which eventually lead to
decrement in ionic conduction [22].

Ionic conductivity analysis

Figure 8 shows the ionic conductivity values of alginate
samples containing different amounts of GA at ambient
temperature. The increment of ionic conductivity with the
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Fig. 8 The conductivity and
activation energy of alginate-GA
BBPEs system at ambient
temperature

Table 3 Degree crystallinity of alginate-GA in BBPEs system

Sample Degree of crystallinity, Xc (%)

ALGA-0 45.35

ALGA-1 37.29

ALGA-2 34.98

ALGA-3 31.99

ALGA-4 26.99

ALGA-5 32.82

ALGA-6 34.16
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addition of GA can be related to increment of mobile
charge carrier in BBPEs. As discussed earlier in FTIR
analysis, the complexation between alginate and GA has
shown high dispersion (dissociation of salt) of H+ and
coordinate with the anion group of alginate bio-based
polymer; therefore it would affect the increment of the
ionic conductivity [79, 80]. Moreover, the amorphous
structure and low glass transition temperature, Tg en-
hanced the migration of H+ ions (hopping) from GA to
the coordination site (oxygen) of alginate host [81]. In the
present system, the highest ionic conductivity at room
temperature was found at 5.32 × 10−5 S cm−1 for the sam-
ple containing with 20 wt. % of GA (ALGA-4). The en-
hancement of ionic conductivity to the optimum value
was found to align with the observation from XRD and
DSC analysis.

Upon addition of GA beyond sample ALGA-4, the ionic
conductivity started to decrease. According to Othman et al.
[82], the decrement of ionic conductivity after ALGA-4 be-
cause of neutral aggregation of the ions re-associated and also
leading to the formation of ion cluster as revealed by structural
analysis. The decrement of ionic conductivity also was due to
the formation of re-crystallization at polymer matrix, as shown
in XRD study. The crystallize region of BBPEs system barri-
cades the movement of ions when the conductivity starts to
decrease at higher composition of GA [32].

Figure 9 shows the log conductivity versus 1000/T for
different composition at the temperature range from 303 K
to 343 K. The increasing of temperature depicts there is no
sudden drop in conductivity value, which indicates that
BBPEs system is good thermal stability and completely amor-
phous as observed in XRD and DSC analysis. As the temper-
ature increases, the migration of charge carrier has promoted,
which leads to an expansion in the polymer matrix [83, 84].
This expansion in the polymer network provides free volume
to promote the motion of charge carriers and increases the
conductivity. The temperature-dependent study of the

BBPEs system obeys the Arrhenius characteristics, where
the regression value, R2, is in the range of 0.95 to 0.99. [85,
86]. From the temperature-dependent study, activation ener-
gy, Ea can be calculated by using the Arrhenius equation.

σ ¼ σoexp −
Ea

kT

� �
ð8Þ

where σo is pre-exponential factor, k is Boltzmann’s constant
and T is the temperature in Kelvin. The Ea values were calcu-
lated based on the slope of the temperature dependence plot
and depicted in Fig. 8. It is noted that for alginate-GA BBPEs
system, the activation energy decreases linearly as the conduc-
tivity increase. ALGA-4 showed the lowest value of Ea

(0.18 eV) indicates that H+ from biopolymer matrix need less-
er energy to migrates the ions to other coordinating sites thus
creating vacancy sites for other H+ to complete the “hopping
mechanism” of BBPEs system [48, 87]. The result indicates
that increasing of GA composition not only would lead to
enhance the number of carriers, but also reduce the energy
barriers of BBPEs system [88].

Transport parameter analysis

In the present work, FTIR deconvolution for various sample
of alginate-GA BBPEs system was presented as shown in
Fig. 10. Hay and Myneni [41] reported that strong absorption
peaks at ~1420 cm−1 denote the anion vibration mode of –
COO− from alginate, which proved the IR active in FTIR
study. According to Ramlli et al. [40], the area of de-
convoluted peak was determined based on significant change
of wavenumber which was believed there is occurrence of
complexation between the polymer and ionic dopant, and
based on that, it leads to the need of separation the free ions
and contact ions within the region. Based on Fig. 10, the
BBPEs system shows free ions occurred at ~1410 cm−1

, while
contact ions appeared at ~1400 cm−1 and ~ 1430 cm−1 [45].
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Fig. 9 The conductivity of
alginate-GA BBPEs system at
different temperature
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The free ions and the contact ions were calculated and
depicted in Fig. 11.

From Fig. 11, it shows that the addition of GA increases the
percentage of free ions until sample ALGA-4. This can be due
to the increase ion dissociation of hydrogen ion (H+), thus
resulting in more ion conduction, which eventually increasing
the ionic conductivity in BBPEs system [33]. Beyond the

20 wt. % of GA, the percentage of free ions started to decrease
linearly due to a large number of ion pairs and ion aggregates
which accumulate in alginate bio-based polymer matrix as
proven from XRD analysis [89]. Besides, the decrement of
ionic conductivity is due to the re-associated of ions which
supported the ionic conductivity reductions of alginate-GA
BBPEs system [90].

Fig. 10 The deconvolution IR spectrum for samples (a) ALGA-1 (b) ALGA-2 (c) ALGA-3 (d) ALGA-4 (e) ALGA-5 and (f) ALGA-6 of BBPEs system
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Based on the percentage of free ions in Fig. 11, the number
of ions mobility (μ), the number of density (η) and the diffu-
sion coefficient number (D) were calculated using eq. (4), (5),
(6) and (7) presented in Fig. 12.

Figure 12 depicts the ions mobility (μ) and the diffusion
coefficient (D) show a similar trend with ionic conductivity
where it rises sharply at ALGA-4 and dropped at ALGA-5.
This behavior follows the trend of conductivity-composition
of BBPEs system. The maximum ionic conductivity of algi-
nate doped with GA (ALGA-4) exhibits maximum μ and D
values of 2.14 × 10−9 cm2 V−1 s−1 and 5.59 × 10−11 cm2 s-1,

respectively. In the present work, the addition of GA in
BBPEs system confirmed the conjecture in FTIR study where
the H+ from –OH jump to lone pair of –COO− from the poly-
mer backbone. Moreover, the amorphousness structure and
low glass transition, Tg of BBPEs system depict that ion easily
to hop from one site to another with less activation energy
needed. Besides, the diffusion ions, D of polymer matrix will
contribute to the increment of ionic conductivity where the
movement of the ions to the BBPEs system easily to interact
[22].

It shows that the number density (η) of ions increased lin-
early with the composition of GA. The highest value of η is
1.90 × 1023 cm−3 were in contrast to the ionic conductivity due
to the ALGA-6 higher than the optimum composition of GA
at ALGA-4. The increment of η inferred that the GA in the
polymer matrix was too heavy, contributed to the decreasing
of ion mobility (μ) and diffusion coefficient (D), which affect-
ed by the formation of ion cluster and also overcrowding of
mobile ions (H+) [91]. In addition, increasing of crystallinity
as shown from XRD analysis for higher composition of GA
lead to overcrowding of ions since the re-crystalline phase
tries to block any ion to migrate towards coordination site in
polymer host [32]. With the addition beyond 20 wt. % of GA
in BBPEs system, the increase in η lead to difficulty of ionic
mobility to move, which in turn reduce the μ and D value.

Conclusion

The study on structural and transports properties of alginate
doped with the different composition of GA as a potential
proton-conducting bio-based polymer electrolytes (BBPEs)
was carried out in the present work. The FTIR studies showed
the presence of complexation between alginate and GA due to
protonation which also called as Grotthuss mechanism where
there is a strong contribution of hydrogen bonding related with
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100.00
Fig. 11 Percentage of free and
contact ions of the alginate-GA
BBPEs system

Fig. 12 The transport parameters for (a) number of mobile ions, η, (b)
ions mobility, μ, and (c) diffusion coefficient, D of alginate-GA BBPEs
system
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the coordination site of carboxylate (–COO−) group of algi-
nate. The ionic conductivity of alginate-GA systemwas found
to increase from 8.74 × 10−8 S cm−1 to optimum value at
5.32 × 10−5 S cm−1 when was added with 20 wt. % of GA
by showing an improvement of amorphous phase and thermal
stability. Based on IR-deconvolution approach, it shows that
the ionic conductivity of BBPEs was governed by ionic mo-
bility (μ) and the diffusion coefficient number (D). The results
suggest that the bio-based polymer electrolytes by using algi-
nate materials have a good potential for applications as
proton-conducting electrolytes system, which can be applied
in electrochemical devices.
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