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Abstract

We take another look at using Stein’s method to establish uniform Berry—Esseen
bounds for Studentized nonlinear statistics, highlighting variable censoring and an
exponential randomized concentration inequality for a sum of censored variables as
the essential tools to carry out the arguments involved. As an important application,
we prove a uniform Berry—Esseen bound for Studentized U-statistics in a form that
exhibits the dependence on the degree of the kernel.
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1 Introduction

We revisit the use of Stein’s method to prove uniform Berry—Esseen (B—E) bounds

for Studentized nonlinear statistics. Let X1, ..., X, be independent random variables
that serve as some raw data, and foreachi =1, ..., n, let
& = gn.i(Xi) (L.1)
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for a function g, ; (-) that can also depend on i and n, such that
n
E[&;] = 0 for all i and ZE[EZZ] =1. (1.2)
i=1

A Studentized nonlinear statistic is an asymptotically normal statistic that can be
represented in the general form

Wn + Dln
Tsy = —m——, 1.3
SN = U+ Do) 43

with W,, = ZL] &;, where the “remainder” terms
Dln = Dln(le ceey Xn) and D2n = DZH(XI: ceey Xn) (14)

are some functions of the data, with the additional properties that

D1y, Dy, — 0 in probability as n tends to co, and Dy, > —1 almost surely.
(1.5)

We adopt the convention that if 1 4+ D5, = 0, the value of Ty is taken to be 0, +00
or —oo depending on the sign of W, + D1,. Such a statistic is a generalization of the
classical Student’s t-statistic [ 13], where the denominator 1+ D»,, acts as a data-driven
“self-normalizer” for the numerator W,, + Dy,,.

Many statistics used in practice can be seen as examples of (1.3); hence, developing
a general Berry—Esseen-type inequality for Ty is relevant to many applications. The
first such attempt based on Stein’s method can be found in the semi-review article of
Shao et al. [9], whose proof critically relies upon an exponential-type randomized con-
centration inequality first appearing in Shao [8]. However, while their methodology
is sound, there are numerous gaps; most notably, Shao et al. [9] overlooked that the
original exponential-type randomized concentration inequality of Shao [8] is devel-
oped for a sum of independent random variables with mean zero, which is not well
suited for their proof wherein the truncated summands generally do not have mean 0.
In fact, truncation itself is an insufficient device to carry the arguments involved, as
will be explained in this article.

Our contributions are twofold. First, we put the methodology of Shao et al. [9] on
solid footing; this, among other things, is accomplished by adopting variable censor-
ing instead of truncation, as well as developing a modified randomized concentration
inequality for a sum of censored variables, to rectify the gaps in their arguments. We
also present a more user-friendly B—-E bound for the statistic 7sy when the denom-
inator remainder D, admits a certain standard form. Second, as an application to a
prototypical example of Studentized nonlinear statistics, we establish a uniform B-E
bound of the rate 1/./n for Studentized U-statistics whose dependence on the degree
of the kernel is also explicit; all prior works in this vein only treat the simplest case
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with a kernel of degree 2. This bound is the most optimal known to date and serves to
complete the literature in uniform B—E bounds for Studentized U-statistics.

Notation. ®(-) is the standard normal distribution function and ®(-) = 1 — ®().
The indicator function is denoted by I(-). For p > 1, ||Y]|, = (E[Y|P]DY? for a
random variable Y. For any a,b € R, a vV b = max(a, b) and a A b = min(a, b).
C, Cy, Cy - -+ .. denotes positive absolute constants that may differ in value from place
to place, but does not depend on other quantities nor the distributions of the random
variables. For two (possibly multivariate) random variables Y1 and Y, “Y] =4 Y27
means Y] and Y, have the same distribution.

2 General Berry-Esseen Bounds for Studentized Nonlinear Statistics

Let &1,..., &, be as in Sect. 1 that satisfy the assumptions in (1.2). For each i =
1,...,n, define

Epi=&1(5I =D +1¢E>1D —1E <—1), 2.1
an upper-and-lower censored version of &;, and their sum
n
Wp=Wyn=)_ . 2.2)
i=1

Moreover, foreachi = 1, ..., n, we define Wlfi) = W, — &, and W,gi) =W, —§&.
We also let
n n
Br= ) EI&1(&| > Dland 3 = > EIE 1(&] < D).
i=1 i=1

For any x € R,

2new2/2d>(w)<i>(x) w=<x
X = - ; 2.
Fx(w) {\/2new2/2d>(x)cb(w) w > X 23)
is the solution to the Stein equation [12]
fiw) —wfr(w) =I(w < x) — P(x). (2.4)

Our first result is the following uniform Berry—Esseen bound for the Studentized
nonlinear statistic in (1.3):

Theorem 2.1 (Uniform B—E bound for Studentized nonlinear statistics) Let X1, ..., X,
be independent random variables. Consider the Studentized nonlinear statistic TsN
in (1.3), constructed with the linear summands in (1.1) that satisfy the condition in

@ Springer



Journal of Theoretical Probability

(1.2), and the remainder terms in (1.4) that satisfy the condition in (1.5). There exists
a positive absolute constant C > 0 such that

2
sup | P(Tsy < 2) = ®()| < Y P(Dul > 1/2)

xeR j=1

+C{ﬁ2 + B3+ 1 Duall2 + E[ (1 + ") D3, | + sup XELD2, £ (W)
2 n
+ZZ (]E[sz’i]‘ ‘1

j=1i=1
1) } 2.5)

where for each j € {1,2} and eachi € {1, ..., n},

(OR= _
(1+ " )(Dj, — DY)

@) _ _
&1+ " 2Dy — DY)

° Dy’f = DE'; X1, ..., Xi—1, Xit1, ..., Xpn) is any function in the raw data except
i

e Dj, is a censored version of D j, defined as

B (0112 1) o= )~ (o <)

~NOM . (i)
° Djn is a censored version of D in defined as

NG i i 1 1 : 1 1 . 1
D= Di1(1Dl = 3) + 51(P > 5) = 31 (Pfn < =3)

In applications, D%'n) and Dgn) are typically taken as “leave-one-out” quantities
constructed in almost identical manner as D1, and D»,, respectively, but without any
terms involving the datum X;, for instance, compared D1, and Di'n) in(3.12) and (3.27)
for the case of a U-statistic. The proof of Theorem 2.1 (“Appendix C”) bypasses the
gaps in the proof of the original B-E bound for 7sn stated in [9, Theorem 3.1]. As
a key step in their approach to proving Shao et al. [9, Theorem 3.1] based on Stein’s
method, the exponential-type randomized concentration inequality developed in Shao
[8, Theorem 2.7] is applied to control a probability of the type

P (m <D &I(&I<D < Az) :

i=1

where A1 and A; are some context-dependent random quantities. Unfortunately, Shao
et al. [9] overlooked that Shao [8, Theorem 2.7] was originally developed for a sum of
mean-0 random variables, such as W,,, instead of the sum ) 7, &1 (|§;| < 1) figuring
in the prior display, whose truncated summands do not have mean 0 in general. The
latter needs to be addressed in some way to mend their arguments, which leads to
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the exponential randomized concentration inequality (Lemma B.1) developed in this
work for the sum Wj, in (2.2). Here, the censored summands & ;’s are considered
instead so that the new inequality can still be proved in much the same way as Shao
[8, Theorem 2.7]; replacing the truncated &;1(|§;| < 1) with the censored & ; is

otherwise permissible, because only the boundedness of the summands is essential
under the approach.

The B-E bound stated in Theorem 2.1 is in a primitive form. When applied to
specific examples of Ty, various terms in (2.5) have to be further estimated to render
amore expressive bound. In that respect, the following apparent properties of censoring
will become very useful:

Property 2.2 (Properties of variable censoring) Let Y and Z be any two real value
variables. The following facts hold:

(i) Suppose, for some a,b € RU {—o00, oo} witha < b,
Y=al(Y <a)+YI(a<Y <b)+bI(Y >b)
and
Z=al(Z <a)+ZI(a<Z<b)+bl(Z>D).

Then it must be that |Y — Z| < |Y — Z|.
(ii) If Y is a non-negative random variable, then it must also be true that

YIO <Y <b)+bI(Y >b) <Y foranyb € (0, 00),

i.e., the upper-censored version of Y is always no larger than Y itself.

In applications of Theorem 2.1, that Dy, and l_)fln) are lower-and-upper censored
by the same interval [—1/2, 1/2] implies the bound

D1y — Dy)| < |y, = DY), (2.6)
by virtue of Property 2.2(i), as well as
|D1| < |D| 2.7)

by virtue of Property 2.2(ii) because | D1 | is essentially the non-negative | D{| upper-
censored at 1/2. These bounds imply one can form the further norm estimates

O . .
I+ ") (D1, = DEDIL < ClID1 = DY), 2.8)
(i) - —(; .
1€, (1 + Yo ) (D1, — D) < ClE 20 D1 — DVl (2.9)
and
IDyll2 < I D1ll2, (2.10)
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for the terms in (2.5) related to the numerator remainder Dy; see “Appendix D” for the
simple arguments leading to these bounds. The right-hand sides of (2.8)—(2.10) are
then amenable to direct second moment calculations to render more expressive terms.
We also remark that if, instead, the truncated remainder terms

1 ; ; 1 :

Djn1<|Dj,,| < 5) and D}’rfl(w;’,ﬂ < §>’ for j=1,2, 2.11)
are adopted as in Shao et al. [9, Theorem 3.1], a bound analogous to (2.6) does not
hold in general; this also attests to censoring as a useful tool for developing nice B—E
bounds under the current approach.

In comparison with the terms related to Dj, some of the terms related to D, in
(2.5), such as

sup [XE[Da, fr (Wy)]| and E["> D3, ],

x>0

are more obscure and have to be estimated on a case-by-case basis for specific examples
of Tsn. However, in certain applications, the denominator remainder can be perceiv-
ably manipulated into the form

Dz,,:max<—1, n1+n2) 2.12)

lower censored at —1, where I, is defined as

n

m=Y (&, - Eig), (2.13)

i=1

and Iy = (X, ..., X,) is another data-dependent term. For instance, if a non-
negative self-normalizer 1 + D3, can be written as the intuitive form

n
I+ Dy =) &+E

i=1

for a data-dependent term E = E (X1, ..., X,;) of perceivably smaller order, then D>,
can be cast into the form (2.12) because ;. (E[éfii] + IE[(éi2 - DI(&| > D) =
>, E[£?] = 1 and one can take

My =E— Y BIGE — DI&] > DI+ Y (& — DI(&] > 1).
i=1 i=1

We now present a more refined version of Theorem 2.1 for Studentized nonlinear statis-
tics whose D»;, admits the form (2.12) under an absolute third-moment assumption
on &;; the proof is included in “Appendix D”.
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Theorem 2.3 (Uniform B-E bound for Studentized nonlinear statistics with the
denominator remainder (2.12) under a third moment assumption) Suppose all the
conditions in Theorem 2.1 are met, and that E[|§|°] < oo for all 1 < i < n.
In addition, assume Dy, takes the specific form (2.12) with T1; defined in (2.13)
and Ty = > (X4, ..., X,) being a function in the raw data X1, ..., X,. For each
i=1,...,n, let

ny = 09X, Xi1, Xigr, o Xa)

be any function in the raw data except X;. Then

n
sup [ P(Tsy = ) — ()| = c{ D _El& NPT+ [ Diall2 + 1212
i=l

xeR

n
+ Y & 21 Din — Di 2

i=1

n
+ 3 &I, — ng’)nz}, (2.14)

i=1

where DYn) = D&)(Xl, ey Xic1, Xit1y - .5 Xy) is as in Theorem 2.1.

The || - ||2 terms in (2.14) are now amenable to direct second moment calculations.
Hence, if one can cast the denominator remainder into the form (2.12), Theorem 2.3
provides a user-friendly framework to establish B-E bounds for such instances of Tsn.

3 Uniform Berry-Esseen Bound for Studentized U-Statistics

We will apply Theorem 2.3 to establish a uniform B-E bound of the rate 1/./n for
Studentized U-statistics of any degree; all prior works in this vein [2, 4, 5, 9, 15] only
offer bounds for Studentized U-statistics of degree 2. We refer the reader to Shao et
al. [9] and Jing et al. [5] for other examples of applications, including L-statistics and
random sums and functions of nonlinear statistics.

Given independent and identically distributed random variables X1, ..., X, taking
value in a measure space (X, ¥ x), a U-statistic of degree m € N> takes the form

—1
n
Un = <m> Z h(Xi]""’Xim)’

I<ij<-<ip<n

where h : A — R is a real-valued function symmetric in its m arguments, also
known as the kernel of U,,; throughout, we will assume that

E[A(X1,..., Xm)] =0, 3.1
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as well as
2m < n. (3.2)
An important related function of 4 (-) is the canonical function
gx) =E[hX1,...., Xm-1, )] =E[A(X1, ..., X)|Xm = x],

which determines the first-order asymptotic behavior of the U-statistic. We will only
consider non-degenerate U-statistics, which are U-statistics with the property that

03 = var[g(X1)] > 0

It is well known that when E[hZ(X Lyevey Xm)] < 00, VALY converges weakly to
the standard normal distribution as » tends to 1nﬁn1ty [6, Theorgem 4.2.1]; however, the
limiting variance 03? is typically unknown and has to be substituted with a data-driven
estimate. By constructing

4= — > h(Xis Xips oo os Xip )y i=1,...,n,
(m—l) I<ij<-<ip—1=n
ij#i forl=1,....m—1

as natural proxies for g(X1), ..., g(X,), the most common jackknife estimator for ‘75
is

n
»  n—1 _ 2
Sp = (n _m)2 ;_1 (t]z - Un)

[1], which gives rise to the Studentized U-statistic

nUy,

msy,

T,

Without any loss of generality, we will assume that
ol =1, (3.3)

as one can always replace A (-) and g(-), respectively, by h(-) /o, and g(-)/o, without
changing the definition of 7,. Moreover, for s, defined as

2 n—1
Sn (n— )Zqu’
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we will also consider the statistic

U
TF = v . (3.4)

" ms

n

For any x € R, the event-equivalence relationship
(T, >x}=1{T; > a 7 (3.5)
1+ m2(mn—1)x2 /
(n—m)?

is known in the literature; see [7, 10] for instance.

We now state a uniform Berry—Esseen bound for 7, and 7,;". In the sequel, for any
ke {l,...,n}and p > 1, where no ambiguity arises, we may use E[£] and ||, as
the respective shorthands for E[£(X7, ..., X;)] and [[€(X7, ..., Xi)| p, for a given
function £ : X¥* — Rink arguments. For example, we may use E[|7|?] and ||72])3
to, respectively, denote the third absolute moment and 3-norm of 2 (X1, ..., X,,) with
inserted data, and E[g?] = ||g||% = ng = 1 under (3.1) and (3.3).

Theorem 3.1 (Berry—Esseen bound for Studentized U-statistics) Let X1, ..., X, be
independent and identically distributed random variables taking value in a measure
space (X, Ly). Assume (3.1)—(3.3) and

E[h]*] < oo, (3.6)

then the following Berry—Esseen bound holds:

3 2
sup | P(T, < x) — d(x)| < c 81+ mERTT+ liglslinls)
xeR ﬁ

for a positive absolute constant C; (3.7) also holds with T,, replaced by T,".

(3.7)

To the best of our knowledge, this bound is the most optimal to date in the following
sense: improving upon the preceding works of [2, 4, 15], for Studentized U-statistics
of degree 2, under the same assumptions as Theorem 3.1, Jing et al. [5, Theorem 3.1]
state a bound of the form

EHh(‘{ls X2)|3]
P ln <x)—& <C—mmnw—— = -

for an absolute constant C > 0. In comparison, (3.7) is more optimal for m = 2
because all the moment quantities

Ellg(XDP1. Ellh(X1, X2)[*] and g(X D) 1312(X1. X2) |13

from (3.7) are all no larger than E[|h (X1, X?) |3 ], given the standard moment properties
for U-statistics; see (3.10).
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In addition, we remark that the original B-E bound for Studentized U-statistics of
degree 2 in Shao et al. [9, Theorem 4.2 & Remark 4.1] may have been falsely stated.
Given (3.1)—(3.3), for an absolute constant C > 0, they stated a seemingly better
bound (than (3.7)) of the form

3
sup | P(T, < x) — b (x)| < c/AEL XD)l2 + Ellg(X)I]
xeR «/ﬁ

under the weaker assumption (than (3.6)) that ||g(X)[3 V [|h(X1, X2)|l2 < ool.

Unfortunately, the latter assumption is inadequate under the current approach based on
Stein’s method. The main issue is that Shao et al. [9] have ignored crucial calculations
that require forming estimates of the rate O (1/n) for an expectation of the type

El&,18p 202 (Xiy, Xi)ho (X, X j)],

where 1 < i] <ip <nmand1l < j; < j» < n are two pairs of sample indices,
and /5 (-) is the second-order canonical function in the Hoeffding’s decomposition
of U, for m = 2; see (3.9). To do so, we believe one cannot do away with a third
moment assumption on the kernel as in (3.6), where the anxious reader can skip ahead
to Lemma E.1(iii) and (iv) for a preview of our estimates. Our proof of Theorem 3.1
rectifies such errors; moreover, it generalizes to a kernel of any degree m, for which
the enumerative calculations needed are considerably more involved.
We first set the scene for establishing Theorem 3.1, by letting

(X;)
g =52 (3.8)
n
and defining
~ k
ey = heCxrox) = > glx) fork =1,....m, (3.9)
i=1
where

he(xt, .o xk) = Eh(Xy, oo X)) X1 =21, -0 X = xi]s

in particular, g(x) = hy(x) and h(xy,...,xp) = hp(xy, ..., xX,). An important
property of the functions /A is that

E[|ht|”] < E[|hw|?] forany p > 1 and k < k', (3.10)

! Actually, the bound claimed in Shao et al. [9, Remark 4.1]is n~1/2(|l(X1. X2)ll2 + |g(X1)]13). but the
omission of the exponent 2 for ||2(X 1, X2)||2 is itself a typo in that paper.
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which is a consequence of Jensen’s inequality:

E[|hk(xl, o Xk)|P] - E[|E[h(X1, LX) X1 Xk]|1’}

IEHIE[hk/(Xl ..... X X1, .. xk]‘p]

< E[E[ I (X1, Xl | Xas Xe] | = B[ e,
One can then write the part of (3.4) without the Studentizer s, as

J/nU,
m

= Wn + Dln,

where W, = Y7, & and

n—1\" hn (Xiy, Xiy. ... Xi,)
Dy, = n
=) L2 a—

1<ij<-<ipm=<n

...,Xkr)l”:|.

3.11)

(3.12)

are considered as the numerator components under the framework of (1.3). To handle

s, we shall first define

\Iln,i — Z }_lm(Xivin\a/;"axim_l)
I<ij<--<ip—1<n n
ij#i forl=1,..., m—1
and write
1 m—1
4 = = > [g(x,»)+ > 8(Xi) + hw(Xi, Xiy
(m—l) I1<ij<-<ipm—1<n =1

ij#i for I=1,...,m—1

= ﬁ[(” _m)s; - m—_lwn} + (@wn,i

n—1 n—1 rr:z—ll)

for each i. By further letting

n n
A2 = Z \IJ,%J. and V2= Zéiz,
i=1 i=1

Xim_]):|
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the sum >_"_, g7 can be consequently written as
n 2 2
2 n—m 2 5 (m—1 2n(n —m)(m — 1) 2
s = — )V W,
2. ”<n_1) "{" (n—1>+ -1 "

) n—m n—1 2n(m
+(n 11) A +2n< _1)(m_1> ZSI nl+ ZW“I}nu

which implies one can re-express s*2

n

P A3V b+ b for d = (3.13)
for
[ B
+WZW U, (3.14)
and

2n—1) (n—1\"" ¢
1) —_— W
2n (n—m)(m—l) ;Sz n,i
We now present the proof of Theorem 3.1.

Proof of Theorem 3.1 It suffices to consider x > 0 since otherwise one can replace A (-)
by —A(-). Defining

m(n —1) 1

b=y B = () = G,

we first simplify the problem using the bound

|®(xa, (x)) — ®(x)| < min m(n — D’ 2 ex] —x’a;
! h V27 (n —m)?’ max(2, 2 xay ) P 2 ’

(3.15)

which will be shown by a “bridging argument” borrowed from Jing et al. [5] at the
end of this section. Then, by the triangular inequality, (3.5) and (3.15),

[P(Th < x) — ®(x)]
= |P(T, > x) — (x)|
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< |P(T} > xay(x)) — ®(xa,(x))| + | P (xa,(x)) — ®(x)|
< |P(T;} > xa,(x)) — ®(xa,(x))]

+ mi m?(n — x 2 —xza,%,x
min , ex
V2w (n —m)? max(2, v/ 2mxay ) P 2

2

* g m
< |P(T, > xan(x)) — (xa,(x))| +Cﬁ’ (3.16)

where the last inequality in (3.16) holds as follows: For 0 < x < nl/ 6, the term

m2(n — x> - m?(n — 1)/n - m?(n — 1)/n - 24/2m?
V2m(n—m)? T 2m(n—m)? T 2m(n—n/2)2 T Jan

For n!/% < x < oo, since xay, (x) is strictly increasing in x € [0, o0), we have that

exp(—x*ay ,/2) < exp(—n'>(1 +b,n')71/2)

nl/3 4m*(n — DHn!/3 -
seo( - (T

- . nl/3 . ( nl/3 ) - Cm?
Xp\ ——F— 77—+ Xpl— —5= .
= P\ 201 ey ) SPNTgan) =T 4
by (3.2)
Since
m = mE[g?] < E[h?] (3.17)

by (3.3) and a classical U-statistic moment bound [6, Lemma 1.1.4], in light of (3.16),
to prove (3.7) it suffices to show

3 2
P > ) — By < UL mERT + lghalhl) 5o
Jn

as we have claimed to also hold in Theorem 3.1.
Note that since 2|W,, Y "', W, ;| < 2/n|W,|A, by Cauchy’s inequality,

Ejmlnz_{“qmm nw@h—@:il—m}

2n — D(m — 1)
( p ) —m)

(m)ml

—1)? —1)?
nm=D7ye o (=D A2, (3.19)

SR ) = mp?

and hence we can deduce from (3.14) that

d1n = 0. (3.20)
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With (3.11) and (3.13), one can then rewrite 7," as

T — Wn+D1n

" dn\/ Vn2 + (Sln + 82n '

Now, consider the related statistic

el Wn + Dln

*

" {max (0, V,ib + 81n.b + Sanp)}2

with suitably censored components in the denominator defined as

" 2n—1)/n—1\"1<
Vi, =Y & Sup=min@.n" %) and 8y = ( ) > & iV,
i=l

P (n—m) \m—1
Note that 7* and 7, can be related by the inclusions of events
(7 < dpx)\E T, <x} C{T; <dux}UE,

where £ = {maxi<;<p & > 1} U {|614] > n~1/2}. The latter fact implies

|P(T,) < x) — ®(x)| < [P(T,} < dypx) — P(x)| + P(E)

<|P(T} <dpx) = @)+ Y P& > D)+ P11 > n~ /%)
i=1

< |P(T;} < dyx) — @(x)| + B2 + VnE[814]]

Ellgl*] |, mE[r?]

NG +C NG (3.21)

with (3.21) coming from B> < Y7_, E[£] = E[|g|*]/+/n, as well as combining
(3.19) with (3.14) as:

< |P(T} < dyx) — ()| +

n —

E[|81,1]
_ _ _ 2
<2 [—m(m Do 1)} Ew2] + — 2= D7 gz
(r=m (o) = m)?
|:m(m — D — 1)i|
o= 7
(n —m)?
2
2(n — 1)2 _
+1("2—)E Yoo ha(X1 Xips s X, )
(:,ll:l) (}’l - m)2 2<i|<-<im—1<n

—_1)2 —_1)2
S(S_m+ 4(n — 1)“(m —1) )E[hz],

n n—m)?mn—m+ m
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where the last inequality follows from (3.17) and 2m < n, as well as a standard
U-statistic bound in Lemma E.1(i7).

In light of (3.21), to prove (3.18), it suffices to bound |P(Tn* <d,x)— ®(x)|. To
this end, we first define

Wn + Dln
{max (0, V7, + 82,,5)}1/?

v
k%

and

~ W +Dln

kek

! {maX(O V2b+n_‘/2+82 DINE

which, by (3.20), have the property
P(I* < dyx) < P(T) < dyx) < P(T}* < dyx) (3.22)
Hence, to establish a bound for |P(fn* < d,x) — ®(x)|, our strategy is to prove the

same bound for | P(T* < dyx) — ®(dyx)| and |P(T** < dyx) — ®(d,x)|, as well
as using the bound

|®(dyx) — D(x)| = p(x")(dpx —x) < C(dy — 1) <Cn™'2 (323)
coming from the mean value theorem, where x” € (x, d,x) and x¢ (x’ ) is a bounded

function in x € [0, 0o). To simplify notation, we will put T** and T** under one
umbrella and define their common placeholder

W, + D;
kk n n
(1 + D2n)
where
Dy =max(—1, V.2 — 14 (n7'2(0) + 820.0) (3.25)

and for a, b € R, (a|b) represents either a or b; so T,* is either f‘n** or YV"n**.

Now, we cast (3.25) into the form (2.12) by taking Iy = V;?, — >/ E[£; ] and

My = 8o + (n~7210) = Y EIE — DI(I&] > 1] (3.26)
i=1

In order to apply Theorem 2.3 to bound |P (7, < d,x) — ®(d,x)|, we will let Diln)
and H;’), respectively, to be the “leave-one-out” versions of D1, and I in (3.12) and
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(3.26) that omit all the terms involving Xj, i.e,

—1 -
0 _ n—1 hm(Xil,Xiz,...,Xim)
D} = ( ) Z (3.27)
m—1 I<ij<--<ipm<n \/ﬁ
ij#i forl=1,....m
and
. . n
ny) =6}, + @ '/210) = Y EIE; — DIE] > D] (3.28)
j=1
J#
for

50 EM("_l)_ligb. Z o (X X0y oo X ).
2n,b ﬁ(n—m) m—1 p 5 m Jo Aips s Ay

1<ij<--<ip—1<n
J#E ij#j,i forl=1,...m—1

We also need the following bounds:

Lemma 3.2 (Moment bounds related to Dy, in (3.12)) Let Dy, and D{'n) be defined
as in (3.12) and (3.27). Under the assumptions of Theorem 3.1, the following hold:

(m — D) hll2
D < —" 3.29
| Dinll2 < D (3.29)
and
0 V2(m = D2
D, — D < 3.30
| D1n 2 < o —m T D) (3.30)

Proof of Lemma 3.2 This is known in the literature. Refer to Chen et al. [3, Lemma
10.1] for a proof. O

Lemma 3.3 (Moment bounds related to T3 in (3.26)) Consider T and T3 defined
in (3.26) and (3.28). Under the assumptions of Theorem 3.1, the following bounds
hold:

(i)
Igl3 +mliglslils

L, <C ,
[TI2]]2 < N

and

(ii)
mliglslhls +m'> Rl

n

Im, -, <c
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The proof of Lemma 3.3 is deferred to Appendix E. One can then apply Theorem 2.3,
along with Lemmas 3.2 and 3.3 as well as (3.17), to give the bound

EllgP1+ m(lglalkls + 1217
Jn

where we have used the fact that cr; = 1in (3.3) and 6, < |h]|2 by virtue of (3.10).

From (3.31), one can establish (3.18) with (3.21)~(3.24) and that [|4])}/* < E[A2].
It remains to finish the proof for (3.15): First, it can be seen that

|P(Tn** <dpx)— q)(dnx)| <C

(3.31)

0<ayyx <1 (3.32)
Because of (3.32), we have

(al.—Dx

anx +1

|xanx — x| =

_ b, x3 < b,,x3 _ m2(n — l)x?”
1+b,x2) \apy+1 (n —m)?

which implies, by the mean value theorem, that

2(n—Dx*  m?(n—x® o —x?a?
(n—m)?  2r(n—m)? P '

m
[P (xan.x) = P(x)| = Pp(xan,x)

At the same time, we also have, by the well-known normal tail bound and (3.32),

2.2

2 —xay .
ex .
max (2, v2mwxay x) P 2

|® (xay x) — P(x)| < P(xany) + P(x) <

Appendix A. Technical Lemmas

The first two lemmas below concern properties of the &, ;’s and their sum Wj,.

LemmaA.1 (Bound on expectation of &, ;) Let &,; = &I(|&| < 1) + 11(§ >
1) =11 < —1) with E[§] = 0. Then

|El&5,:1] < E71(|&] > D] < E[£7]
Proof of Lemma A.1

|Elép.i]| = [E[& — DIE > D+ & + DIGE < =D]|
<El(I&] - DI(&] > D] < BU& (& > D] < ElE1P1(&] > D] < BIE.

O
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Lemma A.2 (Bennett’s inequality for a sum of censored random variables) Let
&1, ..., &, be independent random variables with E[&;] = O foralli = 1,...,n
and Y!_ B[§7] < 1, and define & = & 1(1&] < 1)+ 11 > 1) — 11(& < —1).
Foranyt > 0and Wy = Y, &i, we have

E[e'"] < exp (eZ’ J4—1/4+ t/2)
Proof of Lemma A.2 Note that, by Lemma A.1,
Efe'We] = B! Ws—EIWoD 1, EIWs] < [t Yimi Goi—EléniD 1!
Moreover, by the standard Bennett’s inequality [3, Lemma 8.1],
Efe X1 GBI} < exp (47 — 1-20).

O

The next lemmas concern properties of the solution to the Stein equation, fy in
(2.3). It is customary to define its derivative at x as f[(x) = xfy(x) + ®(x) so the
Stein equation (2.4) is valid for all w. Moreover, we define

ge(w) = (wfir(w)) = fr(w) + wfi(w). (A.1)
Precisely,
Drwe” 2 d (w) + 1) dx) for w<x
fiw) = i ; A-2)
2rwe” 2P (w) — l) d(x) for w>x
V27 o) (1 + wz)ewz/zcb(w) + —2-) for
gx(w) = ) Var . (A3)
V27 ®d(x) (1 + w?)e? 2P (w) — \/% for w>x

Lemma A.3 (Uniform bounds for fy) For fy and f}, the following bounds are true:
|f)£(w)| <1, 0< fi(w) <0.63 and 0<gy(w) foral w,xeR.

Moreover, for any x € [0, 1], g.(w) < 2.3 forall w € R.

Lemma A.4 (Nonuniform bounds for f, when x > 1) For x > 1, the following are
true:

1.7¢e=*  for w<x-—1
few) = {1/x for x—1<w=<ux (A4)

1/w for x <w
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and

el/2—x for w<x-—1

Ifew)| < {1 for x—l<w<ux. (A.5)
1+xH1 for w>x

Moreover, g, (w) > 0 forall w € R,

1.6 d(x) for w<0
< , A.6
8x(w) = 1/w for w>x (4.6)

and gy (w) is increasing for 0 < w < x with

1275 and  ge(x) < x +2.

gx(x — 1) < xe

We remark that the nonuniform bounds in Lemma A.4 refine the ones previously

collected in Shao et al. [9, Lemma 5.3]; as an aside, a property analogous to (A.5) has

been incorrectly stated in Shao et al. [9] without the absolute signs | - | around f7 (w).
The proofs below repeatedly use the well-known inequality [3, p.16 & 38]

—w?/2

we - 1 1
——— < ®(w) <min| —,
(1 4+ w27 ( (2 wa/2m

Proof of Lemma A.3 The bounds for f, and f}, and that g, (w) > 0, are well known;
see Chen et al. [3, Lemma 2.3]. We will show that g, in (A.3) is less than 2.3 when
x € [0, 1]. Using (A.7), for w > x, we have

> e’ forw > 0. (A7)

gr(w) < \/E@(x) <(1 + w2)ew2/2q‘>(w) _ \/%)

1 w w ) V27 (x)
-+ — < <2.
2 2 2w/ T 2 -

< JE@(x)(

For0 <w <ux,
gx(w) = V27 d(x) ((1 + w)e’ 2D (w) + %)

<V2rd(x) <(1 +x2)e 2D (x) + \/%)

T

—x2/2
< {(@ +x> ®(x) + em } Y% (mé(O) : @(0))

NeT 1
< {(T+l> ¢(1)+E] v 0.63 <2.3.
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For w < 0,

o 1+ w)e’ 2o ) o ( M—M> 1.26.
V2rd (X)(( + w)e (w)+ﬁ < V27 (x) +\/E Nor: <

[}

Proof of Lemma A.4 Proof of (A.4) by investigating (2.3): When w < 0, by (A.7),
x2>2x — 1, and the symmetry of ¢ (), we have that

w272 o2 omxX2 mxtl)2 .
fx(w) = e 7P (w) S5 S5 =09%
X X

When 0 < w < x — 1, by (A.7), we have

X212

fo(w) < @D 20 (1) & = d(w)e ¥/ <177
When x — 1 < w < x, by (A.7), we have

W=D 2o ) 1
filw) £ ——— < -
X X

When w > x, by (A.7), we have

D(x)

fr(w) <

1
< —.
Tw

Proof of (A.5) by investigating (A.2): When w < 0, by the symmetry of ¢ (-),
(A.7) and x2 > 2x — 1, we have

_ , 1 efx+]/2 12
0=0-d(x) < < < 0.4e'/=7%,
(X)_fx(w)_(1+w2) Vi e

When 0 < w < x — 1, by (A.7) and x > 2x — 1,

0 frlw) = (‘/27( et 4 1) i (x — ) 1/2-% < g1/2x
w (X — e e e ,
- B X\/277T - X _xm -

as (— + f) is increasing as a function in x on [1, 00). When x — 1 < w < x,
by (A.7) we have

0 < fl(w) = ®(w) x/ﬁwewz/zd_)(x) +d(x) < 1.
—

<1
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When w > x, since +/27 wewz/zé(w) < 1by (A.7), hence f}(w) < 0. Moreover, by
applying (A.7) again, we have

L (2 Vew = fw <0
x24+1 " \w2+1 )= T =0

Proof of (A.6) by investigating (A.3): When w < 0, by the symmetry of ¢ and
(A7),

2 2y ./
0= V2T d(x)-0 < gr(w) < <min<1ﬁ” ,(sz) 2”)+w) dx) < 1.6d(),
w

where the last inequality uses the facts that M +w < 1.6forw € [—1,0]and
that %% 4y — 1/|w|? < 1 forw < —1. When w > x, by (A7),

[w]

<l1l/w.

2
0<V2rdx) -0 < g.(w) < Bx) (1 fuw _ w) _ 2™

When 0 < w < x, it is easy to see that g, (w) is non-negative and increasing in w.
Moreover, from (A.7) and x2>2x —1,

a(x — 1) = V27 d() <(2 4 x? —2x)eX P2 (1) 4 Q)

N2
2
- 2+ x°— 2x)e1/2_x<1>(x s x—1 o2
X x+/2m
< (4+ 2)62 - 4x)el/2_x + X — 161/2—)(
2x 2x
- x—é—i—i o/2=x < Q2%
2 2x

Lastly, by (A.7), it is easy to see that

gx(x) = V27 D (x) ((1 + 2" P (x) + \/%)

1+ x2 e 12 <1 ) 1
<(=+x)+-<x+2
X 2

T o) +
V2r

<

O

Lemma A.5 (Bound on expectation of f;(Wb(i) +t))Letx > 1,1t € R, and Wlfi) be as
defined in Sect. 1 under the assumptions (1.2). Then there exists an absolute constant
C > 0 such that

ELf{(Wy" + 0] < Cle™ +e7*H).
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Proof of Lemma A.5 From (A.5) in Lemma A.4, we have
ELAWS + 01l < e L EUWS +1 > x = 1)]

_ _ (0)
< o!/27x 4 xR W]

and then apply the Bennett inequality in Lemma A.2. O

Appendix B. Exponential Randomized Concentration Inequality for a
Sum of Censored Variables
LemmaB.1 (Exponential randomized concentration inequality for a sum of censored

random variables) Let &1, ..., &, be independent random variables with mean zero
and finite second moments, and for eachi = 1, ..., n, define

Epi =&1(&I <D+ 1IE > 1) —1(& < —1),
an upper-and-lower censored version of &; moreover, let W = Y !'_| & and W), =
Z?:l &p.i be their corresponding sums, and Ay and Ay be two random variables on

the same probability space. Assume there exists c; > ¢» > 0and § € (0, 1/2) such
that

and

> ElI&|min(s, 51/2)] = ca.

i=1
Then for any A > 0, it is true that
E[e*™ I(A1 < Wy < A2)]
1/2 c2
] "on (-
< (E[e P\ T 16c162

2eM (& L@ (i) 0)
+ =1 El&.le™ (A1 = AP +142 = AYD]
2 LD

+ E[|Wp|e*o (|A2 — Ay +26)]

+ 3 [Bi[Ee ™ (Y — a0+ 28)]},
i=1
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where A(li) and Ag) are any random variables on the same probability space such that
& and (AY), Ag), W@, ngi)) are independent, where wh =w — & and Wb(i) =
Wi —&p.i.

Inparticular, by defining B = 31| E[€?1(1&| > D]and B3 = Y 1 E[E} 1 (& <
DL if >, E[Siz] = 1land B, + B3 < 1/2, one can take

B2+ B3

5= ,
4

1
cir=1land ¢ = 1 (B.1)

to satisfy the conditions of the inequality.
Proof of Lemma B.1 1t suffices to show the lemma under the assumptions that
@) @)

Ap < Azand A} < A, (B.2)
If (B.2) is not true, we can let A7 = min(Aj, Az), A5 = max(Aj, Aj), A’f(i) =
min(A(ll), A(2')), A3 = max(A(l'), A;')). Then the assumptions in (B.2) can be seen
to be not forgoing any generality by noting that [A} — AJ| = |Ax — A4] (also
430 = A10) = A — A,

E[*" [(A1 < W) < A2)] < B[P I(AT < W, < AD)]

and

1A% = AT 4 a5 = A0 < 1A = AV 4 1a0 =AY (B.3)

where (B.3) is true by the following fact: If we have real numbers x| < x and y; < y»,
it must be that

lx1 = y1l + |x2 — y2I < |x1 — y2| + |x2 — y1l. (B.4)

Without loss of generality, one can assume x; < y; and simply prove (B.4) by case
considerations:

(i) Ifx; < x2 <y1 < y2,then

X1 =yil+x2 =l =y1—x1+y2—x2
=y —x1+y1 —x2=|x1 — y2| + |x2 — y1l.

(ii) If x; < y1 < x2 < y2,, then

[xi =yl +1x2—»ml=y1—x1+y2—x2
<y2—x1 =< |x1 = y2| + |x2 = y1l.
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(iii) If x; < y1 < y2 < x2,, then
[x1 —y1l + |x2 =yl = y1 —x1+x2 — y2 < [x1 — y2| + |x2 — 1]
——— ——
=y2—x] =x2—Y1

More generally, a fact like (B.4) can be proved by the rearrangement inequality [11,
p-78], but the details are omitted here.
Under the working assumptions in (B.2), for a < b, we define the function

0 forw <a-—3§
far(w) = 3 (w —a + 6) fora—§<w<b+5¢,
b —a+28 forw>b+38

which has the property

| fab (W) = fay.py (w)| < €(la —ai| + |b—bi]) forallw, a <banda; < by,
(B.5)

as well as

fu.p(w) = 0 almost surely.

Moreover, we have

" .
It + I = E[Wp fa;, 0, (Wp)] — ZE[Eb'i]E[fA(li),Aéi)(ngl>))] (B.6)

i=1

where

- .
L=)E [Eb,i (fAl,Az(Wb) - fAl,Az(Wlf’)))] and
i=1

L= Xn:E [éb,i (fAl,AZ(W}Ei)) - fAE"),AS)(ngi))ﬂ '

i=1

Given the property in (B.5), we have

n
0) . .
L= Y E[lgile ™ (181 = A7+ 182 = aP)]. (B.7)
i=1
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Now we estimate /1, by first rewriting it as

h=YE (6. (far.00Wo) = far.0.W) )|

i=1
n

=) E [eb,,»
i=1

where

0 n 00
Fayn W + r)dr} =) E [ / Faya, (W + r)&-(r)dr} :
b,i i=1 —00

Ki(t) =& {1(=&; <t <0)— 10 <1< —&,)

Note that &, ; and I(—&,; <t <0) — I(0 <t < —&p, ;) have the same sign, and it is
also true that 0 < Igi (1) < Iei (t) where

Ki(t) = &pi{1(—£pi/2 <t <0)—I(0 <t < —£;/2)}

By the fact that fA]’Az(w) > M >0 forall w € (A; — 8, Ay + 8), one can lower
bound 7 as

n r poo
Lz) E / Far.a, (W +t)Ki(t)dt}
i=1 T

n -
=) E / I(A1 = Wy < 82) fp, 0, (Wo +t>1€,~(t>dt]
i=1 LJ|t]<$

= Y E[1(A1 = Wy = A0 D g, mings, 18,i1/2) ]
n
=E [I(Al < Wy < Ag)er ) <Z mﬂ :
i=1
where n; = |&|min($, |&|/2), noting that given § < 1/2, min(6, |&|/2) =

min(é, |&,;|/2) due to the censoring definition of &, ;. Hence, continuing, we can
further lower bound I; as

I

v

(c2/2)E [e“wb—‘”um < W, < Al (Z ni = 02/2)}

i=1

n
= % {]E[ekw”l(Al =Wp = Az)] —-E |:e’\W”I (Zni < cz/2>]}
i=1
@ AWo 20W, -
= 21 E[e IAL =W = AZ)]— E[e2Wo] P> ni < c2/2
i=1
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2 1/2 c
35 :]E[eAWbI(Al =Wp = A2)]— (E [equD exp (_ 16;82)} ’

[\

where the last inequality comes from the sub-Gaussian lower tail bound for sum of
non-negative random variables [14, Theorem 2.19],

- (c2/2)? 3
P (; ni < cz/Z) < exp (-22?_1 ED’/?]) <exp (— 85l |

Clearly, since | fa,, A, (W)| < M (Ay — Ay + 28), we have, from (B.6),

I + L < E[[Wple*" (|As — Ay| +28)]

+ 3 [Blgn B (AT - AP+ 26)] (B.9)
i=l1

Combining (B.7), (B.8) and (B.9), the proof is done.

If Y7, E[éf] = 1 and By + B3 < 1/2, one can apparently take ¢; = 1. The
parameter choices of ¢> and § in (B.1) can be justified as follows: Using the fact that
[3, p.259]

2
min(x, y) zy—i)—xforx >0andy > 0,

by taking § = (B> + B3)/4, we have

> Ellg | minG, 1&1/2)] = Y Ell&11(&] < D min(, |&1/2)]

i=1 i=1

. i [E[éizl(léil <Dl El&P1(&] < 1)]] _1=8 B
i=1

2 168 2 168
1 8862+ B3

85p2+ B3 I p+p 1
2 165 —<—2 165 4
5<1/8

Appendix C. Proof of Theorem 2.1
This section presents the proof of Theorem 2.1. The approach is similar to that of Shao

et al. [9, Theorem 3.1], but there are quite a number of differences stemming from
correcting the numerous gaps in the latter. It suffices to consider x > 0, or else we can
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consider —Tgy instead?. Moreover, without loss of generality, we can assume
P+ B3 <1/2 (C.1)
otherwise, it must be true that |P(Tsy < x) — ®(x)| < 2(B2 + B3). Since
l+s/2—s*2<Q+9)Y?<1+s/2foralls > —1,
we have the two inclusions

{Tsy > x} C{Wy + D1y —xD2,, /2 > x} U {x + x(D2y — D%n)/2
< Wy + Dy, < x +xDp,/2}

and
{Tsy > x} D {Wy + D1 — xD2, /2 > x}.

Hence, it suffices to establish the bounds

2
P(x 4 x(Dyy — D3,)/2 < Wy + D1y < x +xD3,/2) < > P(IDju| > 1/2)
j=1

+C{/32 + By + E[ (1 + ") D3, |
2 n ® _ .
+ YD lpie™ (D - D§-’,3)||1} (C2)
j=1i=1
and
2
|P(Wy + D1y — xD3,/2 < x) = @(x)| < Y P(IDjul > 1/2)
j=I1
+C{ﬂz + B+ |1 Duall2 + E[ (1 + ") D3,

B2 £ (W)

2 n
+33 (E[éf,,-]

j=1i=1

(O _
(1+ " )(Dj, — DY)

1

)

2 Fora given x < 0, if one can uniformly bound |P(Tgy < x +€) — P(x +¢€)| forall € € (x, 0), one can
then similarly bound |P(Tsy < x) — ®(x)| by taking limits on both sides as € —> 0.

@) _ _
|61+ ™Dy - DY)
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separately. Before starting to prove them, we introduce the following notation:

- x(Dsy — D? - _ D i}
Aln,x = M - Dln and A2n,)c = T - D1n~
2 2
C.1 Proof of (C.2)
We further introduce
(l) (i)\2 NO)
— X D D xD _
i, =P b ana &, = 202 - )
2 2
Noting that

P(x +x(Day = D3,)/2 = Wy + Diy < x +xD2,/2)

2
< Po+ Y P(UDjul > 1/2) + pa, (C4)
j=1

where
Po=P(x+ Aln,x <W,=<x+ A2n,)c),

it suffices to bound Py. Since Ds,, — D%n > —3/4 and hence %(x + Aln,x) > %(%x —
X

%) > — %, in light of (C.1), applying Lemma B.1 with the parameters in (B.1) and
A = 1/2 implies that

A1 py < B 21 (x + Mgy < Wiy < x4 Aoy )]

< (E[e"]) " ew <_ 16(62 1+ /33)2>

n
(i) -
+ 8e<ﬁ2+ﬁ3)/8{ZE[|éb,ileWb /2(|Aln,x — R 1+ 1Ay — AY) xl)]
i=1

< < B2+ B3
+E [|Wb|€Wb/2 (|A2n,x - Aln,x| + B )]

- Do G i B2+ B3
+X;‘E[§b,i]‘E|:€Wh ”(IAE,?, = Al )]} (C5)

We will bound different terms on the right-hand side of (C.5). First,
E[e"] < exp(e?/4 + 1/4) by Lemma A.2 (C.6)
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and

—1
Xp <m) = C(B2 + B3). (C.7)

Since D2, — (D)2 = (Dy, — DSY(Dsy, + D),

Ell85i1e"s 2(Ape — A |+ 1A — AD )]

In,x

< CE[|&i1e"s 2(1D1n — D] + x| Dy — DD, (C.8)
Moreover, since % < e!Wnl/2 < eWo/2 4 e_W”/Z, by Lemma A.2,

n n 2+ 3
E |:|Wb|eWb/2 (|A2n,x - A1n,x| + IB ) IB >:|

< CixE[(1 + ") D3, 1+ C2(B2 + B3). (C.9)

Lastly, by Lemma A.1, Bennett’s inequality (Lemma A.2) and (C.1), we have

N (i) ; ; +
2 Btz [ewh ? (iAé,fx A+ wﬂ

< CZ‘E[EM

(xE[eWb 2(D§? ]+ﬁz+ﬂ3> <C(+x)p. (C.10)

< C(1+4x)

Collecting (C.4)—(C.10), we get (C.2).

C.2 Proof of (C.3)

For this part, as a proof device, welet X7, . . ., X: beindependentcopiesof X1, ..., X,
and in analogy to (1.4), we introduce

Dipi» = Diyn(X1, ..., Xi—1, X/, Xiq1,..., X,) and

Doy ix = Dop (X1, ..o Xic1, X7 Xi1, - Xn),

_ 1 1 1
Dyp i = Dln,i*1(|Dln,i*| =< 5) + §I<Dln,i* > E) -

1
I(D]n,,'* < —E) and
1
I D2n,i* < _E )

N

_ 1 1 1
D2n,i* = D2n,i*1<|D2n,i*| = E) + §I<D2n,i* > E) -

as well as

xz—)Zn,i* =

A211,x,i* =

ln,l‘*a
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which are correspondingly versions of Dy, D2, Dl,,, an and Azn,x with X l* replac-
ing X; as input. For any pair 1 <i,i’ <nand j € {1, 2}, we also define

DXy, X XP Kot Xo—y Xt Xy) i <0
D;ln?i*E DXy, o Xty Xirgts ooy Xict, X5, Xigts ooy Xn) ifi > 7,
D(')(Xl,...,X[_l,Xi+1,...,Xn) ifi =i’

. @) . . « o ) - « . ' .
ie, D}, is a version of the “leave-one-out” D in with X" replacing X; as input,

and its censored version

o y y 1 1 y 1 1 y 1
@ _ pth (i") i @i

Djn’i* = Djn’i*1<|Djn’i*| < 5) + EI(Djn,i* > E) — EI(Djn,i* < —§>

It suffices to bound | P (W}, — Azn,x < x) — ®(x)| since

|P (W, — AZn,x <x)—=®x)| = |P(W, — AZn,x <x)
2
—DX)| + B2 +ZP(|Dj"| > 1/2).(C.11)
j=1

First, define the K function
kpi () =E[&,{I(0<t<&,;)—1(&,; <t <0)}],

which has the properties

[ee) 1
/ ki (0t = / o (04t = EIEL ] = 63,413 and

—00

0o 1 13 13
/ |t|kp.i ()dt = /1 |t]kp.; (1)dr = ]E”E’Z’"' I _ ”5”5 ”3. (C.12)

Since

1 . —
E[ / SIS = B + ks (01 ]
—1
= B[ £e(Ws = Ban i) = xS = Baeio))]

by independence and the fundamental theorem of calculus, from the Stein equation
(2.4), one can then write

P(W, — AZn,x <x)—Px)
= E[f;(wb - AZn,,\‘)] - E[bex(wb - AZn,x)]

+ B[ Bana (£eWo = Ban) = fe W) | + ElBo £ (Wo)]
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n 1 ) ~
= SB[ [ O = B = KOV = Bawcse + )i 061]
i=l -

Ry
n

+ Y EIE — DI&] > DIEL Wy — Aoy )] = Y Elép i fe Wy = Mgy )] + ElAay o fe(Wp)]

i=1 i=1

Ry
+ { - ZE[Eb,i{fx(Wh - AZn,x) - fx(Wb - AZn,x,i*)}:“

i=1

R3

) .
+1E[A2Mf FL(Wp + z)dz]
0

R4

=R+ Ry + Rz + R4.

To finish the proof, we will establish the following bounds for Ry, R>, R3, R4:

i) = _
(1+¢")(Djn = DY)

2 n
IRi| < C{ﬂz +8+Y (E[s,,%i](

j=li=l1

!

D} (C.13)

@) )y = _
+|6nie™ (D — DY)

— X —
Rl < 1.63B2 + 0.63] DIz + IEE[Dznfx(Wb)] : (C.14)
2 n o _ .
IRl < CY > llgpi(h+e"s 2Dy, — D) (C.15)
j=li=1
R4l = C(IDll2 + EL(1 + ") D3,1). (€.16)

Then (C.13)—(C.16) together with (C.11) conclude (C.3).

C.2.1 Bound for Ry

Let g, (w)_: (wfy(w)) as defined i_n (A.1). By the Stein equation (2.4) and defining
N =1t— Aoy i+ and gy = & — Aoy x, WE can write

Ry = Ri1 + Ry2,

where

_AZn,x,i*

n 1 %‘b,[ _Ath,x o
Ry = Z/ E[/ g (W, —l—u)du]kb,i(t)dt
=1/
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1 .
E[/gx(Wb(l) +u)l(m <u < nz)du:|kb,i(f)dt

Ry

E[ / e W )l <u < m)du]kb,,-mdr

Ri12

and
n 1
_ A D _ A, ‘
R = Z/ {P(Wp — Appx <x) — P(W,”) — Mgy v i + 1 < x)}kp i (£)d1.
. -1
i=1

For 0 < x < 1, since |g,| < 2.3 (Lemma A.3), using the properties in (C.12), we
have

n 1 2
IRi1| < CZ/ (|r| + 1Epilli + > 1D — D,n,i*nl)kb,i(r)dt
i=1 Y1

j=1
n n 2 n
3 2 21N N
<C D NEild+ D MEwil3Ngnili + DD 1€sill3IDjn — Djnixlln
i=1 i=1 j=1i=1

2 n

<C|B+B+ ) > NEil3IDjn — Djuiclh | for0<x <1, (C.17)
j=1i=1

where we have used [|&,; 11 < I&p,ill2 < II£p,ill3 and

I€p: 113 = ENEA I (1&] < D1+ ELI(1&] > 1]
<E[IE}1(|&] < D1+ EIEX 1 (|&] > 1] (C.18)

in the last inequality.
For x > 1, we first bound the integrand of R; 1. Using the identity

L=TW +u<x—D)+1x—1< W +u,u<3x/4)
+Ix—1< Wb(i)—i—u,u > 3x/4)
<IWP vu<x—D+I1x—1<W +u, W +1>x/4)
+(x—1<Wl§i)+u,u>3x/4)
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and the bounds for g, () in Lemma A.4, in light of |Azn,x| < @ + IDlnl < % + f;c
and l.6<f>(x) < xel/2—x,

‘E[/gmvv,f” +u)l (1 < u < m)du

< xe >y —milh + (x + 2){||I(Wb(i) + 1> x/4) (2 — )l

+ 11> 3x/4) 0 = )l |

_ x+2 ) x+2 R
< xe'’? "Ilnz—mll1+mllewb (2 = Dl + 37 e =82 G2 = )

IA

B 2(x 4+2)
(xel/z 4+ ex—/ 2 —mlh + —5— x/4 1 “eWb (2 =n)lh

Cx+2)
5ex—/{|t|+”A2nxz*_Aan"l‘ébl”l‘i‘”e b (Aant*_Aan+$bl)||l}

. . . )
where we have used the Bennett’s inequality (Lemma A.2) via le"e 't < Cle).
Continuing,

'E[/gx(Wf) +u)l(n <u < nz)du]

_Ch +){

|z + ”x(DZn i* DZn) - (Dln i* — Dln) + Ebl”]

o - _ - _
+ €% [x(Day. i+ — Dap) — (Din,i+ — Di1n) + Sb,i]lll}

2
(i) (i) — —
< C{m + (L + 1™ )&l + Y I+ €™ ) (D — D,-,,)||1}
Jj=1

2
(i) — —
< C{m &l + YA+ ™) (Dju e — Djn>||1}, (C.19)

j=1

. . . . .. ()
where the last inequality uses Bennett’s inequality (Lemma A.2 giving [l¢"? ||, < C).
By a completely analogous argument, we also have the bound

‘E[/gx(wg") + )02 < u < i)

2
(i) — -
= C{Ill + l8p,ill2 + E 11+ e ) (Djpix — Djn)||l}~ (C20)
j=1
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for the integrand of Rjj 7, for x > 1. Combining (C.19) and (C.20), as well as the
integral and moment properties in (C.12) and (C.18), via integrating over ¢, we have

n 2 .
Rl < C{ﬂz B Y ||ésb,i||%(||sb,i||z + 300+ Y (D e — Dj,»u])}

i=1 j=1

2 n
@i - _
< c{ﬂz+ﬂ3+ZZ||sb,iu§H(1+eWb Y(Djni+ = Djn) 1} forx = 1,

j=li=l1
(C21

where the last inequality also uses |[|£5 ; ||2 1€p.i ||3 and (C.18). Combining (C.21)
with the bound for x € [0, 1) in (C.17), we get, for all x > 0,
]

n [ . —
o 3SR 5+ 5 - )
j—l i=1

2 n
(i) — —
IRul < Cipa+ B+ > D EIg |1+ e )(Djy — Djniv)

j=l1i=1

<Cifo+ B+ ZZE 21|+ y(Dju — DO, } (C.22)
j=li=1
where in the last inequality, we have used the fact that (W, D;, — [)5."”)) =4

w D Djp i — D;-ln)) .
For R, its integrand for a given i is bounded by

P(x + AZn,x <W,<x—-t+ A211,)6,1'* + é‘-b,i)
+Px—t+ AZn,x,i* + Sb,i <W,<x+ AZn,x) (C23)

Since
(x + A211,)() A ()C —t+ AZn,x,i* + é:b,i) = (3X)/4 - 5/2 for |t| = 1»

and E[¢"?] < C by Bennett’s inequality (Lemma A.2), by defining

_(i/)

DY)
@ _ Yonir %)
AZHXI*:T—D]nl*f0r1<t <n,

we can apply the randomized concentration inequality (Lemma B.1) with the param-
eters in (B.1) and A = 1/2 to bound (C.23) by
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3)‘/8{/32 + 83
wi (% ) @)
Z [|$b irle”b <|A2nx*A2n x|+‘A2nxz* Az,,x,*|+1(l =D)p,i )]

[|W;,\eWb/2 (1820, = Ao piol + [6il + 111+ B2 + Bs) |

<2(1+e"b)

+ 3 [Big
i'=1

)
B[e" /2 (1 + 16541167 #) +1AS), Ag’“,*|+ﬁ2+ﬂ3)]}

<C(1+4x)

(i)
< c{ﬁz + B3 + Ellg ;12e™e /2]

2 n .
@) _ _ i/ _
Z Z w2
* E[‘Eb,i"e b/ (‘Djn —D§2)|+|D/n,i* an*‘ﬂ

j=li'=1
E[eWé"/)/Z}}

2 n
< C{ﬁz +B+EN& 1+ )Y E [I%’b /IeWb 1 (ID - D/n)| +1Djy i — Dg’,, ,*I)]
j=li'=1

2 n
+E[(1+ ") (D100 — D el + 18041 + 111+ B2 + B3) ] + D [Eley 1
j=l1

i'=1

2
+ Y I +eo)(Djy = Djpilln + 1gp.ill2 + m}; (C.24)
j=1

in (C.24), we have used that ) /'_, |E[& /]| < B2 by Lemma A.1 and

i) (i)
max(|e" |12, e |1, Ele™s /21, B[ /?]) < C

by Bennett’s inequality (Lemma A.2). Since (C.24) bounds (C.23) which bounds the
integrand of Rj>, on integration with respect to # which has the properties in (C.12),
we get

[R12] < C{,B2+,33 +Z[ZE[§[,,]H(1+€ b )(Djn - jn z*)

Jj=1
Y B Bl (1D DY+ 1Dy — D) M)]]} (€29

i=1 i'=1

where we have used Y7 165,15 < 20 18s,i 201860113 < Y7 El1&i 11 < Bo +
B3 by (C.18). From (C.25), by defining

Wy —&pi — & ifi" #i

Wi = VR
Wy — &pi ifi’ =i
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. (i") (i.i")
with eW» /2 < el/2eWs /2, we further get

2 - n
(0 - _ i _ i _
Ria| < C{ﬂz +By+ Y| B+ e ) (D — DY)+ DY) = Dy i)l
j=1ti=l

n n
r i,i’) _ _ il _ _ e
+ Y Bl ) E|1gnile™s 2(1Djn — Df, |+ |Djuie — Dﬁ-;?,-*l)]“
i=1 i'=1

2  n ) )
< C{ﬁz + B+ | SEEZ (1 + ™ YD — DI

j=1"-i=1

n n
r i,i’) _ — il
+ D El& )Y E|l&rle™s 21Djn - Dj-;)|]] } (C26)
i=1 i'=1

where we have used that

o = _ O - .
", Dj, — Dy,,)) = 4", Djp i — Dy,,)) and

i
n,i*)

() _ — @i’ _ _
(&pirle"s" 12, Djy — DY)y = a(&pirle”s” /2, Djy v — DS

to arrive at (C.26). Lastly, (C.26) can be further simplified as

!

2 n ) '
|Ri2| < C{ﬂz +h+Y Y (E[Eﬁ,i]H(l "N (D) — DY)

j=li=1

(@) — — (i
+E[ 85.ile™ 2| Djn - D;’,3|]>} (€27)

using W < ey '+D/2 ang I E[Eii] < Y ,E[£*] = 1 by (1.2). Com-
bining (C.22) and (C.27) gives (C.13).

C.2.2 Bound for R;
Since | f{| < 1 by Lemma A.3,
n
| D BIE — DIE] > DIELA (W — Agy )]

i=1

< ) EIE (& > D] < Ba. (C.28)

i=1
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Moreover, by independence, Lemma A.1 and that | f,,| < 0.63 from Lemma A.3,

S Elepi fWS — Agyi]| = | Y ELE JELF (W) — Ay io)]
i=1 i=1

<0.63) |E[&,]l < 0.63 ) E[E1(&] > 1)] = 0.63p,.

i=1 i=1

Lastly, by | fx| < 0.63 and the definition of AZn,xa
_ _ X _
[E[A2s,x fx (Wp)]| < 0.63]D1nll2 + ‘EE[Danx(Wb)]

Hence, we established (C.14).

C.2.3 Bound for R3
By mean value theorem, given | f}| < 1 (Lemma A.3),

|fx(Wb - AZn,x) - fx(Wb - A2)1,)(,1‘*)' =< C|A2n,x - A2n,x,i*|
< C(ID1y = Din,i+| + x| D2y — Doy ix|).

Hence,

2 n
R3] < CY Y 1€.i(Djn — Djni)l

j=li=1

2 n
=CY > lEpi(Dju — DY) + DY) — Dy i)y for 0 < x < 1.(C.29)
j=1i=l

For x > 1, given |Ag, x| V | Aoy x.i+] < % + 7. by (A.5) in Lemma A4 and | f/| < 1
(Lemma A.3),

|fx(Wb - AZn.x) - fx(Wb - AZn,x,i*)l
= e Wo = Ban) = fsWo = Ao i)l [1(Wy < 3x/4 = 3/2) + I(Wy > 35/4 = 3/2)]

= C(e" + 1(Wp > 3x/4 = 3/2))(1D1n = Din.i+| + x| D2 = Do)
< C(e_x + 6_3”86%/2) (|Dln — Dipi+| + x| D2y — D2n,i*|)

() - — _ -
< C(97X + 673X/89Wb /2)(|D1n - Dln.i*l +X|D2n - DZn,i*l)a
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(D) 1n . . .
where we have used e"o/2 < ¢!/ 2eW5 /2 in the last inequality. Hence,

2 n
0) _ _ _ _
R3l < C YD ligni(1L+ €Y /) (Djy — DY) + DY) — Djnio) 1 forx > 1
j=1i=1
(C.30)

Because (&.i, Wy, Dju — D)) =q (p.i. Wy, Djui= — D)), (C.29) and (C.30)
establish (C.15).

C.2.4 Bound for R4
Using that | f{| < 1 in Lemma A.3,for0 < x <1,
_ *AZn.x _ _ _ _ _
B[ A0 /O Wy +0dt] = €&3, , < CUDWIZ+ 1D2l3) = CIDunllz + | Daal)-

For x > 1, using (A.5) in Lemma A.4 and that [fi] < 1in Lemma A.3, given
|A2n,x| = % + %

_ _AZn.x
B[Aas [ Wy + 0]
0

< ¢! B[A}, 1+ EII(W, > 3x/4 —3/2)A3, ]

2n,x 2n,x
< C(e"E[A3, + e >/ *Ele" A3, 1)
—x(np 12 X 2 —3x/4 Wi [ 732 x? A2
<Cj2e | Dinll5 + Z”DZn”z +2e Ele™\ Dy, + ZDM

< C(IDyall2 + EL(1 + ") D3, 1),
where we have used E[e"| D1,[*] < E[e"?|D1,]] < [le""[l2] Diall2 < ClID1all2 by
Lemma A.2 and || Dy, ||% < || D1, ||2. This establishes (C.16).
Appendix D. Proof of Theorem 2.3

We first verify (2.8)—(2.10), which will also be used in the proof of Theorem 2.3;
(2.10) is immediate from (2.7). We can prove (2.8) with Holder’s inequality as

(i) — —(; (i) - — (i
11+ e YD1y — DY < 11+ €% |12l| D1y — D

1n n

< (1 —|-exp(e4/8 —1/8+ 1/2)) HDln — Dfln) %

where we have also used Bennett’s inequality (Lemmas A.2) and (2.6) at the end.
Similarly, (2.9) can be proved as
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IEn i (1 + ™" /2Dy, — DI,
< 1Epi (1 + " )2 Dry — DO
= &2l + " 23] Dy — DOl
< (1 +exp(e’/8 — 1/8 + 1/4))Il&- ||2HD1n - Dj)

3

2

where we have also used the independence of eV l and & ;.
Our next task is to bound the other terms in the general bound of Theorem 2.1. Let

My = (T < D+ 1T > 1) — (T < —1) fork = 1,2.

Since |Day,| < |T11| + |TT12], and | Dy,| is precisely | Dy, | as a non-negative random
variable upper-censored at 1/2, it must be that |D,,| < |I11| 4 |IT2|, which further
implies

D3, < 2(I1} + I13). (D.1)
From (D.1) and IZI% < |IT2]|, we can get

E[D3,] < 2T |3 + I TT2]l2) (D.2)
On the other hand, define
DY) = max < -1 Y G, -EELD+ ng>).
1<i’'<n,i'#i
By Property 2.2(i), one can then write
(i) = _ (i) (i) i
(1 +e™ ) (Doy — DINIT < (1 + €™ )82, — EIEZ DI + (1 + ™ ) — I |y

@) (i) ;
<1 +e" 302, — B2 32 + 11+ €% 2T — 1157l
= c(@0&FDY? + 1Mz - 1)1 (D3)

and

65,0 (1 + €12 (Do, — DIy
< Neni (14" 22, — BIEZ DI + 165, (1 + ™ /21, — ),
< Nepillalt + " I31E2, — BIEZ M2 + 16p 21 + €™ 10T, — 1|,
= C(BO& 1+ 181202 — 1Y 112), (D4)
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where we have applied Bennett’s inequality (Lemma A.2) to both (D.3) and (D.4) at
the end. To complete the proof, it suffices to show the bounds

E[e" D3,] < c{ D lEsilz + ||n2||2} (D.5)

i=1

and

sup WE[D2, f:Wp)ll = C(IMI3 + Y 16413+ IMal2).  ©.6)

x20 i=1

because Theorem 2.3 is then just a corollary of Theorem 2.1 by collecting (2.8)—(2.10),
(D.2)—(D.6), as well as the simple facts

Bot By <D BUEPL  Ellgi*] < 1€l < &2 < &3,

i=1

P(ID1a| > 1/2) < 2||Diall2, IThII3 < Y EI&,1 < Y Ell&i’1 < Y ElI&L],

i=1 i=1 i=1
and

P(IDa,| > 1/2) < P(IT| + |Ma| > 1/2)
< P(ITIi| > 1/4) + P(ITTo| > 1/4)
< C(ITH 113 + T2 ]12).

D.1 Proof of (D.5).

First, letting W,fi"/) =Wy, —$&;i —&p,jforl <i#j<n,wehave

E[M}e™] = S B2, — El&7, 1) 1E" ]

i=1
+ Y EIE, - EIE2 D IELEL — Ele2 D B[]
1<i#j<n
= Y EI@E, — El&2, )2 B ]
i=1

+ Y EIE, — EIE2 D — DIE(ER; — E[E2 (e — DIE[E™™)

I<i#j=<n
=€ (Z Blegd+ Y. B[l — Bz el [E[167, - il i, j|]E[ew,gm])
i= I<isj<n
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<c=2||sb,u3+ > ||sb,||3||sb,||2} <CZ|\5;,,||§ (D.7)

1<i#j<n
by Lemma A.2 that |¢f — 1| < |s|(e* — 1)/a fors <aanda > 0,
El&; ; — El&),111g.i1]
2 2 2 2
< {(IIS;,,,' — E[5; 1132118, 13) AE[1E; ; — E[éb,i]l]}

< 2{||sb,i||§ A ||éh,,»||%} foranyi =1,...,n,

and Y 180131813 < 114.i113. Second, by Lemma A2,
E[T13e"] < E[113]2(E[e*"*])'/? < CE[T13]Y? = C |1l (D.8)
Combining (D.1), (D.7) and (D.8) gives (D.5).

D.2 Proof of (D.6).

Since sup, - [xfx(w)| < C (which uses (A.4) in Lemma A.4 and that | f| < 0.63 in
Lemma A.3),

sup [xE[(D2, — Dan) fx (Wp)]| < Supx]E[(lDznl = /D1 fxWp)lI(|D2n| > 1/2)]

x>0
< CEIIDs 1Dy > 1/2)]
< C(BUMII( D] > 1/2)] + EIM211)
[mui{rami = 174+ 1ama) > 174} ] + B0z )

C(BI4M} + 2T || '2] + B[ 1)

IA

C(BIST} + T[] + B )

=c(e
=c(
(
< c(Im3 + 1M21)

where we have used that 1(|T1;| > 1/4) < 4|I1|, I(|Tlo| > 1/4) < 2|I1|'/? and
2|T1||T12|'/? < |TT{|? + |T1,]|. Noting that

XE[Day fr (Wp)] = xE[(D2, — D2yn) fx (Wp)] + XxE[D2y fr (Wp)],

the above implies

sup [¥ELDa, f:(Wo)]| = € (1M1 + I Mallz) + sup [¥ELDa, f:(W)]]. (D.9)

x>0 x>0
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so for the rest of this section we focus on bounding Sup, = XE[ D>y, fr (Wp)]|. From
the form of D», in (2.12), by defining [T = IT; + I, we have

XE[Doy fx(Wp)] = E[xIT fx (Wp)] — Elxfx (Wp) [(TT < —1)(1 + ID],
so it suffices to establish
[ELTA (W)l | v [BLe£ (W) (T < =1 (1 + D)

n
< c(ZEnsb,,»P] + ||1'I2||2> forall x > 0. (D.10)
i=1

We first bound ‘E[xfx(W;,)I(l'[ < -+ 1'[)]‘. Since

Elxfx(Wp)I(IT < =1)(1 + D] = E[xfc (Wp) I(IT < —1)]
+E[xfc(Wp)ITI(IT < —1)], (D.11)

we will bound the two terms on the right hand side separately. As x f, (w) is bounded
for all x > 0 (Lemma A.3 and (A.4) in Lemma A.4), we have

ELxf:(Wp)I (1T < =D]| < E[lx s (Wp)l (T < ~1)]

2
=Y Py <12 = (1M + M)
j=1

and
Elx fx (Wp) ITI(IT < —1)]‘ < CE[ITT|I(IT < =1)]

=< C<E[|H1|I(H <-Dl+ IIHzllz)

2
<c(IMmlz | Y P, < —1/2)+||n2||2)

(i |2
< C<||H1||2\/||H1||% + (T2 |l2 + ||H2||2>
< C<||H1||%+ ||1_12||2>,

<C

T 113 + 1Ty fl2/ T2 )12 + ||H2||2>
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where the second last inequality uses ,/ ||H1||% + ||[TT2]l2 < |ITT1]l2 + /|IT12]|2 and

the last inequality uses that 2|ab| < a’ + b? for any a,b € R. So the part of
(D.10) regarding ‘]E[xfx(Wb)I(H < = + H)]‘ is proved because ||H1||% =
Y (ELE 1 — B, DD < Y0, Ell&.il°).

Next we bound ‘E[x IT £, (Wp)]|, and we will control the two terms on the right-hand

side of

[ExTTf (Wp)ll < x|E[ITy fx (Wp)]| + x[E[TT2 fx (Wp)]]. (D.12)

For the first term x|E[T1; fy (Wp)]|, we write

> E[@F, — EI&E DS (W) — fx(W;ﬁ”))]'

i=1

EITL £ (Wy)]| =

" &p.i .
SB[ — B [ BLon + o]
i=1

" (&b, .
<R[ +Eg D [ Eson s o] o3
i=l1

where the second equality uses the independence of Wlsi) and &, ;. From (D.13) and
Lemma A.5, for any x > 1, we have that

n 1€p.i
B[ £, (W)l = € Y B[ &2, +EIg2,D /0 (7 4 e H)dr]
i=1

- 1€b.i
<Y B[ +BED [ e G el <1
i=1

n

Ce™ Z (]E[IEb,iP] + L& 121 |]>

i=1

A

n
< Ce™ ) Ell&.l’).
i=1
which implies

sup x| BT £:(Wy)1| = € Y Elléil*) (D.14)

xzl i=1
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Moreover, for 0 < x < 1, since | f{| < 1 (Lemma A.3), from (D.13) we get

sup x[E[1 £ (Wil = ) (Ensb,im +E[|sh,i|2]E[|sb,,~|J)
i=l

O<x<l

<2 Ell&,l’] (D.15)

i=1

For the term x|E[I1; fx (Wp)]l, given that sup, . |xfx(w)| < C for all w (explained
at the beginning of Sect. D.2), we have

sup x|E[IT £ (Wp)]| < sup E[|TT2|xfx (Wp)|] = ClITI2[l; = C[[TI2]|2, (D.16)

x>0 x>0

Combining (D.12) and (D.14)—(D.16) proves the partof (D.10) regarding |E[x T f, (Wp)]|.

Appendix E. Proof of Lemma 3.3

In this section, we adopt the following notation: For any natural numbers k' < k, we
denote [k' : k] ={k', ..., k}and [k] = {1, ..., k}. Moreover, for any natural number
k>1, welet

B giv, iy = hie(Xiys oy Xip)

with respect to the function he () in (3.9). To prove Lemma 3.3, we need the following
technical lemmas proven, respectively, in Appendices F.1 and F.2.

Lemma E.1 (Useful kernel bounds) Under assumptions (3.1)—(3.3),
(i) Foranyk € [m],

E[h}] < E[h7] < %E[hz]

(ii) Foranyi € [n],

2
E Z ljlm(Xiinw""Xim—l)
I<ij<-<ip-1=n
ij#i forle[m—1]

2
- 2(m — 1) (n — 1)<H>E[h2];
nm—m+1)\m—1)\m

(iii) For each i € [n], consider & ; defined in (2.1) with &; defined in (3.8). Given
ki,ky € [m], forany 1 <iy <--- <iy, <nandl < ji <--- < jx, < n, we
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have
El£b,186. 211 (i1 V k. iy )]
2017012
- 9.50gl5lAl3 n 2d|hl2
n n
where
d=|{i1, ... i )N D\ 2Y,
the number of elements in the intersection of {i1, ..., i} and {j1, ..., jk,} that
are not 1 or 2.
(iv) If, in addition to all the conditions in (iii), it is true that 1 & {j1, ..., jk,} and
2 ¢{i1,..., ik}, then we have the bound
- - 9.50glI31R13  2dlhll
E[8p,180,20k1(iy, ik Yko Gt i | = n3 3 Py

Lemma E.2 (Counting identities and bounds) Let m, n be non-negative integers such
that m < n.

(i) Suppose ny and ny are non-negative integers such that ny + no = n. Then

m
2 ()02 = ()
= k m—k m
(ii) Suppose k is a non-negative integer such that k < m. Then
n\/n—k _(n\(m
k)\m—k)  \m)\k)
(iii) For positive integers a, b, e such that b + e < a, we have
a a—e a be
— < EE—
b b “\bJa—-b+1

In addition to the lemmas above, we will make use of the following enumerative
equalities, whenever the binomial coefficients involved are well defined:

(n—Z) <n—1>n—m

- n-m (E.1)
m—1 m—1/n—-—1

(n—2)=(n—1>m—1’ (E2)
m—2 m—1/n—-—1
(n—3)=(n—l>(m—1)(n—m) E3)
m—2 m—1/) (n—1)(n—2)
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, and (E.4)

(n3)

(n—l)(m—l)(m—Z)
m—1) (n—1)(n—-2)

(n—4)=(n—l)(m—l)(m—Z)(m—?»)' ES5)
m—4 m—1/ (n—1)(n —2)(n —3)
E.1 Proof of Lemma 3.3(i)
We shall further let

Moy = (n~'7210) = Y "EIE — DI(&] > 1)] and

i=1
B 2D (n-1\"&GL
[y = 6p = m(m _ 1) ;&,z‘l’n,z, (E.6)

so [T, = Iy + Ily,. It suffices to show these bounds for [T, and ITy; in (E.6):

nj n

6 6
1
IM2il3 < € <—”‘i S —) < c sl (E7)

2 2 2
m-|gl5llAll5

I3 < C (E.8)

From there, since ||I12|l2 < ||TT21]l2 + [[TT22]]2, Lemma 3.3(7) is proved.

E.1.1 Proof of (E.7)

We first note that

Y E[E - D1g&l > ] = Y E[g21a51 > D] = Y El&P] = Ellgll/va,

i=1 i=1 i=1

which gives 3_"_ | E[(¢? — DI(1&] > D])? < (E[|g|*1)?/n, and hence (E.7).

E.1.2 Proof of (E.8)

It is trivial for m = 1 since ¥, ; = 0. For m > 2, first write

dn—1% (n—1\"2| < )
M= ) |28 2 &KX X, )|
i=1

2
n—m)-n \m
( ) 1<ij<-<ipm—1<n
ij#i forle[m—1]
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which implies immediately from 2m < n in (3.2) that

2
16 (n—1\"2 -
5 _ _
E[n22]57<m_1> El[ Y6 X hnGiX X, | [.E9)
i=1 I1<ij<-<ipm—1<n
i1 for le[m—1]
Upon expanding the above expectation,
2
n
ED & D Fmiiiein)
i=1 1<ij<-<ip-1<n
ij#i forle[m—1]
2
n
= ZE &p.i Z B iy i1}
i=1 I<ij<--<ip—1=n
ij#i forle[m—1]
+ > E[(Sb,i > ’_lm,{i,il,i..,i,,,l})
1<i#j<n I<ij<--<ip-1=n
ij#i forle[m—1]
x (éb,j > hm,{j‘jl,...‘jm_.}ﬂ
I<ji<-<jm—1=n
Jji#j forlelm—1]
2
=nE | &, > o (11 iy ||+ (E.10)

1<ij<-<ipm—1<n
ij#1 forl=1,..., m—1

n(n— 1)153[(519,1 > ﬁm,{l,il,...,im1}>

I<ij<--<ip—1=n
i;#1 forle[m—1]

<5b,2 Z B, (2.j1..... jm_l})] (E.11)

I<ji<-<jm—1=n
ji#2 forle[m—1]

We need to control the two expectations in (E.10) and (E.11). We first bound the
expectation in (E.10). With the definition in (3.9) and that

Bt (1t oo Vom0 e )]
=E[hT )1 = 0if |{i1, ..., im—1} N {1y jme1} =0,
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we can write

2
E Eb.1 Z }_’m,{l,il,...,im,,}
I<ij<-<ip-1=n
ij#1 forle[m—1]
m—1
2 T -
=E|§;, Z Z B (i V1 1 )
k=0 1<ij<-<ip_1=n
I<ji<<jm—1=n
ir, ji#1 for le[m—1]
it seeesim— 101 s oo jim—1 } =k
m—1
n—1\/n—k—1 n—m B
= E 2 h2 X ... ) X
1;< k )<’"—k—1)<m—k—1) [EbJ i+1 (X1 k+1)]
m—1
n—1 n—k—1 n—m k41 5
- o PR, E.12
a ( k ><m—k—l)<m_k_1) m [77] ( )

where the last inequality comes from Lemma E.1(i) and that é,i | < L. Continuing
from (E.12), we can get

2

E |81 > Bon (1.t o)

1<ii<-<ip—1=n
ij#1 forle[m—1]

m—1
Z(n—l)(n—k—l)( n—m >k+lE[h2]
k m—k—1)/\m—k—-1) m
k=1
V/n=I\"Z/m—1\/ n—-m
- _( ) Z ( )( )(k + DE[h?] by Lemma E.2(ii)
m\m — 1 Pt k m—k—1
m—1
m—1(n—1 m—2\k+1( n—m )
m <m—1>,§(k—1) k (m—l—k)E[h]
m—2
n—1 m—2 n—m )
S2(m—1>/§)( k )(m—Z—k)E[h]

_ <n . 1)(” _ 2)ﬂ*l[hz] by Lemma E.2(i)
m_2

m—1
m—1/n—1\> 2

=2 E[h~] (E.13)
n—1\m-—1
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Now we bound the expectation in (E.11). First first expand it as

E[(Sb,l Z }_lm,{l,i.,...,i,,,_l}) <§b,2 Z f_lm,{z,jl,...,jm_l})>:|

1<ij<-<ipm_1<n 1<ji<-<jm—1=n

ij#1 forle[m—1] Ji#2 forle[m—1]
2
n—2 n—2—(m-—1) B
([ i (YL I

=E(E[&,15m,(1,...m | X1)1=E[&p, 171 (X1)]=0

n—2\(n—-2—(m-2) - -
+2x E| & 18 20m,(1,2,...m¢m 2. m41,....2m—1)

m—2 m—1

=E[E[&,1&p,2h2,(1,2)111,2)1 X1, X2]1=0 since /11 (2=0

+2x Z El&p, 150 200m, (12,01 ocim—2) . (2.1 o))

I<ij<--<ip-2=n
l<ji<-<jm-1=n
i, ju#1,2, for le[m—2],ve[m—1]
Wit sim—230{j1,---, Jm—1}1=1

=EA
+ > El&p18p.2Rm (1 ccimYm (2.1 e}
I<ij<-<ip—1<n
I=sji<<jm-1=n
i, j1#1,2, for le[m—1]
it im=130{ 1 Jm—1}1=1
=FEB
+ > EL&p18p.2Rm 1.2,01 i -2} m 1.2, 1. 2} ] (E.14)
I<ij<-<im—2=<n
l<ji<-<jm—2<n
i, ji#1,2, for le[m—2]
=EC

and will then bound each of EA, EB, and EC.
We start with E A, and it suffices to assume m > 3, otherwise one cannot expect
the two sets {i1, ..., i;—2} and {ji, ..., jm—1} indexing a given summand

El&p.180,0Mm,1,2,i1,.ima} 12, j1 sy jme1} ]

of E A to intersect for at least one element. Using the fact that the data X1, ..., X, are
i.1.d., if the two index sets have k € [m — 2] common elements not in the set {1, 2},
one can write the summand as

E£p18p20m,(1,2,i1im2) o (2, 1o 1))
=E[p18p2 hin (X1, X2, oo, X)) hin (X2, X3, 000 Xig2, Xt 1y -+, Xom—1-1) ]
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From this, we can alternatively write

EA:'”Z_:Z n—2\/n—-2-k%k n—m
P k m—2—k)\m—1—k
IE[EhISbJ Enuﬂnn]Em,Bxk+2ﬂUKm44)Kbn—k—lﬂ];

from this, we can then form the bound

m—2
n—2\(n—-2—k n—m
EA| <
= () ) )
‘E[Sh,léh,z T, [1:m1 ﬁm.[Z:(k+2)]U[(m+l):(2m7k—l)]:|‘
_(n- 2 mi:z m—2 n—m
T \m-2 k m—1—k
k=1
‘E[Eb,léb,z T, (11 ﬁm.[2:(k+2)]u[(m+l):(Zm—k—l)]]‘
)
_(r-2 '"X: m—2 n—m 9518113117113 +2k|\h|\2
—\m—-2 = k m—1—k n n
by Lemma E.1(iii)

_ <n72>{|:(n72> B <n7m>]9.5||gu§||hu§ +m _2)<n*3>2\|h\|2 }
m—2 m—1 m—1 n m—2 n

where the last line comes from the equalities

by Lemma E.2(ii)

o RN f ey Mt B

n—2 n—m .
=< )—( )by Lemma E.2(i)
m—1 m—1

S = (DG
—o-2 3 ("))

-3
=(m-=2) (n 2) coming from Lemma E.2(7)

m —
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Continuing, we get

_ _ _ _ 2013112 _
IEAISC; 2>{<n 2>9.5(m 2)(m 1)|\g||3|\h|\3+(m_2)(n 3)2th|2}

-2 m— 1 (n—m)n m—2 n

by Lemma E.2(iii)

_ (n - 1)2 9.5(m —2)(m — D?|gl3 114113 L Am = D2(m —2)(n = m)||kll2 }
- (n—1)2n nn—1)2(n —2)
by (E.1), (E.2) and (E.3)

co(ry i (E.15)

m—1

m— 1 n3

where the last line uses 2m < n,and 1 = o, < ||A]]2 < |]3.
Now we bound E B. Analogously to E A, we first write

0 S Gt

k=1
‘E[%’b,l%h,z (X1, X3, ..., Xmt1) hm (X2, X3, ..., Xi+2s Xim+2, -+ Xom—i)]
e
k shared
_(n=2 mi:l m—1\/n—m-—1
T \m—1 k m—1—k
k=1
‘E[Sb,léh,z (X1, X3, ..., Xpmt1) hm (X2, X3, ..., Xk+2, X420 -+ -5 Xom—1)]
N
k shared

by Lemma E.2(ii)

m=1 21512
n—2 m—1\ (n—m—1\(95lgl5lAl5 = 2k|Al2 ]
S(m_l>k2::l< k )(m—l—k)( " + 3 )byLemmaE.l(zv)
_(n-2 n=2\ (n—m—1\19502131k13 (n—3)\20m— Dkl
(OG- O s () )
where in the last equality, we have used
mi:] m—1\/(n—m—1 _mZ_l m—1\(n—m—1 n—m—1
k m—1-k) =\ k m—1—k m—1

k=1
n—2 n—m-—1 .
= — by Lemma E.2(i)
m— 1 m— 1

and
m—1 m—1
m—l)(n—m 1>k (m—Z)(n—m—l)
=(@m-—1)
k:1< k m—1—k ]; k—1)\m—-1—-k
m—2
m—2\/n—-—m—1
S M (P [y
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n—3 .
=(m— 1)( > by Lemma E.2(i)
m—2

Continuing, we get

n—=2\[{n—-2\0m—1295lgI3Ihl3 (n—3\20m—1)|hl>
|[EB| < + _
m—1 m—1) n—m n m—2 n3/2

by Lemma E.2(iii)
B (n - 1)2{9.5(m — D2(n —m)llgl311h13 L 20m = 1)%(n — m)2||h||z}
T \m—1 (n—1)>2n (n — D)2(n —2)n3/?
by (E.1) and (E.3)
CANZ2 200121 112
SC(n 1) m ||g||23||h||3, E16)
m—1 n

where the last line uses 2m < n,and 1 = o, < ||hll2 < [|A]l3.
Lastly, for EC, in an analogous manner as EA and E B, we first write it as

m—2
n—2\(n—-2-k%k n—m
EC =
Z( k ><m—2—k><m—2—k>
k=0
Elp18p,0 hin (X1, X2, ..o, Xim)
I (X1, X2, X3 ooos Xik2 s Xt « o0 Xom—k—2)]-
—_— ——

k shared, empty if k=0

Then we can bound

=S ()00

k=0

[B1&5, 182 (X1, X, - X i (X1, X2 X1 X2
m—2

()X (OG5

=) moeT

(165,162 s (X1, X, o Xon) hn (X1, X2 X1 X g2

by Lemma E.2(ii)

m—2 2 2
9 _ 9.5 h 2k|lh
) (m >< n—m )( lglizlizl3 Il ||2) by Lemma E.1(iif)
—2—k n n

< k=0
<n —2>{<n —2)9 5||g|\ Hh||3 (ﬂ —3)2(m = 2)|lkll2 }
+ =1
m—2 m m—3 n
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where the last equality comes from

m—2
m—2 n—m n—2 .
Z = by Lemma E.2(i)
k m—2—k m—2

k=0

and for m > 3,
§<m;z>( n—2mk>k="§<m;2>< n—2mk>k
k=0 m—s- k=1 m—z-
m—3 n—m
k—1)\m—-2—k
m—73 n—m
k m-—3—k

k
= (m— 2)(" - 3) by Lemma E.2(i).
m—3

m—2

=(m-=2)

Il
—
3
|
0o
N—
A~

Continuing, we get by (E.2) and (E.4),

Ec < ("R (n 2\ 23Nk | (0 =3 20n = D)lkll2
“\m—-2 m—2 n m—3 n

B (n — 1)2{ 9.5(m — 1)*(|gl31Ih 13 L 20— 1)%(m — 2>2||h||2}

T \m—1 nn —1)2 nn—1)2mn —2)
-1 2 2 2 h 2 4 h
EC(n ) {m ||8||33|| I3 +m ||4 ||2} E.17)
m— 1 n n

Substituting (E.15), (E.16), and (E.17) into (E.14), we get that

‘E[(&,l Z flm,{l,il,...,iml}) (Sb,z Z ﬁm,{2,j1,...,jm1})>:H

1<ii<-<ip—1=n 1<ji<-<jm—1=n

ij#1 forle[m—1] J1#2 forle[m—1]
—I\2m2lel2h12
- C<n ) IIgllzg,II ||3’ (E.18)
m—1 n
where we have used that 2m < n and 1 = ||g|l2 < ||hll2 < ||k||3. Finally, collecting

(E.9), (E.10), (E.11), (E.13) and (E.18), we obtain (E.8).

E.2 Proof of Lemma 3.3 (iii)
Note that

52n,b —5§i)b = A+ B,

n,
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where
2n — 1) (n—1>_1 _
== 7 Epi > B (X, Xiys oo Xiy )
\/ﬁ(l/l o m) m—1 I<ij<-<ipm—1=<n
ij£i forle[m—1]
and
2n—1) (n—l>_l ( _
B=——— Z &p,j Z h (X, Xi, Xiys oo, Xiy2y) -
Vi —m)\m —1 1<j<n 1<i| <-<im_a2<n
J#i ij#j,iforl=1,...m—2

From (3.26) and (3.28), we first write

M — 11312 < BUE — DIE] > DI+ 1820 — 83, 4 l12
2
_ Elg”]

~ n

+ lAll2 + [ Bll2, (E.19)

by Lemma A.1, where

2 — 1) —1\! _
:m@—l) S Y. ha(Xi Xi X )

I<ij<-<ip—1=n
ij#i forle[m—1]

and
2 — 1) (nl>_1 ( _
B= > (& > hon (X Xi, Xi o Xy ) )
Vi —m\m =1/ = 1<i) <v<ip_2<n
J#i ij#j.i forl=1,...m—2

So we will bound || A2 and || B||2, which is trivial form = 1 as & (-) = 0. Form > 2,
by Lemma E.1(i7),

_ 2
dn—12% (n—1\72 i}
2

E[A]Sn(n——m)2<m—l> B 2 X Xa X))
I<ij<-<ip-1=n
ir#i for l€[m—1]

20 1N\2TRT2 2

8(n— 1)>(m — D’E[R) _ mE[’)

; (E.20)

“(m—-m?n(n—m+ Dm — n
Moreover, for B, we first expand its second moment as

E[B?]
_ 40— 1)2 <n — 1>—2E[<
nn—m)2\m—1
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A - D% (n—1\"
T ntn—m)?\m—1
X {(ﬂ -1 Z EL&) 1A, 1.2.01, g2 i (1.2, 1o 2]

I1<ij<-<ip_2<m-2
I<ji<-<jm—2=m—2
i, j1#1,2 for le[m—2]

=ED

+(n—Dn—-2) > El€,180.20m.(1 3,01, im-2Vm (2,31 o 2} }

1<ij<-<im—2<n
I=ji<<jm-2=n
i1#1,3 for le[m—2]
Ji#2,3 for le[m—2]

(E.21)

To bound E D, we first note that, by |§5,1| < 1, H6lder’s inequality and Lemma E.1(i),
each of its summand can be bounded as

]E[Slilﬁm,{l,lil,...,im_z}ﬁm,{l,Z,h,..‘,j,,,_z}] < E[h?] (E.22)

Then, by considering the number of elements k € [m — 2] shared by the sets

{i1,...,im—2}and {j1, ..., jm—2} indexing each such summand, we have the bound
2 N\ (n—2—k n—m
ED| < E[h?
LD M (P [ (R LT

m—2
("2 m—2 n=m 2 ..
- <m _2) k2=(:)< X )(m —2—k)]E[h ] by Lemma E.2(ii)

<n - 2)2 5 ,
= E[A"] by Lemma E.2(7)
m

-2
n—1\>/m—1\> 2
=< > < ) E[Ah] by (E.2). (E.23)
m— 1 n—1

To bound E E, we first break it down as

EE =
Z El&p, 160, 200m (13,1, o ima} o (2.3, 1 o2}

I<ij<-<im—2=n
1<ji<<jm—2=n
i1#1,2,3 for le[m—2]
J17£1,2,3 for le[m—2]

=FE;
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+ > E(&p,180,2hm,(1.2,3,i1..csim—3)Am (2.3, 1 s jm—2)]
1<iy<---<ip-3<n
1<ji<-<jm-—2%n
i1#1,2,3 for le[m—3]
J1#£1,2,3 for le[m—2]

=FE)
+ > EL&p,18p2Rm 113,01, ccim -2} im (1.2.3, 1. i3]
1<ii<-<ip—2<n
I<ji<-<jm—3=n
i1#£1,2,3 for le[m—2]
J1#1,2,3 for le[m—3]
=EE3
+ Z El&p,18p.2hm.(1.2.3.01. i3} im (1,231 jms} - (E24)
1<iyj<---<ip—3=<n
1<ji<-<jm—3=n
i1#1,2,3 for le[m—3]
J1#1,2,3 for le[m—3]
=FEy

Using Lemma E.1(iv), one can then bound E E; as

-2
<’” n=3\/n-3—-k\/n—1—-m 9.5||g||§||h||§+2d||h||2
- k m—2—k/\m—-—2—k n n3/2
k=0
2
- (n —3><n -3 —k)<n —1 —m>(9.5||g||§||h||§ N 2||h||§>
Pt k m—2—k/\m—-—2—k n n
by 3.17)andd <m <n
-2
s(n 3 S: m—2\(n—1-m\lgl3lnl3
m—2 k m—2—k n
k=0
by Lemma E.2(ii) and ||i]]2 < |3

-3 2 2 h 2
_ 11.5(” ) HSUSNANS o L emma E20)
m—2 n

n—1\>m— D> —m)*|gl3113
=115 by (E.3). E.25
<m—1> nn— 1)2(n — 2)2 y (E3) (E25)

For EE; and E E3, using Lemma E.1(iii), one can bound them similarly as

max(|EE>|, |EE3])
<mi n—3\[(n-3—k n—m 95181311k 13 +2(2+k)||h||2
Tk J\m=3—k)\m-2—k n n
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n—3\"= (m=3\( n—m \(95Igl}Ih1}  2Q+Klhl:
— : by L E.2(ii
B e G
B n_3><n—3)9.5||g||§||h||§+4||hn2
T \m=3)\m-2 n

n—3 m=3 n—m 2(m — 3)||h]l2 .
( )Z(k_1)<m_2_k)7byLemmaE.2(l)

k=

_ <n —3) (n 3)9.5||g\\§||h||§ +4llAll2 +i‘(m —4)( n—m )2<m —3)|\h||2}
m—3 m—2 n = k m—3—k n
- _ 2017112 _ _
:(n 3) <n 3)9.5||gH3||h||3+4||h||2 +(n 4)2(m 3)”hH2}byLemmaE.2(i)
m—3 m—2 n m—3 n
_ (n - 3> (n - 3>9 Slgl3 RIS + 4012 n (n - 3>2(m =3 —m)lhl2
T \m-3 m—2 n m—3 (n—3)n
_ (n - 1>2{ (m = D*(m =2)(n = m)(9.5]1g 51715 + 4ll]l2)
T \m—1 (n—12(n —2)2n
— 12(m —2)%(m — 3)(n —
L 2= D2 —2)2n = 3)(1 = m) ]l } by (E.3) and (E.4)

n—12(n —2)2(n —3)n

n— 1\ m*gl2hn3 5||h\|2
<o(n70) [P s R by 1 < gt ana o < (E.26)

m—1
Lastly, for E E4, using Lemma E.1(iii), one can bound it as

|EE4]

<’"2‘:3 n—3\(n—-3—k n—m 9.5||g||§||h||§+2(3+k)||h||2
_ko k m—3—k/\m—-3—k n n

(ECOI6EN)

T \m-3 =\ k m—3—k

(9-5||g||_%||h||§ n 2(3+k)||h||2)
n

n

_(n =3\ [(n—3)93lglZNnl3 + 6lAl
“\m-3 m—3 n

2(m—3)||h||2m 3im—4 n—m
PR () )

k=1

_(n=3\[(n=3)25lgl3Inl} + 6lial:
T \m-=3 m—73 n

N w(n - 4)} by Lemma E.2(i)

by Lemma E.2(ii)

n m—4
=1\ (g3 lAI5 | mC]h
o m* g5l ||3Jr A1l by (E.4), (E.5),
1 P no
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1 <|lgll3 and ||2]l2 < [|I2ll3. (E.27)

Combining (E.24), (E.25), (E.26), (E.27), and 2m < n, we get that

n—1\> 2 5 m2 md om* m>
|[EE| <C m—1 lgll3lkl5 n—3+n—4+n—5 + 1Az ol e (E.28)

Combining (E.21), (E.23), and (E.28), we get

m2 m2 m3 m4 Wl5
E[B?] < C| —E[h? 23 = + = + — h —
[B] < {nz [ ]+[||g||3|| 13(—5 + =5 o )+l

20012117112 5
m h h
< C{ ||g||23|| I3 m |I4 ||2}’ (£.29)
n n
where we have used 2m < n, as well as ||h]2 < ||hllz and 1 = ||gll2 < |lgll3 in the

last line. Combining (E.19), (E.20), and (E.29) gives Lemma 3.3(ii).

Appendix F. Proof of Lemmas E.1 and E.2
F.1 Proof of Lemma E.1

The proof for (i) and (ii) can be found in Chen et al. [3, Ch.10, Appendix]. We will
focus on proving (iii) and (iv). For any subset {i, ..., iy} C [n], we will denote

..... ir} = {Xils ~--7Xik}'

To simplify the notation, we also denote
I ={iy,....igyand J = {j1, ..., jK, ),
as well as
and
hy=heu (X, ..., Xj,) and hi = hi, i
First, it suffices to assume both
ki, ko > 2

because if any of k and k; is equal to 1, then one of ljlkly{il,m»ikl} and /g, (... Jio)
must be equal to zero by the definition in (3.9), so the bound is trivial. Moreover, one
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can further assume without loss of generality that the index sets / and J are such that

IN{1,2} =J\{1,2} =[3:(d+2)]ifd > 0, (F.1)

in which case it must be true that |7\{1, 2}| = |J\{1, 2}| = d. This is because for any
I and J, we have
E[&,1&p2h11)]

= E[E[gb,lgb,ﬂ_ll}_l] | X{l,z}u(mj)]]

= E[Sb,le,ZE[}_H/’_U | X{],z}u(mj)]]

= E[Sb,léb,zE[fu | X1 23000 Elhy | X{l,2}U(IﬂJ)]]

because 1\({1, 2tu N J)) and J\({l, 2lUu (N J)) are disjoint
= E[Sb,l%b,zE[f_u | Xcng2puanay ElRy | X(m{l,Z})u(mJ)]]

= E[Sb,1éb,2}_1(10{1,2})U(1m)f_l(m{1,2})uum)]-

Since

((1 n{1,2Hpudn J))\{l, 2} = (I NI\(1,2) = ((J n{1,2Hun J))\{l, 2}

and

[(I N J)\{1,2}| = d by assumption,

by the i.i.d.’ness of the data X1, ..., X,, it suffices to assume (F.1).
By the definition in (3.9), we perform the expansion

El&p18p2 by hy]

ZE[Eb,1§b,2<h1— Z g(Xi) — Z g(Xi)>

ieln{1,2} iel\{1,2}
(hj— dooaxp— Y g(Xj))]
jein{1,2) jea\1,2)
= Elép,16p,2 h1 hy]
—_——
=HH
— Y Elgagag(X)hsl— Y El&1&28(X)) kil
ieln{1,2} JjeJN{1,2}
=GH, =GH,
— Y El&a&ag(X) hjl— Y El&£28(X)) hil
iel\{1,2} JEJ\{1,2}
=GH3 =GHy
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+ Y ) Elgagag(XgXpl+ Y. Y El&a&ae(X)g(X)],

ieln{1,2} jeJN{1,2} iel\{1,2} jeJ\{1,2}

=GG) =GG)

recognizing that the last batch of expansion terms

o) ElaagagXogXpl+ Y. Y El&a&ag(Xg(X))]

PEINUL2JENML2 _pre e b exnElg(xpl=0 SIS gre oo (X)) ELg(X0)1=0

vanish. The remaining terms in each row of the expansion above are bounded as
follows:

F.1.1 Bound on HH:

(HH| = |Bl&s 1852 hr )| < [&ga | [no],

- (Ensb,l|3]1E[|sb,2|3])1/3 (E[\h1ﬂ3/2\h1\3/2]>2/3

1/3 2/3 . .
< (Ell&.1 PIENE2171)  (WAP21201hsP212) ™ by Cauchy's inequality
<n

<n gl A3 (F2)

where the last line comes from (3.10) with || Vv |J]| < m.

F.1.2 Bound on GH; + GH;:

|GH| + GH;|
< Z 166.18p,28 (Xi)lI32112s 113 + Z 166,18p,28 (X )II3/2111 113
ieln(1,2) jeIn(1,2)

= I N{L 2} - 1&p,18p,28(XDI3/2MlAs 113 + 1T N {1, 2} - 118518628 (X D321l 01 113
< 418p,18p,28(XDII321lR1I3 by (3.10)
= 41&,,18(X1)13/211€p.2113/21I11l3 by independence
B 2/3 B 2/3
= 4(E A 1gxnl1) (B g (x2)21) " s
=dn"gl3lgll3 2Nkl
<4n~ gl lnls, (F3)

where the last inequality is true because || gl[3/2 < [gll2 = 05 = 1.
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F.1.3 General bound on GH3 + GHj:

|GH3 + G Hy|
< > lEag2gXDl2lhslz+ Y. Ea&2g(Xplallhs 2
iel\{1,2} jed\{1,2}

= [I\{1, 2}] - 11€p,18p,28(X3) 1211y ll2 + [IN\{L, 2} - 11€p,1Ep,28 (X321 2
< 2d|&p,1€p,28(X3)|I2/1h]|2 by (3.10) and (F.1)
< 2d||& 121152112 11g(X3)lI2 Ik ]2 by independence

= 2dn~!||h|l2 by (3.3). (F4)
F.1.4 Special bound on GH; + GHs under1 ¢ Jand 2 ¢ I:

|GH3 + GHa|

Y El&alEE2g(X) hil+ Y Elé2lElE18(X)) il

iel\{1,2} JeJ\{1,2}

bylé¢ Jand2 ¢ 1
< Z |E[&611] 185,28 (XD l121R 112

iel\{1,2})

+ Y [El&2l] 158X )ll2llAll2 by (3.10)
jeqN(1,2}

<2d - |E[&,1]| I1€5,18(X3) 2]l ll2 by (F.1)
< ZdIE[SIZ] €112 1g(X3)]I2]l]]2 by Lemma A.1 and independence
=2dn"*?||h|y by o7 = 1in (3.3). (E.5)

F.1.5 Bound on GG + GG,

|GG+ GGy
< Z(E[Iéb,lgz(xl)l] |E[Ep 21l + E[1£p,18(X 1] -E[Iéb,zg(X2)|]>

Y Y EEsaengx)]

iel\{1,2} jeJ\{1,2}
= 2(E[|§b,182(X1)|] -|El&p 21l + Ell&p18(XDI] - ]E[Ifb,zg(Xz)l])
+d - |El&p11] - |E[&2]] - E[g*(X3)],

where the last equality uses that

E[&p,18p.28(Xi1)8(X ;)] = Elép15p 21E[g(X:)E[g(X ;)]
—0ifi # jandi,j ¢ {1,2),
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as well as the working assumption in (F.1). Continuing, we get

|GG+ GG,|
< 2(Blg2 (X1 - [Elg21| + n~ Elg? (X)) Blg?(X2)1)

+d - |E[&,1]| - |E& ]| - E[g*(X3)]
<2 '+ n7") +dn? by Lemma A.1 and E[g(X?)] = 1 in (3.3)

d
< an~t 4 —p! by2m <n
2m
<450 'byd <m. (F.6)

F.1.6 Summary

Lemma E.1(iii), and combining (F.2), (F.3), (E.5), (F.6) gives Lemma E.1(iv).

Recall 1 = og < |lglls =< |&ll3. Combining (F.2), (F.3), (F4), (F.6) gives

F.2 Proof of LemmaE.2

Statement (i) is the Vandermonde’s identity, which counts the number of ways to
choose m balls from n1 red balls and n, green balls, by summing over k € [0 : m] the
number of ways to choose k red balls and m — k green balls. Statement (ii) counts the
number of ways to choose m balls out of a bag of n balls and paint k of the m chosen
balls as red, in two different ways. Statement (iii) comes from

(-2 =2
0 11,0-5)

j=a—b+1
a a e
<(;) 3
j=a—b+1

a be
< _—
- (b)a—b—l—l
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