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Abstract
In this study, the effects of long-term natural atmospheric ageing on the thermal properties of chicken feather fibre reinforced
poly(lactic acid) biocomposite materials having chicken feather fibre mass content of 2, 5, and 10% were investigated. Chicken
feather fibres, which are bio-based reinforcement material, and poly(lactic acid), which is bio-based matrix material, are
compounded with a twin-screw extruder and injection-moulded; hence, the biocomposite material is produced. The effect of
long-term natural atmospheric ageing on the thermal stability, crystallization, and melting behaviour of the biocomposite
materials were analysed by thermogravimetric, derivative thermogravimetry, differential thermal, and differential scanning
calorimetry analyses. In addition, the fracture surface of the samples was examined in depth by scanning electron microscopy
analysis. The experimental results show that the long-term natural ageing process decreases the thermal stability values of the
biocomposite materials and increases the glass transition temperatures and degree of crystallinities.
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Introduction

Some unique features of fibre-reinforced polymer-based com-
posite materials discovered in the past decades have led to a
shift in research, engineering, and industry interest from
monolithic materials to fibre-reinforced polymer-based com-
posites [1, 2]. Some of these unique features are high strength/
weight ratio, high chemical resistance, non-corrosive proper-
ties, good insulating properties, and high fracture toughness.
These composite materials consist of high strength fibres such
as glass or carbon and low strength polymeric matrix, but they
do not have renewability, recyclability, and biodegradability
properties. In addition to that, they carry health risks if

inhaled. Although fibre-reinforced polymeric composites
have been widely used over the years in the aerospace, enter-
tainment, automotive, construction, and sports industries to
provide solutions to many structural problems due to their
low cost and moderate strength advantages, the use of these
materials may cause a serious environmental problem in the
following years [2–6].

The consumer’s developing sensitivity to consider the en-
vironmental impact at all stages of the life cycle, including
processes such as final disposal and recycling, and sanctions
on environmental legislation increase the pressure on material
manufacturers. Due to the increased environmental awareness
on a worldwide scale, there has been an increasing trend of
interest in the production of recyclable and environmentally
sustainable composite materials [7–10]. The use of new gen-
eration biocomposite materials consisting of natural fibres and
biodegradable matrix as substitutes for glass or carbon fibre
reinforced polymer composites can help eliminating the envi-
ronmental problems mentioned above; therefore, it can pro-
vide better living conditions [11, 12].

Biocomposite materials, which are partly eco-friendly or
green composites, are classified according to their structure
of the fibres and the matrix. The components of green com-
posites are derived from renewable sources; hence, green
composite materials reduce the dependence on petroleum-
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based fibre and matrix. Partly eco-friendly composites can be
formed by two different methods. The first is made up of a
combination of man-made or synthetic fibres with a biopoly-
mer matrix. The other is formed by the combination of
natural fibres and a petroleum-based non-degradable ma-
trix [5, 13–15].

Poly(lactic acid) (PLA) is a significant biopolymer that is
recyclable and completely degradable after its service life. The
production process of the PLA begins with the transformation
of starch derived from starch-rich crops such as corn. It is
followed by the process of effective preparation of lactic,
and finally, it ends with the polymerization of lactic. In terms
of a life cycle, the use of biopolymeric matrix PLA has been
found to reduce greenhouse gas emissions by up to 40% and
also to reduce non-renewable energy use by up to 25% com-
pared to petrochemical-based polymers like as polyethylene
or polyethylene terephthalate [16–22].

Natural fibres have distinct superior properties such as
availability, low density, low cost (on a volumetric basis),
flexibility during processing, highly specific stiffness, high
acoustic attenuation, low carbon footprint, low production en-
ergy consumption, and biodegradability compared to synthet-
ic fibres [23–25]. Natural fibres can be classified in three dif-
ferent ways: animal, plant, and mineral based [23]. Examples
of natural plant-based fibres include ramie [26], kenaf [27],
abaca [28], banana [29], sisal [30], cotton [31], kapok [32],
wheat [33], bamboo [34], corn [35], loofah [36], soya [37],
poplar [38], pineapple [39], henequen [40], flax [41], hemp
[42], jute [43], coir [44], oil palm [45], rice husk [46], and
totora [47]. Mineral-based natural fibres include amosite [48],
crocidolite [49], actinolite [50], chrysotile [51], tremolite [52],
and anthophyllite [50]. Some natural animal-based fibres are
horsehair [53], human hair [54], alpaca hair [55], sheep wool
[56], and chicken feather [57].

Animal-based natural fibres such as chicken feather fibres
(CFF), have recently attracted great attention in engineering
industries and innovative product design. Therefore, the use of
CFF as a reinforcement for polymer-based biodegradable ma-
terials has slowly increased. Because of its superior character-
istic properties such as recyclability and renewability, the CFF
has been recognized as a new reinforcement element for
polymer-based composites [2, 57–59]. One of the studies in
which CFF is used as reinforcement in polymeric materials
was done by Bessa et al. [60]. In the study, thermal and acous-
tic insulation properties of a composite material formed by
using thermoset epoxy resin reinforced by CFF were investi-
gated. According to thermal resistance and acoustic insulation
test results, CFF has high potential to be used as reinforce-
ments in composite materials. Bessa et al. [60] has also found
that the thermal resistance of CFF/epoxy composite materials
is positively dependent on the mass fraction of CFF (80:20,
respectively, CFF and epoxy). Another study was conducted
by Zhan et al. [61], and in this study, the electrical resistances

of CFF/epoxy and E-glass/epoxy composite materials were
investigated. The electrical resistance of CFF/epoxy compos-
ites has been found to be greater than that of E-glass/epoxy
composites. One of the studies investigating the properties of
biocomposite material, which was produced by the use of
PLA as matrix and CFF as reinforcement, was conducted by
Özmen et al. [62]. In this study, the change of thermal char-
acteristic properties of CFF/PLA was investigated, and ac-
cording to thermogravimetric analysis (TGA) results, it was
found that CFF/PLA biocomposite material has higher ther-
mal stability than pure PLA. In another study, Cheng et al.
[63] investigated the thermal and mechanical properties of
CFF/PLA biocomposite materials and found that the addition
of CFF enhances the thermal stability of the green composites
compared to pure PLA.

In order to determine the long-term durability of a new
product such as a biocomposite and guarantee its reliability
of use under certain conditions, it is important to understand
the ageing process of the product. Studies on the ageing of
biocomposites can support existing knowledge and help to
promote their use in real-life applications. Accelerated age-
ing studies carried out under the conditions of artificial en-
vironment, which are prepared to investigate the effects of
temperature or different parameters, are aimed to obtain
faster results [64, 65]. Isadounene et al. [66] identified
changes in physico-mechanical properties by accelerated
ageing of PLA biocomposites reinforced with alkali-treated
olive husk flour. The results show that when the ageing
process was prolonged, the mechanical properties of the
biocomposite reduced as a result of the plasticization of
PLA and the swelling effect. Lila et al. [67] studied the
accelerated thermal ageing behaviour of PLA based
biocomposites reinforced with bagasse fibres. According to
the results obtained from X-ray diffraction and dynamic me-
chanical analysis, they concluded that a significant change in
crystallinity and glassy transition behaviour occurred during
the ageing period. Gil-Castell et al. [68] investigated the
effect of accelerated hydrothermal ageing on the thermal
stability and morphological properties of sisal/PLA
biocomposites. The results showed that the increased crys-
tallinity decreases thermal stability values. Under long-term
service conditions, polymeric materials are known to exhibit
susceptibility to degradation, and they are subjected to ther-
mal, photochemical, oxidative or even hydrolytic degrada-
tion, either individually or simultaneously [69, 70]. In this
context, it is necessary to determine the performance of
polymer-based composites under real service conditions for
use in specialized applications [71]. Le Duigou et al. [72]
subjected the injection-moulded flax/PLA biocomposites to
natural seawater long-term ageing for two years and deter-
mined the changes in their properties. After the immersion,
breakage of the fibres and reduced ability to bond between
PLA and the fibres were observed.
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Under atmospheric conditions, PLA slowly degrades, and
the degradation process may last for 3–5 years. Due to the
inherent complex morphology of polymeric composite mate-
rials, it is difficult to estimate their performance under service
conditions. The parameters used in the production process,
such as the production temperature and the production meth-
od, affect the thermomechanical properties of the composites;
thus, the composites can exhibit anisotropic and non-linear
behaviour under service conditions [73, 74]. Long-term age-
ing under room conditions has serious effects on the perfor-
mance of composite materials, and it can alter the physical
properties of the amorphous phase of glassy polymers [75].
Prolonged ageing of PLA-based biocomposites under
room conditions has an important role in determining
the shelf-life of these materials, and no studies have
been reported in this area.

It can be seen from the literature review, there are very few
studies investigating the properties of CFF-reinforced com-
posites, and in addition, no research has yet been made on
how long-term atmospheric ageing affects the properties of
the biocomposites. In general, studies on ageing are acceler-
ated under artificial conditions due to time constraints. While
it is possible to obtain useful information on the long-term
performance of biocomposites from accelerated ageing stud-
ies, there is a great need for real-time studies. Because only in
this way, it will be possible to determine the shelf life of
composites and how long they can work under real service
conditions. The aim of this study is to find out how the thermal
properties of biocomposite materials produced by adding dif-
ferent amounts of CFF to PLA thermoplastic matrices are
affected by long-term atmospheric environmental ageing con-
dition. The thermal properties of pure PLA and CFF/PLA
biocomposite samples were already determined before the age-
ing process, and after the ageing process applied, the thermal
properties were examined with the same thermal characterisa-
tion test equipment and parameters. In this context, mass loss-
temperature curves by applying TGA, derivative mass loss-
temperature curves by applying derivative thermogravimetry
(DTG) analysis, decomposition temperatures by overlapping
TGA-differential thermal analysis (DTA) curves, some charac-
teristic temperatures such as glass transition (Tg), enthalpy, and
crystallinity values by applying differential scanning calorime-
try (DSC) analysis were determined for both aged and non-
aged samples. Furthermore, the analysis was deepened by the
addition of scanning electron microscopy (SEM) micrographs
of the fracture surfaces. CFF/PLA biocomposites produced
with variable CFF composition ratios, long-term ageing dura-
tion, controlled experimental environment, and material design
are critical outputs of this study. The data obtained from this
long-term ageing study under real-time exposure allow us to
compare the data obtained as a result of accelerated ageing
studies which are carried out under the conditions of artificial
environment.

Experimental procedures

Material production, specimen preparation, and long-
term ageing conditions

Prior to the production process of the biocomposite material,
white CFF, which were supplied in a raw condition from a
local company in Manisa/Turkey, were subjected to several
preparation processes. The raw fibres were in the range of 20–
40 μm in diameter and about 20 mm in length. Rachises of the
CF were manually cut into barbs to obtain CFF from them. A
detailed illustration of a typical white chicken feather is given
in Fig. 1.

In order to determine the effect of the CFF mass content on
the thermal properties of the biocomposites, CFF mass ratios
of 2, 5, and 10% were used. The WiseStir HT-50AX mixer
was used to mix PLA with CFF at predetermined mass ratios.
CFF/PLA biocomposite materials were produced by injection
moulding with the aid of a twin-screw extruder at a speed of
150 rpm and a final extruder temperature of 205 °C. The
biocomposite material variables used in this study are shown
schematically in Fig. 2. In addition, detailed information on
CFF/PLA biocomposite material production processes can be
found in the study of Özmen et al. [62] and Baba et al. [76].

Environmental atmospheric long-term ageing of
biocomposite materials was carried out by storing specimens
in a special container for 5 years (43,800 h) in a laboratory
environment at a temperature of 23 ± 2 °C and average humid-
ity of 50 ± 5%. Laboratory temperature and humidification
were provided by air conditioning during the ageing process
in order to avoid unstable conditions. Samples were kept un-
der ideal living conditions without being affected by direct
sunlight and airflow. Production procedure of this study is
illustrated in Fig. 3.

Characterisation methods

Thermal characterisation

TGA, DTG, DTA, and DSC thermal characterisation tests
were performed to determine how the ageing process affects
the thermal stability and thermal properties of CFF, pure PLA,
and CFF/PLA biocomposite material. TGA, DTG, DTA tests
were performed by heating the samples having a mass of 10–
20 mg from 30 to 500 °C using a TA TGASDT Q600 thermal
analysis instrument under a nitrogen atmosphere of 50 ml/min
at a heating rate of 10 °C/min. In order to determine Tg values,
crystallization, and melting characteristics of pure PLA and
CFF/PLA samples, DSC analysis technique was used. DSC
analyses of both aged and non-aged samples were performed
with DSC-TA Q10 instrument at a temperature increasing rate
of 10 °C per minute from 28 to 300 °C.
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Morphological characterisation

SEM analysis was carried out to analyse the fracture surface
morphology of the PLA and CFF/PLA samples. In order to
achieve micrographs from the fracture surface of the non-aged

CFF/PLA composites, a COX EM-30 SEM device with an
acceleration voltage of 15 kV in accordance with the E986
standard was used. Field Emission Scanning Electron
Microscope Carl Zeiss 300VP was used with the same param-
eters to investigate the fracture surfaces of aged samples.
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Fig. 1 The detailed view of a
chicken feather
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Fig. 2 The components of CFF/
PLA biocomposite material
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Results and discussion

TGA, DTG, DTA, DSC, and SEM analyses were performed to
determine how thermal properties of CFF/PLA biocomposite
material, which is composed of PLA matrix and CFF fibre rein-
forcement in mass ratios of 2, 5, and 10%, are affected by long-
term ageing (43,800 h) process.

Thermogravimetric, derivative thermogravimetry,
and differential thermal analyses

The thermal decomposition of non-aged and long-term aged
CFF/PLA biocomposites is shown in TGA curves presented in
Fig. 4. Themass loss of non-aged and aged PLA, CFF, andCFF/
PLA biocomposite samples occurs in three steps [63, 77, 78]. In
the first mass loss step, it is noticed that the volatile content and
moisture in the sample evaporate by the effect of increasing
temperature [63, 77, 79]. It is clear from the thermographs that
the percentage of volatile content relative to the total mass is quite
low. In the secondmass loss step, pure CFF, pure PLA, andCFF/
PLA biocomposite samples begin to degrade. In the third step,
the material starts to decompose. It is observed that the mass
losses due to decomposition increase continuously as the temper-
ature increases, and the most serious mass losses occur at this
step. The mass loss at this step means that the thermal stability is
reduced due to the decomposition of the material [80, 81].

Among the non-aged samples (Fig. 4 (a)), PLA has the
highest total mass loss, while CFF has the lowest mass loss.
Three mass loss steps for the CFF are consecutive to eliminate
the adsorbed water, destruction of disulphide bonds (cystine)
arising from amino acid in the keratin structure and evapora-
tion of hydrogen sulfide, and moderate decomposition of ker-
atin structure in CFF [82]. PLA shows a decomposition of
99.46% from the initial testing temperature of 30 °C to the
end testing the temperature of 500 °C. The mass losses of non-
aged CFF/PLA biocomposites decrease with the increasing

mass content of CFF in the biocomposite, as evidenced by
the TGA curves in Fig. 4 (a).

According to the TGA curves of the aged samples in Fig. 4
(b), the order of mass losses of the aged samples is the same as
that of the non-aged ones (Fig. 4 (a)). The highest mass loss
belongs to PLA with 99.37%, and the lowest mass loss be-
longs to CFF with 71.25%. When the mass losses of the non-
aged samples and the aged ones are compared with each other,
it is seen that the long-term ageing process does not affect the
mass loss of PLA, but it increases the mass losses of CFF/PLA
biocomposites and reduces that of CFF.

The total mass losses are higher for the aged biocomposites
compared to the non-aged ones. CFF/PLA biocomposites are
thermally stable until 250 °C, and above 250 °C, they begin to
decompose due to the presence of CFF. Since the mass of the
samples remains unchanged around 400 °C, PLA matrices are
decomposed, and the remaining residue results from CFF. Due
to the higher amount of keratin, the composites with higher
CFF content start degrading at lower temperatures than the
composites with lower CFF content [77] for both non-aged
and aged samples.

Figure 5 shows derivative mass-temperature graphs of the
non-aged and long-term aged samples, and it points out the tem-
perature at which the highest decomposition rate of the CFF,
PLA, and CFF/PLA biocomposite samples with the same CFF
content. The decomposition temperature is indicative ofmaterials
resistance to temperature, and it can be affected by factors such as
thermal ageing process [83, 84]. For the case of non-aged sam-
ples, the highest decomposition peak belongs to PLA samples
with 357.70 °C, and the lowest decomposition peak belongs to
CFF with 329.79 °C. It is observed that decomposition temper-
atures of 2, 5, and 10% CFF/PLA samples decrease with the
increasing CFF content. Similarly, the aged sample with the
highest decomposition temperature is PLA (348.03 °C), and
the lowest one is CFF (326.53 °C). Although the decrease in
decomposition temperatures due to ageing effect is more pro-
nounced in PLA than in CFF, it can be commented that the

Raw chicken feathers 
were obtained from a 

local company at 
Manisa/Turkey.

PLA pellets were 
obtained from the 
company Resinex 

BMY at 
Istanbul/Turkey. 

Chicken feathers 
were immersed in hot 

water for cleaning.

Chicken feathers 
were immersed in 

water at room 
temperature. 

Chicken feathers 
were dried at room 

temperature.

Dried chicken 
feathers kept in an 

oven at 
60 °C for 6 hours for 

humidification.

CFF cut manually 
from barbs at 20 mm.

CFF and PLA mixed 
with HT-50AX 

mixer. 

Injection moulding 
process were used 

with the aid of a twin 
screw extruder for the 

production.  

CFF/PLA 
biocomposites with a 
mass content of 2, 5 
and 10% CFF were 

produced.

The characterisation 
tests of the non-aged 

biocomposite 
specimens were 

applied.

After the long-term 
ageing process, the 

characterisation tests 
were repeated. 

Fig. 3 Detailed production
procedure

Page 5 of 17     162J Polym Res (2020) 27: 162



ageing process reduces the decomposition temperatures of all the
samples.

By overlapping the DTA and the TGA thermographs, the
peak (Tpeak), onset (Tonset), and endset (Tenset) temperatures on
the DTA curve corresponding to the TGA curve as mass loss
values can be found (Fig. 6). As a representative example, the
mass loss steps of aged 2% CFF/PLA biocomposite samples
are detailed in Fig. 6. The first two steps correspond to a lower
mass compared to the third mass loss phase, which can be
called the complex area on the DTA thermograph includes
two endothermic peaks and a complex peak. Since this area
includes the Tonset, the temperature at which the decomposi-
tion begins, the thermal stability of the composite can be de-
termined with Tonset [85–87]. 1.97% of the mass is lost by
evaporation of adsorbed water from hydrophilic groups of

CFF, and 10.33% mass is lost by the degradation of the com-
posite between steps two and three corresponding to 290.58
(T2i) to 315.30 (Tonset) °C, respectively. In step three, Tonset, at
which the material begins to decompose, is also accepted as
the thermal stability, and this value is 315.30 °C. The material
experiences the most serious decomposition rate at 344.44 °C,
and the complex area ends at 364.71 °C. In the complex area,
2%CFF/PLA biocomposite loses 85.54% of the sample mass.
Composite materials can be used up to high temperatures
without degradation due to their good thermal properties such
as thermal stability. These temperatures correspond to the on-
set temperature of the material [81, 86, 88].

Critical values obtained from TGA-DTA curves of the all
samples are given in Table 1. As can be seen from Table 1,
Tonset of the non-aged 2% CFF/PLA biocomposite sample is
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Fig. 4 TGA curves of (a) non-
aged and (b) aged samples
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319.60 °C, while this temperature dropped to 315.30 °C with
the effect of long-term ageing. The aged 5%CFF/PLA sample
has less volatile content (3.04% vs. 3.24%), while the percent-
age of content degraded in step two (6.64% vs. 4.97%) and the
percentage of content decomposed within the complex area
increase (85.19% vs. 84.56%). In addition to this, with the
effect of ageing process, greater mass loss occurs in the aged
5% CFF/PLA sample (%96.73 vs. %95.78). The thermal sta-
bility of the 10% CFF/PLA biocomposite sample decreases
with the effect of ageing. Tonset of the non-aged sample is
316.10 °C, while Tonset of the aged one is 315.66 °C. When
the volatile content percentages are evaluated, non-aged 10%
CFF/PLA sample has greater content with 4.67%. The content
of the aged 10%CFF/PLA sample that degraded in step two is

higher with 17.41%. The total mass loss of the aged 10%CFF/
PLA sample is higher than that of the non-aged one (96.10%
vs. 95.34%). When Table 1 is examined for PLA, it is ob-
served that aged PLA has less volatile content, and the start
temperature of second step (T2i), which is the starting point of
the degradation, decreases sharply from 326.43 to 304.64 °C.
The thermal stability of the PLA sample also decreases from
338.41 °C to 336.43 °C with the effect of ageing. When the
percentages of PLA sample decomposed within the complex
area is examined, they are 91.41% and 80.59% for the aged
and the non-aged, respectively. In addition, when the total
mass loss of PLA is evaluated, it is seen that the mass losses
of the non-aged and aged sample are almost the same. The
thermal stability value of the CFF decreases with the effect of

a

b

Fig. 5 DTG curves of (a) non-
aged and (b) aged samples
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ageing (232.75 °C vs. 231.57 °C). The volatile content of the
non-aged CFF appears to have a greater percentage by mass
(9.10% vs. 6.48%), while the percentage of aged CFF
decomposed within the complex area appears to be greater
(14.04% vs. 30.99%). Taking the entire table into consider-
ation, it is noticed that the non-aged samples contain more
volatile content. It is obvious that Tonset, which indicate the
thermal stability in all samples, and T2i are seen to decrease
with the effect of long-term ageing in all samples. Under the

influence of ageing process, Tonset ,T2i, and volatile contents
decrease, while the total mass loss in both CFF and CFF/PLA
biocomposite samples increases.

In this study, the degradation rate, which means the decom-
position of the material with the effect of temperature, is ob-
tained by summing up the mass losses of material occurring in
the 2nd and 3rd (complex area) steps. The degradation rates of
all samples are given in Fig. 7. Accordingly, when the aged
and non-aged of the CFF, PLA, and CFF / PLA biocomposites

Table 1 Degradation and decomposition temperatures of PLA, CFF, and CFF/PLA biocomposites

Sample
1st step 2nd step Complex area (3rd step) % 

mass 
loss 

in 4th

step

% 
Total 
mass 
loss

% 
mass loss

T2i °C % 
mass
loss

Tonset °C Tendset °C Tpeak °C Area 
µV.min/mg

% 
mass
loss
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Non-aged 

CFF
9.10 203.27 2.07 232.75 290.22 243.85 1.04 14.04 51.89 77.10
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CFF
6.48 201.36 1.76 231.57 324.64 243.75 9.33 30.99 32.02 71.25
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are evaluated among themselves, an increase in the degrada-
tion rates is observed in all samples with the effect of the
ageing process. At the same time, the degradation rates of
the samples, whose thermal stability decreases with the effect
of ageing, increase.

Differential scanning calorimetry analyses

DSC thermograms are recorded to observe the effects of the
long-term ageing process on the crystallization and melting
behaviour of PLA and CFF/PLA biocomposite samples.
Figure 8 illustrates the DSC curves of the samples while
Table 2 shows the DSC parameters of the non-aged and aged
PLA and CFF/PLA biocomposite samples. In general, DSC
measures the flow of heat during an endothermic or exother-
mic process that develops in a controlled environment due to
time and temperature function. In the DSC plot, the upper
transition peaks indicate the heat requiring endothermic zone,
while the down transition peaks reveal heat-releasing exother-
mic zone. Tg and decomposition temperatures (Tm) are obtain-
ed from the endothermic transition peaks, while the crystalli-
zation temperature (Tc) is obtained from the exothermic peak.
In addition, cold-crystallization enthalpy (ΔHc) and melting
enthalpy (ΔHm) can be obtained from DSC graphs while the
degree of crystallization (Xc) can be calculated by the follow-
ing Eq. (1) [89]:

X c ¼ ΔHm−ΔHc

wΔH0
m

� 100% ð1Þ

w represents the mass fraction of PLA, and the melting enthal-

py of all crystalline PLA (ΔH0
m ) is taken as 93 J/g in the

literature [62, 87, 90].

The DSC thermogram generated for non-aged PLA and
CFF/PLA biocomposites is presented in Fig. 8 (a). All exo-
thermic and endothermic peaks are clearly visible in Fig. 8.
Accordingly, the first endothermic peak between 57.65–
62.85 °C indicates the Tg. PLA has the highest Tg with
62.85 °C, the Tg of 2% CFF/PLA is 58.65 °C, the Tg of 5%
CFF/PLA is 57.65 °C, and the Tg of 10% CFF/PLA is
60.45 °C. All CFF/PLA biocomposite samples have lower
Tg values than pure PLA. As can be seen in the graph, the
Tg of the 10% CFF/PLA biocomposite sample, which has the
highest CFF mass, is greater than the 2% and 5% CFF/PLA
samples. The reason for the lack of a trend may result not only
from the non-homogeneous mixture of PLA at higher concen-
tration of CFF (10%) but also from the heterogeneity of the
different parts of the CFF [64]. Exothermic transition peaks
between 106.35 °C and 124.85 °C refer to the crystallization
temperatures. The highest Tc belongs to PLA with 124.85 °C,
and the lowest Tc belongs to 5%CFF/PLA biocomposite sam-
ple with 106.35 °C. Considering the energies released during
crystallization, the amount of energy released increases with
the increasing CFF content. The lowestΔHc belongs to PLA
with 2.89 J/g, while the highest ΔHc belongs to 10% CFF/
PLA biocomposite sample with 23.20 J/g. Declines in the
ΔHm and Xc values of non-aged samples are observed with
the increasing CFF content. The ΔHm value for pure PLA is
30.10 J/g, while it is 25.31 J/g for the 10% CFF/PLA
biocomposite sample, resulting in a loss of 15.91%.

The thermogram with DSC curves of aged pure PLA and
CFF/PLA biocomposite samples is given in Fig. 8 (b).
According to this thermogram, the Tg values ranged from
66.80 °C to 67.96 °C, so it can be stated that there is no
significant change.When Tc values are considered, the highest
Tc belongs to PLA with 117.10 °C, whereas for biocomposite
samples these values range from 108.75 °C to 109.78 °C. The
ΔHc value of PLA is 25.18 J/g. TheΔHc value is 20.84, 25.25

0 20 40 60 80 100
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Aged CFF

Non-aged 2% CFF/PLA

Aged 2% CFF/PLA

Non-aged 5% CFF/PLA

Aged 5% CFF/PLA

Non-aged 10% CFF/PLA

Aged 10% CFF/PLA
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6.64%
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10.33%

5.71%

1.76%

2.07%

16.93%

5.51%

17.41%

79.21%

85.19%

84.56%

85.54%

84.97%

30.99%

14.04%

80.59%

91.41%

74.84%
Fig. 7 Degradation rates of the
samples according to TGA-DTA
curves
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and 21.94 J/g for 2, 5, and 10% CFF/PLA biocomposites,
respectively. When Tm values are taken into consideration,
values of CFF/PLA biocomposites are higher than pure
PLA. As CFF content increases, Tm value increases. The low-
est Tc belongs to PLA with 150.00 °C, while the highest Tc
value belongs to 10% CFF/PLA with 155.66 °C. In addition,
the highestΔHm value belongs to 5%CFF/PLA biocomposite
samples with 29.65 J/g.

Tg refers to the temperature region where the polymer
changes from a rigid, glassy structure to a soft, rubbery struc-
ture. The Tg value can be affected by parameters such as age-
ing, thermal applications, polymer architecture, and degree of
crystallinity [91, 92]. Ageing mechanism and ageing products
can cause a change in the molecular chain structure of PLA
[91]. According to Table 2, it is observed that all Tg values of

aged samples increase compared to those of the non-aged
samples with the same CFF mass content. This increase in
Tg is attributed to the steric hindrance effect in biocomposite
samples. This finding suggests that ageing mechanism may
inhibit the mobility of the chains, possibly due to recrystalli-
zation phenomena occurred in the long-term ageing period
[35, 84, 93].

When the ΔHm and Xcvalues of CFF/PLA biocomposites
are compared, it is observed that these values are higher in the
aged ones. This finding may be explained by the phenomenon
of lamella thickening. The phenomenon of lamella thickening
results from chain scissions of CFF/PLA biocomposite sample
chains during the long-term ageing process. Chain scission
results in the formation of shorter molecules with higher mo-
bility. These modified chains recrystallize during the long-
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Fig. 8 DSC curves of (a) non-
aged and (b) aged samples
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term ageing process; thus, they increase the total degree of
crystallinity [35, 84, 94, 95]. The increase in crystallinity jus-
tifies the decrease in thermal stability. The small shoulders
seen in the DSC curve of aged 10% CFF/PLA sample
(Fig. 9) demonstrates the presence of new crystallites pro-
duced by the chain scission process, which leads to shorter
molecular chains [94, 96]. It is also expected that yield and
fracture stresses, and elastic and storage modules of CFF/PLA
biocomposite samples to decrease with increasing degree of
crystallinity [94, 97, 98]. In addition, it is obvious from the
DSC curves that all the non-aged CFF/PLA biocomposite
samples show a double endothermic melt peak. This

behaviour has been associated with the melt recrystallization
mechanism; the less perfect crystals in this region show melt-
ing at lower temperatures, and they reorganize as the heating
process continues in stable crystals [94, 99].

Morphological analyses

The thermal characterisation results reveal that the crystallization
behaviour is not similar for PLA and CFF/PLA composites.
Comparing the ΔHm and Xc values of the non-aged and aged
PLA, it is seen thatΔHm and Xc values decrease with the effect
of the long-term ageing process. This decrease may be due to an
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Fig. 9 DSC curves for melting
heat of 10% CFF/PLA
biocomposite samples

Table 2 DSC results of non-aged and aged PLA - CFF/PLA biocomposites
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application that can affect the polymeric structure of the material,
such as the ageing process, which prevents polymeric molecular
chains to diffuse andmigrate to the surface of the growing face of
the polymer [35, 79, 84, 93, 100–102]. The reason that the ageing
process can prevent the diffusion and migration of the polymeric
molecular chains and prevent the rearrangement of the polymeric
molecular chains is the impurities formed on the PLA surface
[35, 100]. These impurities are formed by the ageing effect on the
PLA surface as can be seen in Fig. 10. The aged PLA morphol-
ogy demonstrates more broken and a rougher surface than the
non-aged PLA.

SEMmicrographs of fracture surface of non-aged and aged
CFF/PLA biocomposite samples are given in Fig. 11. When
micrographs of samples with the same CFF mass ratio are
compared to each other, it is seen that the aged samples have
more microvoids, cavities and gaps between fibre and matrix.
As a result of the long-term ageing process, it is seen that
cavities and microvoids on the fracture surfaces of CFF/PLA
biocomposite samples increase, and the interfacial bonding
success between the CFF and matrix material PLA decreases.
One of the parameters that express the quality of the interfacial
bonding between the fibres and the matrix is the gaps formed
between the fibre and the matrix. As the numbers of gaps
increases, the quality of the interfacial bonding between the
fibres and the matrix decreases [103]. In this context, when
micrographs of aged and non-aged samples are examined,
more gaps are observed between the fibres and matrix in the
aged samples. This indicates that the interfacial bonding be-
tween the fibres and the matrix of aged samples is weaker.

The strong interfacial bonding between the matrix and the
reinforcing element, and the morphological stability are con-
sidered among the factors that cause the high thermal stability
of the composite [89, 104–107]. As can be seen in the Fig. 11,

the ageing process has an impact on the surface morphology
of the biocomposite sample; thus, the presence of microvoids
and cavities on the surface led to morphological instability. In
addition, the interfacial bonding failure between PLA and
CFF with the effect of the ageing process is one of the reasons
that cause thermal stability to decline.

Conclusions

In this study, the effect of long term natural atmospheric age-
ing process on thermal properties of CFF/PLA biocomposite
samples having different CFF mass concentration ratios were
investigated. With the findings obtained from the experimen-
tal study, the following conclusions can be drawn;

& According to the results of TGA, the residual mass ratio of
PLA does not change with the effect of ageing, whereas the
ageing process increases the mass loss of CFF/PLA samples
as the CFF mass ratio decreases. Accordingly, the reduction
in residual mass ratios is 2.79% for 2%CFF/PLA, 0.95% for
5% CFF/PLA, and 0.76% for 10% CFF/PLA.

& According to DTG curves, decreases in decomposition
peaks of CFF/PLA biocomposite samples are observed
with the effect of ageing process. The decomposition peak
of PLA decreases by 2.70% to 348.03 °C, that of the CFF
decreases by 0.99% to 326.53 °C, that of 2% CFF/PLA
decreases by 3.79% to 338.07 °C, that of 5% CFF/PLA
decreases by 3.77% to 335.48 °C, and that of 10% CFF/
PLA decreases by 1.92% to 339.05 °C.

& By overlapping the DTA and TGA curves, it is seen that
the thermal stability of the samples decreases with the
effect of the ageing process. Accordingly, Tonset of the

Fig. 10 SEM micrographs of (a) non-aged and (b) aged PLA samples
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CFF decreases by 0.51% to 231.57 °C, that of PLA de-
creases by 0.59% to 336.43 °C, that of 2% CFF/PLA
decreases by 1.35% to 315.30 °C, that of 5% CFF/PLA
decreases by 2.31% to 308.40 °C and that of 10% CFF/
PLA decreases by 0.14% to 315.66 °C.

& According to the DSC analysis results, increases in the Xc
of the aged CFF/PLA biocomposite samples are noticed.
This increase, which associated with the lamella

thickening phenomenon, is 6.79% for 2% CFF/PLA,
4.98% for 5% CFF/PLA and 6.11% for 10% CFF/PLA.

The results contained herein may be useful in understand-
ing the ageing mechanism of biocomposite materials.
Moreover, the results can be used to determine the critical
parameters that should be considered to ensure long-term per-
formance of these composites.

a b

c d

e f

Fig. 11 Fracture morphology of non-aged and aged CFF/PLA biocomposite samples (a and b) 2%, (c and d) 5%, (e and f) 10%. The left panel shows the
non-aged biocomposite samples and the right panel shows the aged biocomposite samples
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