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Abstract
We deduce stability and pathwise uniqueness for a McKean–Vlasov equation with
random coefficients and a multidimensional Brownian motion as driver. Our analysis
focuses on a non-Lipschitz continuous drift and includesmoment estimates for random
Itô processes that are of independent interest. For deterministic coefficients,we provide
unique strong solutions even if the drift fails to be of affine growth. The theory that
we develop rests on Itô’s formula and leads to pth moment and pathwise exponential
stability for p ≥ 2 with explicit Lyapunov exponents.
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1 Introduction

The study of McKean–Vlasov stochastic differential equations, also called mean-
field SDEs, was initiated by Kac [23], McKean [31] and Vlasov [34]. Since then,
these integral equations received considerable attention in a variety of fields, such
as physics, economics, finance and mathematics. A crucial reason for this is the fact
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that they can be used to model the propagation of chaos of interacting particles in a
plasma, as shown in [34]. In applications of these types, questions regarding stability,
uniqueness and existence of solutions arise. To give precise answers under verifiable
conditions, we continue our analysis of the companion paper [25] and present new
methods.

Let d, m ∈ N and (�,F , (Ft )t≥0,P) be a filtered probability space that satisfies the
usual conditions and on which there is a standard d-dimensional (Ft )t≥0-Brownian
motion W . Then a McKean–Vlasov equation can be written in the form

Xt = X0 +
∫ t

0
b
(
s, Xs,L(Xs)

)
ds

+
∫ t

0
σ
(
s, Xs,L(Xs)

)
dWs for t ≥ 0 a.s.

(1.1)

Thereby, the drift and diffusion coefficients b and σ are defined onR+ ×R
m ×P(Rm)

and take their values in Rm and Rm×d , respectively, and P(Rm) stands for the convex
space of all Borel probability measures on R

m .
The theory of mean-field SDEs has undergone groundbreaking developments since

the works [23, 31, 34] and proven to be an indispensable mathematical tool. For
instance, another important application in physics pertains to the analysis of incom-
pressible Navier–Stokes equations that were considered in the classical work [28] by
Leray and which have a deep link with mean-field SDEs, according to Constantin and
Iyer [16]. Recently, this connection was further explored by Röckner and Zhao [33].

Moreover, mean-field games, studied by Lasry and Lions [27], serve as applications
in economics and may be used to explain the interaction and behaviour of agents in
a vast network. For other works related to mean-field games, we refer the reader to
[8–12]. Regarding applications in finance, see [13, 14, 18, 19, 26] in connection with
systemic risk modelling.

Over the years, mean-field SDEs, such as (1.1), were studied from a mathematical
point of view under various assumptions on the type of noise and the regularity of the
coefficients. While the authors in [22] consider Lévy noise, results on unique strong
solutions, based on additive Gaussian noise and a discontinuous drift, were established
in [2–4] by using Malliavin calculus. Results on weak solutions can be found in [15,
17, 21, 32]. In [29], even path-dependent coefficients were treated. It is worth noting
that mean-field equations of backward type were considered in [5, 6], and infinite-
dimensional partial differential equations related to mean-field SDEs were derived in
[7].

In the sequel, let t0 ≥ 0 andP be a separable metrisable space inP(Rm). For p ≥ 2
the Polish spacePp(R

m) of all measures inP(Rm)with a finite pth absolute moment,
endowed with the pthWasserstein metric, serves as main application. Further, assume
that along with P the maps

B : [t0,∞[×� × R
m × P → R

m and � : [t0,∞[×� × R
m × P → R

m×d
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are admissible in a suitablemeasurable sense, as explained in Sect. 2.We shall focus on
the following McKean–Vlasov SDE with such random drift and diffusion coefficients:

dXt = Bt
(
Xt ,L(Xt )

)
dt + �t

(
Xt ,L(Xt )

)
dWt for t ≥ t0. (1.2)

This comprises controlled McKean–Vlasov SDEs, by Example 2.2. In particular, if �

does not depend on the measure variable μ ∈ P , then we recover the setting of the
previous work [25], in which a multidimensional Yamada–Watanabe approach was
developed.

The objective of this paper is to deduce stability, uniqueness and existence of solu-
tions to (1.2), by presenting methods that handle the dependence of the diffusion
coefficient with respect to the measure variable and allow for a discontinuous drift.
Essentially, our contributions to the existing literature can be listed as follows:

(1) Pathwise uniqueness for (1.2) is shown in Corollary 3.5 if B and � satisfy an
Osgood condition that is only partially restrictive for B. In the specific case that
both coefficients are independent of μ ∈ P , which turns (1.2) into an SDE, this
condition is required on compact sets only.

(2) From the explicit L p-comparison estimate for (1.2) in Proposition 3.10 we
obtain (asymptotic) pth moment stability in Corollary 3.12 under partial and
complete mixed Hölder continuity conditions on B and �, respectively, and
clear integrability conditions on the random partial Hölder coefficients relative to
(x, μ) ∈ R

m × P .
(3) Exponential pth moment stability with explicit Lyapunov exponents follows from

Corollary 3.13 if partial and complete Lipschitz conditions are valid for B and �,
respectively, and the stability factor in (3.9), which can be viewed as functional
of the partial Lipschitz coefficients, does not exceed a sum of power functions.

(4) Pathwise exponential stability is shown inCorollary 3.17 under the justmentioned
Lipschitz conditions on B and � with deterministic partial Lipschitz coefficients
of certain growth and the same bound involving a sum of power functions for
the stability factor γpq in (3.12), where q ≥ 2. Thereby, the pathwise Lyapunov
exponent is the pqth moment Lyapunov exponent divided by pq.

(5) As the companion paper [25], this work demonstrates that for a detailed stability
analysis of McKean–Vlasov equations verifiable assumptions can be given and
the existence of Lyapunov functions does not have to be assumed.

(6) Unique strong solutions are derived in Theorem 3.24 when B and � are deter-
ministic, an Osgood growth or an affine growth estimate that is only partially
restrictive for B holds and partial and complete Lipschitz conditions are satisfied
by B and �, respectively. So, B is not forced to be of affine growth relative to
(x, μ) ∈ R

m × P .

We note that the contributions (1), (4) and (6) are comparable to those in [25] if� is
independent ofμ ∈ P . In this case, the pathwise uniqueness assertions ofCorollary 3.7
in [25] are applicable when � satisfies an Osgood condition on compact sets relative
to the standard basis of Rm . Thereby, in contrast to Corollary 3.5 in this article, B is
ought to satisfy a partial Osgood condition that depends on this basis.
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The pathwise exponential stability statements of Corollary 3.17 in [25] require B
and� to satisfy a partial Lipschitz condition and an 1

2 -Hölder condition in terms of the
standard basis, respectively. Then the same bound involving a sum of power functions
as in this paper is imposed on the stability factor γ1 given by (3.9) in [25]. This
entails that one half of the first moment Lyapunov exponent, studied in Corollary 3.14
there, serves as pathwise Lyapunov exponent. While γ1 is merely influenced by the
regularity of B, the relevant stability factor γpq in (3.12) for Corollary 3.17 in this
work, where q ≥ 2, is based on the partial Lipschitz coefficients stemming from
partial and complete Lipschitz conditions for B and �, respectively.

Further, the strong existence and uniqueness result in [25, Theorem 3.25] holds if
B and � are deterministic, B satisfies a partial affine growth and a partial Lipschitz
condition relative to the standard basis, �s(0) = 0 for any s ≥ t0 and the Osgood
condition on compact sets, as mentioned before, is valid for �. In Theorem 3.24 of
this paper, however, the partial affine growth and partial Lipschitz conditions on B are
less restrictive and � is supposed to satisfy an affine growth and a Lipschitz condition
instead.

More restrictively, the existence result in [1, Theorem 3.1] on a finite time horizon
requires the deterministic drift and diffusion to be both of affine growth and Lips-
chitz continuous in (x, μ) ∈ R

m × P , uniformly in time, as it is based on a standard
fixed-point approach. For time-independent continuous coefficients that do not need
to be Lipschitz continuous, a weak solution is deduced in [17, Proposition 3.5] from
an Euler–Maruyama approximation. In the case that B and � are integral maps, as in
Example 3.26, weak existence is shown in [32, Theorem 1] under a non-degeneracy
condition for � even if B and � fail to be continuous in x ∈ R

m . In view of Theo-
rem 3.24, these three existence results rely on affine growth conditions on B that do not
include the specific case (3.24) of Example 3.26 with arbitrary l ∈ N and a ∈]0,∞[l .
This emphasises the fact that the partial affine growth condition on B in Theorem 3.24
is less restrictive.

This work is structured as follows. In Sect. 2, the setting of our paper is introduced.
In this context, we recall and extend several concepts from [25] that are related to the
general McKean–Vlasov equation (1.2).

The main results are formulated in Sect. 3. In detail, Sect. 3.1 gives a quantita-
tive second moment bound for the difference of two solutions, from which pathwise
uniqueness follows. In Sect. 3.2, we compare solutions in arbitrary moments, which
in turn leads to standard, asymptotic and exponential stability in pth moment. Then
Sect. 3.3 deals with pathwise stability and L p-growth estimates. By combining these
results, a strong existence and uniqueness result can be stated in Sect. 3.4. Thereby,
all results are illustrated by a variety of examples involving integral maps.

Finally, Sect. 4 derives moment and pathwise asymptotic estimates for random Itô
processes, from which our main results will be inferred in the proofs appearing in
Sect. 5.
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2 Preliminaries

In what follows, we use | · | as absolute value function, Euclidean norm or Hilbert–
Schmidt norm and denote the transpose of any matrix A ∈ R

m×d by A′. Moreover,
for any interval I in R with infimum a and supremum b and every monotone function
f : I → R, we set f (a) := limv↓a f (v), if a /∈ I , and f (b) := limv↑b f (v), if b /∈ I .

2.1 Admissible Spaces of Probability Measures and Notions of Solutions

From now on, letP be a separable metrisable space inP(Rm) that is admissible in the
sense of [25, Definition 2.1]. That is, for every metrisable space S, each probability
space (�̃, F̃ , P̃) and any continuous process X : S × �̃ → R

m satisfying L(Xs) ∈ P
for any s ∈ S, the map

S → P, s 	→ L(Xs)

is Borelmeasurable. Sufficient conditions for a separablemetrisable space inP(Rm) to
be admissible and examples of such spaces are given in [25, Section 2.1]. In particular,
our main application is included.

Namely, for p ≥ 1 the Polish spacePp(R
m) of allμ ∈ P(Rm) admitting a finite pth

absolute moment
∫
Rm |x |p μ(dx), endowed with the pth Wasserstein metric defined

via

ϑp(μ, ν) := inf
θ∈P(μ,ν)

( ∫
Rm×Rm

|x − y|p dθ(x, y)

) 1
p

, (2.1)

is admissible.Here,P(μ, ν)denotes the convex space of allBorel probabilitymeasures
on R

m × R
m with first and second marginal distributions μ and ν, respectively, for

any μ, ν ∈ P(Rm).
Next, letA represent the progressive σ -field, consisting of all sets A in [t0,∞[×�

for which 1A is progressively measurable. Then we shall call a map

F : [t0,∞[×� × R
m × P → R

m×d , (s, ω, x, μ) 	→ Fs(x, μ)(ω)

admissible if it isA⊗B(Rm)⊗B(P)-measurable. This property, which we also con-
sidered in [25, Section 2.2], ensures that for eachRm-valued progressively measurable
process X and every Borel measurable map μ : [t0,∞[→ P , the process

[t0,∞[×� → R
m×d , (s, ω) 	→ Fs(Xs(ω), μ(s))(ω)

is progressively measurable. Here and subsequently, we assume that the drift B and
the diffusion � of the McKean–Vlasov equation (1.2) are admissible, as described.
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Definition 2.1 A solution to (1.2) is anRm-valued adapted continuous process X such
that L(Xs) ∈ P for any s ≥ t0,

∫ ·
t0

|Bs(Xs,L(Xs))|+ |�s(Xs,L(Xs))|2 ds < ∞ and

X = Xt0 +
∫ ·

t0
Bs

(
Xs,L(Xs)

)
ds +

∫ ·

t0
�s

(
Xs,L(Xs)

)
dWs a.s.

Example 2.2 Assume that there are l ∈ N, an R
l -valued progressively measurable

processY andBorelmeasurablemaps b andσ on [t0,∞[×R
m×P×R

l with respective
values in Rm and R

m×d such that

Bs(x, μ) = b(s, x, μ, Ys) and �s(x, μ) = σ(s, x, μ, Ys)

for every (s, x, μ) ∈ [t0,∞[×R
m×P . ThenBand� are admissible and (1.2) becomes

a McKean–Vlasov SDE with drift and diffusion coefficients that are controlled by Y .

We readily check that for B and � to be deterministic, it is necessary and sufficient
that there are two Borel measurable maps b and σ on [t0,∞[×R

m × P with values
in Rm and R

m×d , respectively, such that

Bs(x, μ) = b(s, x, μ) and �s(x, μ) = σ(s, x, μ) (2.2)

for all (s, x, μ) ∈ [t0,∞[×R
m × P . In this deterministic setting, we may introduce

weak and strong solutions and write (1.2) formally as follows:

dXt = b
(
t, Xt ,L(Xt )

)
dt + σ

(
t, Xt ,L(Xt )

)
dWt for t ≥ t0. (2.3)

Namely, any R
m-valued Ft0 -measurable random vector ξ and the Brownian motion

W induce a filtration by Eξ
t := σ(ξ) ∨ σ(Ws − Wt0 : s ∈ [t0, t]) for all t ≥ t0. Then a

solution X to (2.3) with Xt0 = ξ a.s. is strong if it is adapted to the right-continuous
augmented filtration of (Eξ

t )t≥t0 .
A weak solution is an R

m-valued adapted continuous process X defined on some
filtered probability space (�̃, F̃ , (F̃t )t≥0, P̃) that satisfies the usual conditions and on
which there is a standard d-dimensional (F̃t )t≥0-Brownian motion W̃ such that

L(Xs) ∈ P for all s ≥ t0,
∫ ·

t0

∣∣b(
s, Xs,L(Xs)

)∣∣ + ∣∣σ (
s, Xs,L(Xs)

)∣∣2 ds < ∞

and X = Xt0 + ∫ ·
t0

b(s, Xs,L(Xs)) ds + ∫ ·
t0

σ(s, Xs,L(Xs)) dW̃s a.s. In such a case,

we shall say that X solves (2.3) weakly relative to W̃ .
In general, we measure the regularity of the random coefficients B and � with

respect to the variable μ ∈ P by means of an R+-valued Borel measurable functional
ϑ on P × P , and for p ≥ 1 we assume that

ϑ
(L(X),L(X̃)

) ≤ E
[|X − X̃ |p] 1

p (2.4)
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for any two R
m-valued random vectors X , X̃ satisfying L(X),L(X̃) ∈ P . For exam-

ple, this condition is satisfied if ϑ is dominated by the pth Wasserstein metric ϑp

in (2.1) as follows:

ϑ(μ, ν) ≤ ϑp(μ, ν) for any μ, ν ∈ P. (2.5)

Thereby, we extend the definition of ϑp(μ, ν) for all μ, ν ∈ P(Rm) by allowing
infinite values. Note that if in addition P ⊆ Pp(R

m), we have

μ ◦ ϕ−1 ∈ P for all μ ∈ P

and any bounded uniformly continuous map ϕ : Rm → R
m satisfying |ϕ| ≤ | · | and ϑ

is a metric inducing the topology of P , then P is always admissible, by Corollary 2.4
in [25].

Example 2.3 Suppose that φ : [−∞,∞[→ R+ and ϕ : Rm × R
m → R are measur-

able, ρ ∈ C(R+) is increasing and vanishes at 0 and there is c > 0 such that

ϕ(x, y) ≤ ρ(|x − y|) and ρ(v + w)/c ≤ ρ(v) + ρ(w)

for any x, y ∈ R
m and v,w ≥ 0. Under the condition that P is included in the convex

space Pρ(Rm) of all μ ∈ P(Rm) for which
∫
Rm ρ(|x |) μ(dx) is finite, we may take

ϑ(μ, ν) = φ

(
inf

θ∈P(μ,ν)

∫
Rm×Rm

ϕ(x, y) dθ(x, y)

)
for all μ, ν ∈ P

and the following three statements hold:

(1) If f , g : Rm → R aremeasurable and satisfyϕ(x, y) = f (x)−g(y) ≤ ρ(|x−y|)
for all x, y ∈ R

m , then

ϑ(μ, ν) = φ

( ∫
Rm

f (x) μ(dx) −
∫
Rm

g(y) ν(dy)

)
for any μ, ν ∈ P.

(2) For the choice φ(v) = v
1
p for any v ≥ 0, ϕ(x, y) = |x − y|p for all x, y ∈ R

m

and ρ(v) = v p for every v ≥ 0, we get that Pρ(Rm) = Pp(R
m) and ϑ = ϑp.

(3) The domination condition (2.5) is valid as soon as φ(v) ≤ (v+)
1
p for all v ∈

[−∞,∞[ and ρ(v) = v p for any v ≥ 0.

2.2 Concepts of Pathwise Uniqueness and Stability

First, we notice that even in the case (P, ϑ) = (P2(R
m), ϑ2) for any solution X

to (1.2) the measurable function [t0,∞[→ R+, s 	→ E[|Xs |2] is not necessarily
locally integrable. For instance, let for the moment the following partial and complete
affine growth conditions hold:

x ′B(x, μ) ≤ |x |(c0 + c1ϑ2(μ, δ0)
)

and |�(x, μ)| ≤ c0 + c1ϑ2(μ, δ0)
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for every (x, μ) ∈ R
m ×P2(R

m) and some c0, c1 ≥ 0, where δ0 is the Dirac measure
in 0. Then, by recalling that ϑp(μ, δ0)

p = ∫
Rm |x |p μ(dx) for any μ ∈ Pp(R

m), Itô’s
formula immediately yields that

X2
t − X2

t0 − 2
∫ t

t0
X ′

s�s
(
Xs ,L(Xs)

)
dWs =

∫ t

t0
2X ′

sBs
(
Xs ,L(Xs)

) + ∣∣�s
(
Xs ,L(Xs)

)∣∣2 ds

≤
∫ t

t0
2|Xs |

(
c0 + c1E

[|Xs |2
] 1
2
) + (

c0 + c1E
[|Xs |2

] 1
2
)2 ds

for all t ≥ t0 a.s. Although the first appearing Lebesgue integral is finite, the second
may be infinite, since the condition L(Xs) ∈ P for any s ≥ t0 in Definition 2.1 is
merely equivalent to the square-integrability of X . But if c1 = 0, then Lemmas 3.20
and 3.21 show that E[|X |2] is actually locally bounded.

Thus, as in [25], we shall state all uniqueness, stability and existence results under a
local integrability condition, which takes growth in the measure variable into account.
For this purpose, let � be an [0,∞]-valued functional on [t0,∞[×P × P × P(Rm).

Definition 2.4 Pathwise uniqueness holds for (1.2) (with respect to �) if every two
solutions X and X̃ with Xt0 = X̃t0 a.s. (and for which the function

[t0,∞[→ [0,∞], s 	→ �
(
s,L(Xs),L(X̃s),L(Xs − X̃s)

)
(2.6)

is measurable and locally integrable) are indistinguishable.

Example 2.5 Let ρ, � ∈ C(R+) vanish at 0, ρ be concave and η, λ : [t0,∞[→ R+ be
measurable and locally integrable such that

�(s, μ, μ̃, ν) = λ(s)�
(
ϑ(μ, μ̃)

) + η(s)
∫
Rm

ρ(|x |p) ν(dx)

for all s ≥ t0, μ, μ̃ ∈ P and ν ∈ P(Rm). Then �(s, μ, μ̃, ν) < ∞ as soon as
ν ∈ Pp(R

m), and for any twocontinuous processes X , X̃ satisfyingL(Xs),L(X̃s) ∈ P
for all s ≥ t0 it holds that

�
(·,L(Xs),L(X̃s),L(Xs − X̃s)

) = λ�
(
ϑ(L(X),L(X̃))

) + ηE
[
ρ(|X − X̃ |p)

]
.

So, the measurable function (2.6) is locally integrable if E[|X − X̃ |p] is locally
bounded, for instance.

Based on the stability concepts of [25, Definition 2.12] that involve first moments,
we formulate generalised notions of stability for (1.2) in a global meaning. In this
regard, shifts of the stochastic drift and diffusion coefficients are not required, as the
explicit argumentation preceding Definition 2.12 in [25] explains.

Moreover, we stress the fact that the stability definitions below and Definition 2.4
of pathwise uniqueness apply to (2.3) in the case (2.2) of deterministic coefficients by
considering weak solutions on common filtered probability spaces instead of solutions
on the underlying space, as noted in the end of Section 2.2 in [25].
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Definition 2.6 Let α > 0.

(i) Equation (1.2) is stable in pth moment (relative to �) if for any two solutions X
and X̃ (for which (2.6) is measurable and locally integrable) it holds that

sup
t≥t0

E
[|Xt − X̃t |p] < ∞,

provided E[|Xt0 − X̃t0 |p] < ∞. If additionally limt↑∞ E[|Xt − X̃t |p] = 0, then
we refer to asymptotic stability in pth moment.

(ii) We say that (1.2) is α-exponentially stable in pth moment (relative to �) if there
exist λ < 0 and c ≥ 0 such that any two solutions X and X̃ satisfy

E
[|Xt − X̃t |p] ≤ ceλ(t−t0)αE

[|Xt0 − X̃t0 |p] (2.7)

for each t ≥ t0 (as soon as (2.6) is measurable and locally integrable). In this
case, λ is a pth moment α-Lyapunov exponent for (1.2).

(iii) We call (1.2) pathwise α-exponentially stable (relative to an initial absolute pth
moment and �) if there is λ < 0 such that

lim sup
t↑∞

1

tα
log

(|Xt − X̃t |
) ≤ λ a.s.

(provided E[|Xt0 − X̃t0 |p] < ∞ and (2.6) is measurable and locally integrable).
In such a case, λ is a pathwise α-Lyapunov exponent for (1.2).

Remark 2.7 Suppose thatE[|X − X̃ |p] is locally bounded. Then from (2.7) we directly
infer that

lim sup
t↑∞

1

tα
log

(
E

[|Xt − X̃t |p]) ≤ λ.

Conversely, the latter bound yields the former for λ + ε instead of λ for any ε > 0.

3 Main Results

3.1 A Quantitative SecondMoment Bound and Pathwise Uniqueness

By comparing solutions to (1.2) with possibly different drift and diffusion coefficients,
we obtain pathwise uniqueness. In this regard, let the two maps

B̃ : [t0,∞[×� × R
m × P → R

m and �̃ : [t0,∞[×� × R
m × P → R

m×d

be admissible. We introduce two sublinear functionals [·]p and [·]∞ with values in
[0,∞] and ] − ∞,∞], respectively, on the linear space of all random variables by

[
X

]
p := E

[(
X+)p] 1

p and
[
X

]
∞ := ess sup X .
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Then the inequalities of Hölder and Young show that for any β, γ ∈ [0, p] with
β ≤ γ , each x ≥ 0 and any two random variables X and Y with Y ≥ 0, [X ] p

γ
< ∞

and E[Y p] < ∞, the product XY p−γ is quasi-integrable and

pxE
[
XY p−γ

]
E

[
Y p] β

p ≤ px
[
X

]
p
γ
E

[
Y p]1− γ−β

p

≤ [
X

]
p
γ

(
(γ − β)x

p
γ−β + (p + β − γ )E

[
Y p]),

(3.1)

provided x = 1 whenever β = γ , since 1∞ = limq↑∞ 1q = 1. By means of these
bounds we derive the quantitative moment estimates of Proposition 4.4 and Theo-
rem 4.6, on which our main results rely.

First, let us introduce an uniform error and continuity condition for the coefficients
(B, �) and (B̃, �̃) that is only partially restrictive for the drift coefficients B and B̃:

(C.1) There are ρ, � ∈ C(R+) that are positive on ]0,∞[ and vanish at 0 and R+-
valued progressively measurable processes ε, η, λ with locally integrable paths
so that

2(x − x̃)′
(
B(x, μ) − B̃(x̃, μ̃)

) + |�(x, μ) − �̃(x̃, μ̃)|2
≤ ε + ηρ(|x − x̃ |2) + λ�

(
ϑ(μ, μ̃)2

)

for any x, x̃ ∈ R
m and μ, μ̃ ∈ P a.s. In addition, ρ

1
α is concave for some

α ∈]0, 1], � is increasing and E[ε], [η] 1
1−α

, E[λ] are locally integrable.

Remark 3.1 If (B, �) = (B̃, �̃) and ε = 0, then (C.1) is simply a partial uniform
continuity condition for B and �. Moreover, we may interpret ε as error bound for
the differences B − B̃ and � − �̃.

For the succeeding L2-estimate based on Bihari’s inequality, we recall that for any
ρ ∈ C(R+) that is positive on ]0,∞[ and vanishes at 0, the function�ρ ∈ C1(]0,∞[)
given by

�ρ(w) :=
∫ w

1

1

ρ(v)
dv (3.2)

is a strictly increasing C1-diffeomorphism onto the interval ]�ρ(0),�ρ(∞)[. Let Dρ

be the set of all (v,w) ∈ R
2+ with�ρ(v)+w < �ρ(∞) and note that�ρ : Dρ → R+

given by

�ρ(v,w) := �−1
ρ

(
�ρ(v) + w

)
(3.3)

is a continuous extension of a locally Lipschitz continuous function. Moreover, �ρ is
increasing in each coordinate.

Hence, under (C.1), we use for fixedβ ∈]0, 1] the twomeasurable locally integrable
functions

γ := α[η] 1
1−α

+ βE[λ] and δ := (1 − α)[η] 1
1−α

+ (1 − β)E[λ]
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to give a quantitative L2-bound. Thereby, we require until the end of this section that
the L p-norm bound (2.4) is valid for p = 2.

Proposition 3.2 Let (C.1) hold, X and X̃ be two solutions to (1.2) with respective
coefficients (B, �) and (B̃, �̃) such that

E
[|Yt0 |2

]
< ∞ for Y := X − X̃

and E[λ]�(ϑ(L(X),L(X̃))2) be locally integrable. Define �0 ∈ C(R+) via

�0(v) := ρ(v)
1
α ∨ �(v)

1
β

and assume that �
ρ

1
α
(∞) = ∞ or E[ηρ(|Y |2)] is locally integrable. Then E[|Y |2] is

locally bounded and

sup
s∈[t0,t]

E
[|Ys |2

] ≤ ��0

(
E

[|Yt0 |2
] +

∫ t

t0
E[εs] + δ(s) ds,

∫ t

t0
γ (s) ds

)

for each t ∈ [t0, t+0 [, where t+0 > t0 denotes the supremum over all t ≥ t0 for which

(
E

[|Yt0 |2
] +

∫ t

t0
E[εs] + δ(s) ds,

∫ t

t0
γ (s) ds

)
∈ D�0 .

Remark 3.3 From ��0(∞) = ∞ it follows that �
ρ

1
α
(∞) = ∞ and D�0 = R

2+.
Thus, E[|Y |2] is bounded in this case if E[ε], γ and δ are integrable. Moreover, the
conditions

��0(0) = −∞, Yt0 = 0 a.s. and E[ε] = δ = 0 a.e.

imply t+0 = ∞ and Y = 0 a.s. This fact will be used to derive pathwise uniqueness.

Example 3.4 Suppose that α = β = 1 and ρ(v) = �(v) = cv(| log(v)| + 1) for any
v ≥ 0 and some c ∈]0, 1]. Then we have ��0(0) = −∞ and ��0(∞) = ∞. Further,

log
(
��0(v,w)

) =

⎧⎪⎨
⎪⎩

(1 + log(v))ecw − 1, if v ≥ 1,
ecw

1−log(v)
− 1, if 1 > v ≥ exp(1 − ecw),

1 − (1 − log(v))e−cw, if v < exp(1 − ecw),

for any v,w ≥ 0, which leads to an explicit L2-estimate in Proposition 3.2.

To deduce pathwise uniqueness from the comparison, we restrict (C.1) to the case
when (B, �) = (B̃, �̃), ε = 0, α = 1 and η is deterministic. Further, if B and � are
independent of μ ∈ P , then this condition will be imposed on compact sets only:
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(C.2) There areρ, � ∈ C(R+) that are positive on ]0,∞[ and vanish at 0, ameasurable
locally integrable function η : [t0,∞[→ R+ and an R+-valued progressively
measurable process λ with locally integrable paths such that

2(x − x̃)′
(
B(x, μ) − B(x̃, μ̃)

) + |�(x, μ) − �(x̃, μ̃)|2
≤ ηρ(|x − x̃ |2) + λ�

(
ϑ(μ, μ̃)2

)

for any x, x̃ ∈ R
m and μ, μ̃ ∈ P a.s. Additionally, ρ is concave, � is increasing

and E[λ] is locally integrable.
(C.3) B and � are independent of μ ∈ P , and for each n ∈ N there are a concave

ρn ∈ C(R+) that is positive on ]0,∞[ and vanishes at 0 and a measurable
locally integrable function ηn : [t0,∞[→ R+ so that

2(x − x̃)′
(
B̂(x) − B̂(x̃)

) + |�̂(x) − �̂(x̃)|2 ≤ ηnρn(|x − x̃ |2)

for all x, x̃ ∈ R
m with |x | ∨ |x̃ | ≤ n a.s., where B̂ := B(·, μ̂) and �̂ := �(·, μ̂)

for fixed μ̂ ∈ P .

Under (C.2), pathwise uniqueness for (1.2) follows with respect to the Borel mea-
surable functional � : [t0,∞[×P × P × P(Rm) → [0,∞] defined via

�(s, μ, μ̃, ν) := E
[
λs

]
�
(
ϑ(μ, μ̃)2

) + 1]0,∞[
(
�ρ(∞)

)
η(s)

∫
Rm

ρ(|y|2) ν(dy).

Corollary 3.5 The following two assertions hold:

(i) If (C.2) is satisfied and
∫ 1
0

1
ρ(v)∨�(v)

dv = ∞, then pathwise uniqueness for (1.2)
relative to � is valid.

(ii) Assume that (C.3) holds and
∫ 1
0

1
ρn(v)

dv = ∞ for any n ∈ N. Then we have
pathwise uniqueness for the SDE (1.2).

Remark 3.6 If B and � are deterministic, in which case (2.2) holds, then pathwise
uniqueness for (2.3) in the standard sense follows from the corollary if the assumptions
are restricted as follows:

(1) The uniform continuity condition (C.2) is stated when λ is independent of ω ∈ �.
(2) The domination condition (2.5) instead of the L p-bound (2.4) is used for p = 2.

As application, we consider the case that B and � are integral maps. Thereby, an
R

m×d -valued map on [t0,∞[×�×R
m ×R

m will be called admissible, as introduced
in Sect. 2.1, by viewing it as a map on [t0,∞[×� × R

2m × P that is independent of
μ ∈ P .

Example 3.7 Let B(0) and�(0) be admissiblemaps on [t0,∞[×�×R
m ×R

m with val-
ues inRm andRm×d , respectively, such that B(0)(x, ·) and�(0)(x, ·) areμ-integrable,

B(x, μ) =
∫
Rm

B(0)(x, y) μ(dy) and �(x, μ) =
∫
Rm

�(0)(x, y) μ(dy)

for all (x, μ) ∈ [t0,∞[×P . Then the following two assertions hold:
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(1) Suppose that there are concave ρ, � ∈ C(R+) that are positive on ]0,∞[ and
vanish at 0, a measurable locally integrable function η : [t0,∞[→ R+ and an
R+-valued progressively measurable process λwith locally integrable paths such
that

2(x − x̃)′
(
B(0)(x, y) − B(0)(x̃, ỹ)

) + |�(0)(x, y) − �(0)(x̃, ỹ)|2
≤ ηρ(|x − x̃ |2) + λ�(|y − ỹ|2)

for all x, x̃, y, ỹ ∈ R
m . If in addition � is increasing andE[λ] is locally integrable,

then (C.2) is valid when P ⊆ P2(R
m) and ϑ(μ, ν) = ϑ2(μ, ν) for all μ, ν ∈ P .

(2) Assume that there are a measurable locally integrable map η : [t0,∞[→ R
2+,

a measurable locally square-integrable function η̂1 : [t0,∞[→ R+ and an R+-
valued progressively measurable process η̂(2) with locally square-integrable paths
so that

(x − x̃)′
(
B(0)(x, y) − B(0)(x̃, ỹ)

) ≤ |x − x̃ |(η1|x − x̃ | + η2|y − ỹ|)
and |�(0)(x, y) − �(0)(x̃, ỹ)| ≤ η̂1|x − x̃ | + η̂(2)|y − ỹ|

for any x, x̃, y, ỹ ∈ R
m and [η̂(2)]22 is locally integrable. Then (C.2) follows when

P ⊆ P1(R
m), ϑ(μ, ν) ≥ ϑ1(μ, ν) for any μ, ν ∈ P and ρ(v) = �(v) = v for

each v ≥ 0. In this case, we may set

�(·, μ, μ̃) := 1

2

(
η2 + 3

[
η̂(2)]2

2

)
ϑ(μ, μ̃)2

for all μ, μ̃ ∈ P and pathwise uniqueness for (1.2) with respect to � holds.

3.2 An Explicit Moment Estimate andMoment Stability

In this section, we compare two solutions with varying drift and diffusion coefficients
in the L p-norm for p ≥ 2. The resulting estimate implies standard, asymptotic and
exponential stability in pth moment.

To this end, we require a uniform error and mixed Hölder continuity condition for
(B, B̃) and (�, �̃) that is only partially restrictive for the drift coefficients:

(C.4) There are l ∈ N, α, β ∈ [0, 1]l , measurable maps ζ, ζ̂ : [t0,∞[→ R
l+ and

progressively measurable processes η and η̂ with respective values in R
l and

R
l+ such that

(x − x̃)′(B(x, μ) − B̃(x̃, μ̃)) ≤
l∑

k=1

ζkη
(k)|x − x̃ |1+αk ϑ(μ, μ̃)βk

and |�(x, μ) − �̃(x̃, μ̃)| ≤
l∑

k=1

ζ̂k η̂
(k)|x − x̃ |αk ϑ(μ, μ̃)βk

(3.4)
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for all x, x̃ ∈ R
m and μ, μ̃ ∈ P a.s. Further, αk + βk ≤ 1, ζkη

(k) and (ζ̂k η̂
(k))2

admit locally integrable paths, we have ζk = ζ̂k = 1, if αk + βk = 1, and

(
1 + ζ

p
1−αk−βk

k

)[
η(k)

]
p

1−αk

,
(
1 + ζ̂

2p
1−αk−βk

k

)[
η̂(k)

]2
p

1−αk

are locally integrable for each k ∈ {1, . . . , l}.
Remark 3.8 All the coefficients ζk , η(k), ζ̂k , η̂(k) appearing in (C.4), where k ∈
{1, . . . , l} satisfiesαk = βk = 0, serve as error terms forB−B̃ and�−�̃, respectively.
Further, it is feasible to take

ζk = ζ̂k = 1 for all k ∈ {1, . . . , l}

whenever there are a measurable locally integrable map κ : [t0,∞[→ R
l and a mea-

surable locally square-integrablemap κ̂ : [t0,∞[→ R
l+ such that the inequalities (3.4)

hold for

η = κ and η̂ = κ̂ .

However, the possibility to choose ζ and ζ̂ appropriately leads to the error esti-
mate (3.22) in Theorem 3.24, the announced strong existence result.

Example 3.9 For α, β ∈]0, 1] let ζ1, ζ̂1 : [t0,∞[→ R+ be measurable and η and η̂ be
two progressively measurable processes with values in R3 and R3+, respectively, such
that

(x − x̃)′(B(x, μ) − B̃(x̃, μ̃)) ≤ |x − x̃ |(ζ1η(1) + η(2)|x − x̃ |α + η(3)ϑ(μ, μ̃)β)

and |�(x, μ) − �̃(x̃, μ̃)| ≤ ζ̂1η̂
(1) + η̂(2)|x − x̃ |α + η̂(3)ϑ(μ, μ̃)β

for any x, x̃ ∈ R
m andμ, μ̃ ∈ P a.s. Then (C.4) holds if ζ1η(1), η(k), (ζ̂1η̂(1))2, (η̂(k))2

have locally integrable paths for k ∈ {2, 3} and
(
1 + ζ

p
1

)[
η(1)]

p,
[
η(2)]

p
1−α

,
[
η(3)]

p,
(
1 + ζ̂

2p
1

)[
η̂(1)]2

p,
[
η̂(2)]2

p
1−α

,
[
η̂(3)]2

p

are locally integrable.

Under (C.4), we introduce two measurable locally integrable functions γp and δ̂p

on [t0,∞[ with respective values in ] − ∞,∞] and [0,∞] by

γp(s) :=
l∑

k=1

(p − 1 + αk + βk)
[
η(k)

s

]
p

1−αk

+ p − 1

2

l∑
j,k=1

(p − 2 + α j + β j + αk + βk)
[
η̂

( j)
s η̂(k)

s

]
p

2−α j −αk

(3.5)
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and

δ̂p(s) :=
l∑

k=1

(1 − αk − βk)ζk(s)
p

1−αk−βk
[
η(k)

s

]
p

1−αk

+ p − 1

2

l∑
j,k=1

(2 − α j − β j − αk − βk)(ζ̂ j ζ̂k)(s)
p

2−α j −β j −αk−βk
[
η̂

( j)
s η̂(k)

s

]
p

2−α j −αk

.

(3.6)

Thereby, we observe that the term [η̂( j)η̂(k)] p
2−α j −αk

is indeed locally integrable for

any j, k ∈ {1, . . . , l}, since Hölder’s inequality gives

[
η̂( j)η̂(k)

]
p

2−α j −αk

≤ [
η̂( j)]

p
1−α j

[
η̂(k)

]
p

1−αk

.

Moreover, since ζk = ζ̂k = 1 for all k ∈ {1, . . . , l} with αk + βk = 1 and 1∞ =
limq↑∞ 1q = 1, Young’s inequality yields that

(2 − α j − β j − αk − βk)(ζ̂ j ζ̂k)
p

2−α j −β j −αk−βk ≤ (1 − α j − β j )ζ̂

p
1−α j −β j
j

+ (1 − αk − βk)ζ̂

p
1−αk−βk

k

for all j, k ∈ {1, . . . , l}. This clarifies the local integrability of the expressions appear-
ing within the second sum in (3.6).

By means of the coefficients γp and δ̂p we get an explicit L p-comparison estimate
under a local integrability condition involving the [0,∞]-valued Borel measurable
functional � on [t0,∞[×P × P given by

�(·, μ, μ̃) :=
l∑

k=1,
βk>0

ζk
[
η(k)

]
p

1−αk

ϑ(μ, μ̃)βk + ζ̂ 2
k

[
η̂(k)

]2
p

1−αk

ϑ(μ, μ̃)2βk . (3.7)

For instance, let μ, μ̃ : [t0,∞[→ P be two Borel measurable maps for which the
function [t0,∞[→ R+, s 	→ ϑ(μ, μ̃)(s) is locally bounded. Then �(·, μ, μ̃) is
locally integrable, because

ζk
[
η(k)

]
p

1−αk

and ζ̂ 2
k

[
η̂(k)

]2
p

1−αk

possess this property for each k ∈ {1, . . . , l}, by Young’s inequality. In particular, if
β = 0, then there is no dependence on the measure variable to consider and � = 0.

Proposition 3.10 Let (C.4) hold and X and X̃ be two solutions to (1.2) with respective
coefficients (B, �) and (B̃, �̃) such that

E
[|Yt0 |p] < ∞ for Y := X − X̃
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and �(·,L(X),L(X̃)) is locally integrable. Then

E
[|Yt |p] ≤ e

∫ t
t0

γp(s) ds
E

[|Yt0 |p] +
∫ t

t0
e
∫ t

s γp(s̃) ds̃ δ̂p(s) ds (3.8)

for all t ≥ t0. In particular, if γ +
p and δ̂p are integrable, then E[|Y |p] is bounded. If

in addition γ −
p fails to be integrable, then

lim
t↑∞E

[|Yt |p] = 0.

Remark 3.11 The term δ̂p contains both coefficients ζ and ζ̂ and is based on all Hölder
exponents in ]0, 1[ appearing in (C.4) in the following sense: δ̂p(s) = 0 for fixed s ≥ t0
if and only if for every k ∈ {1, . . . , l} with αk + βk < 1 we have

ζk(s) ∧ η(k)
s ≤ 0 and ζ̂k(s) ∧ η̂(k)

s = 0 a.s.

Until the end of this section, let (B, �) = (B̃, �̃). Then (C.4) turns into a mixed
Hölder continuity condition if all the error terms disappear, that is, αk + βk > 0 for
any k ∈ {1, . . . , l}. Noteworthy, even if these expressions are in place, stability still
follows.

Corollary 3.12 Let (C.4) be valid. Then (1.2) is (asymptotically) stable in pth moment
with respect to � if γ +

p and δ̂p are integrable (and
∫ ∞

t0
γ −

p (s) ds = ∞).

To analyse the L p-boundedness and the rate of L p-convergence for solutions in
the succeeding Corollary 3.13, we strengthen (C.4) to a partial Lipschitz condition on
B and a complete Lipschitz condition on �:

(C.5) There are a measurable locally integrable function η1 : [t0,∞[→ R, an R+-
valued progressively measurable process η(2) and an R

2+-valued progressively
measurable process η̂ such that

(x − x̃)′
(
B(x, μ) − B(x̃, μ̃)

) ≤ |x − x̃ |(η1|x − x̃ | + η(2)ϑ(μ, μ̃)
)

and |�(x, μ) − �(x̃, μ̃)| ≤ η̂(1)|x − x̃ | + η̂(2)ϑ(μ, μ̃)

for any x, x̃ ∈ R
m and μ, μ̃ ∈ P a.s. In addition, η(2) and |η̂|2 have locally

integrable paths and [η(2)]p, [η̂(1)]2∞ and [η̂(2)]2p are locally integrable.

Let us suppose that (C.5) holds, in which case (C.4) follows for l = 2, α = (1, 0)
and β = (0, 1), as Example 3.9 shows. Thus, the function δ̂p in (3.6) is identically
zero and the formula for the stability coefficient γp in (3.5) reduces to

γp

p
= η1 + [

η(2)]
p + p − 1

2

([
η̂(1)]2

∞ + 2
[
η̂(1)η̂(2)]

p + [
η̂(2)]2

p

)
. (3.9)
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Moreover, the functional (3.7) is of the form

�(·, μ, μ̃) = [
η(2)]

pϑ(μ, μ̃) + [
η̂(2)]2

pϑ(μ, μ̃)2 (3.10)

for allμ, μ̃ ∈ P . Hence, by using the following upper bound on γp that involves sums
of power functions, we derive exponential moment stability.

(C.6) Condition (C.5) is satisfied and there are l ∈ N, α ∈]0,∞[l and λ, s ∈ R
l such

that α1 < · · · < αl , λl < 0 and

γp(s) ≤ λ1α1(s − s1)
α1−1 + · · · + λlαl(s − sl)

αl−1 for a.e. s ≥ t1

for some t1 ≥ t0 with maxk=1,...,l sk ≤ t1.

Based on the fact that the preceding condition implies the existence of some t̂1 ≥ t0
such that γp < 0 a.e. on [t̂1,∞[, we state the subsequent stability properties.

Corollary 3.13 The following two assertions hold:

(i) Suppose that (C.5) is valid and γ +
p is integrable. Then for the difference Y of any

two solutions X and X̃ to (1.2), we have

sup
t≥t0

e
∫ t

t0
γ −

p (s) ds
E

[|Yt |p] < ∞,

assuming that E[|Yt0 |p] < ∞ and �(·,L(X),L(X̃)) is locally integrable. More-
over, if in addition

∫ ∞
t0

γ −
p (s) ds = ∞, then

lim
t↑∞ e

a
∫ t

t0
γ −

p (s) ds
E

[|Yt |p] = 0 for all a ∈ [0, 1[.

(ii) Let (C.6) be satisfied. Then (1.2) is αl -exponentially stable in pth moment with
respect to � with any pth moment αl -Lyapunov exponent in ]λl , 0[, and λl is a
Lyapunov exponent if

max
k=1,...,l

λk ≤ 0 and sl ≤ t0.

To illustrate the preceding results, let us consider affine and integral maps.

Example 3.14 For l ∈ N let κ , ζ and η be progressively measurable processes with
values in Rm , Rm×m and R

l+, respectively, and locally integrable paths. Further, let

f1, . . . , fl : Rm × R
m → R

m
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bemeasurable and�(0) be anRm×d -valued admissible map on [t0,∞[×�×R
m ×R

m

such that f1(x, ·), . . . , fl(x, ·), �(0)(x, ·) are μ-integrable,

B(x, μ) = κ + ζ x

+ η(1)
∫
Rm

f1(x, y) μ(dy) + · · · + η(l)
∫
Rm

fl(x, y) μ(dy)

and �(x, μ) =
∫
Rm

�(0)(x, y) μ(dy)

(3.11)

for any (x, μ) ∈ R
m ×P . Then (C.4) is satisfied under the following three conditions:

(1) P ⊆ P1(R
m), ϑ(μ, ν) ≥ ϑ1(μ, ν) for all μ, ν ∈ P and there is a measurable

locally integrable function ζ : [t0,∞[→ R satisfying x ′ζ x ≤ ζ |x |2 for all
x ∈ R

m .
(2) There exist α, β ∈]0, 1] and η̃ ∈ R

l×2 such that η̃1,2, . . . , η̃l,2 ≥ 0 and

(x − x̃)′
(

fk(x, y) − fk(x̃, ỹ)
) ≤ |x − x̃ |(η̃k,1|x − x̃ |α + η̃k,2|y − ỹ|β)

for all x, x̃, y, ỹ ∈ R
m and k ∈ {1, . . . , l}. Furthermore, η(1) := ∑l

k=1 η(k)η̃k,1

and η(2) := ∑l
k=1 η(k)η̃k,2 are such that [η(1)] p

1−α
and [η(2)]p are locally inte-

grable.
(3) There are α̂, β̂ ∈]0, 1] and anR2+-valued progressivelymeasurable process η̂with

locally square-integrable paths such that

|�(0)(x, y) − �(0)(x̃, ỹ)| ≤ η̂(1)|x − x̃ |α̂ + η̂(2)|y − ỹ|β̂

for any x, x̃, y, ỹ ∈ R
m . Moreover, [η̂(1)]2 p

1−α̂

and [η̂(2)]2p are locally integrable.

Thus, under these requirements, Proposition 3.10 and Corollaries 3.12 and 3.13 entail
the following assertions:

(4) The bound (3.8) holds for the difference Y of any two solutions X and X̃ to (1.2)
for which E[|Yt0 |p] < ∞ and

[
η(2)]

pϑ
(L(X),L(X̃)

)β + [
η̂(2)]2

pϑ
(L(X),L(X̃)

)2β̂

is locally integrable. Thereby, the formulas (3.5) and (3.6) reduce to

γp = pζ + (p − 1 + α)
[
η(1)]

p
1−α

+ (p − 1 + β)
[
η(2)]

p

+ p − 1

2

((
p − 2 + 2α̂

)[
η̂(1)]2

p
1−α̂

+ (
p − 2 + 2β̂

)[
η̂(2)]2

p

)

+ (p − 1)(p − 2 + α̂ + β̂)
[
η̂(1)η̂(2)]

p
2−α̂
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and

δ̂p = (1 − α)
[
η(1)]

p
1−α

+ (1 − β)
[
η(2)]

p

+ (p − 1)

(
(1 − α̂)

[
η̂(1)]2

p
1−α̂

+ (2 − α̂ − β̂)
[
η̂(1)η̂(2)]

p
2−α̂

+ (1 − β̂)
[
η̂(2)]2

p

)
.

(5) Equation (1.2) is (asymptotically) stable in pth moment with respect to the Borel
measurable functional � : [t0,∞[×P × P → [0,∞] defined via

�(·, μ, μ̃) := [
η(2)]

pϑ(μ, μ̃)β + [
η̂(2)]2

pϑ(μ, μ̃)2β̂

if the coefficients (ζ + [η(1)] p
1−α

1{1}(α))+, [η(1)] p
1−α

1]0,1[(α),

[
η(2)]

p,
[
η̂(1)]2

p
1−α̂

and
[
η̂(2)]2

p

are integrable (and (ζ + [η(1)] p
1−α

1{1}(α))− fails to be integrable).

(6) Suppose that α = β = α̂ = β̂ = 1, in which case (C.5) is satisfied. Consequently,
if there exist λ < 0 and a > 0 such that

ζ + [
η(1)]

∞ + [
η(2)]

p

+ p − 1

2

([
η̂(1)]2

∞ + 2
[
η̂(1)η̂(2)]

p + [
η̂(2)]2

p

)
≤ λ

p
a(s − t0)

a−1 for a.e. s ≥ t0,

then (1.2) is a-exponentially stable in pth moment relative to � with Lyapunov
exponent λ.

3.3 Pathwise Stability andMoment Growth Bounds

In the first part of this section, we establish pathwise exponential stability for (1.2).
In this regard, we restrict the partial Lipschitz condition (C.5) to the case that all the
regularity coefficients are deterministic and a certain integral estimate holds:

(C.7) There are a measurable locally integrable map η : [t0,∞[→ R
2 and a mea-

surable locally square-integrable map η̂ : [t0,∞[→ R
2+ such that η2 ≥ 0

and

(x − x̃)′
(
B(x, μ) − B(x̃, μ̃)

) ≤ |x − x̃ |(η1|x − x̃ | + η2ϑ(μ, μ̃)
)

and |�(x, μ) − �(x̃, μ̃)| ≤ η̂1|x − x̃ | + η̂2ϑ(μ, μ̃)

for all x, x̃ ∈ R
m and μ, μ̃ ∈ P a.s. Additionally, there exists some δ̂ > 0 such

that supt≥t0

∫ t+δ̂

t f (s) ds < ∞ for f ∈ {η2, η̂21, η̂22}.
Remark 3.15 The preceding integral estimate is always satisfied if η2 and η̂ are in fact
locally bounded.
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Given q ≥ 2, we shall just for the next two results assume that (2.4) holds when
p is replaced by pq but may fail to be valid for p. Thus, under (C.7), the stability
coefficient γpq and the functional �, which we considered in (3.9) and (3.10) for p
instead of pq, can be written in the form

γpq

pq
= η1 + η2 + pq − 1

2

(
η̂1 + η̂2

)2 (3.12)

and �(·, μ, μ̃) = η2ϑ(μ, μ̃) + η̂22ϑ(μ, μ̃)2 for all μ, μ̃ ∈ P . In addition, we impose
the following abstract condition on γpq to deduce a general pathwise stability bound
from Theorem 4.13, a pathwise result for random Itô processes.

(C.8) Condition (C.7) is valid and there are ε̂ ∈]0, 1[ and a strictly increasing sequence
(tn)n∈N in [t0,∞[ such that γpq ≤ 0 a.e. on [t1,∞[,

sup
n∈N

(tn+1 − tn) < δ̂, lim
n↑∞ tn = ∞

and
∑∞

n=1 exp(
ε

pq

∫ tn
t1

γpq(s) ds) < ∞ for each ε ∈]0, ε̂[.

Proposition 3.16 Let (C.8) be valid and X and X̃ be two solutions to (1.2) for which
�(·,L(X),L(X̃)) is locally integrable. Then for Y := X − X̃ we have

lim sup
t↑∞

1

ϕ(t)
log

(|Yt |
) ≤ 1

pq
lim sup

n↑∞
1

ϕ(tn)

∫ tn

t1
γpq(s) ds a.s.

for each increasing continuous function ϕ : [t1,∞[→ R+ that is positive on ]t1,∞[
as soon as E[|Yt0 |pq ] < ∞ or η2 = η̂2 = 0.

Since the following condition, which involves the same sum of power functions as
in (C.6), implies (C.8), we obtain pathwise exponential stability.

(C.9) Condition (C.7) is satisfied and there exist l ∈ N, α ∈]0,∞[l , λ, s ∈ R
l and

t1 ≥ t0 such that α1 < · · · < αl , λl < 0, maxk=1,...,l sk ≤ t1 and

γpq(s) ≤ λ1α1(s − s1)
α1−1 + · · · + λlαl(s − sl)

αl−1 for a.e. s ≥ t1.

Corollary 3.17 Under (C.9), the following two statements hold:

(i) The McKean–Vlasov SDE (1.2) is pathwise αl -exponentially stable with Lyapunov
exponent λl

pq relative to an initial absolute pqth moment and �.
(ii) If B and � are actually independent of μ ∈ P , then the SDE (1.2) is pathwise

αl -exponentially stable with Lyapunov exponent λl
pq .

Example 3.18 Assume that B and � admit the representations in (3.11). Then (C.7)
follows from condition (1) and the subsequent sharpened versions of conditions (2)
and (3), respectively, in Example 3.14:
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(4) There is η̃ ∈ R
l×2 such that η̃1,2, . . . , η̃l,2 ≥ 0 and

(x − x̃)′
(

fk(x, y) − fk(x̃, ỹ)
) ≤ |x − x̃ |(η̃k,1|x − x̃ | + η̃k,2|y − ỹ|)

for all x, x̃, y, ỹ ∈ R
m and k ∈ {1, . . . , l}. In addition, there exists a measurable

map η : [t0,∞[→ R
2 such that η1 is locally integrable, η2 is locally bounded

and
∑l

k=1 η(k)η̃k, j ≤ η j for j ∈ {1, 2}.
(5) There is a measurable locally bounded map η̂ : [t0,∞[→ R

2+ satisfying

|�(0)(x, y) − �(0)(x̃, ỹ)| ≤ η̂1|x − x̃ | + η̂2|y − ỹ|

for any x, x̃, y, ỹ ∈ R
m .

Based on these assumptions, our considerations in Example 3.14 show that for the
stability coefficient γpq in (3.12) and the functional � we have

γpq

pq
= ζ + η1 + η2 + pq − 1

2

(
η̂1 + η̂2

)2

and �(·, μ, μ̃) = η2ϑ(μ, μ̃)+ η̂22ϑ(μ, μ̃)2 for all μ, μ̃ ∈ P . Thus, if there are λ < 0
and a > 0 such that

γpq(s) ≤ λa(s − t0)
a−1 for a.e. s ≥ t0,

then Corollary 3.17 yields the following two assertions:

(4) Equation (1.2) is pathwise a-exponentially stable with Lyapunov exponent λ
pq

with respect to an initial absolute pqth moment and �.
(5) If f1, . . . , fl are independent of the second variable y ∈ R

m and η̂2 = 0, then
η2 = 0 is feasible and the SDE (1.2) is pathwise a-exponentially stable with
Lyapunov exponent λ

pq .

Now we deduce a second and a pth moment estimate for solutions to (1.2). As
the first bound implies that their second moment functions are locally bounded, local
integrability in terms of the functional � in Corollary 3.5 is always satisfied.

Similarly, the second bound ensures that the absolute pth moment function of any
solution is locally bounded, in which case all local integrability requirements with
respect to � in Corollaries 3.12, 3.13 and 3.17 hold.

So, let us give two growth conditions on (B, �) that are only partially restrictive
for B. The first is required for the second moment estimate and includes different
classes of growth behaviour. The second yields the pth moment estimate and is of
affine nature:

(C.10) There are φ, ϕ ∈ C(R+) that are positive on ]0,∞[ and vanish at 0 and
R+-valued progressively measurable processes κ , υ, χ with locally integrable
paths so that

2x ′B(x, μ) + |�(x, μ)|2 ≤ κ + υφ(|x |2) + χϕ(ϑ(μ, δ0)
2)
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for all (x, μ) ∈ R
m × P a.s. Furthermore, φ

1
α is concave for some α ∈]0, 1],

ϕ is increasing and E[κ], [υ] 1
1−α

, E[χ ] are locally integrable.

(C.11) There are l ∈ N, α, β ∈ [0, 1]l , measurable maps κ, κ̂ : [t0,∞[→ R
l+ and

progressively measurable processes υ and υ̂ with values inRl andRl+, respec-
tively, such that

x ′B(x, μ) ≤
l∑

k=1

κkυ
(k)|x |1+αk ϑ(μ, δ0)

βk

and |�(x, μ)| ≤
l∑

k=1

κ̂k υ̂
(k)|x |αk ϑ(μ, δ0)

βk

(3.13)

for any (x, μ) ∈ R
m × P a.s. Moreover, αk + βk ≤ 1, κkυ

(k) and (κ̂k υ̂
(k))2

have locally integrable paths, it holds that κk = κ̂k = 1, if αk + βk = 1, and

(
1 + κ

p
1−αk−βk

k

)[υ(k)] p
1−αk

,
(
1 + κ̂

2p
1−αk−βk

k

)[υ̂(k)]2 p
1−αk

are locally integrable for any k ∈ {1, . . . , l}.
Remark 3.19 As in (C.4), we could have

κk = κ̂k = 1 for all k ∈ {1, . . . , l}

as soon as there are a measurable locally integrable map ζ : [t0,∞[→ R
l and a mea-

surable locally square-integrable map ζ̂ : [t0,∞[→ R
l+ such that the estimates (3.13)

hold for

υ = ζ and υ̂ = ζ̂ .

By admitting more general choices of κ and κ̂ , the growth estimate (3.23) in Theo-
rem 3.24 can be derived.

Provided (C.10) is valid, we define for β ∈]0, 1] two measurable locally integrable
functions by

g := α
[
υ
]

1
1−α

+ βE
[
χ

]
and h := (1 − α)

[
υ
]

1
1−α

+ (1 − β)E
[
χ

]

and apply Proposition 4.4 to state the following quantitative L2-estimate, which
becomes explicit in the setting of Example 3.4. To this end, let (2.4) be valid for
p = 2.

Lemma 3.20 Let (C.10) hold and X be a solution to (1.2) such that E[|Xt0 |2] < ∞
and E[χ ]ϕ(ϑ(L(X), δ0)

2) is locally integrable. Define ϕ0 ∈ C(R+) via

ϕ0(v) := φ(v)
1
α ∨ ϕ(v)

1
β
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and suppose that �ϕ0(∞) = ∞. Then E[|X |2] is locally bounded and

sup
s∈[t0,t]

E
[|Xs |2

] ≤ �ϕ0

(
E

[|Xt0 |2
] +

∫ t

t0
E

[
κs

] + h(s) ds,
∫ t

t0
g(s) ds

)

for any t ≥ t0. In particular, if E[κ], g and h are integrable, then E[|X |2] is bounded.

Next, let again (2.4) hold for p ≥ 2. If the growth estimate (C.11) is satisfied, then
we may introduce two measurable locally integrable functions by

gp :=
l∑

k=1

(p − 1 + αk + βk)
[
υ(k)

]
p

1−αk

+ p − 1

2

l∑
j,k=1

(p − 2 + α j + β j + αk + βk)
[
υ̂( j)υ̂(k)

]
p

2−α j −αk

(3.14)

and

h p :=
l∑

k=1

(1 − αk − βk)κ

p
1−αk−βk

k

[
υ(k)

]
p

1−αk

+ p − 1

2

l∑
j,k=1

(2 − α j − β j − αk − βk)(κ̂ j κ̂k)
p

2−α j −β j −αk−βk
[
υ̂( j)υ̂(k)

]
p

2−α j −αk

.

(3.15)

Further, we define an [0,∞]-valued Borel measurable functional� on [t0,∞[×P×P
by

�(·, μ, μ̃) :=
l∑

k=1,
βk>0

κk
[
υ(k)

]
p

1−αk

ϑ(μ, μ̃)βk + κ̂2
k

[
υ̂(k)

]2
p

1−αk

ϑ(μ, μ̃)2βk .

These formulas are in essence the same as those for the stability coefficients in (3.5)
and (3.6) and the functional in (3.7), since the following explicit L p-growth estimate
and the preceding L p-comparison estimate in Proposition 3.10 are implied by Theo-
rem 4.6.

Lemma 3.21 Let (C.11) hold and X be a solution to (1.2) such that E[|Xt0 |p] < ∞
and �(·,L(X), δ0) is locally integrable. Then

E
[|Xt |p] ≤ e

∫ t
t0

gp(s) ds
E

[|Xt0 |p] +
∫ t

t0
e
∫ t

s gp(s̃) ds̃ h p(s) ds (3.16)

for all t ≥ t0. In particular, if g+
p and h p are integrable, then E[|X |p] is bounded and

from
∫ ∞

t0
g−

p (s) ds = ∞ it follows that limt↑∞ E[|Xt |p] = 0.
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Example 3.22 Let B and � be of the form (3.11). Then (C.11) is ensured by condi-
tion (1) in Example 3.14 and the following two conditions:

(2) There exist α, β ∈]0, 1] and υ̃ ∈ R
l×3 such that υ̃1,3, . . . , υ̃l,3 ≥ 0 and

x ′ fk(x, y) ≤ |x |(υ̃k,1 + υ̃k,2|x |α + υ̃k,3|y|β)

for any x, y ∈ R
m and k ∈ {1, . . . , l}. In addition, for υ( j) := ∑l

k=1 η(k)υ̃k, j ,
where j ∈ {1, 2, 3}, the local integrability of [|κ| + υ(1)]p, [υ(2)] p

1−α
and [υ(3)]p

holds.
(3) There are α̂, β̂ ∈]0, 1] and an R

3+-valued progressively measurable process υ̂

with locally square-integrable paths satisfying

|�(0)(x, y)| ≤ υ̂(1) + υ̂(2)|x |α̂ + υ̂(3)|y|β̂

for all x, y ∈ R
m . Further, [υ̂(1)]p, [υ̂(2)] p

1−α̂
and [υ̂(3)]p are locally square-

integrable.

If these three requirements are met, then Lemma 3.21 yields the following two asser-
tions:

(4) For any solution X to (1.2) such that E[|Xt0 |p] < ∞ the estimate (3.16) is valid
if the local integrability of

[
υ(3)]

pϑ
(L(X), δ0

)β + [
υ̂(3)]2

pϑ
(L(X), δ0

)2β̂

holds, where the coefficients (3.14) and (3.15) become

gp = (p − 1)
[|κ| + υ(1)]

p + pζ + (p − 1 + α)
[
υ(2)]

p
1−α

+ (p − 1 + β)
[
υ(3)]

p

+ p − 1

2

(
(p − 2)

[
υ̂(1)]2

p + (p − 2 + 2α̂)
[
υ̂(2)]2

p
1−α̂

+ (p − 2 + 2β̂)
[
υ̂(3)]2

p

)

+ (p − 1)

(
(p − 2 + α̂)

[
υ̂(1)υ̂(2)]

p
2−α̂

+ (p − 2 + β̂)
[
υ̂(1)υ̂(3)]

p
2

)

+ (p − 1)(p − 2 + α̂ + β̂)
[
υ̂(2)υ̂(3)]

p
2−α̂

and

h p = [|κ| + υ(1)]
p + (1 − α)

[
υ(2)]

p
1−α

+ (1 − β)
[
υ(3)]

p

+ (p − 1)

([
υ̂(1)]2

p + (1 − α̂)
[
υ̂(2)]2

p
1−α̂

+ (1 − β̂)
[
υ̂(3)]2

p + (2 − α̂)
[
υ̂(1)υ̂(2)]

p
2−α̂

)

+ (p − 1)

(
(2 − β̂)

[
υ̂(1)υ̂(3)]

p
2

+ (2 − α̂ − β̂)
[
υ̂(2)υ̂(3)]

p
2−α̂

)
.

(5) Assume that [|κ| + υ(1)]p, (ζ + [υ(2)] p
1−α

1{1}(α))+, [υ(2)] p
1−α

1]0,1[(α),

[
υ(3)]

p,
[
υ̂(1)]2

p,
[
υ̂(2)]2

p
1−α̂

and
[
υ̂(3)]2

p
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are integrable. Then E[|X |p] is bounded, and we have limt↑∞ E[|Xt |p] = 0 as
soon as (ζ + [υ(2)] p

1−α
1{1}(α))− fails to be integrable.

3.4 Strong Solutions with Locally Bounded Absolute Moment Functions

Now we suppose that b and σ are two Borel measurable maps on [t0,∞[×R
m × P

with values in R
m and R

m×d , respectively, and ξ : � → R
m is Ft0 -measurable. The

aim of this section is to deduce a strong solution X to (2.3) such that Xt0 = ξ a.s. and
the measurable absolute pth moment function

[t0,∞[→ [0,∞], t 	→ E
[|Xt |p]

is finite and locally bounded for p ≥ 2. Namely, we use the preceding comparison and
growth results to construct the law of the solution as local uniform limit of a Picard
iteration. In this setting, b(s, ·, μ) is not required to be Lipschitz continuous or of
affine growth for any (s, μ) ∈ [t0,∞[×P .

For a Borel measurable map μ : [t0,∞[→ P we define two measurable maps bμ

and σμ on [t0,∞[×R
m with values in R

m and R
m×d , respectively, by bμ(t, x) :=

b(t, x, μ(t)) and σμ(t, x) := σ(t, x, μ(t)). These two coefficients induce the SDE

dXt = bμ(t, Xt ) dt + σμ(t, Xt ) dWt for t ≥ t0. (3.17)

To obtain strong solutions for this equation, we introduce a growth as well as a conti-
nuity and boundedness condition and a spatial Osgood condition on compact sets on
(b, σ ):

(D.1) There exist φ, ϕ ∈ C(R+) that are positive on ]0,∞[ and vanish at 0 and
measurable locally integrable functions κ, υ, χ : [t0,∞[→ R+ such that

2x ′b(·, x, μ) + |σ(·, x, μ)|2 ≤ κ + υφ(|x |2) + χϕ(ϑ(μ, δ0)
2)

for all (x, μ) ∈ R
m × P . Moreover, φ is concave, ϕ is increasing and∫ ∞

1
1

φ(v)
dv = ∞.

(D.2) b(s, ·, μ) and σ(s, ·, μ) are continuous for any (s, μ) ∈ [t0,∞[×P , and for
each n ∈ N there is cn ≥ 0 such that

|b(s, x, μ)| ∨ |σ(s, x, μ)| ≤ cn

for every (s, x, μ) ∈ [t0, t0 + n] × R
m × P with |x | ≤ n and ϑ(μ, δ0) ≤ n.

(D.3) For every n ∈ N there are a concave ρn ∈ C(R+) that is positive on ]0,∞[
and a measurable locally integrable function ηn : [t0,∞[→ R+ such that

2(x − x̃)′
(
b(·, x, μ) − b(·, x̃, μ)

) + |σ(·, x, μ) − σ(·, x̃, μ)|2
≤ ηnρn(|x − x̃ |2)

for all x, x̃ ∈ R
m with |x | ∨ |x̃ | ≤ n and μ ∈ P . In addition,

∫ 1
0

1
ρn(v)

dv = ∞.
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We write Bb,loc(P) for the set of all Borel measurable maps μ : [t0,∞[→ P
for which ϑ(μ, δ0) is locally bounded. Then a local weak existence result from [20],
Corollary 3.5 and Lemma 3.20 allow for a concise analysis of the SDE (3.17).

Proposition 3.23 For μ ∈ Bb,loc(P) the following three assertions hold:

(i) Under (D.3), we have pathwise uniqueness for (3.17).
(ii) Let (D.1) and (D.2) be satisfied. Then there is a weak solution X to (3.17) with

L(Xt0) = L(ξ). Further, if E[|ξ |2] < ∞, then ϑ2(L(X), δ0) is locally bounded.
(iii) Assume that (D.1)-(D.3) are valid. Then (3.17) admits a unique strong solution

X ξ,μ such that X ξ,μ
t0 = ξ a.s.

Next, consider the convex space Bb,loc(Pp(R
m)) of allPp(R

m)-valued Borel mea-
surable mapsμ on [t0,∞[ such that ∫

Rm |x |p μ(dx) is locally bounded, endowed with
the topology of local uniform convergence.

Then Bb,loc(Pp(R
m)) is completely metrisable, as ϑp is complete, and a sequence

(μn)n∈N in this space converges locally uniformly to some μ ∈ Bb,loc(Pp(R
m)) if

and only if limn↑∞ sups∈[t0,t] ϑp(μn, μ)(s) = 0 for all t ≥ t0.
To deduce a strong solution to (2.3) as local uniform limit of a Picard iteration in

Bb,loc(Pp(R
m)), we replace the spatial Osgood condition (D.3) on compacts sets by

a Lipschitz condition, which implies the former:

(D.4) There are a measurable locally integrable map η : [t0,∞[→ R
2 and a mea-

surable locally square-integrable map η̂ : [t0,∞[→ R
2+ such that η2 ≥ 0

and

(x − x̃)′
(
b(·, x, μ) − b(·, x̃, μ̃)

) ≤ |x − x̃ |(η1|x − x̃ | + η2ϑ(μ, μ̃)
)

and |σ(·, x, μ) − σ(·, x̃, μ̃)| ≤ η̂1|x − x̃ | + η̂2ϑ(μ, μ̃)

for all x, x̃ ∈ R
m and μ, μ̃ ∈ P .

Assuming that (D.4) is satisfied, from which (C.5) follows for (B, �) = (b, σ ), we
define two measurable locally integrable functions by

γp,0 := pη1 + (p − 1)η2

+ p − 1

2

(
pη̂21 + 2(p − 1)η̂1η̂2 + (p − 2)η̂22

)

and δ̂0 := η2 + (p − 1)
(
η̂1η̂2 + η̂22

)
.

(3.18)

So, γp,0 and δ̂0 are defined according to the formulas in (3.5) and (3.6), respectively,
for the particular choice

l = 2, α = (1, 0), β = (0, 0) and ζ2 = ζ̂2 = 1,

because we will use the L p-estimate of Proposition 3.10 when (B, �) = (bμ, σμ) and
(B̃, �̃) = (bμ̃, σμ̃) for μ, μ̃ ∈ Bb,loc(P).

If in addition the following affine growth condition for (b, σ ) is valid, from
which (D.1) follows, then an estimate in Bb,loc(Pp(R

m)) for the Picard iteration holds.
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(D.5) There are l ∈ N, α, β ∈ [0, 1]l , a measurable locally integrable map υ :
[t0,∞[→ R

l and a measurable locally square-integrable map υ̂ : [t0,∞[→
R

l+ such that

x ′b(·, x, μ) ≤
l∑

k=1

υk |x |1+αk ϑ(μ, δ0)
βk

and |σ(·, x, μ)| ≤
l∑

k=1

υ̂k |x |αk ϑ(μ, δ0)
βk

for every (x, μ) ∈ R
m × P and α + β ∈ [0, 1]l .

As (D.5) ensures that (C.11) is satisfied for (B, �) = (b, σ ), we may use the
coefficients gp and h p given by (3.14) and (3.15) when κk = κ̂k = 1 for all k ∈
{1, . . . , l}. That is,

gp =
l∑

k=1

(p − 1 + αk + βk)
(
υ+

k − υ−
k 1{1}(αk)

)

+ p − 1

2

l∑
j,k=1

(p − 2 + α j + β j + αk + βk)υ̂ j υ̂k

(3.19)

and

h p =
l∑

k=1

(1 − αk − βk)υ
+
k

+ p − 1

2

l∑
j,k=1

(2 − α j − β j − αk − βk)υ̂ j υ̂k .

(3.20)

As a result, we obtain a unique strong solution to (2.3) with initial value condition ξ

together with a semi-explicit error estimate and an explicit growth estimate.

Theorem 3.24 Assume that (D.1) and p = 2 or (D.5) holds and let (D.2), (D.4) be
valid. Further, let Pp(R

m) ⊆ P , μ0 ∈ Bb,loc(P), E[|ξ |p] < ∞ and � : [t0,∞[×P×
P → R+ be given by

�(·, μ, μ̃) := η2ϑ(μ, μ̃) + η̂22ϑ(μ, μ̃)2. (3.21)

(i) Then we have pathwise uniqueness for (2.3) with respect to � and there is a unique
strong solution X ξ such that X ξ

t0 = ξ a.s. and E[|X ξ |p] is locally bounded.

(ii) The map [t0,∞[→ Pp(R
m), t 	→ L(X ξ

t ) is the local uniform limit of the
sequence (μn)n∈N in Bb,loc(Pp(R

m)) recursively defined via μn := L(X ξ,μn−1)
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and

sup
s∈[t0,t]

ϑp(μn(s),L(X ξ
s ))

≤ �(t)
∞∑

i=n

(
1

i !
) 1

p
( ∫ t

t0
e
∫ t

s γ +
p,0(s̃) ds̃

δ̂0(s) ds

) i
p

(3.22)

for any t ≥ t0 with �(t) := sups∈[t0,t] ϑ(L(X ξ,μ0
s ), μ0(s)).

(iii) Suppose that (D.5) is satisfied. If μ0 lies in the closed and convex space Mp of
all μ ∈ Bb,loc(Pp(R

m)) such that

ϑp(μ(t), δ0)
p ≤ e

∫ t
t0

gp(s) ds
E

[|ξ |p] +
∫ t

t0
e
∫ t

s gp(s̃) ds̃ h p(s) ds (3.23)

for any t ≥ t0, then so does μn for each n ∈ N.

Remark 3.25 While the choiceμ0 = δ0 yields�(t) ≤ sups∈[t0,t] E[|X ξ,δ0
s |p] 1

p for any
t ≥ t0, we have μn = μ0 for all n ∈ N whenever μ0 = L(X ξ ).

Example 3.26 Let b0 and σ0 be measurable maps on [t0,∞[×R
m × R

m with values
in Rm and R

m×d , respectively, such that b0(s, x, ·) and σ0(s, x, ·) are μ-integrable,

b(s, x, μ) =
∫
Rm

b0(s, x, y) μ(dy) and σ(s, x, μ) =
∫
Rm

σ0(s, x, y) μ(dy)

for any (s, x, μ) ∈ [t0,∞[×R
m × P . Further, let P ⊆ P1(R

m) and ϑ(μ, ν) ≥
ϑ1(μ, ν) for all μ, ν ∈ P . Then the following three assertions hold:

(1) Assume that there are a measurable locally integrable map η : [t0,∞[→ R
2 and

a measurable locally square-integrable map η̂ : [t0,∞[→ R
2+ such that η2 ≥ 0

and

(x − x̃)′
(
b0(·, x, y) − b0(·, x̃, ỹ)

) ≤ |x − x̃ |(η1|x − x̃ | + η2|y − ỹ|)
and |σ0(·, x, y) − σ0(·, x̃, ỹ)| ≤ η̂1|x − x̃ | + η̂2|y − ỹ|

for any x, x̃, y, ỹ ∈ R
m . Then the Lipschitz condition (D.4) for (b, σ ) is satisfied.

(2) If there are l ∈ N, α, β ∈ [0, 1]l , a measurable locally integrable map υ :
[t0,∞[→ R

l+ and a measurable locally square-integrable map υ̂ : [t0,∞[→ R
l+

such that

x ′b0(·, x, y) ≤
l∑

k=1

υk |x |1+αk |y|βk and |σ0(·, x, y)| ≤
l∑

k=1

υ̂k |x |αk |y|βk

for any x, y ∈ R
m and α + β ∈ [0, 1]l , then σ0(s, x, ·) is always μ-integrable for

all (s, x, μ) ∈ [t0,∞[×R
m ×P and the affine growth condition (D.5) for (b, σ )

follows.
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(3) Let b0(s, ·, y) and σ0(s, ·, y) be continuous for all (s, y) ∈ [t0,∞[×R
m and

assume that for each n ∈ N there is cn ≥ 0 such that

|b0(s, x, y)| ≤ cn(1 + |y|)

for any s ∈ [t0, t0 + n] and x, y ∈ R
m with |x | ≤ n. Further, let the estimate

for σ0 in (2) be valid such that υ̂ is locally bounded. Then the continuity and
boundedness condition (D.2) for (b, σ ) is valid.

For instance, let l ∈ N, a ∈]0,∞[l and f1, . . . , fl : Rm ×R
m → R

m be Lipschitz
continuous. Further, let b̂ and c be measurable locally integrable maps on [t0,∞[with
respective values in Rl+ and R

l such that

b0(·, x, y) = − x

(
b̂1|x |a1−1 + · · · + b̂l |x |al−1

)

+ c1 f1(x, y) + · · · + cl fl(x, y)

(3.24)

for any x, y ∈ R
m with x �= 0 and b0(·, 0, ·) = c1 f1(0, ·) + · · · + cl fl(0, ·). Then all

the conditions for b0 in (1) and (2) are satisfied, and the conditions in (3) are valid for
b0 if

b̂ and c are in fact locally bounded.

In the general case, each statement of Theorem 3.24 holds as soon as Pp(R
m) ⊆ P ,

E[|ξ |p] < ∞ and the requirements in (1)–(3) are met. Thereby, the coefficients

γp,0, δ̂0, gp, h p and �

remain exactly as specified in the formulas (3.18)–(3.21).

4 Moment and Pathwise Asymptotic Estimations for Random Itô
Processes

4.1 Auxiliary Moment Bounds

From now on, let B and � be two progressively measurable processes with respective
values in Rm and R

m×d satisfying

∫ ·

t0
|Bs | + |�s |2 ds < ∞

and Y be a random Itô processwith drift B and diffusion�, as introduced and analysed
in [25, Section 4.1]. That is, Y is an Rm-valued adapted continuous process such that

Y = Yt0 +
∫ ·

t0
Bs ds +

∫ ·

t0
�s dWs a.s.
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Our aim is to give quantitative L p-estimates for Y when p ≥ 2. For this purpose, we
consider the following representation.

Lemma 4.1 Let l ∈ N, V be an R
l×m-valued adapted locally absolutely continuous

process and u : [t0,∞[→ R be continuous and locally of bounded variation. Then

u|V Y |p = u(t0)|Vt0Yt0 |p +
∫ ·

t0
|VsYs |p du(s)

+ p
∫ ·

t0
u(s)|Ys Vs |p−2(VsYs)

′
((

V̇sYs + VsBs
)
ds + Vs�s dWs

)

+ p

2

∫ ·

t0
u(s)|VsYs |p−2

(
|Vs�s |2 + (p − 2)|(Vs�s)

′ψm(VsYs)|2
)
ds a.s.,

where ψm : Rm → R
m is given by ψm(x) := x

|x | , if x �= 0, and ψm(0) := 0, if x = 0.

Proof The function ϕ : (Rl)m × R
m → R+ defined by ϕ(a1, . . . , am, x) :=

| ∑m
j=1 a j x j |p is twice continuously differentiable with first-order derivatives with

respect to the j th and the last variable given by

Da j ϕ(a1, . . . , am , x) = p|Ax |p−2(Ax)′x j and Dxϕ(a1, . . . , am , x) = p|Ax |p−2(Ax)′ A

for all j ∈ {1, . . . , m}, a1, . . . , am ∈ R
l and x ∈ R

m , where A ∈ R
l×m is of the form

A = (a1, . . . , am). Its second-order derivative relative to the last variable equals

D2
xϕ(a1, . . . , am, x) = p|Ax |p−2(A′ A + (p − 2)A′ψm(Ax)ψm(Ax)′ A

)
,

which in turn gives us that

tr(D2
xϕ(a1, . . . , am, x)B B ′) = p|Ax |p−2(|AB|2 + (p − 2)|(AB)′ψm(Ax)|2)

for any B ∈ R
m×d . Moreover, from Itô’s formula we know that

|V Y |p − |Vt0Yt0 |p =
m∑

j=1

∫ ·

t0
Da j ϕ

(
V (1)

s , . . . , V (m)
s , Ys

)
dV ( j)

s

+
∫ ·

t0
Dxϕ

(
V (1)

s , . . . , V (m)
s , Ys

)
dYs

+ 1

2

∫ ·

t0
tr
(
D2

xϕ
(
V (1)

s , . . . , V (m)
s , Ys

)
�s�

′
s

)
ds a.s.,

where V ( j) stands for the j th column of the process V for all j ∈ {1, . . . , m}. Hence,
Itô’s product rule completes the verification. ��

We readily employ the just considered identity to get an auxiliary L p-estimate.
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Lemma 4.2 Let E[|Yt0 |p] < ∞ and assume that there are a progressively measurable
process Z with locally integrable paths and a stopping time τ such that

Y ′
sBs + p − 1

2
|�s |2 ≤ Zs for all s ∈ [t0, τ [ a.s.

If u : [t0,∞[→ R+ is locally absolutely continuous, then

E
[
u(t ∧ τ)|Y τ

t |p] ≤ u(t0)E
[|Yt0 |p] + E

[ ∫ t∧τ

t0
|Ys |p−2(u̇(s)|Ys |2 + u(s)pZs

)
ds

]

for every t ≥ t0 for which
∫ t∧τ

t0
|Ys |p−2(u̇(s)|Ys |2 + u(s)pZs)

+ ds is integrable.

Proof By the preceding lemma, the claimed inequality holds when τ is replaced for
each k ∈ N by the stopping time

τk := inf

{
t ≥ t0

∣∣∣∣ |Yt | ≥ k or
∫ t

t0
|Zs | + |�s |2 ds ≥ k

}
∧ τ, (4.1)

since
∫ ·∧τk

t0
u(s)|Ys |p−2Y ′

s�s dWs is a square-integrable martingale. Hence, Fatou’s
lemma and dominated and monotone convergence give the asserted bound, as
supk∈N τk = τ. ��

Nowweapply aBurkholder–Davis–Gundy inequality for stochastic integrals driven
byW from [30, Theorem7.3]. For q ≥ 2 setwq := (qq+1/(2(q−1)q−1))q/2, if q > 2,
and wq := 4, if q = 2. Then

E

[
sup

s̃∈[t0,t]

∣∣∣∣
∫ s̃

t0
Xs dWs

∣∣∣∣
q]

≤ wqE

[(∫ t

t0
|Xs |2 ds

) q
2
]

(4.2)

for everyRm×d -valued progressively measurable process X and each t ≥ t0 satisfying∫ t
t0

|Xs |2 ds < ∞. The next result is an auxiliary moment estimate in the supremum
norm.

Proposition 4.3 Let q ≥ 1, Z be a progressively measurable process with locally
integrable paths and τ be a stopping time such that

Y ′
sBs ≤ Zs for all s ∈ [t0, τ [ a.s.
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Then Ẑ := Z + p−1
2 |�|2 and any locally absolutely continuous function u : [t0,∞[→

R+ satisfy

E

[(
sup

s∈[t0,t]
u(s ∧ τ)|Y τ

s |p − u(t0)|Yt0 |p
)q] 1

q

≤ E

[( ∫ t∧τ

t0
|Ys |p−2(u̇(s)|Ys |2 + u(s)pẐs

)+ ds

)q] 1
q

+ pE

[
wq0

(∫ t∧τ

t0
u(s)2|Ys |2p−2|�s |2 ds

) q0
2
] 1

q0

for each t ≥ t0 with q0 := q ∨ 2.

Proof Because sups̃∈[t0,t]
∫ s̃

t0
κ(s) ds ≤ ∫ t

t0
κ+(s) ds for each measurable locally inte-

grable function κ : [t0,∞[→ R, we infer from Lemma 4.1 that the stopping time (4.1)
satisfies

sup
s∈[t0,t]

u(s ∧ τk)|Y τk
s |p ≤ u(t0)|Yt0 |p +

∫ t∧τk

t0
|Ys |p−2(u̇(s)|Ys |2 + u(s)pẐs

)+ ds

+ sup
s∈[t0,t]

I τk
s a.s.

(4.3)

for any fixed k ∈ N and t ≥ t0, where I denotes a continuous local martingale with
It0 = 0 that is indistinguishable from the stochastic integral

p
∫ ·

t0
u(s)|Ys |p−2Y ′

s�s dWs .

Thus, Hölder’s inequality, (4.2) and the estimate |�′Y | ≤ |�||Y | yield that

w−1
q0 E

[
sup

s∈[t0,t]
|I τk

s |q
] q0

q ≤ E

[( ∫ t∧τk

t0
p2u(s)2|Ys |2p−2|�s |2 ds

) q0
2
]
. (4.4)

For this reason, the claimed inequality followswhen τ is replacedby τk from (4.3), (4.4)
and the triangle inequality in the Lq -norm. Since supk∈N τk = τ , monotone conver-
gence completes the proof. ��

4.2 Quantitative Moment Estimates

First, we derive an L2-estimate from Sect. 4.1 and Bihari’s inequality. For this purpose,
let l ∈ N and consider the following assumption on the random Itô process Y :

(A.1) There are α ∈]0, 1]l , ρ1, . . . , ρl , �1, . . . , �l ∈ C(R+) that are positive on
]0,∞[ and vanish at 0, a measurable map θ : [t0,∞[→ R

l+ and

an R+-valued process κ and two Rl+-valued processes η, λ
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that are all progressively measurable and have locally integrable paths such
that

2Y ′B + |�|2 ≤ κ +
l∑

k=1

η(k)ρk(|Y |2) + λ(k)�k ◦ θ2k a.s.

In addition, ρ
1
αk
k is concave, �k is increasing, θk(s) ≤ E[|Ys |2] 12 for all s ≥ t0

with E[λ(k)
s ] > 0 and

E
[
κ
]
,

[
η(k)

]
1

1−αk

, E
[
λ(k)

]

are locally integrable for every k ∈ {1, . . . , l}.
Under (A.1), we define for β ∈]0, 1]l two measurable locally integrable functions

by

γ :=
l∑

k=1

αk
[
η(k)

]
1

1−αk

+ βkE
[
λ(k)

]
and δ :=

l∑
k=1

(1 − αk)
[
η(k)

]
1

1−αk

+ (1 − βk)E
[
λ(k)

]
.

Based on definitions (3.2) and (3.3), this allows for a general bound.

Proposition 4.4 Let (A.1) hold, E[|Yt0 |2] < ∞,
∑l

k=1 E[λ(k)]�k ◦ θ2k be locally inte-
grable and ρ0, �0 ∈ C(R+) be given by

ρ0(v) := max
k=1,...,l

ρk(v)
1
αk and �0(v) := ρ0(v) ∨ max

k=1,...,l
�k(v)

1
βk .

If �ρ0(∞) = ∞ or
∑l

k=1 E[η(k)ρk(|Y |2)] is locally integrable, thenE[|Y |2] is locally
bounded and

sup
s∈[t0,t]

E
[|Ys |2

] ≤ ��0

(
E

[|Yt0 |2
] +

∫ t

t0
E[κs] + δ(s) ds,

∫ t

t0
γ (s) ds

)

for all t ∈ [t0, t+0 [, where t+0 > t0 stands for the supremum over all t ≥ t0 for which

(
E

[|Yt0 |2
] +

∫ t

t0
E[κs] + δ(s) ds,

∫ t

t0
γ (s) ds

)
∈ D�0 .

Proof We take the stopping time τn := inf{t ≥ t0 | |Yt | ≥ n} for given n ∈ N, define
κ̂ := E[κ] + ∑l

k=1 E[λ(k)]�k ◦ θ2k and observe that

E
[|Y τn

t |2] ≤ E
[|Yt0 |2

] +
∫ t

t0
κ̂(s) +

l∑
k=1

E
[
η(k)

s ρk(|Ys |2)1{τn>s}
]
ds (4.5)
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for fixed t ≥ t0, according to Lemma 4.2. Moreover, for any stopping time τ for which

E[|Y τ |2] < ∞ we infer from (3.1) and the concavity of ρ
1
αk that

E
[
η(k)

s ρk(|Ys |2)1{τ>s}
] ≤ [

η(k)
s

]
1

1−αk

(
1 − αk + αkρk

(
E

[|Y τ
s

∣∣2]) 1
αk

)
(4.6)

for any s ∈ [t0, t] and k ∈ {1, . . . , l}. So, if �ρ0(∞) = ∞, then an application of
Bihari’s inequality to (4.5) and Fatou’s lemma show that E[|Y |2] is locally bounded.

In this case, wemay take τ = ∞ in (4.6) to see that
∑l

k=1 E[η(k)ρk(|Y |2)] is locally
integrable. For this reason, we merely suppose that the latter holds. Then

E
[|Yt |2

] ≤ E
[|Yt0 |2

] +
∫ t

t0
(κ̂ + δ̂)(s) +

l∑
k=1

αk
[
η(k)

s

]
1

1−αk

ρk
(
E

[|Ys |2
]) 1

αk ds

for δ̂ := ∑l
k=1(1−αk)[η(k)] 1

1−αk
, by (4.5) and Fatou’s lemma. Thus, as in the previous

case, E[|Y |2] is locally bounded. Lastly, since Young’s inequality gives

E
[
λ(k)

]
�k ◦ θ2k ≤ E

[
λ(k)

](
1 − βk + βk�k

(
E

[|Y |2]) 1
βk

)

on [t0, t] for all k ∈ {1, . . . , l}, the asserted estimate follows from Bihari’s inequality.
��

Next, we seek to give an explicit L p-estimate for p ≥ 2 and impose an abstract
mixed power condition on Y :

(A.2) There are α, β ∈ [0, 2]l with α+β ∈ [0, 2]l , measurable maps ζ, θ : [t0,∞[→
R

l+ and a progressively measurable process η such that

Y ′B + p − 1

2
|�|2 ≤ ζ1η

(1)|Y |α1θβ1
1 + · · · + ζlη

(l)|Y |αl θ
βl
l a.s.

Further, ζkη
(k) has locally integrable paths, θk(s) ≤ E[|Ys |p] 1

p for all s ≥ t0
with ζk(s)[η(k)

s ] p
2−αk

1]0,2](βk) > 0, we have ζk = 1, if αk + βk = 2, and

(
1 + ζ

p
2−αk−βk

k

)[
η(k)

]
p

2−αk

is locally integrable for any k ∈ {1, . . . , l}.
Remark 4.5 The preceding condition implies that ζk[η(k)] p

2−αk
is locally integrable,

since Young’s inequality entails that

pζk ≤ p − 2 + αk + βk + (2 − αk − βk)ζ

p
2−αk−βk

k for all k ∈ {1, . . . , l}.
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If (A.2) is satisfied, then wemay define twomeasurable locally integrable functions
γp,2 : [t0,∞[→] − ∞,∞] and δ̂p,2 : [t0,∞[→ [0,∞] by

γp,2(s) :=
l∑

k=1

(p − 2 + αk + βk)
[
η(k)

s

]
p

2−αk

(4.7)

and

δ̂p,2(s) :=
l∑

k=1

(2 − αk − βk)ζk(s)
p

2−αk−βk
[
η(k)

s

]
p

2−αk

, (4.8)

which yield an explicit pth moment estimate. As a direct consequence, we can provide
sufficient conditions for boundedness and convergence in L p(�,F ,P).

Theorem 4.6 Let (A.2) hold, E[|Yt0 |p] < ∞ and
∑l

k=1, βk>0 ζk[η(k)] p
2−αk

θ
βk
k be

locally integrable. Then

E
[|Yt |p] ≤ e

∫ t
t0

γp,2(s) ds
E

[|Yt0 |p] +
∫ t

t0
e
∫ t

s γp,2(s̃) ds̃ δ̂p,2(s) ds

for all t ≥ t0. In particular, if γ +
p,2 and δ̂p,2 are integrable, then E[|Y |p] is bounded.

If additionally
∫ ∞

t0
γ −

p,2(s) ds = ∞, then limt↑∞ E[|Yt |p] = 0.

Proof According to Lemma 4.2 and (A.2), the process Ẑ := Y ′B+ p−1
2 |�|2 and any

stopping time τ for which E[|Y τ |p] is locally bounded satisfy

E
[
u(t ∧ τ)|Y τ

t |p] ≤ E
[|Yt0 |p]

+
∫ t

t0
E

[|Ys |p−2(u̇(s)|Ys |2 + u(s)pẐs
)
1{τ>s}

]
ds

(4.9)

for any t ≥ t0 and each locally absolutely continuous function u : [t0,∞[→ R+.
Thereby, we immediately infer from (3.1) that

pE
[|Ys |p−2 Ẑs1{τ>s}

] ≤ δ̂p,1(s) + γp,1(s)E
[|Ys |p1{τ>s}

]

for all s ≥ t0 with the two measurable locally integrable functions

γp,1 :=
l∑

k=1

(p − 2 + αk)ζk
[
η(k)

]
p

2−αk

θ
βk
k and δ̂p,1 :=

l∑
k=1

(2 − αk)ζk
[
η(k)

]
p

2−αk

θ
βk
k .

Thus, if we choose the function u(t) = exp(− ∫ t
t0

γp,1(s) ds) for all t ≥ t0 and the
stopping time τ = inf{t ≥ t0 | |Yt | ≥ n} in (4.9) for any n ∈ N, then

e
− ∫ t

t0
γp,1(s) ds

E
[|Yt |p] ≤ E

[|Yt0 |p] +
∫ t

t0
e
− ∫ s

t0
γp,1(s0) ds0 δ̂p,1(s) ds
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for each t ≥ t0, by an application of Fatou’s lemma. In particular, E[|Y |p] is locally
bounded. Thus, a second estimation by means of (3.1) shows that

pE
[|Ys |p−2 Ẑs

] ≤ δ̂p,2(s) + γp,2(s)E
[|Ys |p]

for any s ≥ t0, since [η(k)] p
2−αk

≥ 0 whenever βk > 0 for all k ∈ {1, . . . , l}. Now
we take u(t) = exp(− ∫ t

t0
γp,2(s) ds) for any t ≥ t0 and τ = ∞ in (4.9) to obtain the

asserted estimate after dividing by u(t). ��
Remark 4.7 Assume that δ̂p,2 = 0 a.e., which is the case if αk + βk = 2 for every
k ∈ {1, . . . , l}. If γ +

p,2 is integrable, then Theorem 4.6 gives

sup
t≥t0

e
∫ t

t0
γ −

p,2(s) ds
E

[|Yt |p] < ∞,

because aγ −
p,2 + γp,2 = γ +

p,2 − (1 − a)γ −
p,2 for each a ∈ [0, 1]. Thus, if in addition

γ −
p,2 fails to be integrable, then

lim
t↑∞ e

a
∫ t

t0
γ −

p,2(s) ds
E

[|Yt |p] = 0 for any a ∈ [0, 1[.

This describes the rate of convergence more accurately.

4.3 Moment Bounds in the SupremumNorm

This section provides general methods to obtain L pq -moment estimates in the supre-
mum norm for p, q ≥ 2 under the following abstract mixed power condition for l ∈ N,
which implies (A.2) when p is replaced by pq and ζ1 = · · · = ζl = 1 holds there:

(A.3) There are α, α̂, β, β̂ ∈ [0, 2]l , a measurable map θ : [t0,∞[→ R
l+ and pro-

gressivelymeasurable processes η and η̂with values inRl andRl+, respectively,
such that

Y ′B + pq − 1

2
|�|2 ≤ η(1)|Y |α1θβ1 + · · · + η(l)|Y |αl θβl

and |�|2 ≤ η̂(1)|Y |α̂1θ β̂1
1 + · · · + η̂(l)|Y |α̂l θ

β̂l
l a.s.

Moreover, α + β, α̂ + β̂ ∈ [0, 2]l , η and η̂ have locally integrable paths and
the following three conditions hold for each k ∈ {1, . . . , l}:

(1) αk = 2 ⇔ k = l, [η(k)] pq
2−αk

is locally integrable and θk(s) ≤ E[|Ys |pq ] 1
pq for

all s ≥ t0 with

[
η(k)

s

]
pq

2−αk

1]0,2](βk) > 0 or
[
η̂(k)

s

]
pq

2−α̂k

1]0,2](β̂k) > 0.
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(2) If αk > 0, then there are a real-valued measurable locally integrable function
ηk,1 on [t0,∞[ and an R+-valued progressively measurable process η(k,2) so
that

η(k) = ηk,1η
(k,2) and

∫ ·

t0
η+

k,1(s)
[
η(k,2)

s

]q
pq

2−αk

ds < ∞.

(3) There are a measurable locally integrable function η̂k,1 : [t0,∞[→ R+ and
an R+-valued progressively measurable process η̂(k,2) satisfying

η̂(k) = η̂k,1η̂
(k,2) and

∫ ·

t0
η̂k,1(s)[η̂(k,2)

s ]
q
2

pq
2−α̂k

ds < ∞.

Remark 4.8 If the twoprocessesη and η̂ are in fact deterministic, then the conditions (2)
and (3) are redundant.

Given (A.3) is satisfied, we introduce αp, α̂p ∈ [0, 1]l coordinatewise by

αp,k := p − 2 + αk

p
and α̂p,k := 2p − 2 + α̂k

2p
.

For any j ∈ {1, . . . , l} with α j > 0 and each k ∈ {1, . . . , l}, let the two R+-valued
continuous functions c j,q and ĉk,q on the set of all (t1, t) ∈ [t0,∞[2 with t1 ≤ t be
given by

c j,q(t1, t) :=
( ∫ t

t1
η+

j,1(s) ds

)1− 1
q

and ĉk,q(t1, t) :=
( ∫ t

t1
η̂k,1(s) ds

) 1
2− 1

q

.

Further, we define three [0,∞]-valued measurable functions f p,q , gp,q and h p,q on
the set of all (t1, t) ∈ [t0,∞[2 with t1 ≤ t by

f p,q (t1, t) := pE

[( ∫ t

t1
|Ys |p−2

l∑
k=1, αk=0

(η(k)
s )+θ

βk
k (s) ds

)q] 1
q

,

gp,q (t1, t) := f p,q (t1, t)

+ p
l∑

k=1, αk>0

ck,q (t1, t)

(∫ t

t1
η+

k,1(s)E
[
(η(k,2)

s )q |Yt1 |αp,k pq]
θk(s)

βk q ds

) 1
q

+ p
l∑

k=1

ĉk,q (t1, t)

(
wq

∫ t

t1
η̂k,1(s)E

[
(η̂(k,2)

s )
q
2 |Yt1 |α̂p,k pq]

θk(s)
β̂k

q
2 ds

) 1
q
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and

h p,q(t1, t) := pq
l∑

k=1, αk>0

ck,q(t1, t)q
∫ t

t1
η+

k,1(s)
[
η(k,2)

s

]q
pq

2−αk

θk(s)
βkq ds

+ pq
l∑

k=1

ĉk,q(t1, t)qwq

∫ t

t1
η̂k,1(s)

[
η̂(k,2)

s

] q
2

pq
2−α̂k

θk(s)
β̂k

q
2 ds,

which are finite ifE[|Y |pq ] is locally bounded. This fact follows fromHölder’s inequal-
ity, applied to any two [0,∞]-valued random variables ζ and X as follows:

E
[
ζ q Xαp,k pq] ≤ [

ζ
]q

pq
2−αk

E
[
X pq]αp,k

and E
[
ζ

q
2 X α̂p,k pq] ≤ [

ζ
] q
2

pq
2−α̂k

E
[
X pq]α̂p,k

(4.10)

for each k ∈ {1, . . . , l}. Finally, let us introduce α := mink=1,...,l(αp,k ∧ α̂p,k) and
α := maxk=1,...,l(αp,k ∨ α̂p,k).

Proposition 4.9 Let (A.3) be valid,
∑l

k=1, βk>0[η(k)] pq
2−αk

θ
βk
k be locally integrable and

ρ0 ∈ C(R+) be given by ρ0(v) := vα1[0,1](v) + vα]1,∞[(v). If

E
[|Yt0 |pq]

and E

[( ∫ t

t0
|Ys |p−2

l∑
k=1, αk=0

(η(k)
s )+ ds

)q]
(4.11)

are finite, then sups∈[t0,t] |Ys | is pq-fold integrable and

E

[(
sup

s∈[t1,t]
|Ys |p − |Yt1 |p

)q]
≤ �ρ0

(
(2l + 1)q−1gp,q (t1, t)q , (2l + 1)q−1h p,q (t1, t)

)

for all t1, t ≥ t0 with t1 ≤ t . In particular, E[|Y |pq ] is continuous.

Proof Under the integrability assertion, dominated convergence gives us that

lim
n↑∞E

[|Ytn |pq] = E
[|Yt |pq]

for each sequence (tn)n∈N in [t0,∞[ converging to some t ≥ t0. Hence, we merely
need to show the first two claims.
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As (A.3) implies (A.2) when p is replaced by pq in the latter assumption, we know
fromTheorem 4.6 thatE[|Y |pq ] is locally bounded. Thus, Proposition 4.3, the triangle
inequality in the Lq -norm and Jensen’s inequality yield that

E

[(
sup

s∈[t1,t]
|Y τn

s |p − |Yt1 |p
)q] 1

q ≤ f p,q (t1, t)

+ p
l∑

k=1, αk>0

ck,q (t1, t)

(∫ t

t1
η+

k,1(s)E
[
(η(k,2)

s )q |Y τn
s |αp,k pq]

θk(s)
βk q ds

) 1
q

+ p
l∑

k=1

ĉk,q (t1, t)

(
wq

∫ t

t1
η̂k,1(s)E

[
(η̂(k,2)

s )
q
2 |Y τn

s |α̂p,k pq]
θk(s)

β̂k
q
2 ds

) 1
q

for any fixed t1, t ≥ t0 with t1 ≤ t and n ∈ N, where τn := inf{t ≥ t1 | |Yt | ≥ n}.
Hence, ifE[|Yt1 |pq ] < ∞, thenMinkowski’s inequality, (4.10) and Bihari’s inequality
give the claimed estimate for

E

[(
sup

s∈[t1,t]
|Y τn

s |p − |Yt1 |p
)q] 1

q

.

Afterwards, Fatou’s lemma implies the asserted bound. Moreover, if we take t1 = t0,
then the pq-fold integrability of |Yt0 | implies that of sups∈[t0,t] |Ys |. For this reason,
the proposition is proven. ��
Remark 4.10 The second expectation in (4.11) is finite if for each k ∈ {1, . . . , l} with
αk = 0 there exist a measurable locally integrable function ηk,1 : [t0,∞[→ R and an
R+-valued progressively measurable process η(k,2) so that

η(k) = ηk,1η
(k,2) and η+

k,1

[
η(k,2)]q

pq
2

is locally integrable, by the inequalities of Jensen and Hölder.

If (A.3) is satisfied andγ : [t0,∞[→]−∞,∞] ismeasurable and locally integrable,
then we define an [0,∞]-valued measurable function hγ,p,q on the set of all (t1, t) ∈
[t0,∞[2 with t1 ≤ t via

hγ,p,q (t1, t) := pE

[(∫ t

t1
e
− ∫ s

t1
γ (s0) ds0 |Ys |p−2

l∑
k=1, αk=0

(η(k)
s )+θ

βk
k (s) ds

)q] 1
q

+ p
l∑

k=1, αk∈]0,2[
ck,q (t1, t)

(∫ t

t1
η+

k,1(s)
[
η(k,2)

s

]q
pq

2−αk

e
−q

∫ s
t1

γ (s0) ds0
E

[|Ys |pq]αp,k θ(s)βk q ds

) 1
q

+ p
l∑

k=1

ĉk,q (t1, t)

(
wq

∫ t

t0
η̂k,1(s)

[
η̂(k,2)

s

] q
2

pq
2−α̂k

e
−q

∫ s
t1

γ (s0) ds0
E

[|Ys |pq]α̂p,k θk(s)
β̂k

q
2 ds

) 1
q

,

then an auxiliary pqth moment stability estimate in the supremum norm follows.
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Lemma 4.11 Let (A.3) be valid and
∑l

k=1, βk>0[η(k)] pq
2−αk

θ
βk
k be locally integrable. If

the expectations in (4.11) are finite, then

E

[(
sup

s∈[t1,t]
e
− ∫ s

t1
γ (s0) ds0 |Ys |p − |Yt1 |p

)q] 1
q ≤ hγ,p,q (t1, t)

+
( ∫ t

t1

(
p
[
η(l)

s

]
∞ − γ (s)

)+ ds

)1− 1
q
(∫ t

t1

(
p
[
η(l)

s

]
∞ − γ (s)

)+
e
−q

∫ s
t1

γ (s0) ds0
E

[|Ys |pq]
ds

) 1
q

for any measurable locally integrable function γ : [t0,∞[→ R and all t1, t ≥ t0 with
t1 ≤ t .

Proof From Theorem 4.6 we deduce that hγ,p,q is finite, Proposition 4.9 gives the
pq-fold integrability of sups∈[t0,t] |Ys | and we readily observe that

−γ |Y |2 + p
l∑

k=1

η(k)|Y |αk θ
βk
k = p

( l−1∑
k=1

η(k)|Y |αk θ
βk
k

)
+ (pη(l) − γ )|Y |2.

Hence, wemay infer the assertion fromProposition 4.3 by using the triangle inequality
in the Lq -norm, Jensen’s inequality and (4.10). ��

At last, we introduce a condition that forces the function δ̂pq,2 in (4.8) when p is
replaced by pq and ζ1 = · · · = ζl = 1 to vanish a.e. on [t1,∞[ for some t1 ≥ t0.

(A.4) Assumption (A.3) holds and for any k ∈ {1, . . . , l} with αk = 0 there are a
measurable locally integrable function ηk,1 : [t0,∞[→ R+ and an R+-valued
progressively measurable process η(k,2) such that

η(k) = ηk,1η
(k,2) and

∫ ·

t0
η+

k,1(s)
[
η(k,2)

s

]q
pq
2
ds < ∞.

Moreover, there are t1 ≥ t0, δ̂ > 0 and c0 ≥ 0 such thatη(k) (resp. η̂(k)) vanishes
on [t1,∞[ for any k ∈ {1, . . . , l} with αk + βk < 2 (resp. α̂k + β̂k < 2) and

∫ t+δ̂

t
η+

j,1(s)max
{
1,

[
η

( j,2)
s

]
pq

2−α j

}q ds ∨
∫ t+δ̂

t
η̂k,1(s)max

{
1,

[
η̂(k,2)

s

]
pq

2−α̂k

} q
2 ds

is bounded by c0 for any t ≥ t1 and j, k ∈ {1, . . . , l} with j ≤ l − 1.

Then the pathwise asymptotic behaviour ofY in the next section can be handledwith
the subsequent pqth moment estimate in the supremum norm by using the function
γpq,2 in (4.7).

Proposition 4.12 Let (A.4) hold, E[|Yt0 |pq ] < ∞ and
∑l

k=1, βk>0[η(k)] pq
2−αk

θ
βk
k be

locally integrable and assume that there are a measurable locally integrable function
γ : [t0,∞[→ R and cγ,−1, cγ,0, cγ,q , ĉγ,0 ≥ 0 so that

∫ t

t2

(
p
[
η(l)

s

]
∞ − γ (s)

)+ ds ≤ cγ,−1,

∫ t

t2
(γpq,2 − q0γ )(s) ds ≤ cγ,q0 ,

∫ t

t2
γ (s) ds ≤ ĉγ,0

123



Journal of Theoretical Probability

for any t2, t ≥ t1 with t2 ≤ t < δ̂ and q0 ∈ {0, q}. Then there is c > 0 such that

E

[
sup

s∈[t2,t]
|Ys |pq

] 1
q ≤ c

(
E

[|Yt0 |pq] +
∫ t1

t0
δ̂pq,2(s) ds

) 1
q

e
1
q

∫ t2
t1

γpq,2(s) ds (4.12)

for every t2, t ≥ t1 with t2 ≤ t < δ̂.

Proof As η(k) = 0 (resp. η̂(k) = 0) on [t1,∞[ for any k ∈ {1, . . . , l}with αk +βk < 2
(resp. α̂k + β̂k < 2), it follows from Lemma 4.11, (4.10) and Jensen’s inequality that

E

[
sup

s∈[t2,t]
e
−q

∫ s
t2

γ (s0) ds0 |Ys |pq
] 1

q ≤ E
[|Yt2 |pq] 1

q

+ pc
1− 1

q
0

l−1∑
k=1

(∫ t

t2
η+

k,1(s)
[
η(k,2)

s

]q
pq

2−αk

e
−q

∫ s
t2

γ (s0) ds0
E

[|Ys |pq]
ds

) 1
q

+ c
1− 1

q
γ,−1

( ∫ t

t2

(
p
[
η(l)

s

]
∞ − γ (s)

)+
e
−q

∫ s
t2

γ (s0) ds0
E

[|Ys |pq]
ds

) 1
q

+ pc
1
2− 1

q
0

l∑
k=1

(
wq

∫ t

t2
η̂k,1(s)

[
η̂(k,2)

s

] q
2

pq
2−α̂k

e
−q

∫ s
t2

γ (s0) ds0
E

[|Ys |pq]
ds

) 1
q

.

(4.13)

Moreover, as δ̂pq,2 = 0 a.e. on [t1,∞[, the moment stability estimate of Theorem 4.6
gives us that

e
−q0

∫ s
t2

γ (s0) ds0−cγ,q0E
[|Ys |pq] ≤ e

∫ t2
t0

γpq,2(s0) ds0
E

[|Yt0 |pq] +
∫ t1

t0
e
∫ t2

s0
γpq,2(s1) ds1 δ̂pq,2(s0) ds0

for all s ∈ [t2, t] and q0 ∈ {0, q}. Thus, the sum of the four right-hand terms in (4.13)
is bounded by the right-hand expression in (4.12) when c is replaced by the constant

c1 := e
1
q

∫ t1
t0

γ +
pq,2(s) ds

(
e

1
q cγ,0 + e

1
q cγ,q

(
pc0(l − 1) + cγ,−1 + pc

1
2
0 w

1
q
q l

))
.

Because exp(− ∫ s
t2

γ (s0) ds0) ≥ exp(−ĉγ,0) for any s ∈ [t2, t], the claimed bound
holds for c := exp(ĉγ,0)c1. ��

4.4 Pathwise Asymptotic Behaviour

Finally,wederive a limiting bound forY from themoment estimate of Proposition 4.12.
To this end, we use an application of the Borel–Cantelli lemma in [25, Lemma 4.11].

Namely, let A ∈ F and X be an R+-valued right-continuous process for which
there are a strictly increasing sequence (tn)n∈N in [t0,∞[ with limn↑∞ tn = ∞, a

123



Journal of Theoretical Probability

sequence (cn)n∈N in ]0,∞[, ĉ > 0 and ε̂ ∈]0, 1[ such that

E

[
sup

s∈]tn ,tn+1]
Xs1A

]
≤ ĉcn for all n ∈ N and

∞∑
n=1

cε
n < ∞

for each ε ∈]0, ε̂[. Then any ]0,∞[-valued lower semicontinuous functionϕ on ]t1,∞[
satisfies

lim sup
t↑∞

log(Xt )

ϕ(t)
≤ lim sup

n↑∞
log(cn)

infs∈]tn ,tn+1] ϕ(s)
a.s. on A. (4.14)

Theorem 4.13 Let (A.4) be satisfied and
∑l

k=1, βk>0[η(k)] pq
2−αk

θ
βk
k be locally inte-

grable. Assume that γpq,2 ≤ 0 a.e. on [t1,∞[ and there is an increasing sequence
(tn)n∈N\{1} in [t1,∞[ such that

sup
n∈N

(tn+1 − tn) < δ̂, lim
n↑∞ tn = ∞

and
∑∞

n=1 exp(
ε

pq

∫ tn
t1

γpq,2(s) ds) < ∞ for all ε ∈]0, ε̂[ and some ε̂ ∈]0, 1[. If

E[|Yt0 |pq ] is finite or β = β̂ = 0, then

lim sup
t↑∞

1

ϕ(t)
log

(|Yt |
) ≤ 1

pq
lim sup

n↑∞
1

ϕ(tn)

∫ tn

t1
γpq,2(s) ds a.s.

for each increasing continuous function ϕ : [t1,∞[→ R+ that is positive on ]t1,∞[.
Proof Since γpq,2 = pq([η(l)]∞ + ∑l−1

k=1[η(k)] pq
2−αk

) on [t1,∞[, it follows that

[η(l)]∞ ≤ 0 a.e. on the same interval. Consequently, if E[|Yt0 |pq ] < ∞, then

E

[
sup

s∈[tn ,tn+1]
|Ys |pq

]
≤ ĉe

∫ tn
t1

γpq,2(s) ds

for each n ∈ N and some ĉ > 0 by taking γ = p[η(l)]∞ a.e. in Proposition 4.12.
Indeed, from Jensen’s inequality and (A.4) we immediately obtain that

∫ t

t2

(
γpq,2(s) − pq

[
η(l)

s

]
∞

)
ds ≤ pq(l − 1)c0

for any t2, t ≥ t1 satisfying t2 ≤ t < δ̂. Next, we suppose that β = β̂ = 0 and set
Ak := {|Yt0 | ≤ k} for given k ∈ N. Then Proposition 4.12 yields ĉk > 0 such that

E

[
sup

s∈[tn ,tn+1]
|Ys1Ak |pq

]
≤ ĉke

∫ tn
t1

γpq,2(s) ds
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for all n ∈ N, as the random Itô process Y1Ak with drift B1Ak and diffusion �1Ak

satisfies (A.3) and (A.4). Hence, in both cases the claimed pathwise inequality follows
from the result recalled at (4.14) and the fact that

⋃
k∈N Ak = �. ��

5 Proofs of theMain Results

5.1 Proofs of theMoment Estimates, Uniqueness andMoment Stability

Proof of Proposition 3.2 Let the two progressively measurable processes B̂ and �̂ with
values in Rm and R

m×d , respectively, be defined via

B̂s := Bs
(
Xs,L(Xs)

) − B̃s
(
X̃s,L(X̃s)

)
and

�̂s := �s
(
Xs,L(Xs)

) − �̃s
(
X̃s,L(X̃s)

)
.

(5.1)

Then Y is a random Itô process with drift B̂ and diffusion �̂ satisfying

2Y ′B̂ + |�̂|2 ≤ ε + ηρ(|Y |2) + λ� ◦ θ2 a.s.

with the measurable function θ := ϑ(L(X),L(X̃)). For this reason, the proposition
is a special case of Proposition 4.4. ��
Proof of Corollary 3.5 For both claims in (i) and (ii), let X and X̃ be two solutions
to (1.2) with Xt0 = X̃t0 a.s. Suppose first that (C.2) holds and the expression

E
[
λ
]
�
(
ϑ(L(X),L(X̃))2

) + 1]0,∞[
(
�ρ(∞)

)
ηE

[
ρ(|X − X̃ |2)]

is locally integrable. Then Proposition3.2 gives E[|Xt − X̃t |2] = 0 for any t ≥ t0, as
�0 := ρ ∨ � satisfies (0, w) ∈ D�0 and ��0(0, w) = 0 for all w ≥ 0. Hence, path
continuity implies that X and X̃ are indistinguishable.

Now let (C.3) hold and set τn := inf{t ≥ t0 | |Xt | ≥ n or |X̃t | ≥ n} for fixed n ∈ N.
Then Y := X τn − X̃ τn is a random Itô process with drift B̃ and diffusion �̃ given by

B̃s := (
B̂s(Xs) − B̂s(X̃s)

)
1{τn>s} and �̃s := (

�̂s(Xs) − �̂s(X̃s)
)
1{τn>s},

and we have 2Y ′B̃+ |�̃|2 ≤ ηnρn(|Y |2) a.s. So, Proposition4.4 yields that Y = 0 a.s.
This in turn implies that X = X̃ a.s., because supn∈N τn = ∞. ��
Proof of Proposition 3.10 We define two processes B̂ and �̂ with respective values in
R

m and R
m×d by (5.1) and observe that

Y ′B̂ ≤
l∑

k=1

ζkη
(k)|Y |1+αk θβk

and |�̂|2 ≤
l∑

j,k=1

ζ̂ j ζ̂k η̂
( j)η̂(k)|Y |α j +αk θβ j +βk

(5.2)
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a.s., where θ := ϑ(L(X),L(X̃)). So, all claims follow from Theorem 4.6, as our con-
siderations succeeding definitions (3.5) and (3.6) explain. In this context, the required
local integrability of

ζ̂ j ζ̂k
[
η̂( j)η̂(k)

]
p

2−α j −αk

θβ j +βk

for all j, k ∈ {1, . . . , l} follows from that of�(·,L(X),L(X̃)), by Young’s inequality.
��

Proof of Corollary 3.12 Definition 2.6 clarifies that both stability claims are immediate
consequences of Proposition 3.10. ��
Proof of Corollary 3.13 (i) From Remark 4.7 we infer the first two assertions by replac-
ing γp,2 by γp there, since Proposition 3.10 is a special case of Theorem 4.6.

(ii) Let X and X̃ be two solutions to (1.2) such that E[|Xt0 − X̃t0 |p] < ∞ and
�(·,L(X),L(X̃)) is locally integrable. Then

E
[|Xt − X̃t |p] ≤ e

∫ t
t0

γp(s) ds
E

[|Xt0 − X̃t0 |p]

for each t ≥ t0, according to Proposition 3.10. Thus, let us directly exclude the case
that Xt0 = X̃t0 a.s. Then (C.6) implies that

lim sup
t↑∞

1

tαl
log

(
E

[|Xt − X̃t |p]) ≤ lim sup
t↑∞

l∑
k=1

λk
(t − sk)

αk − (t1 − sk)
αk

tαl
= λl

and we obtain the first assertion from Remark 2.7. To prove the second claim, we
may suppose that l = 1 and see that ĉ0 := maxt∈[t0,t1] exp(

∫ t
t0

γp(s) ds −λ1(t − t0)α1)
satisfies

E
[|Xt − X̃t |p] ≤ ĉ0eλ1(t−t0)α1E

[|Xt0 − X̃t0 |p] (5.3)

for every t ∈ [t0, t1]. Hence, to ensure that (5.3) is satisfied for all t ≥ t0, we take
ĉ := ĉ0 ∨ exp(

∫ t1
t0

γp(s) ds − λ1(t1 − s1)α1) instead of ĉ0. ��

5.2 Proofs for Pathwise Stability and theMoment Growth Bounds

Proof of Proposition 3.16 Since Y is random Itô process with drift B̂ and diffusion �̂

defined via (5.1) for the choice (B̃, �̃) = (B, �), the assertion follows from Theo-
rem 4.13. ��
Proof of Corollary 3.17 To show both claims simultaneously, we argue as in the proof
of Corollary 3.17 in [25]. Namely, we take t̂1 ≥ t1 and δ̃ > 0 such that γpq ≤ 0 a.e. on
[t̂1,∞[ and set tn := t̂1 + δ̃(n − 1) for all n ∈ N with n ≥ 2. Then

∫ ∞

0
exp

(
ε

pq

∫ t̂1+δ̃t

t̂1
γpq (s) ds

)
dt ≤

∫ ∞

0
exp

(
ε

pq

l∑
k=1

λk

∫ t̂1+δ̃t

t̂1
αk(s − sk)

αk−1 ds

)
dt
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for any given ε > 0. Since λl < 0, the integral on the right-hand side is finite, see
Lemma 5.1 in [25], for instance. Thus, the integral test for the convergence of series
implies that

∑∞
n=1 exp(

ε
pq

∫ tn
t̂1

γpq(s) ds) < ∞.

Consequently, (C.8) follows as soon as δ̃ < δ̂, and Proposition 3.16 entails that the
difference Y of any two solutions X and X̃ to (1.2) for which �(·,L(X),L(X̃)) is
locally integrable satisfies

lim sup
t↑∞

log
(|Yt |

)
tαl

≤ 1

pq
lim sup

n↑∞

l∑
k=1

λk
(tn − sk)

αk − (t̂1 − sk)
αk

tαl
n

= λl

pq
a.s.,

provided E[|Yt0 |pq ] < ∞ or both B and � are independent of μ ∈ P . ��
Proof of Lemma 3.20 By hypothesis, X is a random Itô process with drift and diffusion
given by B̂ := B(X ,L(X)) and �̂ := �(X ,L(X)), respectively, so that

2X ′B̂ + |�̂|2 ≤ κ + υφ(|X |2) + χϕ(θ2) a.s.

with the measurable function θ := ϑ(L(X), δ0). For this reason, the lemma is implied
by Proposition 4.4. ��
Proof of Lemma 3.21 As in the proof of Lemma 3.20, let us set B̂ := B(X ,L(X)) and
�̂ := �(X ,L(X)) and θ := ϑ(L(X), δ0). Then we readily see that

X ′B̂ ≤
l∑

k=1

κkυ
(k)|X |1+αk θβk and |�̂|2 ≤

l∑
j,k=1

κ̂ j κ̂k υ̂
( j)υ̂(k)|X |αk θβk a.s.

Hence, Theorem 4.6 yields all assertions. ��

5.3 Proofs for Unique Strong Solutions

Proof of Proposition 3.23 (i) Because the uniformcontinuity condition (C.3) is satisfied
when (B, �) = (bμ, σμ), pathwise uniqueness for (3.17) follows from Corollary 3.5.

(ii) In essence, we may proceed as in the proof of Proposition 3.24 in [25]. First,
let ξ be essentially bounded. Mainly, Theorem 2.3 in [20, Chapter IV] yields a local
weak solution X̃ to (3.17).

That is, based on the one-point compactification, X̃ is anRm ∪{∞}-valued adapted
continuous process on a filtered probability space (�̃, F̃ , (F̃t )t≥0, P̃) on which there
is an (F̃t )t≥0-Brownian motion W̃ such that the usual and the following conditions
hold:

(1) If (s, ω) ∈ [t0,∞[×�̃ satisfies X̃s(ω) = ∞, then X̃t (ω) = ∞ for any t ≥ s.
(2) L(X̃t0) = L(ξ) and for the supremum τ of the sequence (τn)n∈N of stopping

times defined by τn := inf{t ≥ t0 | |X̃t | ≥ n} we have τ > t0 a.s.
(3) X̃ τn solves (1.2) relative to W̃ when B and� are replaced by the admissible maps

bμ1{τn>·} and σμ1{τn>·}, respectively, for every n ∈ N.
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Clearly, (D.1) ensures that (C.10) holds for (B, �) = (bμ, σμ), as κμ := κ +
χϕ(ϑ(μ, δ0)

2) is locally integrable. Consequently, Lemma 3.20 and Fatou’s lemma
assert that

Ẽ
[|X̃ τ

t |2] ≤ lim inf
n↑∞ Ẽ

[|X̃ τn
t |2] ≤ �φ

(
E

[|ξ |2] +
∫ t

t0
κμ(s) ds,

∫ t

t0
υ(s) ds

)
(5.4)

for each t ≥ t0, which implies that τ = ∞ and X̃ ∈ R
m
P̃-a.s. Thus, X := X̃1{τ=∞}

serves as weak solution to (2.3) in the standard sense and Ẽ[|X |2] is locally bounded.
In particular, this derivation applies to the case when ξ is deterministic.

Therefore, Remark 2.1 in [20, Chapter IV] entails that there is a weak solution X
to (2.3) with Xt0 = ξ a.s., regardless of whether ξ is essentially bounded. If, however,
E[|ξ |2] < ∞, then the second moment function of X is bounded by the right-hand
term in (5.4), according to Lemma 3.20.

(iii) By what we have just shown, pathwise uniqueness for (3.17) holds and there
exists a weak solution for anyRm-valuedFt0 -measurable random vector used as initial
condition. Hence, Theorem 1.1 in [20, Chapter IV] entails the assertion. ��
Proof of Theorem 3.24 (i) and (ii) Pathwise uniqueness with respect to� follows from
Proposition 3.10, as the underlying filtered probability space and Brownian motion
were arbitrarily chosen. In particular, there exists at most a unique solution X to (2.3)
such that Xt0 = ξ a.s. and E[|X |p] is locally bounded.

Next, for any μ ∈ Bb,loc(P) Proposition 3.23 gives a unique strong solution X ξ,μ

to (3.17) with X ξ,μ
t0 = ξ a.s., and E[|X ξ,μ|p] is locally bounded, by Lemmas 3.20

and 3.21. We note that this process is also a strong solution to (2.3) ifμ is a fixed-point
of the operator

� : Bb,loc(P) → Bb,loc(Pp(R
m)), �(ν)(t) := L(X ξ,ν

t ).

For given μ, μ̃ ∈ Bb,loc(P), we directly check that (C.4) is valid when (B, �) and
(B̃, �̃) are replaced by (bμ, σμ) and (bμ̃, σμ̃), respectively. Hence, Proposition 3.10
implies that

ϑp(�(μ),�(μ̃))(t)p ≤ E
[|X ξ,μ

t − X ξ,μ̃
t |p]

≤
∫ t

t0
e
∫ t

s γp,0(s̃) ds̃ δ̂0(s)ϑ(μ, μ̃)(s)p ds
(5.5)

for every t ≥ t0. In particular, this shows that there is at most a unique fixed-point of
�, due to Gronwall’s inequality.

Further, because Bb,loc(Pp(R
m)) is completely metrisable, the fixed-point theorem

for time evolution operators in [24] yields the existence of a fixed-point and the error
estimate (3.22). Namely, it follows inductively that

sup
s∈[t0,t]

ϑp(μm, μn)(s) ≤ �(t)
m−1∑
i=n

(
1

i !
) 1

p
( ∫ t

t0
e
∫ t

s γ +
p,0(s̃) ds̃

δ̂0(s) ds

) i
p

(5.6)
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for all m, n ∈ N with m > n and t ≥ t0. Hence, (μn)n∈N is a Cauchy sequence in
Bb,loc(Pp(R

m)), and from (5.5) we infer that its limit μ must be a fixed-point of �.
Now we may take the limit m ↑ ∞ in (5.6) to get the desired bound (3.22).

(iii) The set Mp is closed and convex, since the estimate in (3.23) does not depend
on μ ∈ Bb,loc(Pp(R

m)). An application of Lemma 3.21 entails that

ϑp(�(μ)(t), δ0)
p ≤ e

∫ t
t0

gp,0(s) ds
E

[|ξ |p] +
∫ t

t0
e
∫ t

s gp,0(s̃) ds̃ h p,μ(s) ds (5.7)

for every μ ∈ Bb,loc(P) and t ≥ t0 with the two measurable locally integrable
functions

gp,0 :=
l∑

k=1

(p − 1 + αk)
(
υ+

k − υ−
k 1{1}(αk)

) + p − 1

2

l∑
j,k=1

(p − 2 + α j + αk)υ̂ j υ̂k

and

h p,μ :=
l∑

k=1,
αk<1

(1 − αk)ϑp(μ, δ0)
βk

1−αk
p
υ+

k

+ p − 1

2

l∑
j,k=1,

α j <1 or αk<1

(2 − α j − αk)ϑp(μ, δ0)

β j +βk
2−α j −αk

p
υ̂ j υ̂k .

Thereby, we used the fact that (bμ, σμ) satisfies (C.11) for the choice β = 0. Next,
Young’s inequality gives us that

(1 − αk)ϑp(μ, δ0)
βk

1−αk
p ≤ 1 − αk − βk + βkϑp(μ, δ0)

p

for every k ∈ {1, . . . , l} with αk < 1 and

(2 − α j − αk)ϑp(μ, δ0)

β j +βk
2−α j −αk

p ≤ 2 − α j − β j − αk − βk + (β j + βk)ϑp(μ, δ0)
p

for any j, k ∈ {1, . . . , l} with α j < 1 or αk < 1. From these estimates we infer that
gp,1 := gp − gp,0 satisfies

h p,μ ≤ h p + gp,1ϑp(μ, δ0)
p.

So, the inequality (5.7), the fundamental theorem of calculus for Lebesgue–Stieltjes
integrals and Fubini’s theorem show that � maps Mp into itself, which implies the
claim. ��
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