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Abstract 3-[2-(N-methylacrylamido)-ethyldimethylammonio]
propanesulfonate (MAEDAPS), a novel zwitterionic monomer,
was designed and synthesized in this study. Then it reacted with
acrylamide and N, N-dimethyl acrylamide by free radical poly-
merization in aqueous solution with ammonium persulfate
((NH4) 2S2O8) and sodium sulfite (NaHSO3) as initiator. The
structure of MAEDAPS was characterized by 1H NMR and IR.
Thermal stability of the obtained copolymer was tested by DSC,
TGA and TG-IR analysis. Glass transition temperature (Tg) and
melt temperature (Tm) was observed by DSC, meanwhile, the
thermal degradation process was studied via TGA and TG-IR. It
turned out that the thermal degradation process can be divided
into three stages including removal of physically absorbed water,
decomposition of side groups and degradation of polymer main
chain. Anti-polyelectrolyte behavior was observed based on the
intrinsic viscosity. Solution properties of ternary copolymer were
exhibited by reduced viscosity. The result showed that the addi-
tion of small molecular electrolytes weakened the coulomp
attraction between sulfonic acid group and quaternary ammoni-
um group, and the conformation became extend, which led to the
increase of hydrodynamic volume and reduced viscosity. The
ability of monovalent and divalent cationic charges influencing
the viscosity of zwitterionic copolymer obeyed the following
sequence: K+ < Li+ < Na+, Cu2+ < Ca2+ < Mg2+, and anions
was in the order: Cl−< I−< Br−.

Keywords Zwitterionic monomer . Copolymer . Thermal
stability . Solution properties

Introduction

Water-soluble zwitterionics copolymer is a kind of polymer
that contains both zwitterionic monomers and ordinary water
soluble monomers. Polyzwitterionic are dipolar species,
whose cationic and anionic groups are separately bound to
the same monomer unit [1]. In order to obtain copolymer that
possessed special properties, introducing zwitterionic mono-
mers into polyacrylamide become a mainly and efficiently
method that make the polyacrylamide multifunctional in re-
cent years. Maintaining the preeminent properties of
polyzwitterionic and polyacrylamide, water-soluble zwitter-
ionic copolymer has attracted increasingly attention and re-
search in the past few years [2].

Zwitterionic copolymers have been paid much attention
because of their chemical and thermal stability [3]. On the
one hand, many researchers have put their effort into the
synthesis, viscosity and structure of polyzwitterionics. Der-
jang Liaw et al. studied the microstructure, reactivity ratio and
viscometric of a kind of zwitterionic copolymer [4]. Lukas
Sonnenschein and Andreas Seubert synthesized a series of
zwitterionic monomers using 4-vinylbenzyl as precursors [5].
Michael S. Donovan et al., focused their attention on the
synthetic of different type of polyzwitterionics. Nelly Bonte
and Andre Laschewsky synthes ized a ser ies of
polysulfobetaines and polycarbobetaines and paid attention
to viscometric studies [6]. In a more practical sense, some
researchers devoted themselves to the application of
polyzwitterionics and achieved abundant results. Under
the effort of many researchers, polyzwitterionics can
now be widely used into water treatment [7], enhanced
oil recovery [8], smoke filtration [9], drag reduction
[10], salt-resistant thickeners [11], biomedical engineering
[12–14], surfactants [15], fiber modification [16] and formu-
lation of personal care items. However, the limited research is
far from being enough.
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Most of water-soluble zwitterionic copolymers are
copolymerized with cationic monomers and anionic mono-
mers. For this reason, the control of the number of cationic and
anionic becomes a difficult problem. The zwitterionic mono-
mer we obtained contains both cationic and anionic in the
same monomer unit. So it can be perfectly copolymerized
with AM (acrylamide) and not profoundly reduced the vis-
cosity of the water-soluble copolymer. At the same time, this
method removed the deficiency of the two traditional synthe-
sis routes, make the control of positive and negative charges
becomes possible [17].

This study aimed at providing an interesting opportunity to
examine the synthesis and aqueous solution properties of the
novel zwitterionic copolymer which has the same number of
anionic and cationic groups. In this paper, through the ring
opening reaction of 1,3-propane sultone with tertiary amine
we obtained a kind of zwitterionic monomer [18]. Then the
zwitterionic monomer copolymerized with AM and DMAM
(N, N-dimethyl acrylamide) statistically. The copolymer we
obtained contains both quaternary ammonium cations and
sulfonate acid anions which are less susceptible to the influ-
ence of brine solution ambient. Then, the zwitterionic mono-
mer and copolymer are characterized. In the meantime, ther-
mal stability of the polymer and the dilute solution properties
in different electrolyte are studied.

Experimental

Materials

Acrylamide (Chengdu Kelong Chemicals Co., Ltd.) was re-
crystallized from acetone and dried at 30 °C for 24 h.
Methylacryloyl chloride (Shanghai Puzhen chemicals Co.,
Ltd.), N, N-dimethylethylenediamine (Shanghai Haohua
chemicals Co., Ltd.) and 1,3-propane sultone (Shanghai Ziyi
chemica l s Co . , L t d . ) wa s u s ed d i r e c t l y. NN-
dimethylacrylamide was vacuum distilled to remove inhibitor.
Ammonium persulfate (Chengdu Kelong Chemicals Co.,
Ltd.) and sodium hydrogen sulfite (Chengdu Kelong
Chemicals Co., Ltd.) were used as ini t ia tor. 4-
methoxyphenol (Chengdu Kelong Chemicals Co., Ltd.) was
used as polymerization inhibitor. Water was purified with a
PCS-01 system.

Synthesis

Synthesis of zwitterionic monomer

To a 250-mL three-necked round-bottom flask fitted with a
dropping funnel and a reflux condenser was charged with N,
N-dimethylethylenediamine (8.82 g, 0.1 mol) was added into

methylene chloride (40 mL) and triethylamine (11.11 g,
0.11 mol). The above solution was agitated and placed over
an ice bath under nitrogen. The mixture of methacryloyl
chloride (11.495 g, 0.11 mol) and anhydrous methylene chlo-
ride (20 mL) was slowly added into the flask at a rate of 2–3
drops per minute so that the temperature of suspension was
maintained at <5 °C. After complete addition, the reaction was
continued over night at 30 °C. The mixture was filtered and
liquid and white crystal was obtained. The white crystal was
washed twice with acetonitrile. Meanwhile the organic layer
was evaporated to remove methylene chloride, and the brown
liquid was dissolved in acetonirtile. All collected organic
layers were dried with anhydrous MgSO4 overnight. After
evaporation of the solvent, brown oil was obtained. The crude
product was purified by vacuum distillation in the presence of
a small amount of methoxyphenol as an inhibitor. In the end, a
slightly yellow oily liquid was collected [19].

N-(2-Dimethylamino-ethyl)-2-methyl-acrylamide, MEHQ
(methoxyphenol as the inhibitor), and dry acetonitrile were
added into a 250 mL three-necked flask equipped with a
stirrer, a cooler and a thermometer at room temperature. 1,3-
propyl sulfonic acid lactone was added dropwise under nitro-
gen at room temperature over a period of 2 h. After complete
addition, the mixture was then heated to 50 °C for 24 h. On
completion of the reaction, the mixture was cooled to
room temperature. Then the solvent was removed by
filtrate and a white color crude production was obtained
[20–23]. The crystals were collected by filtration,
washed with dry acetone several times, and drying in
vacuum oven for 24 h, at 40 °C.

Aqueous copolymerization of AM/DMAM/MAEDAPS

To a 250-mL four-necked round-bottom flask equipped with a
mechanical stirrer, a condenser, a nitrogen inlet, and a ther-
mometer was charged into AM, DMAM, and MAEDAPS
was dissolved completely in deionized water by agitating
and then was poured into the round-bottom flask. The quan-
tities of AM, DMAM, and MAEDAPS were in the desired
ratio and total monomer concentration was 20%. The mixture
was stirred over a 30 °C water bath. The system was purged
with nitrogen at least 30 min, and then initiator (ammonium
persulfate and sodium hydrogen sulfite 1 wt %) was added
dropwise. Polymerization was conducted continuously at
30°Cfor 6 h. After the reaction, the polymer solution was
precipitated by a large quantity of acetone. The precip-
itate was washed by acetone three times and immersed
in acetone for 12 h to remove all traces of water,
initiator, and residual monomers. Then the white precip-
itate was sliced, and freeze-drying under vacuum at −45 °C for
24 h. At last, the slices were shattered, and the white powder
was obtained [24].
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Characterization

Structure determination

1H spectra were obtained by Varian UNITY INOVA400NMR
spectrometer (Varian Co. USA). Monomer structure was char-
acterized by 1H NMR in deuterium oxide (D2O).

Fourier Transform Infrared Spectroscopy (FTIR) was ob-
tained by Nicolet 560 (Nicolet Co. USA).

Thermal Gravity Analysis- Fourier Transform Infrared
Spectroscopy (TGA-IR) information was recorded by
Nicolet is10 (Thermo Co. USA).

Elemental analysis was performed with a Euro Ea 3,000
instrument (Leeman Labs INC. USA).

Thermal analysis

Differential Scanning Calorimetry (DSC) curves were obtain-
ed by Modulated Differential Scanning Calorimety Q2000
(TA Co. USA), in the nitrogen gas environment.

TGA and DTG curves were obtained by Thermogravimetric
Analysis TG209F1 (Netzsch Co. Germany), in the nitrogen gas
environment.

Intrinsic viscosity

Intrinsic viscosity of polymer solution was determined using a
dilution-type Ubbelohde viscometer with 1.0 mol/L NaCl as
solvent and the concentration of the polymer was 0.1 g/dL.
The measurement was kept at 30.0±0.1 °C. The relation of
reduced viscosity and polymer concentration was extrapolated
to zero concentration and intrinsic viscosity and Huggins
constant were obtained by intercept and slope. The reduced
viscosity was calculated by dividing flow time of polymer
solution by flow time of solvent obtained by the dilution
method.

Salt –resistant properties measurements

Reduced viscosity of the polyzwitterionics was determined
utilizing a dilution-type Ubbelohde viscometer in different
kinds of small molecule electrolyte solution and different
concentration of electrolyte solution, and the concentration
of the polymer was 0.1 g/dL. The measurement was kept at
30.0±0.1 °C.

Results and discussion

Synthesis and characterization of zwitterionic monomer

The zwitterionic monomer MAEDAPS was synthesized via the
ring-opening reaction of 1,3-Propanesultonewith the substitution

reaction product of N, N-dimethylethylenediamine and
Methacryloyl chloride [25, 17]. The structure and the synthetic
route of the MAEDAPS are shown in Scheme 1.

The FTIR spectrum and 1H NMR spectrum of MAEDAPS
are shown in Fig. 1 and Fig. 2, respectively.

According to Fig. 1 the peak at 3416.7 cm−1 is the asym-
metric stretching vibration of N-H bond, and 1657.5 cm−1 is
the stretching vibration of carbonyl group. The peaks at
3040.9 cm−1 and 2963.5 cm−1 is stretching vibration ofmethyl
and methylene, with the corresponding bending vibration can
be find at 1474.8 cm−1. The stretching vibration of C = C in
the vinyl is shown at 1620.6 cm−1, at the same time, the peak
923.5 cm−1 is vinyl hydrogen bending vibration. The absorp-
tion bands at 1202.7 cm−1 and 1042.8 cm−1 can be attributed
to asymmetric and symmetric O = S = O stretching vibrations
of sulfonic acid groups. And the peak at 1319.9 cm−1 can be
stretching vibrations of C-N in quaternary ammonium group.
These observations can confirm the successful synthesis of the
zwitterionic functional monomer [26, 2].

In the 1H-NMR spectrum ofMAEDAPS (shown in Fig. 2),
the peak d 3.26 ppm is the absorption of -CH3 linking with N
in quaternary ammonium group, the peak a 2.00 ppm is the
absorption of –CH3 connecting with carbon-carbon double
bond. The peaks b 2.34 ppm, c 3.06 ppm, e 3.61 ppm and f
3.83 ppm are attributed to the protons belongs to methylene
group, respectively. Finally the peaks g 5.58 ppm and h
5.82 ppm is the protons directly connecting to the carbon-
carbon double bond. The 1H-NMR spectrum of MAEDAPS
further proves the successfully synthesis of the zwitterionic
monomer [27].

Synthesis and characterization of copolymer

AM, DMAM and MAEDAPS were copolymerized statisti-
cally in water. The synthesis route and the structure of the
ADM series are shown in Scheme 2.

The reaction parameters of ADM series are shown in
table 1. Sample code is made of ADM and a number which
represent the feed ratio of MAEDAPS. The yields of the
samples are all above 93 % by weighing method.

As shown in Table 2, dissolving the ADM series in differ-
ent kinds of solvents, we can observe that ADM series can
only dissolve in redistilled water.

With respect to ADM-1, in Fig. 3 the peak at 3431.2 cm−1

is the asymmetric stretching vibration of N-H bond, and
1633.6 cm−1 is the stretching vibration of carbonyl group.
The absorption bands at 1179.5 cm−1 and 1038.5 cm−1 can
be ascribed to be asymmetric and symmetric O = S = O
stretching vibrations of sulfonic acid groups [28]. The peaks
at 2925.2 cm−1 and 1452.9 cm−1 represent the asymmetrical
stretch vibration and curve vibration of methyl,and
1318.1 cm−1 can be stretching vibrations of C-N in -
N-(CH3)3, respectively. The peak at 1452.9 cm−1 is mixed
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in-plane bending vibration of C-N and N-H, from Fig. 3, it can
be seen that characteristic absorption peak of acrylamide,
2787.9 cm−1 is the stretching vibration of methylene and the
peak of 2943.3 cm−1 disappeared indicate that the copolymer-
ization happened in the chain of ADM-1 [29, 26].

As shown in Table 3, sulphur can be found in ADM-1 and
ADM-2. This phenomenon can indicate that copolymerization
happened in the ADM series.

In a word, these observations can confirm the successful
copolymerization of MAEDAPS, DMAM and AM.

Thermal analysis

Thermal stability of the copolymers was illustrated by the
Differential Scanning Calorimetry (DSC), Thermogravimetric
Analysis (TGA) and TGA-IR analyses, and the corresponding
measuring curves were presented from Fig. 3 to Fig. 7.

DSC study

Realizing the glass transition temperature (Tg) of the polymer,
which relates to the structural properties of the polymer, is of
fatal importance and conduces to recognize the transformation
of a polymer chain segment from a rigid material to a flexible

one. At the same time, that only one Tg is the symbol that it is
a kind of copolymer. Thus, DSC study was carried out and the
tested curves were presented in Fig. 3.

In general, in DSC curves, the endothermic platforms
are the glass transition temperature (Tg), meanwhile the
single or multiple endothermic peaks are the crystal
melting [22].

As shown in Fig. 4, there exist several endothermic for
respective copolymer DSC curve. Tg of ADM series decrease
from 67.45 °C, 61.89 °C to 57.67 °C, the regular above is
opposite with the content of MAEDAPS in copolymer.
Furthermore, we can deduce that the melting point tempera-
ture (Tm) of the copolymers ADM-0, ADM-1, and ADM-2
was at near 131.44 °C, 129.14 °C and 145.81 °C, respectively.
Moreover, the phenomenon that ADM series copolymer only
have one Tg demonstrate that the functional monomer
MAEDAPS can copolymerized to copolymer with
acrylamide.

With respect to the glass transition temperature on behalf of
the flexibility of polymer chain segment, the lower Tg pre-
sents the more flexible the polymer chain segment is. The
trend of Tg can be ascribed to the introduction of zwitterionic
groups onto the main chain of the acrylamide derivates. The
introduction of functional monomer MAEDAPS enlarges the

Scheme 1 The structure and
synthesis route of MAEDAPS
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distance between macromolecular chains, and results in the
motion of polymer chain segment becomes increasingly easier
with the increasing content of MAEDAPS [30, 31].

While, regarding the trend of Tm can be illustrated by the
ionic bonds conforming between the zwitterionics pendant
groups [32]. Introduction of MAEDAPS, not only results in
the distance between polymer chains enlarged, but also leads
to the decline of crystallization capacity of polymer. However,
along with the increase of the content of zwitterionics mono-
mer, an increasing number of ionic bonds were form between
the polymer chains [33]. So the variation tendency of Tm is
ADM-1 < ADM-0 < ADM-2.

Hereinafter, the melting endothermic peaks area also dem-
onstrated that the more flexible the copolymer chain segments
are the more inclined to crystal formation they are.

TGA study

As shown in Fig. 5, it is interesting to discover that for
different copolymers, their change trends in weight loss are
similar that they all contain three main degradation stages.
Corresponding to the degradation process, several markedly
endothermic peaks can be found in DTG curves as presented

in Fig. 6, hereinafter. At the temperature below 214 °C there is
a slightly weight loss primarily caused by the removal of
physically absorbed water in these copolymers. The gradually
decline of weight loss over the temperature ranging from
200 °C to 345 °C was ascribed to the decomposition of the
side group of polymer chain, mainly the breakage of the
pendent groups. Whereas the sharp weight loss beyond
345 °C was attributed to the further degradation of the copol-
ymer chain residues into the black carbon.

Moreover, considering the TGA curves for different copol-
ymers in Fig. 5, it can be noted that the weight loss exhibited a
little increase with an increase in zwitterionic content in the
copolymers (as shown in Fig. 2 ADM-1 and ADM-2), sug-
gesting an increase of pendant groups in the copolymers.

Figure 6 presented the DTG curves of the investigated
copolymers. It can be seen that for various copolymers, there
exist different weight loss peak, which corresponds to the
weight loss stages as demonstrated in TGA curves (Fig. 5).
These weight loss peaks displayed that when the zwitterionic
extent of the copolymers increased, the second weight loss
peak enhanced slowly from 270, 275 to 282 °C for the
respective copolymer, whereas the third weight loss peak
shifted to a lower temperature.

These trends above can be attributed to the introduction of
ion pairs into the copolymer chains, which will lead to an
increase in the Coulombic attraction between the molecules of
the prepared copolymer. As a result, the weight loss of the
produced copolymer is reduces accordingly [34].

The first weight loss peak was related to the removal of
physically absorbed water in these copolymers. The second
weight loss peak might be attributed to the decomposition of
the side group, accompanied by polymerization of structural
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Table 1 Reaction parameters for the ADM series

Sample code Feed composition (mol%) yields (%)

AM DMAA MAEDAPS

ADM-0 95 5 0 95

ADM-1 90 5 5 94

ADM-2 85 5 10 93
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relaxation. Meanwhile, this kind of upward trend implied an
increase in thermal stability of these copolymers. After the
introduction of ion pairs into the copolymer chains, the
relative content of acryliamide was lowered with an
increase in zwitterionic content in the copolymers;
meanwhile, the coulombic attraction between the molec-
ular chains also increases, which will favor the forma-
tion of network structure, as a result their thermal sta-
bility increases a small extent.

Compared with other polyelectrolyte, polyzwitterionics
owned preferable thermostability. In our observation, there
are two distinct decomposition peaks of the TGA-DTG curve,
and both are above 200 °C, which indicates that the introduc-
tion of more stable sulfonic acid groups and quaternary am-
monium groups to the molecular chain can improve the sta-
bility of the polyzwitterionics.

TG-FTIR study

Taking ADM-1 as example, we minutely further research the
thermal decomposition process of ADM-1 by TG-FTIR, and

meanwhile, illustrate that the ADM series is a kind of copol-
ymer of MAEDAPS, AM and DMAA.

As shown in the Fig. 7 degradation process, several mark-
edly endothermic peaks can be found in TGA and DTG
curves, hereinafter. Stage I, lower than 200.77 °C, with a
weight loss 11.02 % was primarily caused by the removal of
physically absorbed water in these copolymers. Aweight loss
of 19.66 % in stage II, from 200.77 °C to 328.79 °C, can be
attributed to the decomposition of side groups of polymer
chain. A significant weight loss of 43.51 % in stage III from
328.79 °C to 443.28 °C, may be the degradation of the groups
connecting directly to polymer main chains. The speculation
above would be demonstrated by the infrared spectroscopy of
the released gas. And the polymer was weight loss to 25.24 %
at the temperature of 600 °C.

As shown in Fig. 8 is the infrared spectroscopy of released gas
in different time. Fig. 8 (a) and (d) is the spectroscopy before and
after the copolymer degradation, respectively. While Fig. 8 (b)
and (c) are spectroscopy corresponding to the degradation stage
II and III. Observing from Fig. 8 (b), we can speculate that
ammonia gas and sulfur dioxide are released in stage II, because
the absorption peaks 1,514,7 cm−1 is the stretching vibration of
SO2, and 960.2 and 933.2 cm−1 are the stretching vibration and
bending vibration of NH3. Amide groups and sulfonic acid
groups in pendant groups mainly degraded in this stage.
Similar method can be used to analysis the Fig. 8 (c), the stage
III, we found the stretching vibration absorption peaks of 2354.0,
2066.2 and 1742.7 cm−1 belongs to CO2, CO and NO, respec-
tively. We think this stage is the degradation of methyl and acyl
groups connecting to the polymer main chains.[35] (Fig. 9).

Table 2 The solubility of ADM-1

Solvent Polarity index Solubility

Water 10.2 +

Dimethylsulfoxide 7.2 −
Methanol 6.6 −
Dimethylacetamide 6.4 −
Ethanol 4.3 −
i-propanol 4.3 −
Tetrahydrofuran 4.2 −
Dichloromethane 3.4 −
methylbenzene 2.4 −

(+) indicates soluble; (−) indicates insoluble. 1 % (W/W) of polymer
solution was made after heating the solution at 80 °C for 1 h and then
cooling to room temperature
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Table 3 The elemental analysis of ADM series

Sample code C% N% S%

ADM-0 50.704 19.718 0

ADM-1 46.851 17.402 0.93

ADM-2 45.991 16.237 2.103
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Dilute solution properties

The structure of the polyzwitterionic determine its features, the
features of the polyzwitterionic determine its application value.
Meanwhile, the structure of MAEDAPS, containing sulfonic
acid group and quaternary ammonium group, determine the
mainly structure of polyzwitterionic we obtained. Because of
the special structure of MAEDAPS, so that ADM series possess
a lot of excellent properties that general polyelectricities do not
has, such as salt-resistance properties [36], temperature-
resistance properties and pH stability and so on.

Viscosity behavior of zwitterionic copolymer

In this work, the reduced viscosity of copolymer ADM-0,
ADM-1, and ADM-2 were contrasted in a series of NaCl
solution concentration as shown in Fig. 8.

It can be seen that the reduced viscosity of the copolymer
ADM-1 and ADM-2 increases with the increase of NaCl

solution concentration. On the contrast, the reduced viscosity
of ADM-0 sharply decreases in the NaCl solution. On account
of the introduction of MAEDAPS in ADM-1 and ADM-2,
zwitterionic pendant group can form electrostatic interaction
with Na+ and Cl− in solution, makes the hydrodynamic vol-
ume of the polymer chain enlarged and the polymer chain
keep extended, rod-like conformation. On the contrary, the
hydrodynamic volume of ADM-0 reduced and polymer
chains take collapsed, coil-like conformation [37].
Furthermore, the reduced viscosity of the copolymer ADM-
1 is higher than that of ADM-2, and the ADM-1 and ADM-2
shows the similar trend in NaCl solution. These phenomena
above were all attributed to the different content of
MAEDAPS in polymer. Although the increase of
MAEDAPS in polymer chain can enhance the electrostatic
interaction, the decrease of AM content may reduce the hy-
dration of polymer and viscosity in solution [38]. Hereinafter,
we choose the copolymer ADM-1 as the sample in the fol-
lowing test.

Intrinsic viscosity

The aqueous solution properties of polyelectrolytes and
polyzwitterionic are profoundly different and can be dictated
primarily by the intra- and intermolecular electrostatic inter-
actions that occur among the charged groups in aqueous
media. In dilute, salt-free aqueous solutions, coulombic repul-
sion between like charges along the polyelectrolyte chain
leads to an expansion in the hydrodynamic volume of the
polyelectrolyte coil; however, addition of small molecule
electrolytes result in coulombic shielding and a decrease in
hydrodynamic volume and thus solution viscosity. This solu-
tion behavior is the well-known the polyelectrolyte effect [39].
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Conversely, because of the markedly different structure of
the polyzwitterionics, the positive and negative charges be-
long to the same pendant group. Coulombic interactions be-
tween positively and negatively charges of polyzwitterionics

reduce hydrodynamic volume, and the polymer adopts a
collapsed or globular conformation in dilute, salt-free aqueous
media. In some instances, the electrostatic interactions are so
strong that the polymer may become insoluble. Upon addition
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of simple electrolytes to polyzwitterionics solution in the
dilute regime, an increase in hydrodynamic volume of the
polymer coil is observed due to the decreasing of the intra-
molecular charge–charge attractions, allowing the transition
from a globuleto a random coil conformation (shown in
scheme 3). Such solution behavior is known as the anti-
polyelectrolyte effect and is evidenced by increased polymer
hydrodynamic volume and solution viscosity.

As shown in Fig. 10, the intrinsic viscosity of the ADM-1 is
sharply increased as the salt addition at first, when the con-
centration of salt solution increases to a certain degree the

change trend of intrinsic viscosity turn to be gentled, and
finally flatten out.

Salt-resistance study

In this part, we mainly focused on the reduced viscosities in
different kinds of small molecular electrolyte solution. This
kind of properties can be illustrated by the shielding effect of
small molecule electrolytes and complexation between the
small molecule electrolytes with the pendant groups of the
polyzwitterionics.

As shown in the Fig. 11, the reduced viscosity of ADM-1 in
salt solution increase as the concentration of salt solution
increase, and this phenomenon can be illustrated by the elec-
trostatic screening [40]. On account of the electrostatic screen-
ing of valence metal ions and Cl−, the conformation of the
macromolecule chain transformed from a collapsed, coil-like
conformation to an extended, rod-like one. Apparently, the
sequence of reduced viscosity is different with the ion order.
We owe this phenomenon to the ion volume. The extra nuclear
electron of O2−is similar to that of Na+, so the electrostatic
screening of Na+ is the best, resulting that the reduced viscos-
ity of NaCl solution is higher than that of LiCl and KCl. The
difference between Li + and K + is aroused by the electrostatic
repulsion between quarternary ammonium ion, as the electro-
static repulsion of K + is stronger than that of Li + result in the
polymer chain is more expansion than in LiCl solution [41].
The sequence of reduced viscosity in valence metal ions is
Na+ >Li+ >K+.

Extended, rod-like conformation
increased hydrodynamic volume

Salt addition

MAEDAPS

DMAM

AM

Collapsed  coil-like conformation
reduced hydrodynamic volume

Scheme 3 The conformation
transition of the macromolecular
chain in aqueous solution
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Fig. 10 Intrinsic viscosity of ADM-1 in different concentration of salt
solution
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As shown in Fig. 12, the influence of monovalent anion is
similar to that of valence metal ion that the reduced viscosity
of ADM-1 increased with the increasing of concentration of
salt solution. And the sequence of the reduced viscosity is
Br−> I−> Cl−.

It happens that there is a similar cases, the reduced viscosity
of KBr solution is higher than that of KCl and KI. Because of
quaternary ammonium groups possessing a nitrogen-atom
centered electron deficiency system, quaternary ammonium
groups exhibit coulombie attraction with the electronegative
ionic. The polarization ability of Cl−, Br−and I−is Cl−< Br−<
I−, meanwhile, hydration capacity decreases as the ionic radi-
us increase, the coulombie attraction between I−with quater-
nary ammonium group is strongest in theory. However, for the
reason that the charge volumic of I−is too large, makes
I−difficult to access the quaternary ammonium groups [28].
Therefore, the sequence of reduced viscosity is Br−> I−> Cl−.

Among divalent metal ions solution, the reduced viscosity
consequence of ADM-1 is a bit complicated. As shown in

Fig. 13, there are exist an optimal divalent metal ions concen-
tration, 2 mol/L, at the optimal concentration the reduced
viscosity of ADM-1 are highest. And, before the optimal
concentration, the reduced viscosity of ADM-1 increase as
the increase of concentration, while after the optimal concen-
tration, the reduced viscosity of ADM-1 is decrease as in-
crease of concentration. This phenomenon can be illustrated
by Stern-Gouy-Chapman theory. The charged water-soluble
copolymer can form double electro-deposited coating the
substantial core and the unconsolidated outer sphere in the
electrolyte solution. The outer sphere would overlap as
the transformative of the ambient electrolyte concentra-
tion. With the increasing of the divalent metal ions, the
overlapping expand of the unconsolidated outer sphere
between charged particles lead to reduce of van der
Waals attraction causing the macromolecular chain expansion
and reduced viscosity increase. However, with the concentra-
tion of divalent metal ions further increase, the charged parti-
cles are shielded by the divalent metal ions causes the molec-
ular chain shrinkage and the reduced viscosity decrease
[42–44].

According to the experiment, we find that the optimal
concentration of divelent metal ions is 2 mol/L, and the
reduced viscosity sequence of ADM-1 in different divalent
metal ions solution is Cu2+ < Ca2+ < Mg2+.

Conclusions

A kind of zwitterionic monomer with carbon-carbon double
bond has been synthesized via the ring opening reaction,
detected by 1H NMR and IR. Afterwards, a series of ternary
polyzwitterionics with AM, DMAM, and MAEDAPS have
been prepared by the free radical polymerization in aqueous
solution. At the same time, if the content of MAEDAPS in
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polyzwitterionics reaches 15 %, the polyzwitterionics pro-
duced cannot resolve in water.

The thermal properties of the polyzwitterionics were tested
according to the DSC, TGA and TG-IR. DSC curves sug-
gested that the Tg of ADM series decrease with the increase of
content of MAEDAPS in polyzwitterionic. TGA curves
shows that there are three degradation stages, and compared
with general polyeletrolytes are more stable. The merely Tg in
DSC curves and the SO2 absorption peaks in TG-IR analysis
illustrated that MAEDAPS is copolymerized with AM and
DMAM.

Intrinsic viscosity indicated that the polyzwitterionic is
more stability comparable with originally polyelectrolytes.
Apparent viscosities of ADM-1 in different electrolyte show
that the reduced viscosities increases as the increasing of small
molecular electrolytes concentration. But the different is the
reduced viscosities in varieties of small molecular electrolytes:
K+ < Li+ < Na+, Cu2+ < Ca2+ < Mg2+, and anions is in the
order: Cl−< I−< Br−.
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