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Abstract
We take another look at using Stein’s method to establish uniform Berry–Esseen
bounds for Studentized nonlinear statistics, highlighting variable censoring and an
exponential randomized concentration inequality for a sum of censored variables as
the essential tools to carry out the arguments involved. As an important application,
we prove a uniform Berry–Esseen bound for Studentized U-statistics in a form that
exhibits the dependence on the degree of the kernel.
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Randomized concentration inequality · U-statistics · Self-normalized limit theory ·
Uniform Berry–Esseen bound

Mathematics Subject Classification (2020) 62E17

1 Introduction

We revisit the use of Stein’s method to prove uniform Berry–Esseen (B–E) bounds
for Studentized nonlinear statistics. Let X1, . . . , Xn be independent random variables
that serve as some raw data, and for each i = 1, . . . , n, let

ξi ≡ gn,i (Xi ) (1.1)
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for a function gn,i (·) that can also depend on i and n, such that

E[ξi ] = 0 for all i and
n∑

i=1

E[ξ2i ] = 1. (1.2)

A Studentized nonlinear statistic is an asymptotically normal statistic that can be
represented in the general form

TSN ≡ Wn + D1n

(1 + D2n)1/2
, (1.3)

with Wn ≡ ∑n
i=1 ξi , where the “remainder” terms

D1n = D1n(X1, . . . , Xn) and D2n = D2n(X1, . . . , Xn) (1.4)

are some functions of the data, with the additional properties that

D1n, D2n −→ 0 in probability as n tends to ∞, and D2n ≥ −1 almost surely.

(1.5)

We adopt the convention that if 1 + D2n = 0, the value of TSN is taken to be 0, +∞
or −∞ depending on the sign of Wn + D1n . Such a statistic is a generalization of the
classical Student’s t-statistic [13], where the denominator 1+D2n acts as a data-driven
“self-normalizer” for the numerator Wn + D1n .

Many statistics used in practice can be seen as examples of (1.3); hence, developing
a general Berry–Esseen-type inequality for TSN is relevant to many applications. The
first such attempt based on Stein’s method can be found in the semi-review article of
Shao et al. [9], whose proof critically relies upon an exponential-type randomized con-
centration inequality first appearing in Shao [8]. However, while their methodology
is sound, there are numerous gaps; most notably, Shao et al. [9] overlooked that the
original exponential-type randomized concentration inequality of Shao [8] is devel-
oped for a sum of independent random variables with mean zero, which is not well
suited for their proof wherein the truncated summands generally do not have mean 0.
In fact, truncation itself is an insufficient device to carry the arguments involved, as
will be explained in this article.

Our contributions are twofold. First, we put the methodology of Shao et al. [9] on
solid footing; this, among other things, is accomplished by adopting variable censor-
ing instead of truncation, as well as developing a modified randomized concentration
inequality for a sum of censored variables, to rectify the gaps in their arguments. We
also present a more user-friendly B–E bound for the statistic TSN when the denom-
inator remainder D2n admits a certain standard form. Second, as an application to a
prototypical example of Studentized nonlinear statistics, we establish a uniform B–E
bound of the rate 1/

√
n for Studentized U-statistics whose dependence on the degree

of the kernel is also explicit; all prior works in this vein only treat the simplest case
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with a kernel of degree 2. This bound is the most optimal known to date and serves to
complete the literature in uniform B–E bounds for Studentized U-statistics.

Notation. �(·) is the standard normal distribution function and �̄(·) = 1 − �(·).
The indicator function is denoted by I (·). For p ≥ 1, ‖Y‖p ≡ (E[|Y |p])1/p for a
random variable Y . For any a, b ∈ R, a ∨ b = max(a, b) and a ∧ b = min(a, b).
C,C1,C2 · · · .. denotes positive absolute constants that may differ in value from place
to place, but does not depend on other quantities nor the distributions of the random
variables. For two (possibly multivariate) random variables Y1 and Y2, “Y1 =d Y2”
means Y1 and Y2 have the same distribution.

2 General Berry–Esseen Bounds for Studentized Nonlinear Statistics

Let ξ1, . . . , ξm be as in Sect. 1 that satisfy the assumptions in (1.2). For each i =
1, . . . , n, define

ξb,i ≡ ξi I (|ξi | ≤ 1) + I (ξi > 1) − I (ξi < −1), (2.1)

an upper-and-lower censored version of ξi , and their sum

Wb = Wb,n ≡
n∑

i=1

ξb,i . (2.2)

Moreover, for each i = 1, . . . , n, we define W (i)
b ≡ Wb − ξb,i and W (i)

n ≡ Wn − ξi .
We also let

β2 ≡
n∑

i=1

E[ξ2i I (|ξi | > 1)] and β3 ≡
n∑

i=1

E[ξ3i I (|ξi | ≤ 1)].

For any x ∈ R,

fx (w) ≡
{√

2πew2/2�(w)�̄(x) w ≤ x√
2πew2/2�(x)�̄(w) w > x

; (2.3)

is the solution to the Stein equation [12]

f ′
x (w) − w fx (w) = I (w ≤ x) − �(x). (2.4)

Our first result is the following uniform Berry–Esseen bound for the Studentized
nonlinear statistic in (1.3):

Theorem 2.1 (UniformB–Ebound forStudentizednonlinear statistics) Let X1, . . . , Xn

be independent random variables. Consider the Studentized nonlinear statistic TSN
in (1.3), constructed with the linear summands in (1.1) that satisfy the condition in
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(1.2), and the remainder terms in (1.4) that satisfy the condition in (1.5). There exists
a positive absolute constant C > 0 such that

sup
x∈R

∣∣∣P(TSN ≤ x) − �(x)
∣∣∣ ≤

2∑

j=1

P(|Djn| > 1/2)

+C

{
β2 + β3 + ‖D̄1n‖2 + E

[
(1 + eWb )D̄2

2n

]
+ sup

x≥0

∣∣∣xE[D̄2n fx (Wb)]
∣∣∣

+
2∑

j=1

n∑

i=1

(
E[ξ2b,i ]

∥∥∥(1 + eW
(i)
b )(D̄ jn − D̄(i)

jn )

∥∥∥
1

+
∥∥∥ξb,i (1 + eW

(i)
b /2)(D̄ jn − D̄(i)

jn )

∥∥∥
1

)}
, (2.5)

where for each j ∈ {1, 2} and each i ∈ {1, . . . , n},
• D(i)

jn ≡ D(i)
jn (X1, . . . , Xi−1, Xi+1, . . . , Xn) is any function in the raw data except

Xi ;
• D̄ jn is a censored version of D jn defined as

D̄ jn ≡ Djn I
(
|Djn| ≤ 1

2

)
+ 1

2
I
(
Djn >

1

2

)
− 1

2
I
(
Djn < −1

2

)
;

• D̄(i)
jn is a censored version of D(i)

jn defined as

D̄(i)
jn ≡ D(i)

jn I
(
|D(i)

jn | ≤ 1

2

)
+ 1

2
I
(
D(i)

jn >
1

2

)
− 1

2
I
(
D(i)

jn < −1

2

)
.

In applications, D(i)
1n and D(i)

2n are typically taken as “leave-one-out” quantities
constructed in almost identical manner as D1n and D2n , respectively, but without any
terms involving the datum Xi , for instance, compared D1n and D

(i)
1n in (3.12) and (3.27)

for the case of a U-statistic. The proof of Theorem 2.1 (“Appendix C”) bypasses the
gaps in the proof of the original B–E bound for TSN stated in [9, Theorem 3.1]. As
a key step in their approach to proving Shao et al. [9, Theorem 3.1] based on Stein’s
method, the exponential-type randomized concentration inequality developed in Shao
[8, Theorem 2.7] is applied to control a probability of the type

P

(
�1 ≤

n∑

i=1

ξi I (|ξi | ≤ 1) ≤ �2

)
,

where�1 and�2 are some context-dependent random quantities. Unfortunately, Shao
et al. [9] overlooked that Shao [8, Theorem 2.7] was originally developed for a sum of
mean-0 random variables, such asWn , instead of the sum

∑n
i=1 ξi I (|ξi | ≤ 1) figuring

in the prior display, whose truncated summands do not have mean 0 in general. The
latter needs to be addressed in some way to mend their arguments, which leads to
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the exponential randomized concentration inequality (Lemma B.1) developed in this
work for the sum Wb in (2.2). Here, the censored summands ξb,i ’s are considered
instead so that the new inequality can still be proved in much the same way as Shao
[8, Theorem 2.7]; replacing the truncated ξi I (|ξi | ≤ 1) with the censored ξb,i is
otherwise permissible, because only the boundedness of the summands is essential
under the approach.

The B–E bound stated in Theorem 2.1 is in a primitive form. When applied to
specific examples of TSN , various terms in (2.5) have to be further estimated to render
amore expressive bound. In that respect, the following apparent properties of censoring
will become very useful:

Property 2.2 (Properties of variable censoring) Let Y and Z be any two real value
variables. The following facts hold:

(i) Suppose, for some a, b ∈ R ∪ {−∞,∞} with a ≤ b,

Ȳ ≡ aI (Y < a) + Y I (a ≤ Y ≤ b) + bI (Y > b)

and

Z̄ ≡ aI (Z < a) + Z I (a ≤ Z ≤ b) + bI (Z > b).

Then it must be that |Ȳ − Z̄ | ≤ |Y − Z |.
(ii) If Y is a non-negative random variable, then it must also be true that

Y I (0 ≤ Y ≤ b) + bI (Y > b) ≤ Y for any b ∈ (0,∞),

i.e., the upper-censored version of Y is always no larger than Y itself.

In applications of Theorem 2.1, that D̄1n and D̄(i)
1n are lower-and-upper censored

by the same interval [−1/2, 1/2] implies the bound

|D̄1n − D̄(i)
1n | ≤ |D1n − D(i)

1n |, (2.6)

by virtue of Property 2.2(i), as well as

|D̄1| ≤ |D1| (2.7)

by virtue of Property 2.2(i i) because |D̄1| is essentially the non-negative |D1| upper-
censored at 1/2. These bounds imply one can form the further norm estimates

‖(1 + eW
(i)
b )(D̄1n − D̄(i)

1n )‖1 ≤ C‖D1n − D(i)
1n ‖2, (2.8)

‖ξb,i (1 + eW
(i)
b /2)(D̄1n − D̄(i)

1n )‖1 ≤ C‖ξi‖2‖D1n − D(i)
1n ‖2 (2.9)

and

‖D̄1‖2 ≤ ‖D1‖2, (2.10)
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for the terms in (2.5) related to the numerator remainder D1; see “Appendix D” for the
simple arguments leading to these bounds. The right-hand sides of (2.8)–(2.10) are
then amenable to direct second moment calculations to render more expressive terms.
We also remark that if, instead, the truncated remainder terms

Djn I
(
|Djn| ≤ 1

2

)
and D(i)

jn I
(
|D(i)

jn | ≤ 1

2

)
, for j = 1, 2, (2.11)

are adopted as in Shao et al. [9, Theorem 3.1], a bound analogous to (2.6) does not
hold in general; this also attests to censoring as a useful tool for developing nice B–E
bounds under the current approach.

In comparison with the terms related to D1, some of the terms related to D2 in
(2.5), such as

sup
x≥0

|xE[D̄2n fx (Wb)]| and E[eWb D̄2
2n],

aremore obscure and have to be estimated on a case-by-case basis for specific examples
of TSN. However, in certain applications, the denominator remainder can be perceiv-
ably manipulated into the form

D2n = max
(

− 1, �1 + �2

)
(2.12)

lower censored at −1, where �1 is defined as

�1 ≡
n∑

i=1

(
ξ2b,i − E[ξ2b,i ]

)
, (2.13)

and �2 ≡ �2(X1, . . . , Xn) is another data-dependent term. For instance, if a non-
negative self-normalizer 1 + D2n can be written as the intuitive form

1 + D2n =
n∑

i=1

ξ2i + E

for a data-dependent term E ≡ E(X1, . . . , Xn) of perceivably smaller order, then D2n
can be cast into the form (2.12) because

∑n
i=1(E[ξ2b,i ] + E[(ξ2i − 1)I (|ξi | > 1)]) =∑n

i=1 E[ξ2i ] = 1 and one can take

�2 = E −
n∑

i=1

E[(ξ2i − 1)I (|ξi | > 1)] +
n∑

i=1

(ξ2i − 1)I (|ξi | > 1).

Wenowpresent amore refined version of Theorem2.1 for Studentized nonlinear statis-
tics whose D2n admits the form (2.12) under an absolute third-moment assumption
on ξi ; the proof is included in “Appendix D”.
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Theorem 2.3 (Uniform B–E bound for Studentized nonlinear statistics with the
denominator remainder (2.12) under a third moment assumption) Suppose all the
conditions in Theorem 2.1 are met, and that E[|ξi |3] < ∞ for all 1 ≤ i ≤ n.
In addition, assume D2n takes the specific form (2.12) with �1 defined in (2.13)
and �2 ≡ �2(X1, . . . , Xn) being a function in the raw data X1, . . . , Xn. For each
i = 1, . . . , n, let

�
(i)
2 ≡ �

(i)
2 (X1, . . . , Xi−1, Xi+1, . . . , Xn)

be any function in the raw data except Xi . Then

sup
x∈R

∣∣∣P(TSN ≤ x) − �(x)
∣∣∣ ≤ C

{ n∑

i=1

E[|ξi |3] + ‖D1n‖2 + ‖�2‖2

+
n∑

i=1

‖ξi‖2‖D1n − D(i)
1n ‖2

+
n∑

i=1

‖ξi‖2‖�2 − �
(i)
2 ‖2

}
, (2.14)

where D(i)
1n ≡ D(i)

1n (X1, . . . , Xi−1, Xi+1, . . . , Xn) is as in Theorem 2.1.

The ‖ · ‖2 terms in (2.14) are now amenable to direct second moment calculations.
Hence, if one can cast the denominator remainder into the form (2.12), Theorem 2.3
provides a user-friendly framework to establish B–E bounds for such instances of TSN.

3 Uniform Berry–Esseen Bound for Studentized U-Statistics

We will apply Theorem 2.3 to establish a uniform B–E bound of the rate 1/
√
n for

Studentized U-statistics of any degree; all prior works in this vein [2, 4, 5, 9, 15] only
offer bounds for Studentized U-statistics of degree 2. We refer the reader to Shao et
al. [9] and Jing et al. [5] for other examples of applications, including L-statistics and
random sums and functions of nonlinear statistics.

Given independent and identically distributed random variables X1, . . . , Xn taking
value in a measure space (X , �X ), a U-statistic of degree m ∈ N≥1 takes the form

Un =
(
n

m

)−1 ∑

1≤i1<···<im≤n

h(Xi1, . . . , Xim ),

where h : Xm −→ R is a real-valued function symmetric in its m arguments, also
known as the kernel of Un ; throughout, we will assume that

E[h(X1, . . . , Xm)] = 0, (3.1)
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as well as

2m < n. (3.2)

An important related function of h(·) is the canonical function

g(x) = E[h(X1, . . . , Xm−1, x)] = E[h(X1, . . . , Xm)|Xm = x],

which determines the first-order asymptotic behavior of the U-statistic. We will only
consider non-degenerate U-statistics, which are U-statistics with the property that

σ 2
g ≡ var[g(X1)] > 0.

It is well known that when E[h2(X1, . . . , Xm)] < ∞,
√
nUn
mσg

converges weakly to
the standard normal distribution as n tends to infinity [6, Theorem 4.2.1]; however, the
limiting variance σ 2

g is typically unknown and has to be substituted with a data-driven
estimate. By constructing

qi ≡ 1
(n−1
m−1

)
∑

1≤i1<···<im−1≤n
il �=i for l=1,...,m−1

h(Xi , Xi1 , . . . , Xim−1), i = 1, . . . , n,

as natural proxies for g(X1), . . . , g(Xn), the most common jackknife estimator for σ 2
g

is

s2n ≡ n − 1

(n − m)2

n∑

i=1

(qi −Un)
2

[1], which gives rise to the Studentized U-statistic

Tn ≡
√
nUn

msn
.

Without any loss of generality, we will assume that

σ 2
g = 1, (3.3)

as one can always replace h(·) and g(·), respectively, by h(·)/σg and g(·)/σg without
changing the definition of Tn . Moreover, for s∗

n defined as

s∗
n
2 ≡ n − 1

(n − m)2

n∑

i=1

q2i ,
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we will also consider the statistic

T ∗
n ≡

√
nUn

ms∗
n

. (3.4)

For any x ∈ R, the event-equivalence relationship

{Tn > x} =

⎧
⎪⎨

⎪⎩
T ∗
n >

x
(
1 + m2(n−1)x2

(n−m)2

)1/2

⎫
⎪⎬

⎪⎭
(3.5)

is known in the literature; see [7, 10] for instance.
We now state a uniform Berry–Esseen bound for Tn and T ∗

n . In the sequel, for any
k ∈ {1, . . . , n} and p ≥ 1, where no ambiguity arises, we may use E[
] and ‖
‖p as
the respective shorthands for E[
(X1, . . . , Xk)] and ‖
(X1, . . . , Xk)‖p, for a given
function 
 : X k −→ R in k arguments. For example, we may use E[|h|3] and ‖h‖3
to, respectively, denote the third absolute moment and 3-norm of h(X1, . . . , Xm)with
inserted data, and E[g2] = ‖g‖22 = σ 2

g = 1 under (3.1) and (3.3).

Theorem 3.1 (Berry–Esseen bound for Studentized U-statistics) Let X1, . . . , Xn be
independent and identically distributed random variables taking value in a measure
space (X , �X ). Assume (3.1)–(3.3) and

E[|h|3] < ∞, (3.6)

then the following Berry–Esseen bound holds:

sup
x∈R

|P(Tn ≤ x) − �(x)| ≤ C
E[|g|3] + m(E[h2] + ‖g‖3‖h‖3)√

n
(3.7)

for a positive absolute constant C; (3.7) also holds with Tn replaced by T ∗
n .

To the best of our knowledge, this bound is the most optimal to date in the following
sense: improving upon the preceding works of [2, 4, 15], for Studentized U-statistics
of degree 2, under the same assumptions as Theorem 3.1, Jing et al. [5, Theorem 3.1]
state a bound of the form

sup
x∈R

|P(Tn ≤ x) − �(x)| ≤ C
E[|h(X1, X2)|3]√

n

for an absolute constant C > 0. In comparison, (3.7) is more optimal for m = 2
because all the moment quantities

E[|g(X1)|3], E[|h(X1, X2)|2] and ‖g(X1)‖3‖h(X1, X2)‖3
from (3.7) are all no larger thanE[|h(X1, X2)|3], given the standardmoment properties
for U-statistics; see (3.10).
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In addition, we remark that the original B–E bound for Studentized U-statistics of
degree 2 in Shao et al. [9, Theorem 4.2 & Remark 4.1] may have been falsely stated.
Given (3.1)–(3.3), for an absolute constant C > 0, they stated a seemingly better
bound (than (3.7)) of the form

sup
x∈R

|P(Tn ≤ x) − �(x)| ≤ C
‖h(X1, X2)‖2 + E[|g(X1)|3]√

n
,

under the weaker assumption (than (3.6)) that ‖g(X1)‖3 ∨ ‖h(X1, X2)‖2 < ∞1.
Unfortunately, the latter assumption is inadequate under the current approach based on
Stein’s method. The main issue is that Shao et al. [9] have ignored crucial calculations
that require forming estimates of the rate O(1/n) for an expectation of the type

E[ξb,1ξb,2h̄2(Xi1 , Xi2)h̄2(X j1 , X j2)],

where 1 ≤ i1 < i2 ≤ n and 1 ≤ j1 < j2 ≤ n are two pairs of sample indices,
and h̄2(·) is the second-order canonical function in the Hoeffding’s decomposition
of Un for m = 2; see (3.9). To do so, we believe one cannot do away with a third
moment assumption on the kernel as in (3.6), where the anxious reader can skip ahead
to Lemma E.1(i i i) and (iv) for a preview of our estimates. Our proof of Theorem 3.1
rectifies such errors; moreover, it generalizes to a kernel of any degree m, for which
the enumerative calculations needed are considerably more involved.

We first set the scene for establishing Theorem 3.1, by letting

ξi = g(Xi )√
n

(3.8)

and defining

h̄k(x1 . . . , xk) = hk(x1 . . . , xk) −
k∑

i=1

g(xi ) for k = 1, . . . ,m, (3.9)

where

hk(x1, . . . , xk) = E[h(X1, . . . , Xm)|X1 = x1, . . . , Xk = xk];

in particular, g(x) = h1(x) and h(x1, . . . , xm) = hm(x1, . . . , xm). An important
property of the functions hk is that

E
[|hk |p

] ≤ E
[|hk′ |p] for any p ≥ 1 and k ≤ k′, (3.10)

1 Actually, the bound claimed in Shao et al. [9, Remark 4.1] is n−1/2(‖h(X1, X2)‖2 +‖g(X1)‖33), but the
omission of the exponent 2 for ‖h(X1, X2)‖2 is itself a typo in that paper.
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which is a consequence of Jensen’s inequality:

E

[
|hk(X1, . . . , Xk)|p

]
= E

[
|E[h(X1, . . . , Xm)|X1, . . . , Xk ]|p

]

= E

[∣∣∣E[hk′ (X1, . . . , Xk′ )|X1, . . . , Xk ]
∣∣∣
p]

≤ E

[
E

[
|hk′(X1, . . . , Xk′ )|p | X1, . . . , Xk

]]
= E

[
|hk′ (X1, . . . , Xk′ )|p

]
.

One can then write the part of (3.4) without the Studentizer s∗
n as

√
nUn

m
= Wn + D1n, (3.11)

where Wn ≡ ∑n
i=1 ξi and

D1n ≡
(
n − 1

m − 1

)−1 ∑

1≤i1<···<im≤n

h̄m(Xi1 , Xi2 , . . . , Xim )√
n

, (3.12)

are considered as the numerator components under the framework of (1.3). To handle
s∗
n , we shall first define

�n,i =
∑

1≤i1<···<im−1≤n
il �=i for l=1,...,m−1

h̄m(Xi , Xi1 , . . . , Xim−1)√
n

and write

qi = 1
(n−1
m−1

)
∑

1≤i1<···<im−1≤n
il �=i for l=1,...,m−1

[
g(Xi ) +

m−1∑

l=1

g(Xil ) + h̄m(Xi , Xi1 , . . . , Xim−1)

]

= √
n

[(
n − m

n − 1

)
ξi + m − 1

n − 1
Wn

]
+

√
n

(n−1
m−1

)�n,i

for each i . By further letting

�2
n =

n∑

i=1

�2
n,i and V 2

n =
n∑

i=1

ξ2i ,
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the sum
∑n

i=1 q
2
i can be consequently written as

n∑

i=1

q2i = n

(
n − m

n − 1

)2

V 2
n +

[
n2

(
m − 1

n − 1

)2

+ 2n(n − m)(m − 1)

(n − 1)2

]
W 2

n

+ n
(n−1
m−1

)2 �2
n + 2n

(
n − m

n − 1

)(
n − 1

m − 1

)−1 n∑

i=1

ξi�n,i + 2n(m − 1)

(n − 1)
(n−1
m−1

)
n∑

i=1

Wn�n,i ,

which implies one can re-express s∗
n
2 as

s∗
n
2 = d2n (V

2
n + δ1n + δ2n) for d2n ≡ n

n − 1
(3.13)

for

δ1n =
[
n(m − 1)2

(n − m)2
+ 2(m − 1)

(n − m)

]
W 2

n + (n − 1)2
(n−1
m−1

)2
(n − m)2

�2
n

+2(n − 1)(m − 1)

(n − m)2
(n−1
m−1

)
n∑

i=1

Wn�n,i (3.14)

and

δ2n ≡ 2(n − 1)

(n − m)

(
n − 1

m − 1

)−1 n∑

i=1

ξi�n,i .

We now present the proof of Theorem 3.1.

Proof of Theorem 3.1 It suffices to consider x ≥ 0 since otherwise one can replace h(·)
by −h(·). Defining

bn = m2(n − 1)

(n − m)2
and an,x = an(x) = 1

(1 + bnx2)1/2
,

we first simplify the problem using the bound

|�̄(xan(x)) − �̄(x)| ≤ min

(
m2(n − 1)x3√
2π(n − m)2

,
2

max(2,
√
2πxan,x )

)
exp

(−x2a2n,x

2

)
,

(3.15)

which will be shown by a “bridging argument” borrowed from Jing et al. [5] at the
end of this section. Then, by the triangular inequality, (3.5) and (3.15),

|P(Tn ≤ x) − �(x)|
= |P(Tn > x) − �̄(x)|
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≤ |P(T ∗
n > xan(x)) − �̄(xan(x))| + |�̄(xan(x)) − �̄(x)|

≤ |P(T ∗
n > xan(x)) − �̄(xan(x))|

+ min

(
m2(n − 1)x3√
2π(n − m)2

,
2

max(2,
√
2πxan,x )

)
exp

(−x2a2n,x

2

)

≤ |P(T ∗
n > xan(x)) − �̄(xan(x))| + C

m2

√
n
, (3.16)

where the last inequality in (3.16) holds as follows: For 0 ≤ x ≤ n1/6, the term

m2(n − 1)x3√
2π(n − m)2

≤ m2(n − 1)
√
n√

2π(n − m)2
≤ m2(n − 1)

√
n√

2π(n − n/2)2
≤ 2

√
2m2

√
πn

.

For n1/6 < x < ∞, since xan(x) is strictly increasing in x ∈ [0,∞), we have that

exp(−x2a2n,x/2) ≤ exp(−n1/3(1 + bnn
1/3)−1/2)

≤ exp

(
− n1/3

2

(
1 + 4m2(n − 1)n1/3

n2

)−1 )

≤︸︷︷︸
by (3.2)

exp

(
− n1/3

2(1 + (2m)4/3)

)
≤ exp

( − n1/3

8m4/3

) ≤ Cm2

√
n

.

Since

m = mE[g2] ≤ E[h2] (3.17)

by (3.3) and a classical U-statistic moment bound [6, Lemma 1.1.4], in light of (3.16),
to prove (3.7) it suffices to show

|P(T ∗
n > x) − �̄(x)| ≤ C

E[|g|3] + m(E[h2] + ‖g‖3‖h‖3)√
n

, (3.18)

as we have claimed to also hold in Theorem 3.1.
Note that since 2|Wn

∑n
i=1 �n,i | ≤ 2

√
n|Wn|�n by Cauchy’s inequality,

2(n − 1)(m − 1)

(n − m)2
(n−1
m−1

)
∣∣∣∣

n∑

i=1

Wn�n,i

∣∣∣∣ ≤ 2

{√
n(m − 1)

n − m
|Wn|

}{
(n − 1)

(n−1
m−1

)
(n − m)

�n

}

≤ n(m − 1)2

(n − m)2
W 2

n + (n − 1)2
(n−1
m−1

)2
(n − m)2

�2
n, (3.19)

and hence we can deduce from (3.14) that

δ1n ≥ 0. (3.20)
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With (3.11) and (3.13), one can then rewrite T ∗
n as

T ∗
n = Wn + D1n

dn
√
V 2
n + δ1n + δ2n

.

Now, consider the related statistic

T̃ ∗
n = Wn + D1n

{max(0, V 2
n,b + δ1n,b + δ2n,b)}1/2

,

with suitably censored components in the denominator defined as

V 2
n,b =

n∑

i=1

ξ2b,i , δ1n,b = min(δ1n, n
−1/2) and δ2n,b = 2(n − 1)

(n − m)

(
n − 1

m − 1

)−1 n∑

i=1

ξb,i�n,i ,

Note that T ∗
n and T̃ ∗

n can be related by the inclusions of events

{T̃ ∗
n ≤ dnx}\E ⊂ {T ∗

n ≤ x} ⊂ {T̃ ∗
n ≤ dnx} ∪ E,

where E ≡ {max1≤i≤n |ξi | > 1} ∪ {|δ1n| > n−1/2}. The latter fact implies

|P(T ∗
n ≤ x) − �(x)| ≤ |P(T̃ ∗

n ≤ dnx) − �(x)| + P(E)

≤ |P(T̃ ∗
n ≤ dnx) − �(x)| +

n∑

i=1

P(|ξi | > 1) + P(|δ1n | > n−1/2)

≤ |P(T̃ ∗
n ≤ dnx) − �(x)| + β2 + √

nE[|δ1n |]

≤ |P(T̃ ∗
n ≤ dnx) − �(x)| + E[|g|3]√

n
+ C

mE[h2]√
n

, (3.21)

with (3.21) coming from β2 ≤ ∑n
i=1 E[ξ3i ] = E[|g|3]/√n, as well as combining

(3.19) with (3.14) as:

E[|δ1n|]

≤ 2

[
m(m − 1)(n − 1)

(n − m)2

]
E[W 2

n ] + 2(n − 1)2
(n−1
m−1

)2
(n − m)2

E[�2
n]

= 2

[
m(m − 1)(n − 1)

(n − m)2

]

+ 2(n − 1)2
(n−1
m−1

)2
(n − m)2

E

⎡

⎢⎣

⎛

⎝
∑

2≤i1<···<im−1≤n

h̄m(X1, Xi1 , . . . , Xim−1)

⎞

⎠
2
⎤

⎥⎦

≤
(
8m

n
+ 4(n − 1)2(m − 1)2

(n − m)2(n − m + 1)m

)
E[h2],

123



Journal of Theoretical Probability

where the last inequality follows from (3.17) and 2m < n, as well as a standard
U-statistic bound in Lemma E.1(i i).

In light of (3.21), to prove (3.18), it suffices to bound |P(T̃ ∗
n ≤ dnx) − �(x)|. To

this end, we first define

Ť ∗∗
n = Wn + D1n

{max(0, V 2
n,b + δ2n,b)}1/2

and

T̂ ∗∗
n = Wn + D1n

{max(0, V 2
n,b + n−1/2 + δ2n,b)}1/2

,

which, by (3.20), have the property

P(Ť ∗∗
n ≤ dnx) ≤ P(T̃ ∗

n ≤ dnx) ≤ P(T̂ ∗∗
n ≤ dnx) (3.22)

Hence, to establish a bound for |P(T̃ ∗
n ≤ dnx) − �(x)|, our strategy is to prove the

same bound for |P(Ť ∗∗
n ≤ dnx) − �(dnx)| and |P(T̂ ∗∗

n ≤ dnx) − �(dnx)|, as well
as using the bound

|�(dnx) − �(x)| = φ(x ′)(dnx − x) ≤ C(dn − 1) ≤ Cn−1/2, (3.23)

coming from the mean value theorem, where x ′ ∈ (x, dnx) and xφ(x ′) is a bounded
function in x ∈ [0,∞). To simplify notation, we will put Ť ∗∗

n and T̂ ∗∗
n under one

umbrella and define their common placeholder

T ∗∗
n = Wn + D1n

(1 + D2n)1/2
, (3.24)

where

D2n ≡ max(−1, V 2
n,b − 1 + (n−1/2|0) + δ2n,b) (3.25)

and for a, b ∈ R, (a|b) represents either a or b; so T ∗∗
n is either T̂ ∗∗

n or Ť ∗∗
n .

Now, we cast (3.25) into the form (2.12) by taking �1 = V 2
n,b −∑n

i=1 E[ξ2b,i ] and

�2 = δ2n,b + (n−1/2|0) −
n∑

i=1

E[(ξ2i − 1)I (|ξi | > 1)] (3.26)

In order to apply Theorem 2.3 to bound |P(T ∗∗
n ≤ dnx) − �(dnx)|, we will let D(i)

1n

and �
(i)
2 , respectively, to be the “leave-one-out” versions of D1n and �2 in (3.12) and
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(3.26) that omit all the terms involving Xi , i.e,

D(i)
1n ≡

(
n − 1

m − 1

)−1 ∑

1≤i1<···<im≤n
il �=i for l=1,...,m

h̄m(Xi1 , Xi2 , . . . , Xim )√
n

(3.27)

and

�
(i)
2 ≡ δ

(i)
2n,b + (n−1/2|0) −

n∑

j=1
j �=i

E[(ξ2j − 1)I (|ξ j | > 1)] (3.28)

for

δ
(i)
2n,b ≡ 2(n − 1)√

n(n − m)

(
n − 1

m − 1

)−1 n∑

j=1
j �=i

ξb, j
∑

1≤i1<···<im−1≤n
il �= j,i for l=1,...,m−1

h̄m(X j , Xi1 , . . . , Xim−1).

We also need the following bounds:

Lemma 3.2 (Moment bounds related to D1n in (3.12)) Let D1n and D(i)
1n be defined

as in (3.12) and (3.27). Under the assumptions of Theorem 3.1, the following hold:

‖D1n‖2 ≤ (m − 1)‖h‖2√
m(n − m + 1)

, (3.29)

and

‖D1n − D(i)
1n ‖2 ≤

√
2(m − 1)‖h‖2√
nm(n − m + 1)

(3.30)

Proof of Lemma 3.2 This is known in the literature. Refer to Chen et al. [3, Lemma
10.1] for a proof. ��
Lemma 3.3 (Moment bounds related to �2 in (3.26)) Consider �2 and �

(i)
2 defined

in (3.26) and (3.28). Under the assumptions of Theorem 3.1, the following bounds
hold:

(i)

‖�2‖2 ≤ C
‖g‖33 + m‖g‖3‖h‖3√

n
,

and
(ii)

‖�2 − �
(i)
2 ‖2 ≤ C

m‖g‖3‖h‖3 + m1.5√‖h‖2
n
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Theproof ofLemma3.3 is deferred toAppendixE.One can then applyTheorem2.3,
along with Lemmas 3.2 and 3.3 as well as (3.17), to give the bound

|P(T ∗∗
n ≤ dnx) − �(dnx)| ≤ C

E[|g|3] + m(‖g‖3‖h‖3 + ‖h‖3/22 )√
n

(3.31)

where we have used the fact that σ 2
g = 1 in (3.3) and σg ≤ ‖h‖2 by virtue of (3.10).

From (3.31), one can establish (3.18) with (3.21)–(3.24) and that ‖h‖3/22 ≤ E[h2].
It remains to finish the proof for (3.15): First, it can be seen that

0 < an,x ≤ 1. (3.32)

Because of (3.32), we have

|xan,x − x | =
∣∣∣∣∣
(a2n,x − 1)x

an,x + 1

∣∣∣∣∣ =
∣∣∣∣

(
bn

1 + bnx2

)(
x3

an,x + 1

)∣∣∣∣ ≤ bnx
3 = m2(n − 1)x3

(n − m)2
,

which implies, by the mean value theorem, that

|�(xan,x ) − �(x)| ≤ φ(xan,x )
m2(n − 1)x3

(n − m)2
= m2(n − 1)x3√

2π(n − m)2
exp

(−x2a2n,x

2

)
.

At the same time, we also have, by the well-known normal tail bound and (3.32),

|�(xan,x ) − �(x)| ≤ �̄(xan,x ) + �̄(x) ≤ 2

max(2,
√
2πxan,x )

exp

(−x2a2n,x

2

)
.

��

Appendix A. Technical Lemmas

The first two lemmas below concern properties of the ξb,i ’s and their sum Wb.

Lemma A.1 (Bound on expectation of ξb,i ) Let ξb,i = ξi I (|ξi | ≤ 1) + 1I (ξi >

1) − 1I (ξi < −1) with E[ξi ] = 0. Then

∣∣E[ξb,i ]
∣∣ ≤ E[ξ2i I (|ξi | > 1)] ≤ E[ξ2i ]

Proof of LemmaA.1
∣∣E[ξb,i ]

∣∣ = |E[(ξi − 1)I (ξi > 1) + (ξi + 1)I (ξi < −1)]|
≤ E[(|ξi | − 1)I (|ξi | > 1)] ≤ E[|ξi |I (|ξi | > 1)] ≤ E[|ξi |2 I (|ξi | > 1)] ≤ E[ξ2i ].

��
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Lemma A.2 (Bennett’s inequality for a sum of censored random variables) Let
ξ1, . . . , ξn be independent random variables with E[ξi ] = 0 for all i = 1, . . . , n
and

∑n
i=1 E[ξ2i ] ≤ 1, and define ξb,i = ξi I (|ξi | ≤ 1) + 1I (ξi > 1) − 1I (ξi < −1).

For any t > 0 and Wb = ∑n
i=1 ξb,i , we have

E[etWb ] ≤ exp
(
e2t/4 − 1/4 + t/2

)

Proof of LemmaA.2 Note that, by Lemma A.1,

E[etWb ] = E[et(Wb−E[Wb])]etE[Wb] ≤ E[et
∑n

i=1(ξb,i−E[ξb,i ])]et .

Moreover, by the standard Bennett’s inequality [3, Lemma 8.1],

E[et
∑n

i=1(ξb,i−E[ξb,i ])] ≤ exp
(
4−1(e2t − 1 − 2t)

)
.

��
The next lemmas concern properties of the solution to the Stein equation, fx in

(2.3). It is customary to define its derivative at x as f ′
x (x) ≡ x fx (x) + �̄(x) so the

Stein equation (2.4) is valid for all w. Moreover, we define

gx (w) = (w fx (w))′ = fx (w) + w f ′
x (w). (A.1)

Precisely,

f ′
x (w) =

⎧
⎨

⎩

(√
2πwew2/2�(w) + 1

)
�̄(x) for w ≤ x(√

2πwew2/2�̄(w) − 1
)

�(x) for w > x
; (A.2)

gx (w) =
⎧
⎨

⎩

√
2π�̄(x)

(
(1 + w2)ew2/2�(w) + w√

2π

)
for w ≤ x

√
2π�(x)

(
(1 + w2)ew2/2�̄(w) − w√

2π

)
for w > x

. (A.3)

Lemma A.3 (Uniform bounds for fx ) For fx and f ′
x , the following bounds are true:

| f ′
x (w)| ≤ 1, 0 < fx (w) ≤ 0.63 and 0 ≤ gx (w) for all w, x ∈ R.

Moreover, for any x ∈ [0, 1], gx (w) ≤ 2.3 for all w ∈ R.

Lemma A.4 (Nonuniform bounds for fx when x ≥ 1) For x ≥ 1, the following are
true:

fx (w) ≤

⎧
⎪⎨

⎪⎩

1.7e−x for w ≤ x − 1

1/x for x − 1 < w ≤ x

1/w for x < w

(A.4)
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and

| f ′
x (w)| ≤

⎧
⎪⎨

⎪⎩

e1/2−x for w ≤ x − 1

1 for x − 1 < w ≤ x

(1 + x2)−1 for w > x

. (A.5)

Moreover, gx (w) ≥ 0 for all w ∈ R,

gx (w) ≤
{
1.6 �̄(x) for w ≤ 0

1/w for w > x
, (A.6)

and gx (w) is increasing for 0 ≤ w ≤ x with

gx (x − 1) ≤ xe1/2−x and gx (x) ≤ x + 2.

We remark that the nonuniform bounds in Lemma A.4 refine the ones previously
collected in Shao et al. [9, Lemma 5.3]; as an aside, a property analogous to (A.5) has
been incorrectly stated in Shao et al. [9] without the absolute signs | · | around f ′

x (w).
The proofs below repeatedly use the well-known inequality [3, p.16 & 38]

we−w2/2

(1 + w2)
√
2π

≤ �̄(w) ≤ min

(
1

2
,

1

w
√
2π

)
e−w2/2 for w > 0. (A.7)

Proof of LemmaA.3 The bounds for fx and f ′
x , and that gx (w) ≥ 0, are well known;

see Chen et al. [3, Lemma 2.3]. We will show that gx in (A.3) is less than 2.3 when
x ∈ [0, 1]. Using (A.7), for w > x , we have

gx (w) ≤ √
2π�(x)

(
(1 + w2)ew2/2�̄(w) − w√

2π

)

≤ √
2π�(x)

(
1

2
+ w√

2π
− w√

2π

)
≤

√
2π�(x)

2
≤ 2.

For 0 ≤ w ≤ x ,

gx (w) = √
2π�̄(x)

(
(1 + w2)ew2/2�(w) + w√

2π

)

≤ √
2π�̄(x)

(
(1 + x2)ex

2/2�(x) + x√
2π

)

≤
{(√

2π

2
+ x

)
�(x) + e−x2/2

√
2π

}
∨

(√
2π�̄(0) · �(0)

)

≤
{(√

2π

2
+ 1

)
�(1) + 1√

2π

}
∨ 0.63 ≤ 2.3.
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For w < 0,

√
2π�̄(x)

(
(1 + w2)ew

2/2�(w) + w√
2π

)
≤ √

2π�̄(x)

(
1

2
+ |w|√

2π
− |w|√

2π

)
≤ 1.26.

��
Proof of LemmaA.4 Proof of (A.4) by investigating (2.3): When w ≤ 0, by (A.7),
x2 ≥ 2x − 1, and the symmetry of φ(·), we have that

fx (w) ≤ ew2/2�(w)
e−x2/2

x
≤ e−x2/2

2x
≤ e−x+1/2

2
≤ 0.9e−x .

When 0 < w ≤ x − 1, by (A.7), we have

fx (w) ≤ e(x−1)2/2�(w)
e−x2/2

x
= �(w)e−x+1/2 ≤ 1.7e−x .

When x − 1 < w ≤ x , by (A.7), we have

fx (w) ≤ e(w2−x2)/2�(w)

x
≤ 1

x
.

When w > x , by (A.7), we have

fx (w) ≤ �(x)

w
≤ 1

w
.

Proof of (A.5) by investigating (A.2): When w ≤ 0, by the symmetry of φ(·),
(A.7) and x2 ≥ 2x − 1, we have

0 = 0 · �̄(x) ≤ f ′
x (w) ≤

(
1

1 + w2

)
e−x+1/2

√
2π

≤ 0.4e1/2−x .

When 0 < w ≤ x − 1, by (A.7) and x2 ≥ 2x − 1,

0 ≤ f ′
x (w) ≤

(√
2π(x − 1)e

(x−1)2
2 + 1

)
e−x2/2

x
√
2π

≤
(
x − 1

x
+ 1

x
√
2π

)
e1/2−x ≤ e1/2−x ,

as
(
x−1
x + 1

x
√
2π

)
is increasing as a function in x on [1,∞). When x − 1 < w ≤ x ,

by (A.7) we have

0 ≤ f ′
x (w) = �(w)

√
2πwew2/2�̄(x)︸ ︷︷ ︸

≤1

+�̄(x) ≤ 1.
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When w > x , since
√
2πwew2/2�̄(w) ≤ 1 by (A.7), hence f ′

x (w) ≤ 0. Moreover, by
applying (A.7) again, we have

−1

x2 + 1
≤

(
w2

w2 + 1
− 1

)
�(x) ≤ f ′

x (w) ≤ 0.

Proof of (A.6) by investigating (A.3): When w < 0, by the symmetry of φ and
(A.7),

0 = √
2π�̄(x) · 0 ≤ gx (w) ≤

(
min

(
1 + w2

|w| ,
(1 + w2)

√
2π

2

)
+ w

)
�̄(x) ≤ 1.6�̄(x),

where the last inequality uses the facts that (1+w2)
√
2π

2 +w ≤ 1.6 for w ∈ [−1, 0] and
that 1+w2

|w| + w = 1/|w|2 ≤ 1 for w < −1. When w > x , by (A.7),

0 ≤ √
2π�(x) · 0 ≤ gx (w) ≤ �(x)

(
1 + w2

w
− w

)
= �(x)

w
≤ 1/w.

When 0 ≤ w ≤ x , it is easy to see that gx (w) is non-negative and increasing in w.
Moreover, from (A.7) and x2 ≥ 2x − 1,

gx (x − 1) = √
2π�̄(x)

(
(2 + x2 − 2x)ex

2/2−x+1/2�(x − 1) + x − 1√
2π

)

≤ (2 + x2 − 2x)

x
e1/2−x�(x − 1) + x − 1

x
√
2π

e−x2/2

≤ (4 + 2x2 − 4x)

2x
e1/2−x + x − 1

2x
e1/2−x

≤
(
x − 3

2
+ 3

2x

)
e1/2−x ≤ xe1/2−x .

Lastly, by (A.7), it is easy to see that

gx (x) = √
2π�̄(x)

(
(1 + x2)ex

2/2�(x) + x√
2π

)

≤ 1 + x2

x
�(x) + e−x2/2

√
2π

≤
(
1

x
+ x

)
+ 1

2
≤ x + 2

��
Lemma A.5 (Bound on expectation of f ′

x (W
(i)
b + t)) Let x ≥ 1, t ∈ R, and W (i)

b be as
defined in Sect. 1 under the assumptions (1.2). Then there exists an absolute constant
C > 0 such that

∣∣∣E[ f ′
x (W

(i)
b + t)]

∣∣∣ ≤ C(e−x + e−x+t ).
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Proof of LemmaA.5 From (A.5) in Lemma A.4, we have

|E[ f ′
x (W

(i)
b + t)]| ≤ e1/2−x + E[I (W (i)

b + t > x − 1)]
≤ e1/2−x + e1−x+t

E[eW (i)
b ]

and then apply the Bennett inequality in Lemma A.2. ��

Appendix B. Exponential Randomized Concentration Inequality for a
Sum of Censored Variables

Lemma B.1 (Exponential randomized concentration inequality for a sum of censored
random variables) Let ξ1, . . . , ξn be independent random variables with mean zero
and finite second moments, and for each i = 1, . . . , n, define

ξb,i = ξi I (|ξi | ≤ 1) + 1I (ξi > 1) − 1I (ξi < −1),

an upper-and-lower censored version of ξi ; moreover, let W = ∑n
i=1 ξi and Wb =∑n

i=1 ξb,i be their corresponding sums, and �1 and �2 be two random variables on
the same probability space. Assume there exists c1 > c2 > 0 and δ ∈ (0, 1/2) such
that

n∑

i=1

E[ξ2i ] ≤ c1

and

n∑

i=1

E[|ξi |min(δ, |ξi |/2)] ≥ c2.

Then for any λ ≥ 0, it is true that

E[eλWb I (�1 ≤ Wb ≤ �2)]

≤
(
E

[
e2λWb

])1/2
exp

(
− c22
16c1δ2

)

+ 2eλδ

c2

{ n∑

i=1

E[|ξb,i |eλW (i)
b (|�1 − �

(i)
1 | + |�2 − �

(i)
2 |)]

+ E[|Wb|eλWb (|�2 − �1| + 2δ)]

+
n∑

i=1

∣∣∣E[ξb,i ]
∣∣∣E[eλW (i)

b (|�(i)
2 − �

(i)
1 | + 2δ)]

}
,
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where�
(i)
1 and�

(i)
2 are any random variables on the same probability space such that

ξi and (�
(i)
1 ,�

(i)
2 ,W (i),W (i)

b ) are independent, where W (i) = W − ξi and W (i)
b =

Wb − ξb,i .
In particular, by definingβ2 ≡ ∑n

i=1 E[ξ2i I (|ξi | > 1)]andβ3 ≡ ∑n
i=1 E[ξ3i I (|ξi | ≤

1)], if ∑n
i=1 E[ξ2i ] = 1 and β2 + β3 ≤ 1/2, one can take

δ = β2 + β3

4
, c1 = 1 and c2 = 1

4
(B.1)

to satisfy the conditions of the inequality.

Proof of Lemma B.1 It suffices to show the lemma under the assumptions that

�1 ≤ �2 and �
(i)
1 ≤ �

(i)
2 . (B.2)

If (B.2) is not true, we can let �∗
1 = min(�1,�2), �∗

2 = max(�1,�2), �∗
1
(i) =

min(�(i)
1 ,�

(i)
2 ), �∗

2
(i) = max(�(i)

1 ,�
(i)
2 ). Then the assumptions in (B.2) can be seen

to be not forgoing any generality by noting that |�∗
2 − �∗

1| = |�2 − �1| (also
|�∗

2
(i) − �∗

1
(i)| = |�(i)

2 − �
(i)
1 |),

E[eλWb I (�1 ≤ Wb ≤ �2)] ≤ E[eλWb I (�∗
1 ≤ Wb ≤ �∗

2)]

and

|�∗
1 − �∗

1
(i)| + |�∗

2 − �∗
2
(i)| ≤ |�1 − �

(i)
1 | + |�2 − �

(i)
2 |, (B.3)

where (B.3) is true by the following fact: If we have real numbers x1 ≤ x2 and y1 ≤ y2,
it must be that

|x1 − y1| + |x2 − y2| ≤ |x1 − y2| + |x2 − y1|. (B.4)

Without loss of generality, one can assume x1 ≤ y1 and simply prove (B.4) by case
considerations:

(i) If x1 ≤ x2 ≤ y1 ≤ y2, then

|x1 − y1| + |x2 − y2| = y1 − x1 + y2 − x2
= y2 − x1 + y1 − x2 = |x1 − y2| + |x2 − y1|.

(ii) If x1 ≤ y1 ≤ x2 ≤ y2, , then

|x1 − y1| + |x2 − y2| = y1 − x1 + y2 − x2
≤ y2 − x1 ≤ |x1 − y2| + |x2 − y1|.
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(iii) If x1 ≤ y1 ≤ y2 ≤ x2, , then

|x1 − y1| + |x2 − y2| = y1 − x1︸ ︷︷ ︸
≤y2−x1

+ x2 − y2︸ ︷︷ ︸
≤x2−y1

≤ |x1 − y2| + |x2 − y1|.

More generally, a fact like (B.4) can be proved by the rearrangement inequality [11,
p.78], but the details are omitted here.

Under the working assumptions in (B.2), for a < b, we define the function

fa,b(w) =

⎧
⎪⎨

⎪⎩

0 for w ≤ a − δ

eλw(w − a + δ) for a − δ < w ≤ b + δ

eλw(b − a + 2δ) for w > b + δ

,

which has the property

| fa,b(w) − fa1,b1(w)| ≤ eλw(|a − a1| + |b − b1|) for all w, a < b and a1 < b1,

(B.5)

as well as

f ′
a,b(w) ≥ 0 almost surely.

Moreover, we have

I1 + I2 = E[Wb f�1,�2(Wb)] −
n∑

i=1

E[ξb,i ]E[ f
�

(i)
1 ,�

(i)
2

(W (i)
b ))] (B.6)

where

I1 ≡
n∑

i=1

E

[
ξb,i

(
f�1,�2(Wb) − f�1,�2(W

(i)
b )

)]
and

I2 ≡
n∑

i=1

E

[
ξb,i

(
f�1,�2(W

(i)
b ) − f

�
(i)
1 ,�

(i)
2

(W (i)
b )

)]
.

Given the property in (B.5), we have

|I2| ≤
n∑

i=1

E

[
|ξb,i |eλW (i)

b

(
|�1 − �

(i)
1 | + |�2 − �

(i)
2 |

)]
. (B.7)
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Now we estimate I1, by first rewriting it as

I1 =
n∑

i=1

E

[
ξb,i

(
f�1,�2(Wb) − f�1,�2(W

(i)
b )

)]

=
n∑

i=1

E

[
ξb,i

∫ 0

−ξb,i

f ′
�1,�2

(Wb + t)dt

]
=

n∑

i=1

E

[∫ ∞

−∞
f ′
�1,�2

(Wb + t)K̂i (t)dt

]
,

where

K̂i (t) ≡ ξb,i {I (−ξb,i ≤ t ≤ 0) − I (0 < t ≤ −ξb,i )}.

Note that ξb,i and I (−ξb,i ≤ t ≤ 0) − I (0 < t ≤ −ξb,i ) have the same sign, and it is
also true that 0 ≤ K̃i (t) ≤ K̂i (t) where

K̃i (t) = ξb,i {I (−ξb,i/2 ≤ t ≤ 0) − I (0 < t ≤ −ξb,i/2)}

By the fact that f ′
�1,�2

(w) ≥ eλw ≥ 0 for all w ∈ (�1 − δ,�2 + δ), one can lower
bound I1 as

I1 ≥
n∑

i=1

E

[∫ ∞

−∞
f ′
�1,�2

(Wb + t)K̃i (t)dt

]

≥
n∑

i=1

E

[∫

|t |≤δ

I (�1 ≤ Wb ≤ �2) f
′
�1,�2

(Wb + t)K̃i (t)dt

]

≥
n∑

i=1

E

[
I (�1 ≤ Wb ≤ �2)e

λ(Wb−δ)|ξb,i |min(δ, |ξb,i |/2)
]

= E

[
I (�1 ≤ Wb ≤ �2)e

λ(Wb−δ)

(
n∑

i=1

ηi

)]
,

where ηi = |ξi |min(δ, |ξi |/2), noting that given δ < 1/2, min(δ, |ξi |/2) =
min(δ, |ξb,i |/2) due to the censoring definition of ξb,i . Hence, continuing, we can
further lower bound I1 as

I1 ≥ (c2/2)E

[
eλ(Wb−δ) I (�1 ≤ Wb ≤ �2)I

(
n∑

i=1

ηi ≥ c2/2

)]

≥ c2
2eλδ

{
E

[
eλWb I (�1 ≤ Wb ≤ �2)

]
− E

[
eλWb I

(
n∑

i=1

ηi < c2/2

)]}

≥ c2
2eλδ

⎧
⎨

⎩E

[
eλWb I (�1 ≤ Wb ≤ �2)

]
−

√√√√E
[
e2λWb

]
P

(
n∑

i=1

ηi < c2/2

)⎫
⎬

⎭
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≥ c2
2eλδ

{
E[eλWb I (�1 ≤ Wb ≤ �2)] −

(
E

[
e2λWb

])1/2
exp

(
− c22
16c1δ2

)}
,

(B.8)

where the last inequality comes from the sub-Gaussian lower tail bound for sum of
non-negative random variables [14, Theorem 2.19],

P

(
n∑

i=1

ηi < c2/2

)
≤ exp

(
− (c2/2)2

2
∑n

i=1 E[η2i ]

)
≤ exp

(
− c22
8c1δ2

)
.

Clearly, since | f�1,�2(w)| ≤ eλw(�2 − �1 + 2δ), we have, from (B.6),

I1 + I2 ≤ E[|Wb|eλWb (|�2 − �1| + 2δ)]
+

n∑

i=1

∣∣∣E[ξb,i ]
∣∣∣E[eλW (i)

b (|�(i)
2 − �

(i)
1 | + 2δ)] (B.9)

Combining (B.7), (B.8) and (B.9), the proof is done.
If

∑n
i=1 E[ξ2i ] = 1 and β2 + β3 ≤ 1/2, one can apparently take c1 = 1. The

parameter choices of c2 and δ in (B.1) can be justified as follows: Using the fact that
[3, p.259]

min(x, y) ≥ y − y2

4x
for x > 0 and y ≥ 0,

by taking δ = (β2 + β3)/4, we have

n∑

i=1

E[|ξi |min(δ, |ξi |/2)] ≥
n∑

i=1

E[|ξi |I (|ξi | ≤ 1)min(δ, |ξi |/2)]

≥
n∑

i=1

[
E[ξ2i I (|ξi | ≤ 1)]

2
− E[|ξi |3 I (|ξi | ≤ 1)]

16δ

]
= 1 − β2

2
− β3

16δ

= 1

2
− 8δβ2 + β3

16δ
≥︸︷︷︸

δ≤1/8

1

2
− β2 + β3

16δ
= 1

4
.

��

Appendix C. Proof of Theorem 2.1

This section presents the proof of Theorem 2.1. The approach is similar to that of Shao
et al. [9, Theorem 3.1], but there are quite a number of differences stemming from
correcting the numerous gaps in the latter. It suffices to consider x ≥ 0, or else we can
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consider −TSN instead2. Moreover, without loss of generality, we can assume

β2 + β3 < 1/2; (C.1)

otherwise, it must be true that |P(TSN ≤ x) − �(x)| ≤ 2(β2 + β3). Since

1 + s/2 − s2/2 ≤ (1 + s)1/2 ≤ 1 + s/2 for all s ≥ −1,

we have the two inclusions

{TSN > x} ⊂ {Wn + D1n − xD2n/2 > x} ∪ {x + x(D2n − D2
2n)/2

< Wn + D1n ≤ x + xD2n/2}

and

{TSN > x} ⊃ {Wn + D1n − xD2n/2 > x}.

Hence, it suffices to establish the bounds

P(x + x(D2n − D2
2n)/2 ≤ Wn + D1n ≤ x + xD2n/2) ≤

2∑

j=1

P(|Djn| > 1/2)

+C

{
β2 + β3 + E

[
(1 + eWb )D̄2

2n

]

+
2∑

j=1

n∑

i=1

‖ξb,i eW
(i)
b /2(D̄ jn − D̄(i)

jn )‖1
}

(C.2)

and

|P(Wn + D1n − xD2n/2 ≤ x) − �(x)| ≤
2∑

j=1

P(|Djn| > 1/2)

+C

{
β2 + β3 + ‖D̄1n‖2 + E

[
(1 + eWb )D̄2

2n

]

+
∣∣∣xE[D̄2n fx (Wb)]

∣∣∣

+
2∑

j=1

n∑

i=1

(
E[ξ2b,i ]

∥∥∥(1 + eW
(i)
b )(D̄ jn − D̄(i)

jn )

∥∥∥
1

+
∥∥∥ξb,i (1 + eW

(i)
b /2)(D̄ jn − D̄(i)

jn )

∥∥∥
1

)}
(C.3)

2 For a given x < 0, if one can uniformly bound |P(TSN < x + ε) − �(x + ε)| for all ε ∈ (x, 0), one can
then similarly bound |P(TSN ≤ x) − �(x)| by taking limits on both sides as ε −→ 0.
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separately. Before starting to prove them, we introduce the following notation:

�̄1n,x = x(D̄2n − D̄2
2n)

2
− D̄1n and �̄2n,x = x D̄2n

2
− D̄1n .

C.1 Proof of (C.2)

We further introduce

�̄
(i)
1n,x = x(D̄(i)

2n − (D̄(i)
2n )2)

2
− D̄(i)

1n and �̄
(i)
2n,x = x D̄(i)

2n

2
− D̄(i)

1n .

Noting that

P
(
x + x(D2n − D2

2n)/2 ≤ Wn + D1n ≤ x + xD2n/2
)

≤ P0 +
2∑

j=1

P(|Djn| > 1/2) + β2, (C.4)

where

P0 = P(x + �̄1n,x ≤ Wb ≤ x + �̄2n,x ),

it suffices to bound P0. Since D̄2n − D̄2
2n ≥ −3/4 and hence 1

2 (x + �̄1n,x ) ≥ 1
2 (

5x
8 −

1
2 ) > x

4 − 1
4 , in light of (C.1), applying Lemma B.1 with the parameters in (B.1) and

λ = 1/2 implies that

ex/4−1/4P0 ≤ E[eWb/2 I (x + �̄1n,x ≤ Wb ≤ x + �̄2n,x )]
≤

(
E

[
eWb

])1/2
exp

(
− 1

16(β2 + β3)
2

)

+ 8e(β2+β3)/8
{ n∑

i=1

E

[
|ξb,i |eW

(i)
b /2

(
|�̄1n,x − �̄

(i)
1n,x | + |�̄2n,x − �̄

(i)
2n,x |

)]

+ E

[
|Wb|eWb/2

(
|�̄2n,x − �̄1n,x | + β2 + β3

2

)]

+
n∑

i=1

∣∣∣E[ξb,i ]
∣∣∣E

[
eW

(i)
b /2

(
|�̄(i)

2n,x − �̄
(i)
1n,x | + β2 + β3

2

)]}
(C.5)

We will bound different terms on the right-hand side of (C.5). First,

E[eWb ] ≤ exp(e2/4 + 1/4) by Lemma A.2 (C.6)
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and

exp

( −1

16(β2 + β3)2

)
≤ C(β2 + β3). (C.7)

Since D̄2
2n − (D̄(i)

2n )2 = (D̄2n − D̄(i)
2n )(D̄2n + D̄(i)

2n ),

E[|ξb,i |eW
(i)
b /2(|�̄1n,x − �̄

(i)
1n,x | + |�̄2n,x − �̄

(i)
2n,x |)]

≤ CE[|ξb,i |eW
(i)
b /2(|D̄1n − D̄(i)

1n | + x |D̄2n − D̄(i)
2n |)]. (C.8)

Moreover, since |Wb|
2 ≤ e|Wb|/2 ≤ eWb/2 + e−Wb/2, by Lemma A.2,

E

[
|Wb|eWb/2

(
|�̄2n,x − �̄1n,x | + β2 + β3

2

)]

≤ C1xE[(1 + eWb )D̄2
2n] + C2(β2 + β3). (C.9)

Lastly, by Lemma A.1, Bennett’s inequality (Lemma A.2) and (C.1), we have

n∑

i=1

∣∣∣E[ξb,i ]
∣∣∣E

[
eW

(i)
b /2

(
|�̄(i)

2n,x − �̄
(i)
1n,x | + β2 + β3

2

)]

≤ C
n∑

i=1

∣∣∣E[ξb,i ]
∣∣∣
(
xE[eW (i)

b /2(D̄(i)
2n )2] + β2 + β3

)

︸ ︷︷ ︸
≤ C(1+x)

≤ C(1 + x)β2. (C.10)

Collecting (C.4)–(C.10), we get (C.2).

C.2 Proof of (C.3)

For this part, as a proof device,we let X∗
1, . . . , X

∗
n be independent copies of X1, . . . , Xn

and in analogy to (1.4), we introduce

D1n,i∗ = D1n(X1, . . . , Xi−1, X
∗
i , Xi+1, . . . , Xn) and

D2n,i∗ = D2n(X1, . . . , Xi−1, X
∗
i , Xi+1, . . . , Xn),

D̄1n,i∗ = D1n,i∗ I

(
|D1n,i∗ | ≤ 1

2

)
+ 1

2
I

(
D1n,i∗ >

1

2

)
− 1

2
I

(
D1n,i∗ < −1

2

)
and

D̄2n,i∗ = D2n,i∗ I

(
|D2n,i∗ | ≤ 1

2

)
+ 1

2
I

(
D2n,i∗ >

1

2

)
− 1

2
I

(
D2n,i∗ < −1

2

)
,

as well as

�̄2n,x,i∗ = x D̄2n,i∗

2
− D̄1n,i∗ ,
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which are correspondingly versions of D1n , D2n , D̄1n , D̄2n and �̄2n,x with X∗
i replac-

ing Xi as input. For any pair 1 ≤ i, i ′ ≤ n and j ∈ {1, 2}, we also define

D(i ′)
jn,i∗ ≡

⎧
⎪⎨

⎪⎩

D(i ′)(X1, . . . , Xi−1, X∗
i , Xi+1, . . . , Xi ′−1, Xi ′+1, . . . , Xn) if i < i ′

D(i ′)(X1, . . . , Xi ′−1, Xi ′+1, . . . , Xi−1, X∗
i , Xi+1, . . . , Xn) if i > i ′

D(i ′)(X1, . . . , Xi−1, Xi+1, . . . , Xn) if i = i ′
,

i.e., D(i ′)
jn,i∗ is a version of the “leave-one-out” D(i ′)

jn with X∗
i replacing Xi as input,

and its censored version

D̄(i ′)
jn,i∗ ≡ D(i ′)

jn,i∗ I

(
|D(i ′)

jn,i∗ | ≤ 1

2

)
+ 1

2
I

(
D(i ′)

jn,i∗ >
1

2

)
− 1

2
I

(
D(i ′)

jn,i∗ < −1

2

)
.

It suffices to bound |P(Wb − �̄2n,x ≤ x) − �(x)| since

|P(Wn − �2n,x ≤ x) − �(x)| ≤ |P(Wb − �̄2n,x ≤ x)

−�(x)| + β2 +
2∑

j=1

P(|Djn| > 1/2).(C.11)

First, define the K function

kb,i (t) = E[ξb,i {I (0 ≤ t ≤ ξb,i ) − I (ξb,i ≤ t < 0)}],

which has the properties

∫ ∞

−∞
kb,i (t)dt =

∫ 1

−1
kb,i (t)dt = E[ξ2b,i ] = ‖ξb,i‖22 and

∫ ∞

−∞
|t |kb,i (t)dt =

∫ 1

−1
|t |kb,i (t)dt = E[|ξb,i |3]

2
= ‖ξb,i‖33

2
. (C.12)

Since

E

[ ∫ 1

−1
f ′
x (W

(i)
b − �̄2n,x,i∗ + t)kb,i (t)dt

]

= E

[
ξb,i { fx (Wb − �̄2n,x,i∗) − fx (W

(i)
b − �̄2n,x,i∗)}

]

by independence and the fundamental theorem of calculus, from the Stein equation
(2.4), one can then write

P(Wb − �̄2n,x ≤ x) − �(x)

= E[ f ′
x (Wb − �̄2n,x )] − E[Wb fx (Wb − �̄2n,x )]

+ E

[
�̄2n,x

(
fx (Wb − �̄2n,x ) − fx (Wb)

)]
+ E[�̄2n,x fx (Wb)]

123



Journal of Theoretical Probability

=
n∑

i=1

E

[ ∫ 1

−1
{ f ′

x (Wb − �̄2n,x ) − f ′
x (W

(i)
b − �̄2n,x,i∗ + t)}kb,i (t)dt

]

︸ ︷︷ ︸
R1

+
n∑

i=1

E[(ξ2i − 1)I (|ξi | > 1)]E[ f ′
x (Wb − �̄2n,x )] −

n∑

i=1

E[ξb,i fx (W (i)
b − �̄2n,x,i∗ )] + E[�̄2n,x fx (Wb)]

︸ ︷︷ ︸
R2

+
{

−
n∑

i=1

E

[
ξb,i

{
fx (Wb − �̄2n,x ) − fx (Wb − �̄2n,x,i∗ )

}]}

︸ ︷︷ ︸
R3

+ E

[
�̄2n,x

∫ −�̄2n,x

0
f ′
x (Wb + t)dt

]

︸ ︷︷ ︸
R4

= R1 + R2 + R3 + R4.

To finish the proof, we will establish the following bounds for R1, R2, R3, R4:

|R1| ≤ C

{
β2 + β3 +

2∑

j=1

n∑

i=1

(
E[ξ2b,i ]

∥∥∥(1 + eW
(i)
b )(D̄ jn − D̄(i)

jn )

∥∥∥
1

+
∥∥∥ξb,i e

W (i)
b /2(D̄ jn − D̄(i)

jn )

∥∥∥
1

)}
(C.13)

|R2| ≤ 1.63β2 + 0.63‖D̄1n‖2 +
∣∣∣
x

2
E[D̄2n fx (Wb)]

∣∣∣, (C.14)

|R3| ≤ C
2∑

j=1

n∑

i=1

‖ξb,i (1 + eW
(i)
b /2)(D̄ jn − D̄(i)

jn )‖1, (C.15)

|R4| ≤ C
(
‖D̄1n‖2 + E[(1 + eWb )D̄2

2n]
)
. (C.16)

Then (C.13)–(C.16) together with (C.11) conclude (C.3).

C.2.1 Bound for R1

Let gx (w) = (w fx (w))′ as defined in (A.1). By the Stein equation (2.4) and defining
η1 = t − �̄2n,x,i∗ and η2 = ξb,i − �̄2n,x , we can write

R1 = R11 + R12,

where

R11 =
n∑

i=1

∫ 1

−1
E

[ ∫ ξb,i−�̄2n,x

t−�̄2n,x,i∗
gx (W

(i)
b + u)du

]
kb,i (t)dt
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=
n∑

i=1

∫ 1

−1
E

[ ∫
gx (W

(i)
b + u)I (η1 ≤ u ≤ η2)du

]
kb,i (t)dt

︸ ︷︷ ︸
R11.1

−
n∑

i=1

∫ 1

−1
E

[ ∫
gx (W

(i)
b + u)I (η2 ≤ u ≤ η1)du

]
kb,i (t)dt

︸ ︷︷ ︸
R11.2

and

R12 =
n∑

i=1

∫ 1

−1
{P(Wb − �̄2n,x ≤ x) − P(W (i)

b − �̄2n,x,i∗ + t ≤ x)}kb,i (t)dt .

For 0 ≤ x < 1, since |gx | ≤ 2.3 (Lemma A.3), using the properties in (C.12), we
have

|R11| ≤ C
n∑

i=1

∫ 1

−1

(
|t | + ‖ξb,i‖1 +

2∑

j=1

‖D̄ jn − D̄ jn,i∗‖1
)
kb,i (t)dt

≤ C

⎛

⎝
n∑

i=1

‖ξb,i‖33 +
n∑

i=1

‖ξb,i‖22‖ξb,i‖1 +
2∑

j=1

n∑

i=1

‖ξb,i‖22‖D̄ jn − D̄ jn,i∗‖1
⎞

⎠

≤ C

⎛

⎝β2 + β3 +
2∑

j=1

n∑

i=1

‖ξb,i‖22‖D̄ jn − D̄ jn,i∗‖1
⎞

⎠ for 0 ≤ x < 1, (C.17)

where we have used ‖ξb,i‖1 ≤ ‖ξb,i‖2 ≤ ‖ξb,i‖3 and

‖ξb,i‖33 = E[|ξ3i |I (|ξi | ≤ 1)] + E[I (|ξi | > 1)]
≤ E[|ξ3i |I (|ξi | ≤ 1)] + E[ξ2i I (|ξi | > 1)] (C.18)

in the last inequality.
For x ≥ 1, we first bound the integrand of R11.1. Using the identity

1 = I (W (i)
b + u ≤ x − 1) + I (x − 1 < W (i)

b + u, u ≤ 3x/4)

+ I (x − 1 < W (i)
b + u, u > 3x/4)

≤ I (W (i)
b + u ≤ x − 1) + I (x − 1 < W (i)

b + u,W (i)
b + 1 > x/4)

+ (x − 1 < W (i)
b + u, u > 3x/4)
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and the bounds for gx (·) in Lemma A.4, in light of |�̄2n,x | ≤ x |D̄2n |
2 + |D̄1n| ≤ 1

2 + x
4

and 1.6�̄(x) ≤ xe1/2−x ,

∣∣∣∣E
[ ∫

gx (W
(i)
b + u)I (η1 ≤ u ≤ η2)du

]∣∣∣∣

≤ xe1/2−x‖η2 − η1‖1 + (x + 2)
{
‖I (W (i)

b + 1 > x/4)(η2 − η1)‖1
+ ‖I (η2 > 3x/4)(η2 − η1)‖1

}

≤ xe1/2−x‖η2 − η1‖1 + x + 2

ex/4−1 ‖eW (i)
b (η2 − η1)‖1 + x + 2

e3x/4
‖eξb,i−�̄2n,x (η2 − η1)‖1

≤
(
xe1/2−x + e3/2(x + 2)

ex/2

)
‖η2 − η1‖1 + x + 2

ex/4−1 ‖eW (i)
b (η2 − η1)‖1

≤ C(x + 2)

ex/4

{
|t | + ‖�̄2n,x,i∗ − �̄2n,x + ξb,i‖1 + ‖eW (i)

b (�̄2n,x,i∗ − �̄2n,x + ξb,i )‖1
}

where we have used the Bennett’s inequality (Lemma A.2) via ‖eW (i)
b t‖1 ≤ C |t |.

Continuing,

∣∣∣∣E
[ ∫

gx (W
(i)
b + u)I (η1 ≤ u ≤ η2)du

]∣∣∣∣

≤ C(x + 2)

ex/4

{
|t | + ‖x(D̄2n,i∗ − D̄2n) − (D̄1n,i∗ − D̄1n) + ξb,i‖1

+ ‖eW (i)
b [x(D̄2n,i∗ − D̄2n) − (D̄1n,i∗ − D̄1n) + ξb,i ]‖1

}

≤ C

{
|t | + (1 + ‖eW (i)

b ‖2)‖ξb,i‖2 +
2∑

j=1

‖(1 + eW
(i)
b )(D̄ jn,i∗ − D̄ jn)‖1

}

≤ C

{
|t | + ‖ξb,i‖2 +

2∑

j=1

‖(1 + eW
(i)
b )(D̄ jn,i∗ − D̄ jn)‖1

}
, (C.19)

where the last inequality uses Bennett’s inequality (LemmaA.2 giving ‖eW (i)
b ‖2 ≤ C).

By a completely analogous argument, we also have the bound

∣∣∣∣E
[ ∫

gx (W
(i)
b + u)I (η2 ≤ u ≤ η1)du

]∣∣∣∣

≤ C

{
|t | + ‖ξb,i‖2 +

2∑

j=1

‖(1 + eW
(i)
b )(D̄ jn,i∗ − D̄ jn)‖1

}
. (C.20)
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for the integrand of R11.2, for x ≥ 1. Combining (C.19) and (C.20), as well as the
integral and moment properties in (C.12) and (C.18), via integrating over t , we have

|R11| ≤ C

{
β2 + β3 +

n∑

i=1

‖ξb,i‖22
(

‖ξb,i‖2 +
2∑

j=1

‖(1 + eW
(i)
b )(D̄ jn,i∗ − D̄ jn)‖1

)}

≤ C

{
β2 + β3 +

2∑

j=1

n∑

i=1

‖ξb,i‖22
∥∥∥(1 + eW

(i)
b )(D̄ jn,i∗ − D̄ jn)

∥∥∥
1

}
for x ≥ 1,

(C.21)

where the last inequality also uses ‖ξb,i‖32 ≤ ‖ξb,i‖33 and (C.18). Combining (C.21)
with the bound for x ∈ [0, 1) in (C.17), we get, for all x ≥ 0,

|R11| ≤ C

{
β2 + β3 +

2∑

j=1

n∑

i=1

E[ξ2b,i ]
∥∥(1 + eW

(i)
b )(D̄ jn − D̄ jn,i∗)

∥∥
1

}

= C

{
β2 + β3 +

2∑

j=1

n∑

i=1

E[ξ2b,i ]
∥∥(1 + eW

(i)
b )(D̄ jn − D̄(i)

jn + D̄(i)
jn − D̄ jn,i∗)

∥∥
1

}

≤ C

{
β2 + β3 +

2∑

j=1

n∑

i=1

E[ξ2b,i ]
∥∥(1 + eW

(i)
b )(D̄ jn − D̄(i)

jn )
∥∥
1

}
(C.22)

where in the last inequality, we have used the fact that (W (i)
b , D̄ jn − D̄(i)

jn ) =d

(W (i)
b , D̄ jn,i∗ − D̄(i)

jn ) .
For R12, its integrand for a given i is bounded by

P(x + �̄2n,x ≤ Wb ≤ x − t + �̄2n,x,i∗ + ξb,i )

+P(x − t + �̄2n,x,i∗ + ξb,i ≤ Wb ≤ x + �̄2n,x ) (C.23)

Since

(x + �̄2n,x ) ∧ (x − t + �̄2n,x,i∗ + ξb,i ) ≥ (3x)/4 − 5/2 for |t | ≤ 1,

and E[eWb ] ≤ C by Bennett’s inequality (Lemma A.2), by defining

�̄
(i ′)
2n,x,i∗ ≡ x D̄(i ′)

2n,i∗

2
− D̄(i ′)

1n,i∗ for 1 ≤ i ′ ≤ n,

we can apply the randomized concentration inequality (Lemma B.1) with the param-
eters in (B.1) and λ = 1/2 to bound (C.23) by
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Ce−3x/8
{
β2 + β3

+
n∑

i ′=1

E

[
|ξb,i ′ |eW

(i ′)
b /2

(
|�̄2n,x − �̄

(i ′)
2n,x | + |�̄2n,x,i∗ − �̄

(i ′)
2n,x,i∗ | + I (i ′ = i)|ξb,i |

)]

+ E

[
|Wb|eWb/2
︸ ︷︷ ︸
≤2(1+eWb )

(
|�̄2n,x − �̄2n,x,i∗ | + |ξb,i | + |t | + β2 + β3

)]

+
n∑

i ′=1

∣∣∣E[ξb,i ′ ]
∣∣∣E

[
eW

(i ′)
b /2

(
|t | + |ξb,i |I (i ′ �= i) + |�̄(i ′)

2n,x − �̄
(i ′)
2n,x,i∗ | + β2 + β3

)

︸ ︷︷ ︸
≤C(1+x)

]}

≤ C

{
β2 + β3 + E[|ξb,i |2eW

(i)
b /2]

+
2∑

j=1

n∑

i ′=1

E

[
|ξb,i ′ |eW

(i ′)
b /2

(
|D̄ jn − D̄(i ′)

jn | + |D̄ jn,i∗ − D̄(i ′)
jn,i∗ |

)]

+ E

[
(1 + eWb )

( 2∑

j=1

|D̄ jn − D̄ jn,i∗ | + |ξb,i | + |t | + β2 + β3

)]
+

n∑

i ′=1

∣∣∣E[ξb,i ′ ]
∣∣∣E

[
eW

(i ′)
b /2

]}

≤ C

{
β2 + β3 + E[|ξb,i |2] +

2∑

j=1

n∑

i ′=1

E

[
|ξb,i ′ |eW

(i ′)
b /2

(
|D̄ jn − D̄(i ′)

jn | + |D̄ jn,i∗ − D̄(i ′)
jn,i∗ |

)]

+
2∑

j=1

‖(1 + eWb )(D̄ jn − D̄ jn,i∗ )‖1 + ‖ξb,i‖2 + |t |
}
; (C.24)

in (C.24), we have used that
∑n

i ′=1 |E[ξb,i ′ ]| ≤ β2 by Lemma A.1 and

max(‖eWb‖2, ‖eWb‖1,E[eW (i ′)
b /2],E[eW (i)

b /2]) ≤ C

by Bennett’s inequality (Lemma A.2). Since (C.24) bounds (C.23) which bounds the
integrand of R12, on integration with respect to t which has the properties in (C.12),
we get

|R12| ≤ C

{
β2 + β3 +

2∑

j=1

[ n∑

i=1

E[ξ2b,i ]
∥∥∥(1 + eW

(i)
b )(D̄ jn − D̄ jn,i∗ )

∥∥∥
1

+
n∑

i=1

E[ξ2b,i ]
n∑

i ′=1

E

[
|ξb,i ′ |eW

(i ′)
b /2(|D̄ jn − D̄(i ′)

jn | + |D̄ jn,i∗ − D̄(i ′)
jn,i∗ |

)]]}
(C.25)

where we have used
∑n

i=1 ‖ξb,i‖42 ≤ ∑n
i=1 ‖ξb,i‖2‖ξb,i‖22 ≤ ∑n

i=1 E[|ξb,i |3] ≤ β2 +
β3 by (C.18). From (C.25), by defining

W (i,i ′)
b ≡

{
Wb − ξb,i − ξb,i ′ if i ′ �= i

Wb − ξb,i if i ′ = i
,
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with eW
(i ′)
b /2 ≤ e1/2eW

(i,i ′)
b /2, we further get

|R12| ≤ C

{
β2 + β3 +

2∑

j=1

[ n∑

i=1

E[ξ2b,i ]‖(1 + eW
(i)
b )(D̄ jn − D̄(i)

jn + D̄(i)
jn − D̄ jn,i∗)‖1

+
n∑

i=1

E[ξ2b,i ]
n∑

i ′=1

E

[
|ξb,i ′ |eW

(i,i ′)
b /2(|D̄ jn − D̄(i ′)

jn | + |D̄ jn,i∗ − D̄(i ′)
jn,i∗ |

)]]}

≤ C

{
β2 + β3 +

2∑

j=1

[ n∑

i=1

E[ξ2b,i ]‖(1 + eW
(i)
b )(D̄ jn − D̄(i)

jn )‖1

+
n∑

i=1

E[ξ2b,i ]
n∑

i ′=1

E

[
|ξb,i ′ |eW

(i,i ′)
b /2|D̄ jn − D̄(i ′)

jn |
]]}

, (C.26)

where we have used that

(eW
(i)
b , D̄ jn − D̄(i)

jn ) = d(e
W (i)

b , D̄ jn,i∗ − D̄(i)
jn ) and

(|ξb,i ′ |eW
(i,i ′)
b /2, D̄ jn − D̄(i ′)

jn ) = d(|ξb,i ′ |eW
(i,i ′)
b /2, D̄ jn,i∗ − D̄(i ′)

jn,i∗)

to arrive at (C.26). Lastly, (C.26) can be further simplified as

|R12| ≤ C

{
β2 + β3 +

2∑

j=1

n∑

i=1

(
E[ξ2b,i ]

∥∥∥(1 + eW
(i)
b )(D̄ jn − D̄(i)

jn )

∥∥∥
1

+E

[
|ξb,i |eW

(i)
b /2|D̄ jn − D̄(i)

jn |
])}

(C.27)

using eW
(i,i ′)
b /2 ≤ e(W (i ′)

b +1)/2 and
∑n

i=1 E[ξ2b,i ] ≤ ∑n
i=1 E[ξ2i ] = 1 by (1.2). Com-

bining (C.22) and (C.27) gives (C.13).

C.2.2 Bound for R2

Since | f ′
x | ≤ 1 by Lemma A.3,

|
n∑

i=1

E[(ξ2i − 1)I (|ξi | > 1)]E[ f ′
x (Wb − �̄2n,x )]|

≤
n∑

i=1

E[ξ2i I (|ξ | > 1)] ≤ β2. (C.28)
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Moreover, by independence, Lemma A.1 and that | fx | ≤ 0.63 from Lemma A.3,

∣∣∣∣
n∑

i=1

E[ξb,i f (W (i)
b − �̄2n,x,i∗)]

∣∣∣∣ =
∣∣∣∣

n∑

i=1

E[ξb,i ]E[ f (W (i)
b − �̄2n,x,i∗)]

∣∣∣∣

≤ 0.63
n∑

i=1

|E[ξb,i ]| ≤ 0.63
n∑

i=1

E[ξ2i I (|ξi | > 1)] = 0.63β2.

Lastly, by | fx | ≤ 0.63 and the definition of �̄2n,x ,

|E[�̄2n,x fx (Wb)]| ≤ 0.63‖D̄1n‖2 +
∣∣∣
x

2
E[D̄2n fx (Wb)]

∣∣∣

Hence, we established (C.14).

C.2.3 Bound for R3

By mean value theorem, given | f ′
x | ≤ 1 (Lemma A.3),

| fx (Wb − �̄2n,x ) − fx (Wb − �̄2n,x,i∗)| ≤ C |�̄2n,x − �̄2n,x,i∗ |
≤ C(|D̄1n − D̄1n,i∗ | + x |D̄2n − D̄2n,i∗ |).

Hence,

|R3| ≤ C
2∑

j=1

n∑

i=1

‖ξb,i (D̄ jn − D̄ jn,i∗)‖1

= C
2∑

j=1

n∑

i=1

‖ξb,i (D̄ jn − D̄(i)
jn + D̄(i)

jn − D̄ jn,i∗)‖1 for 0 ≤ x ≤ 1. (C.29)

For x > 1, given |�̄2n,x | ∨ |�̄2n,x,i∗ | ≤ 1
2 + x

4 , by (A.5) in Lemma A.4 and | f ′
x | ≤ 1

(Lemma A.3),

| fx (Wb − �̄2n,x ) − fx (Wb − �̄2n,x,i∗ )|
≤ | fx (Wb − �̄2n,x ) − fx (Wb − �̄2n,x,i∗ )|

[
I (Wb ≤ 3x/4 − 3/2) + I (Wb > 3x/4 − 3/2)

]

≤ C
(
e1/2−x + I (Wb > 3x/4 − 3/2)

)(
|D̄1n − D̄1n,i∗ | + x |D̄2n − D̄2n,i∗ |

)

≤ C
(
e−x + e−3x/8eWb/2

)(
|D̄1n − D̄1n,i∗ | + x |D̄2n − D̄2n,i∗ |

)

≤ C
(
e−x + e−3x/8eW

(i)
b /2

)(
|D̄1n − D̄1n,i∗ | + x |D̄2n − D̄2n,i∗ |

)
,
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where we have used eWb/2 ≤ e1/2eW
(i)
b /2 in the last inequality. Hence,

|R3| ≤ C
2∑

j=1

n∑

i=1

‖ξb,i (1 + eW
(i)
b /2)(D̄ jn − D̄(i)

jn + D̄(i)
jn − D̄ jn,i∗)‖1 for x > 1

(C.30)

Because (ξb,i ,W
(i)
b , D̄ jn − D̄(i)

jn ) =d (ξb,i ,W
(i)
b , D̄ jn,i∗ − D̄(i)

jn ), (C.29) and (C.30)
establish (C.15).

C.2.4 Bound for R4

Using that | f ′
x | ≤ 1 in Lemma A.3, for 0 ≤ x ≤ 1,

E

[
�̄2n,x

∫ −�̄2n,x

0
f ′
x (Wb + t)dt

]
≤ C�̄2

2n,x ≤ C(‖D̄1n‖22 + ‖D̄2n‖22) ≤ C(‖D̄1n‖2 + ‖D̄2n‖22).

For x > 1, using (A.5) in Lemma A.4 and that | f ′
x | ≤ 1 in Lemma A.3, given

|�̄2n,x | ≤ 1
2 + x

4

E

[
�̄2n,x

∫ −�̄2n,x

0
f ′
x (Wb + t)dt

]

≤ e1/2−x
E[�̄2

2n,x ] + E[I (Wb ≥ 3x/4 − 3/2)�̄2
2n,x ]

≤ C(e−x
E[�̄2

2n,x ] + e−3x/4
E[eWb�̄2

2n,x ])

≤ C

{
2e−x

(
‖D̄1n‖22 + x2

4
‖D̄2n‖22

)
+ 2e−3x/4

E

[
eWb

(
D̄2
1n + x2

4
D̄2
2n

)]}

≤ C(‖D̄1n‖2 + E[(1 + eWb )D̄2
2n]),

where we have used E[eWb |D̄1n|2] ≤ E[eWb |D̄1n|] ≤ ‖eWb‖2‖D̄1n‖2 ≤ C‖D̄1n‖2 by
Lemma A.2 and ‖D̄1n‖22 ≤ ‖D̄1n‖2. This establishes (C.16).

Appendix D. Proof of Theorem 2.3

We first verify (2.8)–(2.10), which will also be used in the proof of Theorem 2.3;
(2.10) is immediate from (2.7). We can prove (2.8) with Hölder’s inequality as

‖(1 + eW
(i)
b )(D̄1n − D̄(i)

1n )‖1 ≤ ‖1 + eW
(i)
b ‖2‖D̄1n − D̄(i)

1n ‖2
≤

(
1 + exp(e4/8 − 1/8 + 1/2)

)∥∥∥D1n − D(i)
1n

∥∥∥
2
,

where we have also used Bennett’s inequality (Lemmas A.2) and (2.6) at the end.
Similarly, (2.9) can be proved as

123



Journal of Theoretical Probability

‖ξb,i (1 + eW
(i)
b /2)(D̄1n − D̄(i)

1n )‖1
≤ ‖ξb,i (1 + eW

(i)
b /2)‖2‖D̄1n − D̄(i)

1n ‖2
= ‖ξb,i‖2‖1 + eW

(i)
b /2‖2‖D̄1n − D̄(i)

1n ‖2
≤

(
1 + exp(e2/8 − 1/8 + 1/4)

)
‖ξi‖2

∥∥∥D1n − D(i)
1n

∥∥∥
2
,

where we have also used the independence of eW
(i)
b and ξb,i .

Our next task is to bound the other terms in the general bound of Theorem 2.1. Let

�̄k = �k I (|�k | ≤ 1) + I (�k > 1) − I (�k < −1) for k = 1, 2.

Since |D2n| ≤ |�1| + |�2|, and |D̄2n| is precisely |D2n| as a non-negative random
variable upper-censored at 1/2, it must be that |D̄2n| ≤ |�̄1| + |�̄2|, which further
implies

D̄2
2n ≤ 2(�̄2

1 + �̄2
2). (D.1)

From (D.1) and �̄2
2 ≤ |�̄2|, we can get

E[D̄2
2n] ≤ 2(‖�1‖22 + ‖�2‖2) (D.2)

On the other hand, define

D(i)
2n = max

(
− 1,

∑

1≤i ′≤n,i ′ �=i

(ξ2b,i ′ − E[ξ2b,i ′ ]) + �
(i)
2

)
.

By Property 2.2(i), one can then write

‖(1 + eW
(i)
b )(D̄2n − D̄(i)

2n )‖1 ≤ ‖(1 + eW
(i)
b )(ξ2b,i − E[ξ2b,i ])‖1 + ‖(1 + eW

(i)
b )(�2 − �

(i)
2 )‖1

≤ ‖1 + eW
(i)
b ‖3‖ξ2b,i − E[ξ2b,i ]‖3/2 + ‖1 + eW

(i)
b ‖2‖�2 − �

(i)
2 ‖2

≤ C
(
(E[|ξi |3])2/3 + ‖�2 − �

(i)
2 ‖2

)
(D.3)

and

‖ξb,i (1 + eW
(i)
b /2)(D̄2n − D̄(i)

2n )‖1
≤ ‖ξb,i (1 + eW

(i)
b /2)(ξ2b,i − E[ξ2b,i ])‖1 + ‖ξb,i (1 + eW

(i)
b /2)(�2 − �

(i)
2 )‖1

≤ ‖ξb,i‖3‖1 + eW
(i)
b ‖3‖ξ2b,i − E[ξ2b,i ]‖3/2 + ‖ξb,i‖2‖1 + eW

(i)
b ‖2‖�2 − �

(i)
2 ‖2

≤ C
(
E[|ξi |3] + ‖ξi‖2‖�2 − �

(i)
2 ‖2

)
, (D.4)
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where we have applied Bennett’s inequality (Lemma A.2) to both (D.3) and (D.4) at
the end. To complete the proof, it suffices to show the bounds

E[eWb D̄2
2n] ≤ C

{ n∑

i=1

‖ξb,i‖33 + ‖�2‖2
}

(D.5)

and

sup
x≥0

|xE[D̄2n fx (Wb)]| ≤ C
(
‖�1‖22 +

n∑

i=1

‖ξb,i‖33 + ‖�2‖2
)
, (D.6)

because Theorem 2.3 is then just a corollary of Theorem 2.1 by collecting (2.8)–(2.10),
(D.2)–(D.6), as well as the simple facts

β2 + β3 ≤
n∑

i=1

E[|ξi |3], E[|ξb,i |2] ≤ ‖ξb,i‖2 ≤ ‖ξi‖2 ≤ ‖ξi‖3,

P(|D1n| > 1/2) ≤ 2‖D1n‖2, ‖�1‖22 ≤
n∑

i=1

E[ξ4b,i ] ≤
n∑

i=1

E[|ξb,i |3] ≤
n∑

i=1

E[|ξi |3],

and

P(|D2n| > 1/2) ≤ P(|�1| + |�2| > 1/2)

≤ P(|�1| > 1/4) + P(|�2| > 1/4)

≤ C(‖�1‖22 + ‖�2‖2).

D.1 Proof of (D.5).

First, letting W (i, j)
b ≡ Wb − ξb,i − ξb, j for 1 ≤ i �= j ≤ n, we have

E[�2
1e

Wb ] =
n∑

i=1

E[(ξ2b,i − E[ξ2b,i ])2eξb,i ]E[eW (i)
b ]

+
∑

1≤i �= j≤n

E[(ξ2b,i − E[ξ2b,i ])eξb,i ]E[(ξ2b, j − E[ξ2b, j ])eξb, j ]E[eW (i, j)
b ]

=
n∑

i=1

E[(ξ2b,i − E[ξ2b,i ])2eξb,i ]E[eW (i)
b ]

+
∑

1≤i �= j≤n

E[(ξ2b,i − E[ξ2b,i ])(eξb,i − 1)]E[(ξ2b, j − E[ξ2b, j ])(eξb, j − 1)]E[eW (i, j)
b ]

≤ C

⎛

⎝
n∑

i=1

E[ξ4b,i ] +
∑

1≤i �= j≤n

E

[
|ξ2b,i − E[ξ2b,i ]||ξb,i |

]
E

[
|ξ2b, j − E[ξ2b, j ]||ξb, j |

]
E

[
eW

(i, j)
b

]
⎞

⎠
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≤ C

{ n∑

i=1

‖ξb,i‖33 +
∑

1≤i �= j≤n

‖ξb,i‖33‖ξb, j‖22
}

≤ C
n∑

i=1

‖ξb,i‖33 (D.7)

by Lemma A.2 that |es − 1| ≤ |s|(ea − 1)/a for s ≤ a and a > 0,

E[|ξ2b,i − E[ξ2b,i ]||ξb,i |]

≤
{
(‖ξ2b,i − E[ξ2b,i ]‖3/2‖ξb,i‖3) ∧ E[|ξ2b,i − E[ξ2b,i ]|]

}

≤ 2

{
‖ξb,i‖33 ∧ ‖ξb,i‖22

}
for any i = 1, . . . , n,

and
∑n

j=1 ‖ξb,i‖33‖ξb, j‖22 ≤ ‖ξb,i‖33. Second, by Lemma A.2,

E[�̄2
2e

Wb ] ≤ E[�̄4
2]1/2(E[e2Wb ])1/2 ≤ CE[�2

2]1/2 = C‖�2‖2 (D.8)

Combining (D.1), (D.7) and (D.8) gives (D.5).

D.2 Proof of (D.6).

Since supx≥0 |x fx (w)| ≤ C (which uses (A.4) in Lemma A.4 and that | fx | ≤ 0.63 in
Lemma A.3),

sup
x≥0

|xE[(D2n − D̄2n) fx (Wb)]| ≤ sup
x≥0

xE[(|D2n | − 1/2)| fx (Wb)|I (|D2n | > 1/2)]

≤ CE[|D2n |I (|D2n | > 1/2)]
≤ C

(
E[|�1|I (|D2n | > 1/2)] + E[|�2|]

)

≤ C
(
E

[
|�1|

{
I (|�1| > 1/4) + I (|�2| > 1/4)

}]
+ E[|�2|]

)

≤ C
(
E[4�2

1 + 2|�1||�2|1/2] + E[|�2|]
)

≤ C
(
E[5�2

1 + |�2|] + E[|�2|]
)

≤ C
(
‖�1‖22 + ‖�2‖2

)
,

where we have used that I (|�1| > 1/4) ≤ 4|�1|, I (|�2| > 1/4) ≤ 2|�2|1/2 and
2|�1||�2|1/2 ≤ |�1|2 + |�2|. Noting that

xE[D̄2n fx (Wb)] = xE[(D̄2n − D2n) fx (Wb)] + xE[D2n fx (Wb)],

the above implies

sup
x≥0

∣∣∣xE[D̄2n fx (Wb)]
∣∣∣ ≤ C

(
‖�1‖22 + ‖�2‖2

)
+ sup

x≥0

∣∣∣xE[D2n fx (Wb)]
∣∣∣, (D.9)
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so for the rest of this section we focus on bounding supx≥0

∣∣∣xE[D2n fx (Wb)]
∣∣∣. From

the form of D2n in (2.12), by defining � = �1 + �2, we have

xE[D2n fx (Wb)] = E[x� fx (Wb)] − E[x fx (Wb)I (� < −1)(1 + �)],

so it suffices to establish

∣∣∣E[x� fx (Wb)]
∣∣∣ ∨

∣∣∣E[x fx (Wb)I (� < −1)(1 + �)]
∣∣∣

≤ C

( n∑

i=1

E[|ξb,i |3] + ‖�2‖2
)
for all x ≥ 0. (D.10)

We first bound
∣∣∣E[x fx (Wb)I (� < −1)(1 + �)]

∣∣∣. Since

E[x fx (Wb)I (� < −1)(1 + �)] = E[x fx (Wb)I (� < −1)]
+E[x fx (Wb)�I (� < −1)], (D.11)

we will bound the two terms on the right hand side separately. As x fx (w) is bounded
for all x ≥ 0 (Lemma A.3 and (A.4) in Lemma A.4), we have

∣∣∣E[x fx (Wb)I (� < −1)]
∣∣∣ ≤ E

[
|x fx (Wb)|I (� < −1)

]

≤ C
2∑

j=1

P(� j < −1/2) ≤ C
(
‖�1‖22 + ‖�2‖2

)

and

∣∣∣E[x fx (Wb)�I (� < −1)]
∣∣∣ ≤ CE[|�|I (� < −1)]

≤ C

(
E[|�1|I (� < −1)] + ‖�2‖2

)

≤ C

(
‖�1‖2

√√√√
2∑

j=1

P(� j < −1/2) + ‖�2‖2
)

≤ C

(
‖�1‖2

√
‖�1‖22 + ‖�2‖2 + ‖�2‖2

)

≤ C

(
‖�1‖22 + ‖�1‖2

√‖�2‖2 + ‖�2‖2
)

≤ C

(
‖�1‖22 + ‖�2‖2

)
,
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where the second last inequality uses
√

‖�1‖22 + ‖�2‖2 ≤ ‖�1‖2 + √‖�2‖2 and

the last inequality uses that 2|ab| ≤ a2 + b2 for any a, b ∈ R. So the part of

(D.10) regarding
∣∣∣E[x fx (Wb)I (� < −1)(1 + �)]

∣∣∣ is proved because ‖�1‖22 =
∑n

i=1(E[ξ4b,i ] − (E[ξ2b,i ])2) ≤ ∑n
i=1 E[|ξb,i |3].

Nextwe bound
∣∣∣E[x� fx (Wb)]

∣∣∣, andwewill control the two terms on the right-hand

side of

|E[x� fx (Wb)]| ≤ x |E[�1 fx (Wb)]| + x |E[�2 fx (Wb)]|. (D.12)

For the first term x |E[�1 fx (Wb)]|, we write

∣∣∣E[�1 fx (Wb)]
∣∣∣ =

∣∣∣∣
n∑

i=1

E

[
(ξ2b,i − E[ξ2b,i ])( fx (Wb) − fx (W

(i)
b ))

]∣∣∣∣

=
∣∣∣∣

n∑

i=1

E

[
(ξ2b,i − E[ξ2b,i ])

∫ ξb,i

0
E[ f ′

x (W
(i)
b + t)]dt

]∣∣∣∣

≤
n∑

i=1

E

[
(ξ2b,i + E[ξ2b,i ])

∫ |ξb,i |

0
|E[ f ′

x (W
(i)
b + t)]|dt

]
, (D.13)

where the second equality uses the independence of W (i)
b and ξb,i . From (D.13) and

Lemma A.5, for any x ≥ 1, we have that

∣∣∣E[�1 fx (Wb)]
∣∣∣ ≤ C

n∑

i=1

E

[
(ξ2b,i + E[ξ2b,i ])

∫ |ξb,i |

0
(e−x + e−x+t )dt

]

≤ C
n∑

i=1

E

[
(ξ2b,i + E[ξ2b,i ])

∫ |ξb,i |

0
(e−x + e−x+1)dt

]
( as |ξb,i | ≤ 1)

≤ Ce−x
n∑

i=1

(
E[|ξb,i |3] + E[|ξb,i |2]E[|ξb,i |]

)

≤ Ce−x
n∑

i=1

E[|ξb,i |3],

which implies

sup
x≥1

x
∣∣∣E[�1 fx (Wb)]

∣∣∣ ≤ C
n∑

i=1

E[|ξb,i |3]. (D.14)
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Moreover, for 0 ≤ x < 1, since | f ′
x | ≤ 1 (Lemma A.3), from (D.13) we get

sup
0≤x<1

x
∣∣∣E[�1 fx (Wb)]

∣∣∣ ≤
n∑

i=1

(
E[|ξb,i |3] + E[|ξb,i |2]E[|ξb,i |]

)

≤ 2
n∑

i=1

E[|ξb,i |3]. (D.15)

For the term x |E[�2 fx (Wb)]|, given that supx≥0 |x fx (w)| ≤ C for all w (explained
at the beginning of Sect. D.2), we have

sup
x≥0

x |E[�2 fx (Wb)]| ≤ sup
x≥0

E[|�2||x fx (Wb)|] ≤ C‖�2‖1 ≤ C‖�2‖2, (D.16)

Combining (D.12) and (D.14)–(D.16) proves thepart of (D.10) regarding |E[x� fx (Wb)]|.

Appendix E. Proof of Lemma 3.3

In this section, we adopt the following notation: For any natural numbers k′ ≤ k, we
denote [k′ : k] ≡ {k′, . . . , k} and [k] ≡ {1, . . . , k}. Moreover, for any natural number
k ≥ 1, we let

h̄k,{i1,...,ik } ≡ h̄k(Xi1 , . . . , Xik )

with respect to the function h̄k(·) in (3.9). To prove Lemma 3.3, we need the following
technical lemmas proven, respectively, in Appendices F.1 and F.2.

Lemma E.1 (Useful kernel bounds) Under assumptions (3.1)–(3.3),

(i) For any k ∈ [m],

E[h̄2k] ≤ E[h2k] ≤ k

m
E[h2]

(ii) For any i ∈ [n],

E

⎡

⎢⎢⎣

⎛

⎜⎜⎝
∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m(Xi , Xi1 , . . . , Xim−1)

⎞

⎟⎟⎠

2⎤

⎥⎥⎦

≤ 2(m − 1)2

n(n − m + 1)

(
n − 1

m − 1

)(
n

m

)
E[h2];

(iii) For each i ∈ [n], consider ξb,i defined in (2.1) with ξi defined in (3.8). Given
k1, k2 ∈ [m], for any 1 ≤ i1 < · · · < ik1 ≤ n and 1 ≤ j1 < · · · < jk2 ≤ n, we
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have
∣∣∣E[ξb,1ξb,2h̄k1,{i1,...,ik1 }h̄k2,{ j1,..., jk2 }]

∣∣∣

≤ 9.5‖g‖23‖h‖23
n

+ 2d‖h‖2
n

where

d = |({i1, . . . , ik1} ∩ { j1, . . . , jk2})\{1, 2}|,

the number of elements in the intersection of {i1, . . . , ik1} and { j1, . . . , jk2} that
are not 1 or 2.

(iv) If, in addition to all the conditions in (i i i), it is true that 1 /∈ { j1, . . . , jk2} and
2 /∈ {i1, . . . , ik1}, then we have the bound

∣∣∣E[ξb,1ξb,2h̄k1,{i1,...,ik1 }h̄k2,{ j1,..., jk2 }]
∣∣∣ ≤ 9.5‖g‖23‖h‖23

n
+ 2d‖h‖2

n3/2

Lemma E.2 (Counting identities and bounds) Let m, n be non-negative integers such
that m ≤ n.

(i) Suppose n1 and n2 are non-negative integers such that n1 + n2 = n. Then

m∑

k=0

(
n1
k

)(
n2

m − k

)
=

(
n

m

)
.

(ii) Suppose k is a non-negative integer such that k ≤ m. Then

(
n

k

)(
n − k

m − k

)
=

(
n

m

)(
m

k

)
.

(iii) For positive integers a, b, e such that b + e ≤ a, we have

(
a

b

)
−

(
a − e

b

)
≤

(
a

b

)
be

a − b + 1
.

In addition to the lemmas above, we will make use of the following enumerative
equalities, whenever the binomial coefficients involved are well defined:

(
n − 2

m − 1

)
=

(
n − 1

m − 1

)
n − m

n − 1
, (E.1)

(
n − 2

m − 2

)
=

(
n − 1

m − 1

)
m − 1

n − 1
, (E.2)

(
n − 3

m − 2

)
=

(
n − 1

m − 1

)
(m − 1)(n − m)

(n − 1)(n − 2)
(E.3)
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(
n − 3

m − 3

)
=

(
n − 1

m − 1

)
(m − 1)(m − 2)

(n − 1)(n − 2)
, and (E.4)

(
n − 4

m − 4

)
=

(
n − 1

m − 1

)
(m − 1)(m − 2)(m − 3)

(n − 1)(n − 2)(n − 3)
. (E.5)

E.1 Proof of Lemma 3.3(i)

We shall further let

�21 ≡ (n−1/2|0) −
n∑

i=1

E[(ξ2i − 1)I (|ξi | > 1)] and

�22 ≡ δ2n,b = 2(n − 1)

(n − m)

(
n − 1

m − 1

)−1 n∑

i=1

ξb,i�n,i , (E.6)

so �2 = �21 + �22. It suffices to show these bounds for �21 and �22 in (E.6):

‖�21‖22 ≤ C

(
‖g‖63
n

+ 1

n

)
≤ C

‖g‖63
n

. (E.7)

‖�22‖22 ≤ C
m2‖g‖23‖h‖23

n
(E.8)

From there, since ‖�2‖2 ≤ ‖�21‖2 + ‖�22‖2, Lemma 3.3(i) is proved.

E.1.1 Proof of (E.7)

We first note that

n∑

i=1

E

[
(ξ2i − 1)I (|ξi | > 1)

]
≤

n∑

i=1

E

[
ξ2i I (|ξi | > 1)

]
≤

n∑

i=1

E[|ξi |3] = E[|g|3]/√n,

which gives (
∑n

i=1 E[(ξ2i − 1)I (|ξi | > 1)])2 ≤ (E[|g|3])2/n, and hence (E.7).

E.1.2 Proof of (E.8)

It is trivial for m = 1 since �n,i = 0. For m ≥ 2, first write

�2
22 = 4(n − 1)2

(n − m)2n

(
n − 1

m − 1

)−2

⎛

⎜⎜⎝
n∑

i=1

ξb,i
∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m(Xi , Xi1 , . . . , Xim−1)

⎞

⎟⎟⎠

2

,
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which implies immediately from 2m < n in (3.2) that

E
[
�2

22

] ≤ 16

n

(
n − 1

m − 1

)−2

E

⎡

⎢⎢⎣

⎛

⎜⎜⎝
n∑

i=1

ξb,i
∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m(Xi , Xi1 , . . . , Xim−1 )

⎞

⎟⎟⎠

2⎤

⎥⎥⎦ .(E.9)

Upon expanding the above expectation,

E

⎡

⎢⎢⎣

⎛

⎜⎜⎝
n∑

i=1

ξb,i
∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m,{i,i1,...,im−1}

⎞

⎟⎟⎠

2⎤

⎥⎥⎦

=
n∑

i=1

E

⎡

⎢⎢⎣

⎛

⎜⎜⎝ξb,i
∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m,{i,i1,...,im−1}

⎞

⎟⎟⎠

2⎤

⎥⎥⎦

+
∑

1≤i �= j≤n

E

[(
ξb,i

∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m,{i,i1,...,im−1}
)

×
(

ξb, j
∑

1≤ j1<···< jm−1≤n
jl �= j for l∈[m−1]

h̄m,{ j, j1,..., jm−1}
)]

= nE

⎡

⎢⎢⎣

⎛

⎜⎜⎝ξb,1
∑

1≤i1<···<im−1≤n
il �=1 for l=1,...,m−1

h̄m,{1,i1,...,im−1}

⎞

⎟⎟⎠

2⎤

⎥⎥⎦+ (E.10)

n(n − 1)E

[(
ξb,1

∑

1≤i1<···<im−1≤n
il �=1 for l∈[m−1]

h̄m,{1,i1,...,im−1}
)

(
ξb,2

∑

1≤ j1<···< jm−1≤n
jl �=2 for l∈[m−1]

h̄m,{2, j1,..., jm−1}
)]

. (E.11)

We need to control the two expectations in (E.10) and (E.11). We first bound the
expectation in (E.10). With the definition in (3.9) and that

E[h̄m,{1,i1,...,im−1}h̄m,{1, j1,..., jm−1}]
= E[h̄21,{1}] = 0 if |{i1, . . . , im−1} ∩ { j1, . . . , jm−1}| = 0,
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we can write

E

⎡

⎢⎢⎣

⎛

⎜⎜⎝ξb,1
∑

1≤i1<···<im−1≤n
il �=1 for l∈[m−1]

h̄m,{1,i1,...,im−1}

⎞

⎟⎟⎠

2⎤

⎥⎥⎦

= E

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ξ2b,1

m−1∑

k=0

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑

1≤i1<···<im−1≤n
1≤ j1<···< jm−1≤n
il , jl �=1 for l∈[m−1]

|{i1,...,im−1}∩{ j1,..., jm−1}|=k

h̄m,{1,i1,...,im−1}h̄m,{1, j1,..., jm−1}

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=
m−1∑

k=1

(
n − 1

k

)(
n − k − 1

m − k − 1

)(
n − m

m − k − 1

)
E

[
ξ2b,1h̄

2
k+1(X1 . . . , Xk+1)

]

≤
m−1∑

k=1

(
n − 1

k

)(
n − k − 1

m − k − 1

)(
n − m

m − k − 1

)
k + 1

m
E[h2], (E.12)

where the last inequality comes from Lemma E.1(i) and that ξ2b,1 ≤ 1. Continuing
from (E.12), we can get

E

⎡

⎢⎢⎣

⎛

⎜⎜⎝ξb,1
∑

1≤i1<···<im−1≤n
il �=1 for l∈[m−1]

h̄m,{1,i1,...,im−1}

⎞

⎟⎟⎠

2⎤

⎥⎥⎦

≤
m−1∑

k=1

(
n − 1

k

)(
n − k − 1

m − k − 1

)(
n − m

m − k − 1

)
k + 1

m
E[h2]

= 1

m

(
n − 1

m − 1

) m−1∑

k=1

(
m − 1

k

)(
n − m

m − k − 1

)
(k + 1)E[h2] by Lemma E.2(i i)

= m − 1

m

(
n − 1

m − 1

) m−1∑

k=1

(
m − 2

k − 1

)
k + 1

k

(
n − m

m − 1 − k

)
E[h2]

≤ 2

(
n − 1

m − 1

) m−2∑

k=0

(
m − 2

k

)(
n − m

m − 2 − k

)
E[h2]

= 2

(
n − 1

m − 1

)(
n − 2

m − 2

)
E[h2] by Lemma E.2(i)

= 2
m − 1

n − 1

(
n − 1

m − 1

)2

E[h2] (E.13)
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Now we bound the expectation in (E.11). First first expand it as

E

[(
ξb,1

∑

1≤i1<···<im−1≤n
il �=1 for l∈[m−1]

h̄m,{1,i1,...,im−1}
)(

ξb,2
∑

1≤ j1<···< jm−1≤n
jl �=2 for l∈[m−1]

h̄m,{2, j1,..., jm−1})
)]

=
(
n − 2

m − 1

)(
n − 2 − (m − 1)

m − 1

)(
E
[
ξb,1h̄m,{1,...,m}

]
︸ ︷︷ ︸

=E[E[ξb,1h̄m,{1,...,m}|X1]]=E[ξb,1h̄1(X1)]=0

)2

+ 2 ×
(
n − 2

m − 2

)(
n − 2 − (m − 2)

m − 1

)
E

[
ξb,1ξb,2h̄m,{1,2,...,m}h̄m,{2,m+1,...,2m−1}

]

︸ ︷︷ ︸
=E[E[ξb,1ξb,2h̄2,{1,2}h̄1,{2}|X1,X2]]=0 since h̄1,{2}=0

+ 2 ×
∑

1≤i1<···<im−2≤n
1≤ j1<···< jm−1≤n

il , jv �=1,2, for l∈[m−2],v∈[m−1]
|{i1,...,im−2}∩{ j1,..., jm−1}|≥1

E[ξb,1ξb,2h̄m,{1,2,i1,...,im−2}h̄m,{2, j1,..., jm−1}]

︸ ︷︷ ︸
≡E A

+
∑

1≤i1<···<im−1≤n
1≤ j1<···< jm−1≤n

il , jl �=1,2, for l∈[m−1]
|{i1,...,im−1}∩{ j1,..., jm−1}|≥1

E[ξb,1ξb,2h̄m,{1,i1,...,im−1}h̄m,{2, j1,..., jm−1}]

︸ ︷︷ ︸
≡EB

+
∑

1≤i1<···<im−2≤n
1≤ j1<···< jm−2≤n

il , jl �=1,2, for l∈[m−2]

E[ξb,1ξb,2h̄m,{1,2,i1,...,im−2}h̄m,{1,2, j1,..., jm−2}]

︸ ︷︷ ︸
≡EC

, (E.14)

and will then bound each of E A, EB, and EC .
We start with E A, and it suffices to assume m ≥ 3, otherwise one cannot expect

the two sets {i1, . . . , im−2} and { j1, . . . , jm−1} indexing a given summand

E[ξb,1ξb,2h̄m,{1,2,i1,...,im−2}h̄m,{2, j1,..., jm−1}]

of E A to intersect for at least one element. Using the fact that the data X1, . . . , Xn are
i.i.d., if the two index sets have k ∈ [m − 2] common elements not in the set {1, 2},
one can write the summand as

E[ξb,1ξb,2h̄m,{1,2,i1,...,im−2}h̄m,{2, j1,..., jm−1}]
= E[ξb,1ξb,2 h̄m(X1, X2, . . . , Xm) h̄m(X2, X3, . . . , Xk+2, Xm+1, . . . , X2m−1−k)].
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From this, we can alternatively write

E A =
m−2∑

k=1

(
n − 2

k

)(
n − 2 − k

m − 2 − k

)(
n − m

m − 1 − k

)

E

[
ξb,1ξb,2 h̄m,[1:m] h̄m,[2:(k+2)]∪[(m+1):(2m−k−1)]

]
;

from this, we can then form the bound

|E A| ≤
m−2∑

k=1

(
n − 2

k

)(
n − 2 − k

m − 2 − k

)(
n − m

m − 1 − k

)

∣∣∣E
[
ξb,1ξb,2 h̄m,[1:m] h̄m,[2:(k+2)]∪[(m+1):(2m−k−1)]

]∣∣∣

=
(
n − 2

m − 2

) m−2∑

k=1

(
m − 2

k

)(
n − m

m − 1 − k

)

∣∣∣E
[
ξb,1ξb,2 h̄m,[1:m] h̄m,[2:(k+2)]∪[(m+1):(2m−k−1)]

]∣∣∣

by Lemma E.2(i i)

≤
(
n − 2

m − 2

) m−2∑

k=1

(
m − 2

k

)(
n − m

m − 1 − k

){
9.5‖g‖23‖h‖23

n
+ 2k‖h‖2

n

}

by Lemma E.1(i i i)

=
(
n − 2

m − 2

){[(
n − 2

m − 1

)
−

(
n − m

m − 1

)]
9.5‖g‖23‖h‖23

n
+ (m − 2)

(
n − 3

m − 2

)
2‖h‖2
n

}
,

where the last line comes from the equalities

m−2∑

k=1

(
m − 2

k

)(
n − m

m − 1 − k

)
=

m−2∑

k=0

(
m − 2

k

)(
n − m

m − 1 − k

)
−

(
n − m

m − 1

)

=
(
n − 2

m − 1

)
−

(
n − m

m − 1

)
by Lemma E.2(i)

and

m−2∑

k=1

k

(
m − 2

k

)(
n − m

m − 1 − k

)
= (m − 2)

m−2∑

k=1

(
m − 3

k − 1

)(
n − m

m − 1 − k

)

= (m − 2)
m−3∑

k=0

(
m − 3

k

)(
n − m

m − 2 − k

)

= (m − 2)

(
n − 3

m − 2

)
coming from Lemma E.2(i)
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Continuing, we get

|E A| ≤
(
n − 2

m − 2

){(
n − 2

m − 1

)
9.5(m − 2)(m − 1)‖g‖23‖h‖23

(n − m)n
+ (m − 2)

(
n − 3

m − 2

)
2‖h‖2
n

}

by Lemma E.2(i i i)

=
(
n − 1

m − 1

)2{ 9.5(m − 2)(m − 1)2‖g‖23‖h‖23
(n − 1)2n

+ 2(m − 1)2(m − 2)(n − m)‖h‖2
n(n − 1)2(n − 2)

}

by (E.1), (E.2) and (E.3)

≤ C

(
n − 1

m − 1

)2 m3‖g‖23‖h‖23
n3

, (E.15)

where the last line uses 2m < n, and 1 = σg ≤ ‖h‖2 ≤ ‖h‖3.
Now we bound EB. Analogously to E A, we first write

|EB| ≤
m−1∑

k=1

(
n − 2

k

)(
n − 2 − k

m − 1 − k

)(
n − m − 1

m − 1 − k

)

∣∣∣E[ξb,1ξb,2 h̄m (X1, X3, . . . , Xm+1) h̄m (X2, X3, . . . , Xk+2︸ ︷︷ ︸
k shared

, Xm+2, . . . , X2m−k )]
∣∣∣

=
(
n − 2

m − 1

)m−1∑

k=1

(
m − 1

k

)(
n − m − 1

m − 1 − k

)

∣∣∣E[ξb,1ξb,2 h̄m (X1, X3, . . . , Xm+1) h̄m (X2, X3, . . . , Xk+2︸ ︷︷ ︸
k shared

, Xm+2, . . . , X2m−k )]
∣∣∣

by Lemma E.2(i i)

≤
(
n − 2

m − 1

)m−1∑

k=1

(
m − 1

k

)(
n − m − 1

m − 1 − k

)(
9.5‖g‖23‖h‖23

n
+ 2k‖h‖2

n3/2

)
by Lemma E.1(iv)

=
(
n − 2

m − 1

){[(
n − 2

m − 1

)
−

(
n − m − 1

m − 1

)]
9.5‖g‖23‖h‖23

n
+

(
n − 3

m − 2

)
2(m − 1)‖h‖2

n3/2

}
,

where in the last equality, we have used

m−1∑

k=1

(
m − 1

k

)(
n − m − 1

m − 1 − k

)
=

m−1∑

k=0

(
m − 1

k

)(
n − m − 1

m − 1 − k

)
−

(
n − m − 1

m − 1

)

=
(
n − 2

m − 1

)
−

(
n − m − 1

m − 1

)
by Lemma E.2(i)

and

m−1∑

k=1

(
m − 1

k

)(
n − m − 1

m − 1 − k

)
k = (m − 1)

m−1∑

k=1

(
m − 2

k − 1

)(
n − m − 1

m − 1 − k

)

= (m − 1)
m−2∑

k=0

(
m − 2

k

)(
n − m − 1

m − 2 − k

)
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= (m − 1)

(
n − 3

m − 2

)
by Lemma E.2(i)

Continuing, we get

|EB| ≤
(
n − 2

m − 1

){(
n − 2

m − 1

)
(m − 1)2

n − m

9.5‖g‖23‖h‖23
n

+
(
n − 3

m − 2

)
2(m − 1)‖h‖2

n3/2

}

by Lemma E.2(i i i)

=
(
n − 1

m − 1

)2{9.5(m − 1)2(n − m)‖g‖23‖h‖23
(n − 1)2n

+ 2(m − 1)2(n − m)2‖h‖2
(n − 1)2(n − 2)n3/2

}

by (E.1) and (E.3)

≤ C

(
n − 1

m − 1

)2m2‖g‖23‖h‖23
n2

, (E.16)

where the last line uses 2m < n, and 1 = σg ≤ ‖h‖2 ≤ ‖h‖3.
Lastly, for EC , in an analogous manner as E A and EB, we first write it as

EC =
m−2∑

k=0

(
n − 2

k

)(
n − 2 − k

m − 2 − k

)(
n − m

m − 2 − k

)

E[ξb,1ξb,2 h̄m(X1, X2, . . . , Xm)

h̄m(X1, X2, X3, . . . , Xk+2︸ ︷︷ ︸
k shared, empty if k=0

, Xm+1, . . . , X2m−k−2)].

Then we can bound

|EC | ≤
m−2∑

k=0

(
n − 2

k

)(
n − 2 − k

m − 2 − k

)(
n − m

m − 2 − k

)

∣∣∣E[ξb,1ξb,2 h̄m (X1, X2, . . . , Xm ) h̄m (X1, . . . , Xk+2, Xm+1, . . . , X2m−k−2]
∣∣∣

≤
(
n − 2

m − 2

)m−2∑

k=0

(
m − 2

k

)(
n − m

m − 2 − k

)

∣∣∣E[ξb,1ξb,2 h̄m (X1, X2, . . . , Xm ) h̄m (X1, . . . , Xk+2, Xm+1, . . . , X2m−k−2]
∣∣∣

by Lemma E.2(i i)

≤
(
n − 2

m − 2

)m−2∑

k=0

(
m − 2

k

)(
n − m

m − 2 − k

)(
9.5‖g‖23‖h‖23

n
+ 2k‖h‖2

n

)
by Lemma E.1(i i i)

=
(
n − 2

m − 2

){(
n − 2

m − 2

)
9.5‖g‖23‖h‖23

n
+

(
n − 3

m − 3

)
2(m − 2)‖h‖2

n

}
,
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where the last equality comes from

m−2∑

k=0

(
m − 2

k

)(
n − m

m − 2 − k

)
=

(
n − 2

m − 2

)
by Lemma E.2(i)

and for m ≥ 3,

m−2∑

k=0

(
m − 2

k

)(
n − m

m − 2 − k

)
k =

m−2∑

k=1

(
m − 2

k

)(
n − m

m − 2 − k

)
k

= (m − 2)
m−2∑

k=1

(
m − 3

k − 1

)(
n − m

m − 2 − k

)

= (m − 2)
m−3∑

k=0

(
m − 3

k

)(
n − m

m − 3 − k

)

= (m − 2)

(
n − 3

m − 3

)
by Lemma E.2(i).

Continuing, we get by (E.2) and (E.4),

|EC | ≤
(
n − 2

m − 2

){(
n − 2

m − 2

)
9.5‖g‖23‖h‖23

n
+

(
n − 3

m − 3

)
2(m − 2)‖h‖2

n

}

=
(
n − 1

m − 1

)2{9.5(m − 1)2‖g‖23‖h‖23
n(n − 1)2

+ 2(m − 1)2(m − 2)2‖h‖2
n(n − 1)2(n − 2)

}

≤ C

(
n − 1

m − 1

)2{m2‖g‖23‖h‖23
n3

+ m4‖h‖2
n4

}
(E.17)

Substituting (E.15), (E.16), and (E.17) into (E.14), we get that

∣∣∣∣E
[(

ξb,1
∑

1≤i1<···<im−1≤n
il �=1 for l∈[m−1]

h̄m,{1,i1,...,im−1}
)(

ξb,2
∑

1≤ j1<···< jm−1≤n
jl �=2 for l∈[m−1]

h̄m,{2, j1,..., jm−1})
)]∣∣∣∣

≤ C

(
n − 1

m − 1

)2m2‖g‖23‖h‖23
n2

, (E.18)

where we have used that 2m < n and 1 = ‖g‖2 ≤ ‖h‖2 ≤ ‖h‖3. Finally, collecting
(E.9), (E.10), (E.11), (E.13) and (E.18), we obtain (E.8).

E.2 Proof of Lemma 3.3(ii)

Note that

δ2n,b − δ
(i)
2n,b = A + B,
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where

A = 2(n − 1)√
n(n − m)

(
n − 1

m − 1

)−1

ξb,i
∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m(Xi , Xi1 , . . . , Xim−1)

and

B = 2(n − 1)√
n(n − m)

(
n − 1

m − 1

)−1 ∑

1≤ j≤n
j �=i

(
ξb, j

∑

1≤i1<···<im−2≤n
il �= j,i for l=1,...,m−2

h̄m(X j , Xi , Xi1 , . . . , Xim−2 )

)
.

From (3.26) and (3.28), we first write

‖�2 − �
(i)
2 ‖2 ≤ E[(ξ2i − 1)I (|ξi | > 1)] + ‖δ2n,b − δ

(i)
2n,b‖2

≤ E[g2]
n

+ ‖A‖2 + ‖B‖2, (E.19)

by Lemma A.1, where

A = 2(n − 1)√
n(n − m)

(
n − 1

m − 1

)−1

ξb,i
∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m(Xi , Xi1 , . . . , Xim−1)

and

B = 2(n − 1)√
n(n − m)

(
n − 1

m − 1

)−1 ∑

1≤ j≤n
j �=i

(
ξb, j

∑

1≤i1<···<im−2≤n
il �= j,i for l=1,...,m−2

h̄m(X j , Xi , Xi1 , . . . , Xim−2 )

)
.

So we will bound ‖A‖2 and ‖B‖2, which is trivial form = 1 as h̄1(·) = 0. Form ≥ 2,
by Lemma E.1(i i),

E[A2] ≤ 4(n − 1)2

n(n − m)2

(
n − 1

m − 1

)−2

E

[( ∑

1≤i1<···<im−1≤n
il �=i for l∈[m−1]

h̄m(Xi , Xi1 , . . . , Xim−1)

)2]

≤ 8(n − 1)2(m − 1)2E[h2]
(n − m)2n(n − m + 1)m

≤ C
mE[h2]

n2
(E.20)

Moreover, for B, we first expand its second moment as

E[B2]

= 4(n − 1)2

n(n − m)2

(
n − 1

m − 1

)−2

E

[( ∑

1≤ j≤n
j �=i

(
ξb, j

∑

1≤i1<···<im−2≤n
il �= j,i for l=1,...,m−2

h̄m,{ j,i,i1,...,im−2}
))2]
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= 4(n − 1)2

n(n − m)2

(
n − 1

m − 1

)−2

×
{
(n − 1)

∑

1≤i1<···<im−2≤m−2
1≤ j1<···< jm−2≤m−2
il , jl �=1,2 for l∈[m−2]

E[ξ2b,1h̄m,{1,2,i1,...,im−2}h̄m,{1,2, j1,..., jm−2}]

︸ ︷︷ ︸
≡ED

+ (n − 1)(n − 2)
∑

1≤i1<···<im−2≤n
1≤ j1<···< jm−2≤n
il �=1,3 for l∈[m−2]
jl �=2,3 for l∈[m−2]

E[ξb,1ξb,2h̄m,{1,3,i1,...,im−2}h̄m,{2,3, j1,..., jm−2}]

︸ ︷︷ ︸
≡EE

}
.

(E.21)

To bound ED, we first note that, by |ξb,1| ≤ 1, Hölder’s inequality and Lemma E.1(i),
each of its summand can be bounded as

∣∣∣E[ξ2b,1h̄m,{1,2,i1,...,im−2}h̄m,{1,2, j1,..., jm−2}]
∣∣∣ ≤ E[h2] (E.22)

Then, by considering the number of elements k ∈ [m − 2] shared by the sets
{i1, . . . , im−2} and { j1, . . . , jm−2} indexing each such summand, we have the bound

|ED| ≤
m−2∑

k=0

(
n − 2

k

)(
n − 2 − k

m − 2 − k

)(
n − m

m − 2 − k

)
E[h2]

=
(
n − 2

m − 2

) m−2∑

k=0

(
m − 2

k

)(
n − m

m − 2 − k

)
E[h2] by Lemma E.2(i i)

=
(
n − 2

m − 2

)2

E[h2] by Lemma E.2(i)

=
(
n − 1

m − 1

)2(m − 1

n − 1

)2

E[h2] by (E.2). (E.23)

To bound EE , we first break it down as

EE =
∑

1≤i1<···<im−2≤n
1≤ j1<···< jm−2≤n

il �=1,2,3 for l∈[m−2]
jl �=1,2,3 for l∈[m−2]

E[ξb,1ξb,2h̄m,{1,3,i1,...,im−2}h̄m,{2,3, j1,..., jm−2}

︸ ︷︷ ︸
≡EE1
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+
∑

1≤i1<···<im−3≤n
1≤ j1<···< jm−2≤n

il �=1,2,3 for l∈[m−3]
jl �=1,2,3 for l∈[m−2]

E[ξb,1ξb,2h̄m,{1,2,3,i1,...,im−3}h̄m,{2,3, j1,..., jm−2}]

︸ ︷︷ ︸
≡EE2

+
∑

1≤i1<···<im−2≤n
1≤ j1<···< jm−3≤n

il �=1,2,3 for l∈[m−2]
jl �=1,2,3 for l∈[m−3]

E[ξb,1ξb,2h̄m,{1,3,i1,...,im−2}h̄m,{1,2,3, j1,..., jm−3}]

︸ ︷︷ ︸
≡EE3

+
∑

1≤i1<···<im−3≤n
1≤ j1<···< jm−3≤n

il �=1,2,3 for l∈[m−3]
jl �=1,2,3 for l∈[m−3]

E[ξb,1ξb,2h̄m,{1,2,3,i1,...,im−3}h̄m,{1,2,3, j1,..., jm−3}

︸ ︷︷ ︸
≡EE4

. (E.24)

Using Lemma E.1(iv), one can then bound EE1 as

|EE1|

≤
m−2∑

k=0

(
n − 3

k

)(
n − 3 − k

m − 2 − k

)(
n − 1 − m

m − 2 − k

)(
9.5‖g‖23‖h‖23

n
+ 2d‖h‖2

n3/2

)

≤
m−2∑

k=0

(
n − 3

k

)(
n − 3 − k

m − 2 − k

)(
n − 1 − m

m − 2 − k

)(
9.5‖g‖23‖h‖23

n
+ 2‖h‖22

n

)

by (3.17) and d ≤ m ≤ n

≤ 11.5

(
n − 3

m − 2

) m−2∑

k=0

(
m − 2

k

)(
n − 1 − m

m − 2 − k

)‖g‖23‖h‖23
n

by Lemma E.2(i i) and ‖h‖2 ≤ ‖h‖3
= 11.5

(
n − 3

m − 2

)2 ‖g‖23‖h‖23
n

by Lemma E.2(i)

= 11.5

(
n − 1

m − 1

)2 (m − 1)2(n − m)2‖g‖23‖h‖23
n(n − 1)2(n − 2)2

by (E.3). (E.25)

For EE2 and EE3, using Lemma E.1(i i i), one can bound them similarly as

max(|EE2|, |EE3|)

≤
m−3∑

k=0

(
n − 3

k

)(
n − 3 − k

m − 3 − k

)(
n − m

m − 2 − k

)(
9.5‖g‖23‖h‖23

n
+ 2(2 + k)‖h‖2

n

)
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=
(
n − 3

m − 3

) m−3∑

k=0

(
m − 3

k

)(
n − m

m − 2 − k

)(
9.5‖g‖23‖h‖23

n
+ 2(2 + k)‖h‖2

n

)
by Lemma E.2(i i)

=
(
n − 3

m − 3

)(
n − 3

m − 2

)
9.5‖g‖23‖h‖23 + 4‖h‖2

n

+
(
n − 3

m − 3

) m−3∑

k=1

(
m − 4

k − 1

)(
n − m

m − 2 − k

)
2(m − 3)‖h‖2

n
by Lemma E.2(i)

=
(
n − 3

m − 3

){(
n − 3

m − 2

)
9.5‖g‖23‖h‖23 + 4‖h‖2

n
+

m−4∑

k=0

(
m − 4

k

)(
n − m

m − 3 − k

)
2(m − 3)‖h‖2

n

}

=
(
n − 3

m − 3

){(
n − 3

m − 2

)
9.5‖g‖23‖h‖23 + 4‖h‖2

n
+

(
n − 4

m − 3

)
2(m − 3)‖h‖2

n

}
by Lemma E.2(i)

=
(
n − 3

m − 3

){(
n − 3

m − 2

)
9.5‖g‖23‖h‖23 + 4‖h‖2

n
+

(
n − 3

m − 3

)
2(m − 3)(n − m)‖h‖2

(n − 3)n

}

=
(
n − 1

m − 1

)2{ (m − 1)2(m − 2)(n − m)(9.5‖g‖23‖h‖23 + 4‖h‖2)
(n − 1)2(n − 2)2n

+ 2(m − 1)2(m − 2)2(m − 3)(n − m)‖h‖2
(n − 1)2(n − 2)2(n − 3)n

}
by (E.3) and (E.4)

≤ C

(
n − 1

m − 1

)2{m3‖g‖23‖h‖23
n4

+ m5‖h‖2
n5

}
by 1 ≤ ‖g‖3 and ‖h‖2 ≤ ‖h‖3. (E.26)

Lastly, for EE4, using Lemma E.1(i i i), one can bound it as

|EE4|

≤
m−3∑

k=0

(
n − 3

k

)(
n − 3 − k

m − 3 − k

)(
n − m

m − 3 − k

)(
9.5‖g‖23‖h‖23

n
+ 2(3 + k)‖h‖2

n

)

=
(
n − 3

m − 3

) m−3∑

k=0

(
m − 3

k

)(
n − m

m − 3 − k

)

(
9.5‖g‖23‖h‖23

n
+ 2(3 + k)‖h‖2

n

)
by Lemma E.2(i i)

=
(
n − 3

m − 3

){(
n − 3

m − 3

)
9.5‖g‖23‖h‖23 + 6‖h‖2

n

+ 2(m − 3)‖h‖2
n

m−3∑

k=1

(
m − 4

k − 1

)(
n − m

m − 4 − (k − 1)

)}

=
(
n − 3

m − 3

){(
n − 3

m − 3

)
9.5‖g‖23‖h‖23 + 6‖h‖2

n

+ 2(m − 3)‖h‖2
n

(
n − 4

m − 4

)}
by Lemma E.2(i)

≤ C

(
n − 1

m − 1

)2{m4‖g‖23‖h‖23
n5

+ m6‖h‖2
n6

}
by (E.4), (E.5),
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1 ≤ ‖g‖3 and ‖h‖2 ≤ ‖h‖3. (E.27)

Combining (E.24), (E.25), (E.26), (E.27), and 2m < n, we get that

|EE | ≤ C

(
n − 1

m − 1

)2{
‖g‖23‖h‖23

(
m2

n3
+ m3

n4
+ m4

n5

)
+ ‖h‖2

(
m5

n5

)}
. (E.28)

Combining (E.21), (E.23), and (E.28), we get

E[B2] ≤ C

{
m2

n2
E[h2] +

[
‖g‖23‖h‖23

(
m2

n2
+ m3

n3
+ m4

n4

)
+ ‖h‖2

(
m5

n4

)]}

≤ C

{
m2‖g‖23‖h‖23

n2
+ m5‖h‖2

n4

}
, (E.29)

where we have used 2m < n, as well as ‖h‖2 ≤ ‖h‖3 and 1 = ‖g‖2 ≤ ‖g‖3 in the
last line. Combining (E.19), (E.20), and (E.29) gives Lemma 3.3(i i).

Appendix F. Proof of Lemmas E.1 and E.2

F.1 Proof of Lemma E.1

The proof for (i) and (i i) can be found in Chen et al. [3, Ch.10, Appendix]. We will
focus on proving (i i i) and (iv). For any subset {i1, . . . , ik} ⊂ [n], we will denote

X{i1,...,ik } = {Xi1 , . . . , Xik }.

To simplify the notation, we also denote

I = {i1, . . . , ik1} and J = { j1, . . . , jk2},

as well as

hI = hk1(Xi1 , . . . , Xik1
) and h̄ I = h̄k1,{i1,...,ik1 }

and

hJ = hk2(X j1 , . . . , X jk2
) and h̄ I = h̄k2,{ j1,...,i j2 }.

First, it suffices to assume both

k1, k2 ≥ 2

because if any of k1 and k2 is equal to 1, then one of h̄k1,{i1,...,ik1 } and h̄k2,{ j1,..., jk2 }
must be equal to zero by the definition in (3.9), so the bound is trivial. Moreover, one
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can further assume without loss of generality that the index sets I and J are such that

I\{1, 2} = J\{1, 2} = [3 : (d + 2)] if d > 0, (F.1)

in which case it must be true that |I\{1, 2}| = |J\{1, 2}| = d. This is because for any
I and J , we have

E[ξb,1ξb,2h̄ I h̄ J ]
= E

[
E[ξb,1ξb,2h̄ I h̄ J | X{1,2}∪(I∩J )]

]

= E

[
ξb,1ξb,2E[h̄ I h̄ J | X{1,2}∪(I∩J )]

]

= E

[
ξb,1ξb,2E[h̄ I | X{1,2}∪(I∩J )]E[h̄ J | X{1,2}∪(I∩J )]

]

because I\
(
{1, 2} ∪ (I ∩ J )

)
and J\

(
{1, 2} ∪ (I ∩ J )

)
are disjoint

= E

[
ξb,1ξb,2E[h̄ I | X(I∩{1,2})∪(I∩J )]E[h̄ J | X(J∩{1,2})∪(I∩J )]

]

= E

[
ξb,1ξb,2h̄(I∩{1,2})∪(I∩J )h̄(J∩{1,2})∪(I∩J )

]
.

Since
(
(I ∩ {1, 2}) ∪ (I ∩ J )

)
\{1, 2} = (I ∩ J )\{1, 2} =

(
(J ∩ {1, 2}) ∪ (I ∩ J )

)
\{1, 2}

and

|(I ∩ J )\{1, 2}| = d by assumption,

by the i.i.d.’ness of the data X1, . . . , Xn it suffices to assume (F.1).
By the definition in (3.9), we perform the expansion

E[ξb,1ξb,2 h̄ I h̄ J ]
= E

[
ξb,1ξb,2

(
hI −

∑

i∈I∩{1,2}
g(Xi ) −

∑

i∈I\{1,2}
g(Xi )

)

(
hJ −

∑

j∈J∩{1,2}
g(X j ) −

∑

j∈J\{1,2}
g(X j )

)]

= E[ξb,1ξb,2 hI h J ]︸ ︷︷ ︸
≡HH

−
∑

i∈I∩{1,2}
E[ξb,1ξb,2g(Xi ) hJ ]

︸ ︷︷ ︸
≡GH1

−
∑

j∈J∩{1,2}
E[ξb,1ξb,2g(X j ) hI ]

︸ ︷︷ ︸
≡GH2

−
∑

i∈I\{1,2}
E[ξb,1ξb,2g(Xi ) hJ ]

︸ ︷︷ ︸
≡GH3

−
∑

j∈J\{1,2}
E[ξb,1ξb,2g(X j ) hI ]

︸ ︷︷ ︸
≡GH4

123



Journal of Theoretical Probability

+
∑

i∈I∩{1,2}

∑

j∈J∩{1,2}
E[ξb,1ξb,2g(Xi )g(X j )]

︸ ︷︷ ︸
≡GG1

+
∑

i∈I\{1,2}

∑

j∈J\{1,2}
E[ξb,1ξb,2g(Xi )g(X j ))]

︸ ︷︷ ︸
≡GG2

,

recognizing that the last batch of expansion terms

∑

i∈I∩{1,2}

∑

j∈J\{1,2}
E[ξb,1ξb,2g(Xi )g(X j )]︸ ︷︷ ︸
=E[ξb,1ξb,2g(Xi )]E[g(X j )]=0

+
∑

i∈I\{1,2}

∑

j∈J∩{1,2}
E[ξb,1ξb,2g(Xi )g(X j )]︸ ︷︷ ︸
E[ξb,1ξb,2g(X j )]E[g(Xi )]=0

vanish. The remaining terms in each row of the expansion above are bounded as
follows:

F.1.1 Bound on HH:

|HH | =
∣∣∣E[ξb,1ξb,2 hI h J ]

∣∣∣ ≤
∥∥∥ξb,1ξb,2

∥∥∥
3

∥∥∥hI h J

∥∥∥
3/2

=
(
E[|ξb,1|3]E[|ξb,2|3]

)1/3(
E

[∣∣∣hI

∣∣∣
3/2∣∣∣hJ

∣∣∣
3/2])2/3

≤
(
E[|ξb,1|3]E[|ξb,2|3]

)1/3 (‖|hI |3/2‖2‖|hJ |3/2‖2
)2/3

by Cauchy’s inequality

≤ n−1‖g‖23‖h‖23, (F.2)

where the last line comes from (3.10) with |I | ∨ |J | ≤ m.

F.1.2 Bound on GH1 + GH2:

|GH1 + GH2|
≤

∑

i∈I∩{1,2}
‖ξb,1ξb,2g(Xi )‖3/2‖hJ‖3 +

∑

j∈J∩{1,2}
‖ξb,1ξb,2g(X j )‖3/2‖hI‖3

= |I ∩ {1, 2}| · ‖ξb,1ξb,2g(X1)‖3/2‖hJ‖3 + |J ∩ {1, 2}| · ‖ξb,1ξb,2g(X1)‖3/2‖hI‖3
≤ 4‖ξb,1ξb,2g(X1)‖3/2‖h‖3 by (3.10)

= 4‖ξb,1g(X1)‖3/2‖ξb,2‖3/2‖h‖3 by independence

≤ 4
(
E[n−3/4|g(X1)|3]

)2/3(
E[n−3/4|g(X2)|3/2]

)2/3‖h‖3
= 4n−1‖g‖23‖g‖3/2‖h‖3
≤ 4n−1‖g‖23‖h‖3, (F.3)

where the last inequality is true because ‖g‖3/2 ≤ ‖g‖2 = σg = 1.
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F.1.3 General bound on GH3 + GH4:

|GH3 + GH4|
≤

∑

i∈I\{1,2}
‖ξb,1ξb,2g(Xi )‖2‖hJ‖2 +

∑

j∈J\{1,2}
‖ξb,1ξb,2g(X j )‖2‖hI‖2

= |I\{1, 2}| · ‖ξb,1ξb,2g(X3)‖2‖hJ‖2 + |J\{1, 2}| · ‖ξb,1ξb,2g(X3)‖2‖hI‖2
≤ 2d‖ξb,1ξb,2g(X3)‖2‖h‖2 by (3.10) and (F.1)

≤ 2d‖ξ1‖2‖ξ2‖2‖g(X3)‖2‖h‖2 by independence
= 2dn−1‖h‖2 by (3.3). (F.4)

F.1.4 Special bound on GH3 + GH4 under 1 /∈ J and 2 /∈ I:

|GH3 + GH4|
=

∣∣∣∣
∑

i∈I\{1,2}
E[ξb,1]E[ξb,2g(Xi ) hJ ] +

∑

j∈J\{1,2}
E[ξb,2]E[ξb,1g(X j ) hI ]

∣∣∣∣

by 1 /∈ J and 2 /∈ I

≤
∑

i∈I\{1,2}

∣∣E[ξb,1]
∣∣ ‖ξb,2g(Xi )‖2‖h‖2

+
∑

j∈J\{1,2}

∣∣E[ξb,2]
∣∣ ‖ξb,1g(X j )‖2‖h‖2 by (3.10)

≤ 2d · ∣∣E[ξb,1]
∣∣ ‖ξb,1g(X3)‖2‖h‖2 by (F.1)

≤ 2dE[ξ21 ] ‖ξ1‖2 ‖g(X3)‖2‖h‖2 by Lemma A.1 and independence

= 2dn−3/2‖h‖2 by σ 2
g = 1 in (3.3). (F.5)

F.1.5 Bound on GG1 + GG2

|GG1 + GG2|
≤ 2

(
E[|ξb,1g2(X1)|] · |E[ξb,2]| + E[|ξb,1g(X1)|] · E[|ξb,2g(X2)|]

)

+
∣∣∣

∑

i∈I\{1,2}

∑

j∈J\{1,2}
E[ξb,1ξb,2g(Xi )g(X j ))]

∣∣∣

= 2
(
E[|ξb,1g2(X1)|] · |E[ξb,2]| + E[|ξb,1g(X1)|] · E[|ξb,2g(X2)|]

)

+ d · |E[ξb,1]| · |E[ξb,2]| · E[g2(X3)],

where the last equality uses that

E[ξb,1ξb,2g(Xi )g(X j ))] = E[ξb,1ξb,2]E[g(Xi )]E[g(X j ))]
= 0 if i �= j and i, j /∈ {1, 2},
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as well as the working assumption in (F.1). Continuing, we get

|GG1 + GG2|
≤ 2

(
E[g2(X1)] · |E[ξb,2]| + n−1

E[g2(X1)] · E[g2(X2)]
)

+ d · |E[ξb,1]| · |E[ξb,2]| · E[g2(X3)]
≤ 2(n−1 + n−1) + dn−2 by Lemma A.1 and E[g(X2

1)] = 1 in (3.3)

≤ 4n−1 + d

2m
n−1 by 2m < n

≤ 4.5n−1 by d ≤ m. (F.6)

F.1.6 Summary

Recall 1 = σg ≤ ‖g‖3 ≤ ‖h‖3. Combining (F.2), (F.3), (F.4), (F.6) gives
Lemma E.1(i i i), and combining (F.2), (F.3), (F.5), (F.6) gives Lemma E.1(iv).

F.2 Proof of Lemma E.2

Statement (i) is the Vandermonde’s identity, which counts the number of ways to
choose m balls from n1 red balls and n2 green balls, by summing over k ∈ [0 : m] the
number of ways to choose k red balls andm − k green balls. Statement (i i) counts the
number of ways to choose m balls out of a bag of n balls and paint k of the m chosen
balls as red, in two different ways. Statement (i i i) comes from

(
a

b

)
−

(
a − e

b

)
=

(
a

b

)(
1 − (a − e) . . . (a − e − b + 1)

a · · · (a − b + 1)

)

=
(
a

b

)(
1 −

a∏

j=a−b+1

(
1 − e

j

))

≤
(
a

b

) a∑

j=a−b+1

e

j

≤
(
a

b

)
be

a − b + 1
.
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