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Abstract
This paper aims to uncover the mechanism of how the network properties of regional 
knowledge spaces contribute to technological change from the perspective of regional 
knowledge entry-relatedness and regional knowledge entry-potential. Entry-relatedness, 
which has been previously employed to investigate the technology evolution of regional 
economies, is advanced by introducing a knowledge gravity model. The entry-potential of 
a newly acquired regional specialisation has been largely ignored in the relevant literature; 
surprisingly given the high relevance that is attributed to the recombination potential of 
new capabilities. In other words, just adding new knowledge domains to a system is not 
sufficient alone, it really depends on how these fit into the existing system and thus can 
generate wider economic benefits. Based on an empirical analysis of EU-15 Metro and 
non-Metro regions from 1981 to 2015, we find that entry-relatedness has a significant neg-
ative association with novel inventive activities, while entry-potential has a significant pos-
itive association with the development of novel products and processes of economic value. 
This highlights that regions’ capacity to venture into high-potential areas of technological 
specialization in the knowledge space outperforms purely relatedness driven diversification 
that is frequently promoted in the relevant literature.

Keywords  Regional knowledge space · Entry-relatedness · Knowledge gravity model · 
Entry-potential · Co-occurrence network · Patent analysis · Technological change · EU

1  Introduction

When considering the creation and evolution of knowledge, two key properties must be 
acknowledged. First, knowledge is geographically sticky, that is, it does not easily dissemi-
nate across distance (Gertler, 2001; Feldman, 1994; Jaffe et al., 1993). Second, the process 
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of knowledge creation is path-dependent and interactive meaning that generally builds on 
the pre-existing set of knowledge (Atkinson & Stiglitz, 1969; Dosi, 1982; Grabner, 1993). 
Together, these imply that the production of knowledge is best understood as an evolution-
ary process playing out on the regional level, a pattern at the forefront of evolutionary eco-
nomic geography (Boschma & Martin, 2010; Kogler, 2016). Understanding and measur-
ing this process is necessary when pursuing a knowledge-based growth strategy (so-called 
smart specialization strategies at least in the European policy context). This paper con-
tributes by expanding on the existing measurements of entry relatedness to consider the 
relative importance of existing specializations in a region as well as the potential for future 
linkages between knowledge domains.

As noted above, new knowledge tends to build on that which is already present. This 
can occur by extending understanding in a given area and/or combining multiple areas in 
an innovative fashion. Thus, the path-dependent and recombinant nature of knowledge 
(Arthur, 1989) imply that the available and accessible knowledge pool is an important pre-
condition for subsequent innovations. An implication of this is that if the necessary knowl-
edge domains that would lead to significant technological advances are neither obvious, 
feasible, nor available, this can lock a region out from developing new advances (Cohen 
& Levinthal, 1990; Heiner, 1983). Given the limited geographic spread of innovations, 
one can then describe a region in both physical as well as cognitive dimensions (Noot-
eboom, 2000). These features are captured in the concept of the “regional knowledge space 
methodology” (Kogler et al., 2013, 2017; Rigby, 2015). Knowledge spaces, which can be 
generated at any spatial scale, not only capture the state of knowledge accumulation at a 
given place, but more importantly capture the networked structure of the local knowledge 
pool (i.e. the relationship between different areas of understanding) and its evolution over 
time. Thus, knowledge spaces provide the possibility to observe and analyse the knowledge 
structure of a particular locality. Further, they can be utilized as a measurement tool to 
investigate the contribution of place-based knowledge and its structural properties to the 
growth of inventive output (Boschma et  al., 2015; Kogler et  al., 2013) and productivity 
(Rocchetta, Ortega-Argilés, et al., 2021). Going one step further, the knowledge space can 
be used to anticipate how the introduction of new knowledge domain to a region will rever-
berate throughout the existing network. This provides a prediction for whether the new 
knowledge will flourish in an area, generating economic benefits, or not. These predictions 
are at the heart of smart specialization strategies (Heimeriks & Balland, 2016; McCann & 
Ortega-Argilés, 2015) designed to promote innovation-based economic development.

Although knowledge can be either developed or shared between distanced actors, 
specialised knowledge frequently remains localized because of the high costs associated 
with transferring it (Döring & Schnellenbach, 2006). As a result, knowledge distribution 
among places is uneven, which in turn creates the necessity of adopting a regional-spe-
cific approach for analysing knowledge and capabilities in space. The regional knowl-
edge space approach put forward by Kogler et al. (2013) has become a standard frame-
work for analysing, among other things, to regional technological change (Rigby, 2015), 
emerging technologies (Buarque et  al., 2020), the resilience of regional economies 
(Rocchetta, Mina, et al., 2021; Tóth et al., 2022). and regional growth (Boschma et al., 
2015; Rocchetta, Ortega-Argilés, et al., 2021). In particular, regional knowledge spaces 
have been used to explain changes in regional knowledge in an evolutionary context by 
incorporating entry and exit (Rigby, 2015) and the selection of technological knowledge 
domains (Kogler et  al., 2017). In this context, entry is when a novel knowledge (that 
perhaps already exists elsewhere) is adopted and leads to the development of inven-
tions. Exit, on the other hand refers to technological capabilities that previously existed 
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in a region but that have since been abandoned. Selection, also known as differential 
growth, implies the changes in the activity, or position within the larger network, of a 
specific knowledge domain. Knowledge entry has in particular been shown to be impor-
tant for explaining regional technological specialization (Kogler et  al., 2017) with its 
effects linked both local and non-local technological relatedness (Rigby, 2015), as well 
as regional technological diversification (Boschma, 2017). By understanding how the 
effects of entry hinge on the existing stock of knowledge and potential links with further 
entry, it is possible to project a region’s ability to adopt and implement new technologi-
cal capabilities (Kogler, 2017). This is why regional knowledge spaces are particularly 
useful when implementing smart specialization policies.

With this in mind, it is necessary to have metrics that describe the potential fit of a 
new technology into a region’s knowledge space. In this study, we build upon the existing 
measures in two key ways that specifically focus on knowledge entry. First, a new measure-
ment of “entry-relatedness” based on a knowledge gravity model is suggested. The knowl-
edge gravity model, which has its origin in Newton’s law of gravitation, has been widely 
implemented in the field of international economics (Kabir et al., 2017) and points to two 
key features when describing the relationship between two countries: the size of each and 
geographic proximity. Together, the model suggests the greatest trade will occur between 
two large, proximate nations. Similarly, it has been used to describe knowledge transfer 
mechanisms based on the size and distance between two knowledge domains (Montob-
bio & Sterzi, 2013; Picci, 2010; Seliger, 2016). Turning to evolutionary economic geog-
raphy, the bulk of studies use average relatedness of a new technology, which captures the 
“proximity” of a new technology to those already present in a region, when describing the 
new technology’s fit to the region. This, however, misses the importance of different cur-
rent technologies to the region’s knowledge space, i.e. it leaves out the “size” dimension. 
Our new measure of entry-relatedness incorporates both the size and proximity dimensions 
when describing the potential fit for a new technology.

Second, a new indicator labelled “entry-potential” that indicates the potential ability 
to create new knowledge in a region is proposed. Whereas traditional entry-relatedness 
indicators that have been used in the relevant literature, e.g. relatedness density (Boschma 
et  al., 2015), only consider the match of new technological knowledge to the existing 
knowledge base of a region, the novel entry-potential measure proposed in turn aims to 
capture the potential of future linkages between technologies. Intuitively, while two tech-
nologies may be rarely combined in a region, if they are frequently combined in other loca-
tions this indicates the potential for future matches. As such, the new entry may well fit into 
the region’s future regional knowledge space that accounts for the evolution of recombina-
tions even if it only makes a tenuous match to the current knowledge space. In summary, 
it is certainly important to consider how the new entry fits into the potential knowledge of 
a region. In order to capture this, indices based on the co-occurrence network measures of 
technological knowledge domains contained in patent documents are calculated. Thus, this 
new indicator will allow us to capture the potential value of new technological knowledge 
that enters a specific region in a forward-looking way that is different in what has been 
done previously in the relevant literature (see Appendix 1 for an overview and contrast of 
some established measures employed in evolutionary diversification studies and how our 
proposed measures differ).

Using an integrated dataset of the European Patent Office (EPO) PATSTAT database 
and the European Regional Database running from 1981 to 2015, we then construct our 
two novel entry-relatedness and entry-potential measures across EU-15 Metro and non-
Metro regions and compare these across locations to determine which are the most fertile 

647



	 D. F. Kogler et al.

1 3

for technology entry.1 Further, we consider the evolution of the measures over time to see 
how the relative competitiveness of regions has changed. In doing so, we compare our 
measures with the others common to the literature to illustrate the benefits of ours, espe-
cially when describing changes over time. Finally, we estimate the relationship between 
entry-relatedness and entry-potential and regional inventive output.

In the next section, we review the literature on regional knowledge spaces and related 
topics to put our proposed measures in context. Section 3 provides an overview of our data 
and a detailed discussion of how we construct the entry-relatedness and entry-potential 
indicators. Section 4 then utilizes their constructed values for a detailed description of how 
they compare across regions and over time. Section 5 illustrates the detailed estimates of 
regional inventive entry-relatedness and entry-potential measures. Section 6 concludes.

2 � Theoretical framework of regional knowledge entry

2.1 � Entry‑relatedness and knowledge gravity model

Given the predominant role of technology in productivity and growth, governments have 
long sought ways to encourage the production and adoption of new technologies as a 
way of achieving growth. As noted above, this is typically done at a national or even sub-
national level because of the importance of local knowledge for the introduction of new 
innovations. A key implication of this is that, given the uneven distribution of knowledge 
and technological capabilities across regions, it will be difficult for lagging locations to 
catch up to those with a more established knowledge base (Feldman & Kogler, 2010). With 
that in mind, policy makers have concentrated on closing the technological gap by focus-
sing on specific technologies which are likely to flourish in a region, a strategy known 
as smart specialization (Heimeriks & Balland, 2016). In particular, smart specialization 
tailors itself to the specifics of a region’s existing knowledge space within an evolutionary 
framework (McCann & Ortega-Argilés, 2015). Regarding this, European region’s smart 
specialization strategies have been discussed within the context of the with related technol-
ogy diversification of a region (Santoalha, 2019a, 2019b). As a result, it recognizes that the 
technological gap between regions is not just a simple function of the relative sizes of the 
local knowledge stock but also differences in their specialisations. Thus, the identification 
of core competencies and the knowledge base of a region is important for establishing a 
competitive innovation strategy for regional growth precisely because it avoids a “one-size 
fits all” approach (Tödtling & Trippl, 2005).

Taking this into account, it is necessary to consider how entry in a particular knowledge 
domain is likely to interact with that already in the region to predict its impact on the crea-
tion of new knowledge. One way of measuring this is relatedness (Rigby, 2015). Similar 
to how product development or export patterns build on those already in locality (Hidalgo 
et  al., 2007), the ability of a new knowledge to drive meaningful change in a regional 
economy depends on the possibility (or lack thereof) to be recombined with that already 

1  EU-15 includes Austria (AT), Belgium (BE), Germany (DE), Denmark (DK), Finland (FI), France (FR), 
Greece (EL), Ireland (IE), Italy (IT), Luxembourg (LU), Netherland (NL), Portugal (PT), Spain (ES), 
Sweden (SE), and United Kingdom (UK). The definition of metropolitan areas is based on aggregation of 
NUTS-3 regions as defined by EUROSTAT (https://​ec.​europa.​eu/​euros​tat/​web/​metro​polit​an-​regio​ns/​backg​
round) while NUTS-3 regions that fall outside metro areas are classified as non-metro.
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present. With that in mind, relatedness measures the cognitive distance between techno-
logical knowledge domains as indicated by co-occurrence that are utilized in the develop-
ment of novel products and processes created in a local economy. This is then typically 
averaged across technologies to form average relatedness with the expectation that being 
cognitively near existing technologies means that the new technology has greater potential 
for generating additional inventions (Kogler et al., 2013). Indeed, technological relatedness 
at the regional level is regarded as a driving force for technological change (Boschma et al., 
2015).

One limitation of this measure, however, is that it only considers cognitive distance and 
not the importance of the relevant technologies. For instance, if the size of both existing 
and entering knowledge components are small, the likelihood of a fusion which results in a 
new innovation is low regardless of how close the two technologies are. Conversely, even 
if two technologies are rarely combined, if there is a significant amount of activity in each, 
that increases the chance for a fruitful interaction. Thus our measure labelled “regional 
Knowledge Entry Relatedness”, which considers both proximity and size, may do a better 
job at reflecting the potential impact from entry of a new technology to a region.

We are not the first to apply a gravity model approach to economic phenomena, with 
the model particularly common to international economic topics. Indeed, several exam-
ples of gravity in innovation can be found. For example, Picci (2010) and Montobbio and 
Sterzi (2013) used a gravity framework to analyse the international inventor collaborations 
finding that, as predicted, collaborations are more common between larger countries that 
are closer to one another. Similarly, Seliger (2016) studied knowledge flows measured as 
forward citations in a knowledge gravity model using “technological distance” finding yet 
again that technological distance inhibits knowledge flows. Using a somewhat different 
approach, Keller (2002) finds that international R&D expenditure spillovers decline rapidly 
with the distance between regions. With these in mind, it seems natural to anticipate that 
the likelihood of successful recombinations of a new and an existing technology is increas-
ing in the size of each while falling in their cognitive distance, an insight which motivates 
our “regional Knowledge Entry Relatedness” (rKER) measure.

While the potential for knowledge entry to lead to new innovation certainly depends on 
what is currently available in the region, it is important to recall that a region’s knowledge 
space is not static. Indeed, the evolution and change of knowledge is one of its defining char-
acteristics. Like products, technological knowledge also has a technology life-cycle and just 
as a product passes through development, introduction, maturity and decline, so too does a 
given technology. Even in decline, technologies matter because new ideas arise from exist-
ing ideas in a cumulative interactive process (Weitzman, 1996). As such, today’s entry can 
be the foundation for future entry and recombination. Thus, when describing the potential fit 
of an entry, it is important to also account for future changes in the knowledge space.

With this in mind, network theory and analysis techniques are useful tools to measure 
the degree of connectivity of a knowledge component to the overall knowledge network 
(Kim et al., ; Lee et al., 2018). In particular, by measuring the connectivity of an entry to 
a reference network that serves as a benchmark for the future evolution of a region’s spe-
cific knowledge space, these techniques provide a forward-looking understanding of the fit 
between the entry and the evolving local knowledge space. Network theory has been imple-
mented in various studies to measure the level of connectivity of the target of interest and 
to explain the relation between network position and economic performance. For exam-
ple, and concerning technological knowledge, network analysis based on patent technology 
class co-occurrence has been used to measure a firm’s technological competitiveness and 
technology convergence capability (Kim et al., 2018). A high network score indicates that 
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a node, i.e. a technological knowledge domain, is highly centralized and plays an important 
role in connecting other nodes. From a network perspective, highly centralized nodes have 
a greater possibility of accessing important resources within the system and thus create a 
competitive advantage compared to other less connected nodes (Kim et  al., 2018, 2019; 
Tseng et al., 2016). Set in a regional perspective, an entry that is well connected to both the 
current knowledge space and the reference knowledge space is expected to generate more 
recombination possibilities and thus more regional growth opportunities than its counter-
part. To the best of our knowledge, the relevant literature to date has neither considered 
nor stressed the degree of knowledge components’ connectivity in this way. We therefore 
propose the new forward-looking “regional Knowledge Entry-Potential” (rKEP) measure 
which focuses on the potential value of regional knowledge in creating an invention from a 
recombinant perspective.

3 � Data and measurement

In this section, we first describe the data we use and then turn to the specifics of how we 
construct our two measures of entry fit. Our data draws from two sources: the European 
Patent Office (EPO) PATSTAT database and the European Regional Database (ERD).2 To 
construct the EU-15 knowledge space at the regional level, we collected all patent records 
from 1981 to 2015 that were invented by at least one inventor who resided in one of the 
EU-15 regions at the time of invention (full list of regions is from Eurostat3). To geo-locate 
patents produced by multiple inventors, as is standard we apply fractional inventor allo-
cation (Kogler et  al., 2017).4 Furthermore, and also following common practice, we use 
5 year windows as our time unit (Ahuja, 2000; Gilsing et al., 2008; Henderson & Cock-
burn, 1996; Podolny & Stuart, 1995; Stuart & Podolny, 1996). These longer windows are 
particularly suitable when considering evolutionary questions to permit sufficient time for 
systemic changes in knowledge spaces to manifest (Kogler, 2016). Thus, we have seven 
time periods: period 1 (1981–1985), period 2 (1986–1990), period 3 (1991–1995), period 
4 (1996–2000), period 5 (2001–2005), period 6 (2006–2010), and period 7 (2011–2015). 
The PATSTAT data is also used to construct the measure of knowledge creation (the num-
ber of new patents). The ERD database provides all the other socio-economic information. 
The full list of variables will be covered in the following section.

3.1 � Regional knowledge entry

The first step of measuring regional knowledge entry-relatedness (rKER) and entry-poten-
tial (rKEP) is to capture each region’s knowledge entry. Instrumental in this regard are the 
Cooperative Patent Classification (CPC) classes listed on individual patent documents.5 

2  European Regional Database (ERD) is a service provided by Cambridge Econometrics that contains 
information on regional employment, level of output, and population.
3  https://​ec.​europa.​eu/​euros​tat/​web/​metro​polit​an-​regio​ns/​backg​round
4  In the relevant literature it has become the standard to apply a fractional inventor allocation to regional 
units, i.e. a patent is divided by the number of inventors and then allocated accordingly to regional units 
based on inventor residency information.
5  For further information about individual CPC classes and the structure of the please refer to: https://​www.​
coope​rativ​epate​ntcla​ssifi​cation.​org/​index.
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As shown in Fig. 1, three steps are needed to capture knowledge entry by regions; (1) a 
regional CPC table, (2) a regional revealed comparative advantage (RCA) table, and (3) a 
regional entry matrix. First, a regional CPC table for each period is constructed. Here, the 
share of each sub-class CPC for is computed to control the weight of each technological 
knowledge domain that features in a patent application. For instance, in Fig. 1 if patent A 
contains CPC x and CPC y, and patent B contains CPC z, 0.5 is assigned for CPC x and y, 
and 1 is assigned to CPC z. In this case, the contribution of CPC z to a patent application is 
bigger than CPC x and y because it is the sole domain utilized for the invention.

The second stage is to capture regional RCA values (Balassa, 1965). The RCA, also 
commonly known as the location quotient, is computed by dividing the share of a given 
CPC in a region by the share of that CPC in all regions. For instance, in Fig. 1, the RCA 
of CPC x in region A is measured by dividing the share of CPC x in region A (100/155) 
by the share of CPC x in regions A and B (110/185). The measured RCA is converted into 
dichotomized values (1 for above 1 and 0 for below 1) to simplify the comparison used in 
the following stage.6

In the third stage, regional knowledge entry is measured by comparing regional RCAs 
for a given CPC-region between two consecutive periods. Thus, the knowledge entry indi-
cator in period t + 1 is 1 when the RCA of CPC x in region A switches from 0 in t to 1 in 
t + 1.

Fig. 1   Process of measuring regional knowledge entry

6  In the present analysis the reference region on which RCA values are based on is the entire EU15 knowl-
edge space, something that follows the methodology previously used in numerous related studies, e.g. 
Kogler et al., 2013; 2017; Rigby 2015, among others.
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3.2 � Regional knowledge entry‑relatedness (rKER)

The idea of regional knowledge entry-relatedness (rKER) is analysing the degree of relat-
edness of technologies that are entering into the region. The overall process of measuring 
regional knowledge entry-relatedness is presented in Fig.  2. First, the technological dis-
tance between CPCs is computed for each period. The technical distance is measured based 
on the relatedness between two different CPCs by computing the relatedness between 
CPCs from the co-occurrence matrix (Balland, 2017). Then, knowledge entry-relatedness 
is computed using the knowledge gravity model on technologies that are “entered” in each 
period. Based on the knowledge gravity model, each region’s knowledge relatedness (KR) 
is measured as follows:

where F is the amount of CPC used for patent application, Dist is technology distance for 
CPC i and j in region r at time t based on the entire reference region, i.e. the EU15 knowl-
edge space. Finally, regional knowledge entry-relatedness (rKER) is as follows:

where n is the total number of CPCs that are included in knowledge entry (ENTRY​) and 
tech-incumbent (INCUM) sets. For region r at time t, ENTRY​ includes the list of CPCs 
that are newly introduced and INCUM contains the list of CPCs that the status has not 
been changed (neither the technology is introduced nor diminished). Since not all technol-
ogy components are entering the technology pool of the region, regional knowledge entry-
relatedness is measured for the CPCs that are included in both sets satisfying the entry 
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Fig. 2   Process of measuring regional knowledge entry-relatedness
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condition. As shown in Fig. 2, in region B, CPC y—CPC x, and CPC x—CPC z are the 
only cases where regional knowledge entry-relatedness are non-zero.

3.3 � Regional knowledge entry‑potential (rKEP)

In this section, the regional knowledge entry-potential is calculated by using a patent net-
work analysis based on the recombinant approach (Fig. 3). First, for each period a CPC 
co-occurrence network is constructed where CPCs and patents are assigned as nodes and 
edges. This CPC co-occurrence network is by design a non-directed form to reflect the 
absence of direction between CPCs and the weighted form to give weight by the usage 
frequency of an individual CPC. From this CPC co-occurrence network, the value of each 
knowledge domain (CPC) is measured along three network centrality indices referring to 
the three main aspects of knowledge potential: connectivity, linking power, and influence. 
As with the rKER measure, this is done using the entire EU15 knowledge space as the 
baseline network.

Connectivity, which is measured by the usage frequency of a CPC in different patents, 
is an important indicator for the recombination of knowledge domains. From a network 
perspective, a node with greater connectivity is more likely to be involved in more con-
nections. If a certain technology has been frequently used with other technologies, it is 
plausible to think of it as a key technology that can be easily used for a new invention. In a 
similar sense, the technology linked to many other technologies has a bigger potential for 
creating innovation using its rich connectivity. Regarding this aspect, the connectivity of 
knowledge is measured with degree centrality, which calculates the importance of node by 
counting the weight of edges (Kim et al., 2018, 2019; Lee & Kim, 2018).

Another important technical feature is the linking power. Linking power refers to a 
technology’s degree of brokering heterogeneous technologies. In a network, a node that 
connects the different clusters plays an important role in information transfer. Similarly, 
technology with a higher level of bridging heterogeneous technologies has its own value of 
creating a new innovation by linking the different technologies. For this account, between-
ness centrality is used to measure the linking power of an individual technology in our 
CPC co-occurrence network (Kim et al., 2018, 2019; Lee & Kim, 2018).

Fig. 3   Process of measuring regional knowledge entry-potential
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Lastly, influence is measured with eigenvector centrality. While the two indices men-
tioned earlier evaluate how well such technologies are linked or contribute to the connec-
tion with other technologies, eigenvector centrality takes into account the value of the con-
nected technologies. By doing this, the weight of the edges is differentiated by the value 
of the connected nodes, which allows us to capture the quality of the connected technol-
ogy. For instance, if a technology is more relevant to an important technology, there is an 
advantage that it can be used with that technology, which can be seen as a greater influence 
within the network.

The three aspects of knowledge potential measured by network centrality indices show 
the value of each node, but with different aspects. Assuming all of them as three main 
dimensions, knowledge potential (eKP) of individual CPC i is measured by the Euclid-
ean distance of normalized degree centrality, betweenness centrality, and eigenvector 
centrality:

As mentioned earlier, we include the EU subscript to acknowledge that knowledge-entry 
potential is measured using the EU region as a baseline. The rest of the variable’s construc-
tion is comparable to that above, i.e. the knowledge entry-potential (KEP) is measured by 
the product of CPC’s knowledge-entry potential and RCA value for each region (Eq. 4). 
Then, the regional knowledge entry-potential (rKEP), the average of KP in each region, is 
measured by dividing the number of entered technologies as described in Eq. (5).

4 � Regional knowledge entry‑relatedness and entry‑potential in EU15 
regions

In this section, we compare and contrast the rKER and rKEP measures across EU-15 
regions. To observe the changes of both indicators we plot those first for the period 
1986–1990 (Fig. 4) and then for 2011–2015 (Fig. 5). For the sake of legibility, only met-
ropolitan regions are included in both figures. Further, to improve the presentation, we use 
the log of each variable and normalize it to the unit interval. In both figures, a region’s 
level of rKER and rKEP places it in one of four quadrants depending on whether respective 
scores are higher or lower than 0.5 (recall that both measures are scaled to the unit inter-
val). For instance, a region located in the first quadrant is one that rKER and rKEP scores 
above 0.5, meaning that it has good conditions for creating both the related technologies 
and potential technologies for knowledge recombination.

In 1986–1990, larger regions appear to perform strongly in rKER. Large metro 
regions like Paris and Frankfurt are often regarded as hubs for innovation, potentially 
because of their concentration of the necessary resources and knowledge. As such, these 
regions have excellent conditions for creating new inventions and can generate a greater 
number of technologies when compared to others. Further, and central to our discussion 
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Fig. 4   Position of EU15 Metropolitan regions in rKER and rKEP (1986–1990). Notes All values are logged 
and normalized to range between 0 and 1. Labels of some regions are not included to avoid overlap

Fig. 5   Position of EU15 Metropolitan regions in in rKER and rKEP (2011–2015). Notes All values are 
logged and normalized to range between 0 and 1. Labels of some regions are not included to avoid the 
overlap
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of the path-dependency of knowledge evolution, the new technologies entering the 
region are likely to be related to the existing technologies. This then increases the rela-
tive probability of related technologies entering large metro regions.

On the other hand, relatively smaller regions tend to have higher values concerning 
the rKEP measure. Compared to their larger counterparts, these smaller metro regions 
arguable house fewer resources and technologies, while on the same account they of 
course should have greater opportunities to adopt new specialisations, i.e. add knowl-
edge domains. For instance, in those regions, new technologies could have been devel-
oped based on comparably weak local technological foundations, suggesting an inde-
pendence from local conditions. This independence from local resources and know-how 
may point to a greater ability to develop an innovation unrelated to the existing technol-
ogies. Furthermore, potential technologies for knowledge recombination were especially 
predominant during the 1980s and 1990s. Since our focus is on technologies ripe for 
knowledge recombination, this helps explaining why larger metro regions might have 
followed paths of existing specializations rather than adopting new and thus potential, 
albeit risky, technologies. In this sense, what we observe here could be a reflection of 
both, the condition of smaller regions in general, and the trend of technological devel-
opment during the observed period.

Lastly, it is notable that not a single region displays competitiveness in both regional 
knowledge entry-relatedness and regional knowledge entry-potential. In other words, not 
a single region had both rKER and rKEP values above 0.5 in 1986–1990. However, we 
observe more regions with a high regional knowledge entry-relatedness score compared to 
the other dimension of interest, but nevertheless the bulk of regions had scores below 0.5 
in both dimensions. This points to the importance of regions with very high values along 
one or the other dimension.

Comparing these findings to the 2011–2015 period (Fig. 5), some interesting changes 
become evident. First, more metro regions show greater rKER and rKEP values. As 
observed in Fig. 5, more regions are located in the first and second quadrant where rKEP is 
above 0.5. In particular, the importance of potential technologies seems to have increased 
due to the development of information and communication technologies (ICT). Throughout 
the years, ICT has been widely used in various technological fields and thus has fostered 
a converging process among different technological domains. This indicates that potential 
technologies are already embedded and actively developed in most regions as opposed of 
being the focus of smaller regions, or even outliers, as observed in the initial time period.

Second, we also detect a greater dispersion across regions in terms of their values along 
the two dimensions, including three regions (Helsinki, Milano and Lille) that show rKER 
and rKEP measures that are above the 0.5 threshold. Nevertheless, the tendency of larger 
regions towards higher values of rKER and similar that of smaller regions towards higher 
values of rKEP as observed in the initial time periods seem to persist. Thus, although 
larger regions may continue to have an advantage engendered by their large stocks of cur-
rent technologies (i.e. high rKER scores), our introduction of the rKEP measure points 
to smaller regions’ growing ability to attract new technologies to their fertile landscapes. 
Thus, by using both measures, we find reasons to look towards the “democratisation of 
innovation” in which innovation is widespread across locations rather than concentrated 
in a few large, dominant regions. These measures also aid in evaluating the differing and 
changing aspects of knowledge creation for each region.
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5 � Research model and econometric analysis

5.1 � Research model

In this section, we econometrically examine the relationship between of the two dimen-
sions of knowledge entry, i.e. rKER and rKEP, and regional innovative performance. For 
this purpose, a multivariate regression analysis conducted by employing the following 
research model (Eq. 6):

where i represents each region in the EU15, and t is period (here we continue to work with 
the five-year windows defined earlier).

Our dependent variable is exploratory innovation, a measure that captures the introduc-
tion of new technologies (Gilsing et  al., 2008; Guan & Liu, 2016). This is measured by 
comparing the technological profiles of a region between two consecutive periods, and by 
counting the total number of patents containing new technology classes (subclass CPCs) 
that did not exist in the previous period.7 This is used in levels so that we can capture 
impacts of the knowledge entry measures on the total amount of entry into new areas of 
technological knowledge domains.

Turning to our controls, and in order to mitigate endogeneity, we use lagged values of 
the explanatory variables. Our primary variables of interest are regional knowledge entry-
relatedness (rKER) and regional knowledge entry-potential (rKEP), both of which are con-
structed as described above.8 We consider both of these measures as well as their squared 
values to control for possible non-linearities; further, it seems reasonable that both current 
and future fit can reinforce one another.

We also include additional controls, denoted by a vector Z, that are likely to affect 
regional growth, including patents per inventor (PAT.Inv) to control the regional patent-
ing productivity, GDP to cover the economic size of the region, population (POP) and 
employment ratio in the manufacturing sector (EMP.m) to control the regional industry 
portfolio. To further reduce the potential for omitted variable bias, we also include time 
fixed-effects (P.FE) and region fixed-effects (R.FE). For reference, a fixed-effects model is 
selected based on Hausman Test results. Detailed information on the data utilized in turn 
is presented in Table 1. Table 2 presents the correlation values of all variables with simple 
statistics and variation inflation factor (VIF) results. To understand the regional heteroge-
neity of our key variables, Table 3 presents the descriptive statistics of exploratory inno-
vation, regional knowledge entry-relatedness, and regional knowledge entry-potential by 
region and by country. For all variables, dispersion (standard deviation, SD) was greater at 
a regional level and this shows that the regional heterogeneity is greater than country-level 
heterogeneity.

(6)
Yit+1 =β0 + β1

(

ENT.Relit

)

+ β2
(

ENT.Potit

)

+ β3
(

ENT.Relit × ENT.Potit

)

+ �4Zij + �5P.FEt + �6R.FEi + uit

7  This follows the methodology outlined in detail in the previous section.
8  It is common to use a depreciation of knowledge or R&D output under the expectation it loses its eco-
nomic value over time, often depleting fully after five 5 years (Griliches, 1979, 1984). In our case, we con-
struct our knowledge space variables in separate, five-year intervals rather than overlapping windows with 
depreciation.
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5.2 � Regression results

The regression results are shown in Table 4. As the Breush-Pagan test of homoscedasticity 
results showed the possibility of heteroskedasticity, all the results are reported with robust-
standard errors. In specification (1) and (2), rKER and rKEP and their quadratic terms 
are presented, respectively. In specification (3) and (4), the result of interaction terms is 
reported. In all models our control variables including patents per inventor (PAT.Inv), GDP 
per capita (GDP), and population (POP) show positive and significant effects on explora-
tory innovation.

For exploratory innovation, both linear and quadratic terms of rKER show a negative 
and significant coefficient, implying that rKER hampers the creation of new inventions. 
This interpretation should, however, be made in light of our dependent variable which 
measures a region’s entry into new, hitherto absent, technological specializations. As such, 

Table 1   Variable descriptions (N = 4816)

Source Authors’ own calculations based on EPO PATSTAT and European Regional Database, 1981–2015

Variables Description Sources

Exploratory innovation (EXP.
Inn)

Number of patents with new subclass CPC EPO PATSTAT​

rKER Regional knowledge entry-relatedness EPO PATSTAT​
rKEP Regional knowledge entry-potential EPO PATSTAT​
PAT.Inv Patents per inventor EPO PATSTAT​
GDP Logarithm of GDP ERD
POP Logarithm of Population ERD
EMP.m Employment ratio in manufacturing sector ERD

Table 2   Correlation and descriptive statistics

All values are in level form

Mean SD Min Max VIF rKER rKEP PAT.Inv GDP POP

EXP.Inn 65.14 64.18 0.00 416.00 –
rKER 0.43 17.90 0.00 1349.67 1.44
rKEP 1.74 4.67 0.00 187.44 1.12 0.182
PAT.Inv 2.92 1.30 0.00 28.79 1.31 0.298 0.131
GDP 0.02 0.01 0.00 0.07 1.55 0.529 0.199 0.323
POP 426.51 755.97 7.18 13,557.44 1.08 0.259  − 0.033 0.033 0.205
EMP.m 0.20 0.09 0.01 0.63 1.16 0.138  − 0.140 0.296 0.068  − 0.068

Table 3   Ddescriptive statistics 
of key variables by region and 
country

Per region Per country

Mean SD Min Max Mean SD Min Max

EXP.Inn 65.14 38.86 0 113.62 60.22 32.63 0 96.37
rKER 0.43 0.80 0 2.16 0.29 0.53 0 1.42
rKEP 1.74 1.91 0 5.32 2.04 1.65 0 4.77
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the estimates can be explained by the path-dependency of knowledge, or via the preferen-
tial attachment effect (Sun & Liu, 2016). Preferential attachment effects describe a cer-
tain tendency that new nodes are preferentially attached to the existing nodes (Barabási & 
Albert, 1999). New technologies are more likely to be related to the existing technologies 
in a region, and this can give a “cumulative advantage”, but at the same time, it may work 
as a barrier for a branching out into new areas which were not previously present in the 
region.

rKEP, on the other hand, is significantly and positively related to exploratory innova-
tion, albeit only in a linear fashion. Highly potential technologies are those with greater 
advantage in knowledge recombination. In other words, these technologies have a competi-
tive advantage of connecting different technologies including even those that already from 
the existing technology pool. Thus, entry of one new technology which is highly compat-
ible with other technologies that are also currently absent may act as an avenue for attract-
ing those additional missing competencies (Kim et al., 2018; Tseng et al., 2016). As such, a 
region with greater entry-potential values is also one more likely to succeed in exploratory 
innovation.

As shown in column (3), these patterns hold when including both entry-relatedness 
and entry-potential in the same model. Finally, column (4) introduces the interaction term. 
Doing so does not affect the individual coefficients and the interaction itself shows a posi-
tive and significant effect. This is most likely because when a new technology relates to 
what is already present (high entry-relatedness) as well as what is not (high entry-potential) 
it can act as a bridge between those two sets of technology. This then fosters even more 
innovation.

6 � Conclusion

In order to form effective policies that promote knowledge production and subsequent 
innovative outcomes that generate economic value, it is important to have evidence-based 
projections on which kind of knowledge domains are most likely to fit and succeed in a 
regional context. Since knowledge stays primarily local and new technologies tend to build 
on those that came before, this begs the need for measures of the fit between a potential 
new (knowledge) entry and the existing capabilities of a region. In this study, we present 
two new measures of that fit. Relative to the existing measures (Appendix 1), ours account 
for the relative importance of a region’s existing competencies (entry-relatedness) as well 
as the potential for the future evolution of the region’s knowledge space (entry-potential).

We then proceed by using data from EU-15 regions from 1981 to 2015 to examine 
changes in our proposed measures. Doing so suggests a trend towards the “democratiza-
tion of innovation”, i.e. rather than have technological growth be solely driven by a few 
large centers, a greater share of regions exhibit significant innovation potential as meas-
ured by regional knowledge entry-relatedness and/or entry-potential. We then conclude by 
examining the impact of our measures on regional diversification. In terms of entry-poten-
tial, we find that a higher value points towards more diversification in the technological 
knowledge domains in a region’s patent portfolio. Although higher entry-relatedness has 
the opposite effect (potentially due to crowding out of unexplored and/or underperform-
ing areas of the knowledge space), higher entry-relatedness seems to enhance the positive 
effect of entry-potential. This then suggests that a new entry in one period can serve as a 
bridge between current competencies as well as the future entry of new technologies. This 
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points to the dynamic process of innovation in which inventions build on inventions, i.e. 
the path-dependency and cumulative nature of knowledge production at the regional scale, 
an insight that is at the heart of Evolutionary Economic Geography inquiry (Kogler, 2016). 
We therefore believe that these new measures prove a useful tool in describing knowledge 
trajectories, mechanisms of regional diversification, and thus aid to the development of 
more effective smart specialization strategies.

Appendix 1

An overview and contrast of some established measures employed 
in evolutionary diversification studies

Measure First 
intro-
duced

Meaning Data Unit Region Measure Static/
Dynamic

Average 
Relat-
edness

Kogler 
et al. 
(2013)

Average of related-
ness between 
technologies(knowledge) 
possessed by a region

Patent Region US A measure 
of how 
inter-
related 
knowl-
edge 
(tech-
nologies) 
that 
exist in 
a region 
are

Static
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Measure First 
intro-
duced

Meaning Data Unit Region Measure Static/
Dynamic

Related-
ness 
Density

Boschma 
et al. 
(2014)

A technology’s related-
ness density to a specific 
regional tech structure

WOS Region-
Tech

World-
wide

This relat-
edness 
variable 
combines 
the relat-
edness 
between 
topics 
with the 
particular 
scientific 
expertise 
of cities 
and it 
indicates 
how cog-
nitively 
close a 
potential 
new topic 
is to the 
pre-exist-
ing set 
of topics 
a given 
city is 
special-
ized in

Static

Technol-
ogy 
Coher-
ence

Teece 
et al. 
(1994)

Average of coherence 
between technologies 
(knowledge) present in 
a region → A measure 
that’s very close to the 
Average Relatedness 
indicator that’s frequently 
applied in the Evolution-
ary Economic Geography 
literature

Indus-
try

Region Firm A measure 
of how 
inter-
related 
knowl-
edge 
domains 
(technol-
ogies) are 
that are 
present in 
a region

Static
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Measure First 
intro-
duced

Meaning Data Unit Region Measure Static/
Dynamic

regional 
Knowl-
edge 
Entry-
Relat-
edness 
(rKER)

This 
paper

Average of how newly 
entered knowledge (tech-
nologies) are related to 
existing local knowledge 
structure in a specific 
region

Patent Region EU Regional 
Knowl-
edge 
Entry-
Relat-
edness, 
which 
captures 
the relat-
edness of 
entering 
knowl-
edge 
domains, 
is 
measured 
utilizing 
a knowl-
edge 
gravity 
model 
that con-
siders the 
possible 
attraction 
between 
two 
different 
tech-
nologies 
beyond 
simple 
average 
related-
ness 
measures

Dynamic
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Measure First 
intro-
duced

Meaning Data Unit Region Measure Static/
Dynamic

Complex-
ity

Hidalgo 
and 
Haus-
mann 
(2009)

High complexity of 
tech → the tech is 
unique (less ubiqui-
tous) → hardly imitated

High complexity of 
region  →  The region is u

Bilat-
eral 
Trade 
data

Tech or 
Region

World-
wide

“Com-
bining 
informa-
tion on 
(1) which 
cities 
produce 
specific 
technolo-
gies and 
(2) how 
common 
specific 
technolo-
gies are 
across 
cities, it 
is pos-
sible to 
measure 
the 
knowl-
edge 
complex-
ity of a 
city’s 
techno-
logical 
portfolio 
for a 
given 
period of 
time”

Static

regional 
Knowl-
edge 
Entry-
Poten-
tial 
(rKEP)

This 
paper

Average of how newly 
entered knowledge 
(technologies) have high 
potential (in terms of 
network position) based 
on the existing and entire 
knowledge structure of a 
specific region

Patent Region EU Regional 
Knowl-
edge 
Entry-
Potential 
explains 
the 
prospec-
tive value 
of new 
knowl-
edge that 
enters a 
regional 
space 
in the 
context 
of recom-
bination 
potential

Dynamic
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