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Abstract
Two natural plasticizers derived from cardanol (CD), cardanol acetate (CA) and epoxidized cardanol acetate (ECA),
were synthesized and characterized by 1H NMR and 13C NMR. The plasticizing effects of the obtained plasticizers on
semi-rigid polyvinylchloride (PVC) formulations were also investigated. Two commercial phthalate ester plasticizers,
dioctyl terephthalate (DOTP) and diisononyl phthalate (DINP), were used as controls. Mechanical and thermal prop-
erties, compatibility, thermal stability, microstructure, and workability were assessed by dynamic mechanical analysis
(DMA), mechanical analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and dynamic
stability analysis, respectively. Results indicated that the natural plasticizer ECA had overallsuperior flexibility, com-
patibility, thermal stability, and workability comparable to both controls. The obtained CA and ECA have lower
volatility resistance and similar extraction and exudation resistance than that of DOTP and DINP. The CA was further
blended with DOTP in soft PVC films. Results of DMA, TGA and mechanicalanalysis indicated that CA can serve as
a secondary plasticizer to improve the related properties of soft PVC formulations. These CD derived plasticizers show
promise as an alternative to fully or partially replace petroleum-based plasticizers.
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Introduction

Polyvinyl chloride (PVC) has been widely used in many appli-
cations, such as packaging, construction, toys, furniture, house-
hold, automotives, electrical, and electronics, etc. [1–5].
However, PVC is brittle, rigid and with low thermal stability, it
has to be blended with plasticizers to improve its mechanical
properties, processibility, and thermal stability to meet product
quality and specification requirements [6, 7]. Currently, there are
more than 100 plasticizers which are of commercial importance,
among which phthalates are the most widely used plasticizers
[8]. Recently, it was reported that phthalate plasticizers have
demonstrated toxicity in animals and risk of adverse health ef-
fects in humans [9–13].

In order to solve this problem, researchers in academia and
industry have looked for alternative plasticizers to replace
phthalate plasticizers. Currently, there is increasing interest
in the use of natural-based plasticizers characterized by low
toxicity to substitute conventional petroleum-based plasti-
cizers [6, 14–16]. Natural plasticizers from vegetable origin,
such as modified or epoxidized vegetable oil, epoxidized fatty
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acid methyl ester, glycerin acetates, etc., are new alternatives
[17, 18]. Numerous raw materials have been used, such as
soybean, corn, sunflower, palm, flaxseed, etc. [19].

One of the most commonly used renewableraw materials
[20], cardanol (CD), and its derivatives, have major applications
in developing new eco-friendly materials [21–25]. In recent
years, CD has been used as a plasticizer in the polymer and
rubber industries. It was reported that CD and phosphorylated
CD have shown significant plasticizing effects [2, 26]. Although
not much research has been reported, some CD derivatives have
also beenused as efficient plasticizers for PVC [27, 28].
Esterification and epoxidation have been used to modify CD in
order to improve the miscibility of CD derived plasticizers [27].
However, in the epoxidation process in Ref. [27],
chloroperbenzoic acid was mainly used. Chloroperbenzoic acid
is expensive and will significantly increase costs. In addition,
evaluation of plasticizers on the mechanical, thermal stability
and workability characterization was not addressed.

In this work, cardanol acetate (CA) was obtained by esterifi-
cation and epoxidized cardanol acetate (ECA) was obtained by
further epoxidation using H2O2. The synthesis route of CA and
ECA were shown in Scheme 1. An environmentally friendly,
low-cost processing method was developed in producing ECA.
The mechanical and thermal characterizations, thermal stability
and workability properties of the CD derivatives for semi-rigid
PVCwere evaluated. Furthermore, the plasticizing effects of both
CA and DOTP or DINP in soft PVC are reported.

Experimental

Materials

CD (stabilized, 88.5%) was purchased fromMeidong Biological
Material Co., Ltd., Shanghai, China, and used after distillation at
240–250 °C under 3–5 Torr. Acetic anhydride, toluene, potassi-
um carbonate, sodium bicarbonate, anhydrous sodium sulfate,
formic acid, and p-Toluenesulfonic acid were purchased from
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China and
used as received. Hydrogen peroxide (50%) was provided by
ARKEMA Hydrogen Peroxide Co., Ltd., Shanghai, China.
PVC (DG-1000 K) was purchased from the Tianjin Dagu
Chemical Co., Ltd., Binhai, Tianjin, China. Calcium stearate
and zinc stearate were supplied by Changzhou JiaRenWo
Chemical Co., Ltd., Changzhou, China. Dioctyl terephthalate
(DOTP) (97%) and diisononyl phthalate (DINP) (99%) were
obtained from Aladdin Reagents Co., Ltd., Shanghai, China
and used as received.

Preparation of CA and ECA

To a 50 ml flask equipped with a mechanical stirrer, reflux
condenser and thermometer were charged 10 g of CD

and0.75 g of potassium carbonate. The mixture was stirred
and slowly heated to 60 °C and then 4.1 g acetic anhydride
was added. The final mixture was kept for 3 h. Next, the
mixture was washed with 2% NaHCO3 and distilled water,
respectively. Finally, the CAwas dried by anhydrous sodium
sulfate and filtered.

In a three-necked, round bottom flask equipped with
a magnetic stirrer, thermometer sensor, and reflux con-
denser, was added 5 g CA,0.36 g formic acid, 10 ml
toluene, and 0.15 g p-Toluenesulfonic acid, then this
mixture was heated to 50 °C. About 2 g H2O2 was
added dropwise to the mixtureafter 30 min and stirred
for several hours. The final mixture was heated to
65 °C and kept for 3 h. After the reaction was com-
plete, the crude product was filtered and washed with
2% NaHCO3 and distilled water, respectively. Finally,
the organic phase was dried by vacuum distillation.
The ECA had an epoxy value of 4.21% and acid value
of 0.51 mg/g.

Preparation of plasticized PVC test specimens

A series of plasticized PVC test specimens with different plas-
ticizers were prepared. The compositions of different formulas
are shown in Table 1. First, PVC powder, plasticizer, and
thermal stabilizers were mixed using a mechanical mixer at
room temperature for 5 min. Second, the mixture was
compounded into a homogeneous mixture at 165 °C for
3 min by a HAAKE torque rheometer (Thermo Fisher
Scientific Inc., Pittsburgh, PA, USA). Finally, the test speci-
mens were made using a HAAKE MiniJet II micro injection
molding machine (Thermo Fisher Scientific, Pittsburgh, PA,
USA). The mold for tensile test samples is based on ISO527–
2-5Awith the dimensions of 75 × 12.5 × 2 mm. The mold for
dynamic mechanical analysis (DMA) samples is based on
ISO180/179 with the dimensions of 80 × 10 × 4 mm. The
specimens were carefully removed from the mold and exam-
ined for tensile test and DMA.

1H and 13C NMR analysis

1H and 13C NMR spectra of the compounds in deuterated
chloroform (CDCl3) were recorded with a Bruker ARX 300
spectrometer (Bruker, Rheinstetten, Germany) at room
temperature.

Dynamic mechanical analysis (DMA)

DMAwas conducted by using a DMA Q800 (TA Instruments
Co., New Castle, DE, USA) in a dual cantilever mode with an
oscillating frequency of 1 Hz. The temperature was swept
from −60 to 80°C at a heating rate of 3 °C/min. For each
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sample, duplicated tests were performed in order to ensure the
reproducibility of data.

Tensile properties

Tensile properties were measured using a SANS7 CMT-4303
universal testing machine (Shenzhen Xinsansi Jiliang
Instrument Co., Shenzhen, China) according to ISO 527–2:
1993. The tests were conducted at a crosshead speed of
10 mm/min. All samples were conditioned at 50% humidty
and 23 °C for 2 days prior to tensile testing. Five replicates
were prepared for each sample to obtain an average value.

Thermogravimetric analysis (TGA)

TGA was carried out on a thermogravimetric analyzer
(Netzsch Co., Selb, Germany). Each sample was scanned
from ambient temperature to 600 °C under a nitrogen atmo-
sphere at a heating rate of 10 °C/min.

Scheme 1 The compounds used in this study and the conversion of CD into CA and ECA

Table 1 PVC formulations for varying plasticizer content

Component Formulations

DOTP/PVC DINP/PVC CA/PVC ECA/PVC

PVC 100.0 100.0 100.0 100.0

DOTP 25.0 0.0 0.0 0.0

DINP 0.0 25.0 0.0 0.0

CA 0.0 0.0 25.0 0.0

ECA 0.0 0.0 0.0 25.0

Calcium stearate 1.5 1.5 1.5 1.5

Zinc stearate 0.5 0.5 0.5 0.5
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Scanning electron microscopy (SEM)

SEM examinations of the stretch-fractured samples were con-
ducted on an S-3400 N Scanning Electron Microscope
(HITACHI, Ltd., Tokyo, Japan). The surface of the fractured
samples after completion of the tensile tests was coated with a
gold film prior to SEM observation.

Dynamic stability analysis

Dynamic stability analysis was performed using a
HAAKEtorque rheometer (Thermo Fisher Scientific Inc.,
Pittsburgh, PA, USA) according to ASTM D 2538–02. The
PVC/plasticizer compounds were tested at 180 °C with a rotor
speed of 30 rpm for 60 min. The dynamic thermal stabilizing

Fig. 1 1H NMR spectra of (a)
CD, (b) CA, (c) ECA
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time is defined as the time when the torque on the rotor starts
to change abruptly [29].

Migration tests

Extraction tests were based on ASTMD 1239–98. The
PVC specimens were immersed in distill water at 23 ±

1 °C and 50 ± 5% relative humidity. After 24 h, the
extracted PVC specimens were rinsed with flowing wa-
ter and then wiped up. Afterward, all of the specimens
were dried in a convection oven at 30 °C for 24 h and
reweighed. The weight losses before and after the dip-
ping were measured. Three specimens were tested to
obtain an average value.

Fig. 2 13C NMR spectra of (a)
CD, (b) CA, (c) ECA
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Exudation of the plasticizer was evaluated by placing
a PVC specimen between two pieces of filter paper.
These systems were then placed in a convection oven
at 60 °C for 48 h. Then, the weight increment of the
filter papers was calculated. Three specimens were test-
ed to obtain an average value.

Volatility tests were determined by ISO 176:2005, the
activated carbon method. The specimen was placed on
the bottom of a metal container and about 120 cm3 of
activated carbon was spread over this specimen and then
the lid was put on the container. The container was
placed in the convection oven at a temperature of

Fig. 3 Dynamic mechanical
analysis in storage modulus (E’)
and loss factor (tan δ)

Fig. 4 Possible interaction
between ECA and PVC
molecules in the plasticized
system
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70 °C ± 1 °C. After 24 h, the container was removed
from the oven and cooled at room temperature in a des-
iccator. The specimens were brushed and reweighed. The
weight losses were measured before and after the
heating. Three specimens were tested to obtain an aver-
age value.

Results and discussion

Characterization of CA and ECA

The NMR technique is employed to investigate the structure
of the obtained plasticizers. Fig. 1 and Fig. 2 displayed the 1

H NMR and 13C NMR of CD, CA, and ECA, respectively.

The chemical shift assignments were also labeled. In Fig. 1,
the characteristic peaks at 6.7–7.3 ppm were attributed to
the proton on the benzene ring. The peaks at 1.3–2.6 ppm
were assigned to the hydrogen of the –CH2– on the side
chain of CD. The peak at 2.8 ppm was according to the –
CH2– beside the double bonds. The peak at 0.93 ppm was
assigned to the hydrogen of the –CH3– groups. When we
compared the spectrum of CD (Fig. 1a) and CA (Fig. 1b),
the peaks at 5.3 ppm corresponding to the proton of –OH–
almost disappeared, which indicated that the phenolic hy-
droxyl group had been converted. Additionally, the new
peak at 2.3 ppm showed the existence of an ester group
in CA [30]. Furthermore, the peaks at 2.9–3.2 ppm were
attributed to the hydrogen of the –CH–O–CH– groups,
which have appeared on the 1H NMR spectrum of ECA
(Fig. 1c), indicating the occurrence of epoxidation. The
chemical shifts of the hydrogen at 1.2–1.8 ppm also
displayed the existence of epoxy groups in ECA. Figure 2
showed that the peaks at 20.7 and 169.2 ppm due to the
ester, carbonyl carbon, have appeared in the 13C NMR
spectra of CA. The chemical shift of the benzene carbon
from 155.2 to 150.5 indicates the phenolic hydroxyl con-
verted into an ester when CD progressed into CA. The peak
at 128.4–130.2 ppm due to the olefinic carbons observed
for CD and CA have disappeared in the 13C NMR spectra
of ECA. The signal assigned as carbons beside the epoxy
groups appeared at 56.9 ppm [31].

Fig. 5 Tensile properties of PVC
films with different plasticizers

Table 2 TGA results of weight loss for PVC films with different
plasticizers

Samples Weight loss(wt%)

0–220 (°C) 220–340 (°C) 420–600 (°C)

DOTP/PVC < 1.5 62.42 17.66

DINP/PVC < 1.5 64.43 17.92

CA/PVC <2.0 55.88 26.16

ECA/PVC <1.0 57.96 24.18
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DMA, tensile properties and hardness character

Figure 3 displays changes in E’ and the tan δ values with the
temperature of the PVC films plasticized with different

plasticizers. The glass transition temperature (Tg) is deter-
mined from the peak of the tan δ curve. As compared to the
films plasticized with other plasticizers, the ECA/PVC exhib-
ited the sharpest transitions in the E’ value and the tan δ peak.

Fig. 6 SEMmicrophotographs of
the fractured surface of PVC films
with different plasticizers

Fig. 7 Thermogravimetry (TG)
curves of the PVC films with dif-
ferent plasticizers
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Furthermore, ECA/PVC displayed a maximum decrease of
3.74 °C in the Tg compared with those of DOTP/PVC and
DINP/PVC. According to the free volume theory of plastici-
zation [32, 33], the increase in the peak size and decrease in
the peak temperature (Tg) of tan δ value reflects good
compatibilityand strong plasticization of the ECA plasticizer
with PVC resin. This strong plasticizing efficiency can be
attributed to it having a relatively lower molecular weight
and more epoxy polar groups than the phthalates investigated,
having higher ability to lubricate by incorporating itself
among the polymer chains, and reducing PVC-PVC interac-
tions by replacingpart of the plasticizer-PVC interactions [34]
(Fig. 4). It is also observed that the largest decrease of the E’
value of the film plasticized with ECA as a plasticizer is in
agreement with the conclusion that the E’ value is negatively
correlated with the density of the polymer crosslink when
above the Tg [35, 36]. For CA, the increase in the Tg suggests
weaker plasticizing efficiency and compatibility with PVC as

compared with two other commercial phthalates. This might
be due to the unsaturated double-bonds on the side chain of
CA. The changes in tensile strength, elongation at breakand
elastic modulus of the obtained plasticized PVC films are
shown in Fig. 5. It was observed that the elongation at break
increases in the order: DOTP/PVC, DINP/PVC, CA/PVC and
ECA/PVC, indicating the increase of flexibility and toughness
for all the films. In addition, the tensile strength and elastic
modulus were decreased in the same trend. These results are
consistent with the DMA results, indicating that ECA has a
significant effect on the flexibility properties and exhibits the
best toughness [37]. In other words, less CA and ECA are
required to reach the same flexibility compared tothose of
DOTP and DINP.

Thermal stability

Figure 7 shows the TGA results for PVC films with different
plasticizers heated in nitrogen at 10 °C/min. From the charac-
teristic temperatures in TGA curves (Table 2), it was observed
that the degradation of all the films consisted of three weight
loss steps. The weight loss step around 220–340 °C is fast, due
to dechlorination of PVC and a few chlorinated hydrocarbons
[38] when the temperature reached~340–420 °C, the weight
was almost stable, which may be associated with the forma-
tion of aromatic compounds by the cyclization of conjugated
polyene sequences [39, 40]. The third mass loss step is above
420 °C, corresponding to the degradation and decomposition

Fig. 8 Effect of different
plasticizers on dynamic thermal
stability of PVC at 180 °C

Table 3 Effects of different plasticizers on the dynamic thermal
stability of PVC

Formulation Dynamic stability
time (min)

Balance
torque (Nm)

DOTP/PVC 12.8 6.0

DINP/PVC 10.7 7.0

CA/PVC 12.9 5.8

ECA/PVC > 30.0 5.1
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of the complex structures resulting from aromatization [40,
41]. It can be seen clearly that ECA/PVC has a much higher
thermal stability compared to the other three films. This result
may be due mainly to the epoxy groups of ECA which can
scavenge for HCl and delay the degradation events [42–44].

Microstructure

The plasticizing effects on fractured surfaces of the films
obtained from the mechanical tests were also determined
by SEM as shown in Fig. 6a and b which corresponded
to PVC films plasticized by DOTP and DINP, respective-
ly. Both samples have strong roughness and cracking, are
responsible for the higher tensile strength and the lower

value of elongation at break. However, with the addition
of CA and ECA, the appearances of the micrographics
are different. For CA/PVC (Fig. 6c), oriented shallow
ridges can be seen in the fractured surface, indicating a
high plastic deformation that lasted before break [45,
46]. Furthermore, as shown in Fig. 6d, the fractured sur-
face of ECA/PVC is smooth and homogeneous with the
formation of some directed and shallow ridges, and the
elongation at break reaches the maximum value of
155.84%. The results are in agreement with the tensile
properties previously investigated (Fig. 7).

Workability

Meanwhile, to investigate the effects of plasticizers on the
workability of PVC, the dynamic stability property of obtain-
ed samples was tested by a HAAKE torque rheometer
(Thermo Fisher Scientific Inc., Pittsburgh, PA, USA).
Figure 8 shows the results of the dynamic stability testingof
PVC samples at 180 °C. The parameters of dynamic stability
time and balance torque were calculated in Table 3. It can be
seen that the values of dynamic stability time follow the
order: DINP/PVC < DOTP/PVC < CA/PVC < ESO/PVC
and ECA/PVC. Compared with DOTP/PVC and
DINP/PVC, the CA/PVC has a maximum increase of
2.2 min in dynamic stability time, and a maximum decrease

Fig. 9 DMA thermograms of E’
and the tan δ values for PVC films
plasticized with combined
plasticizers

Table 4 Formulation of the soft PVC films

Formulationsa F0 F1 F2 F3 F4

DOTP content (%) 28.17 22.54 16.90 11.03 5.63

CA content (%) 0.00 5.63 11.27 17.14 22.54

Tg (°C) 41.52 38.52 37.27 35.93 36.35

To 261.1 264.1 259.6 259.2 254.7

Tmax 292.5 295.3 291.0 289.2 287.2

a Total plasticizer content 28.17% (40 phr)
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of 1.2 Nm in balance torque. Furthermore, the ECA/PVC has
the highest dynamic stability time above 30 min, as well as
the lowest balance torque of 5.1 Nm. This probably relates to
the high content of the functional ester and epoxy groups and

the long side chain in CA and ECA,which will reducethe
melt viscosity during processingand extend the processing
time [34]. Therefore, it can be concluded that CA and ECA
improve the workability of PVC. On the other hand, these

Fig. 10 Weight losses of PVC
films after extraction, exudation
and volatility tests

Fig. 11 TG and DTG curves for
PVC films plasticized with
complex plasticizers
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results showed good agreement with the results of TGA,
suggesting that both CD derived plasticizers can increase
the thermal stability of PVC.

Migration properties

The weight losses of the PVC samples by extraction,
exudation and volatility are shown in Fig. 9. It could
be seen that the four samples presented similar extraction
and exudation loss. The weight loss of DOTP/ PVC and
DINP/ PVC were slightly higher than the other two sam-
ples. Furthermore, the volatility loss decreased in the
following order: CA/ PVC, ECA/ PVC, DINP/ PVC,
and DOTP/PVC. It was suggested that the volatilization
loss was largely depended on the molecular weight of the
plasticizer [47], so the CA had the highest weight loss.

The usage of CA as a second plasticizer in soft PVC

To explore the effects of CA as an assistant plasticizer on
the properties of soft PVC, films plasticized with DOTP
were analyzed. The composition of the different soft
PVC films is shown in Table 4. As shown in Fig. 10
and Table 4, the E’ value was lower with the higher
CA content, and the Tg was decreased in the same trend.
This result indicated that the partial substitution of
DOTP with CA will improve the plasticizing efficiency
of the soft PVC films [33].

TGA was performed to evaluate the thermal stability
of soft PVC films with different CA contents. TGA and
differential thermogravimetry (DTG) curves are shown in
Fig. 11. The onset temperature of degradation (To) and
temperature of maximum rate of mass loss (Tmax) were
noted in Table 4. It can be seen that the value of the To
is higher in the case of F1, compared to the film plasti-
cized with pure DOTP (F0), and the Tmax is in the same
trend. This result might be due to the lower molecular
weight of CA and the relatively higher content ofthe
benzene rings which improve the thermal stability of this
complex plasticizer [48]. However, the F2-F4 films have
lower thermal degradation temperatures than F0, suggest-
ing the thermal stability decreased with the increased

content of CA, when the usage of CA is above 20% of
the total content of the plasticizer. Tensile properties of
soft PVC samples with CA as a secondary plasticizer
were also performed in Table 5. Compared to the film
plasticized with pure DOTP, partial substitution of DOTP
with CA causes a remarkable increase in elongation and
a general decrease of tensile strength and modulus. It
also suggests that the softness and flexibility properties
of the PVC films can be improved with CA as a second-
ary plasticizer.

Conclusions

In this work, two natural plasticizers, CA and ECA, were
successfully synthesized and characterized by 1H NMR
and 13C NMR. The plasticizing effects of CA and ECA
on these mirigid PVC blend were investigated. By the
incorporation of ECA into PVC, the thermo-mechanical
properties, Tg, tensile strength, and E’ of plasticized PVC
film decreases, while the films elongation at break, ther-
mal stability and workability were improved. This could
indicate that ECA has a higher plasticizing effect than
commercial phthalate plasticizers. The ECA has slighter
lower volatility resistance and similar extraction and ex-
udation resistance than that of DOTP and DINP. For CA,
the thermo-mechanical property is weaker than phthalates
when used as a primary plasticizer in a semi-rigid PVC
formulation. However, when CA was used as a second-
ary plasticizer, combined with DOTP, the soft PVC film
showed improved mechanical and thermal properties,
compared to those obtained with pure DOTP. The CA
can partially replace DOTP in soft PVC formulations to
reduce costs and to become a more eco-friendly product.
These natural plasticizers are very promising in the ap-
plication of the PVC matrix as an alternative to fully or
partially replace petroleum-based plasticizers. It also sug-
gests that CD may represent a useful raw material to
develop alternative plasticizers.
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Table 5 Tensile properties and
hardness character of PVC
samples with different plasticizers

Sample Tensile strength (MPa) Percent elongation (%) Young’s modulus (MPa)

F0 18.9 ± 0.84 244.8 ± 10.22 33.2 ± 3.56

F1 16.2 ± 1.34 269.8 ± 9.45 14.9 ± 4.34

F2 15.1 ± 1.03 287.3 ± 7.23 12.9 ± 5.78

F3 15.0 ± 0.70 302.1 ± 10.02 9.5 ± 4.01

F4 15.4 ± 1.10 310.8 ± 8.58 10.9 ± 2.67
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