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Abstract

In this paper, we study the weak differentiability of global strong solution of stochastic
differential equations, the strong Feller property of the associated diffusion semi-
groups and the global stochastic flow property in which the singular drift b and
the weak gradient of Sobolev diffusion o are supposed to satisfy ” |b] - Lp(r) ||p1 <

O((log R)P1=D*/2P%) and [[[ Vol - Ly |, < O((og(R/3)P1=D"/271), respec-
tively. The main tools for these results are the decomposition of global two-point
motions in Fang et al. (Ann Probab 35(1):180-205, 2007), Krylov’s estimate, Khas-
minskii’s estimate, Zvonkin’s transformation and the characterization for Sobolev
differentiability of random fields in Xie and Zhang (Ann Probab 44(6):3661-3687,
2016).
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1 Introduction and Main Results

In this paper, we consider the following d-dimension stochastic differential equations
(SDEs, for short)

{dXt =b(X)dt +o(X,)dW,;, te]0,T], (1

X():)CGRd.
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Here, {W;};c[0,7] is a standard Wiener process in R” which is defined on a complete
filtered probability space (2,.Z, P, {%};>0). The coefficients b : RY — R? and
o : RY — R?™ are both Borel measurable function. It is well known that stochas-
tic differential equation defines a global stochastic homeomorphism flow if » and o
satisfy global Lipschitz conditions and linear growth conditions. In the past decades,
for the non-Lipschitz coefficients SDEs there is increasing interest about their solu-
tions and their properties (for example, the strong completeness property, the weak
differentiability, stochastic homeomorphism flow property and so on).

Yamada and Ogura [22] proved the existence of global flow of homeomorphisms
for one-dimensional SDEs under local Lipschitz and linear growth conditions. Li [16]
proved the strong completeness property of SDEs (1.1) by studying the derivative flow
equation of SDEs (1.1). Fang and Zhang [3] used the Gronwall-type estimate to study
SDESs under non(local) Lipschitz conditions. Fang et al. [4] proved that Stratonovich
equation defines a global stochastic homeomorphism flow if the coefficients are just
locally Lipschitz and Lipschitz coefficients with mild growth. Chen and Li [1] studied
Sobolev regularity of Eq. (1.1) and strong completeness property when b and o are
Sobolev coefficients.

When ¢ = [ and b is bounded and measurable, Veretennikov [19] first proved
existence and uniqueness of the strong solution. When o = I and b satisfy

T £ o\7 2 d
/ (/ |b|P dx) dt] <oo, p,gel2,00), —+—<1, (1.2)
0 Rd q p

Krylov and Rockner [13] used the technique of PDEs to prove the existence and
uniqueness of the strong solution. The similar result in time-homogeneous case was
obtained by Zhang and Zhao [26], who dropped the assumption fol Ib(X)|? ds <
00, a.s..Fedrizzi and Flandoli [5] proved the existence of a stochastic flow of «-Holder
homeomorphisms for solutions of SDEs as well as weak differentiability of solutions of
SDESs under condition (1.2). Zhang [24, 25] extended the results of Krylov and Rockner
[13] to the case of multiplicative noises. This extension allowed for the establishment
of the well-posedness of solutions and the verification of weak differentiability in
solutions. Additionally, it was proven that the solutions form a stochastic flow of home-
omorphisms in R?. Key tools employed in this research included Krylov’s estimate
and Zvonkin’s transformation. In [21], a characterization for Sobolev differentiability
of random field was established. With the characterization, the weak differentiabil-
ity of solutions was proved under local Sobolev integrability and sup-linear growth
assumptions. We refer the reader to [6, 7, 20, 21, 23-25, 27] and references therein
for applications of Krylov’s estimate, Zvonkin’s transformation and the characteriza-
tion for Sobolev differentiability of random field. More recently, the critical case, i.e.,
p = d in time-homogeneous case, 244 = 1in time-inhomogeneous have been
explored, see [9-12, 17, 18] and references therein.

In [4], Fang, Imkeller and Zhang obtained a global estimates by employing global
decomposition of two-point motions and local estimates. In this paper, we will base
on the decomposition, Krylov’s estimate, Khasminskii’s estimate, Zvonkin’s transfor-
mation and the characterization of Sobolev differentiability of random fields to obtain
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the well-posedness and the weak differentiability of solutions, the strong Feller prop-
erty of associated semigroups and stochastic flow property of SDEs (1.1) under the
following assumptions:

(Hb) There exist two positive constants 8 and 5 such that for all R > 1,

1

(/ b (o) P! dx) "< BIR) + B,
B(R)

where B(R) := {x € RY; |x| < R}isaball with center O and radius R, |-| denote

the Euclidean norm, p; > d is a constantand I,(R) = (log R+ 1)(7! ~?/2pD),
(H{) There exists a constant § € (0, 1) such that for all x, & € RY,

1 T _1
841l < |oTwe| =872 18l.
and there exists a constant @ € (0, 1) such that for all x, y € R,

lo(x) —a ) <8672 |x — y[7 .

Here, we denote o | the transpose of matrix o, |-|| the Hilbert—Schmidt norm.
(HS) There exist two positive constants § and ﬂ (same with (HP)) such that for all
R >1,

(/ Vo dx)"' < BI(R) + f,
B(R)

where Vo := [Vo!, ..., Vo™ and I, (R) = (log(R/3) + 1)(P1=D*/@pD),
Our main results are given as the following theorem:

Theorem 1.1 Under the conditions (HP), (HY) and (H3), there exists a unique global
strong solution to (1.1). Moreover, we have the following conclusions:

(A) For all t € [0, T] and almost all w, the mapping x — X;(w, x) is Sobolev
differentiable and for any p > 2, there exist constants C,n > 0 such that for
Lebesgue almost all x € RY,

E|: sup HVXI(X)HP:| < CA + |x|"),
1€[0,T}

where V denotes the gradient in the distributional sense.
(B) Foranyt € [0, T] and any bounded measurable function f on R,

x = E[f(X;(x))] is continuous,

i.e., the semigroup Py f (x) := E[ f(X;(x))] is strong Feller.
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(C) Forallt €[0,T], x € R? and almost all w, the mapping (t, x) — X;(, x) is
continuous on [0, T] x R4 and for almost all w, x — X;(w, x) is one-to-one on
R,

These results will be proved in Sect. 6.

We would like to compare the work in [21, 24, 26] with the present paper and explain
the contributions made in this paper. Following the proof of [26], we generalized [26,
Theorem 3.1] to multiplicative noises (cf. Theorem 6.1). In the time-inhomogeneous
case, Xie and Zhang [21] proved the weak differentiability of SDEs and the strong
Feller property of the associated diffusion semigroup under local Sobolev integrability
and sup-linear growth assumptions. In the present paper, we removed the sup-linear
growth condition (H2) in [21] by replacing the local Sobolev integrability (H1) in [21]
with stronger assumptions (HY), (HY) and (H), proved the weak differentiability of
SDEs and the strong Feller property of the associated diffusion semigroup in the time-
homogeneous case. In the time-inhomogeneous case, Zhang [24] proved the solution
of SDEs forms a stochastic flow of homeomorphisms under conditions:

bl, Vol € L (Ry; LPRY) (p1 > d +2).

loc

In the time-homogeneous case, the conditions will be
bl, Vol € LP'(RY) (p1 > d). (1.3)

Our main result Theorem 1.1(C) strengthens the one-to-one property of stochastic flow
in [24, Theorem 1.1] by improving the conditions (1.3) with mild growth conditions
(H’) and (H3).

For the proof of Theorem 1.1, there are two main difficulties. The one is finer
estimates depend on R is necessary for us to obtain the order of growth in (HP) and
(H3 ) by the decomposition of global two-point motions. By our knowledge, all existing
results about Krylov’s estimate and Khasminskii’s estimate such as [21, 24-26] do not
obviously depend on radius R.

Another difficulty is that we need an appropriate truncation for o due to SDEs (1.1)
with multiplicative noises. If we directly truncate o by characteristic function 1<,
then the truncated o will be degenerate. Chen and Li [1] provides a truncation method
which can guarantee truncated o is not degenerate, but it seems difficult to estimate
the gradient of truncated o by (H5).

We also give some remarks related to the proof of our main results and conditions
posed in it.

e In Theorem 1.1, we just consider the time-homogeneous case, but by carefully
tracking the proof of Theorem 1.1, our idea still work for time-inhomogeneous
case.

o If the condition (H{) of Theorem 1.1 is replaced by
(H{)10c A constant 5 € (0, 1) depends on R such that for all x € B(R), & € R4,

1 1
splél < |oTe| =87 18l
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and there exist two constants L > 0 and @ € (0, 1) such that for all x, y € R4,
o) —oW < Lix—y|”,

where the growth of 8;1 is mild about R. The techniques in the proof of Theo-
rem 1.1 still can be used. Indeed, if b and o satisty ||b| - L g(r) ||p1 < O(I,(R)),
Vol - Lk ||p] < O(I»(R/3)) and the assumption (HS)joc holds true, then
the following assumptions:
(H )10C A positive constant 8
that for all x, & € RY,

—1/2 —1/2

=C(d,L) (8 ") > 0 depends on R such

Shil < |0 T g| < 5t e,
and forall x, y € R4,
o) —o®) | <5t e = w1

(HgR)loC There exist constants C(d, L) such that for all R > 1,

(.

hold true, where O (fh (R)) means there exist two constants C > 0 and R such that

O(I»(R)) < CI,(R) YR > Ry. On the other hand, by going through carefully

the proof of Theorem 4.1 we can find two continuous increasing functions G :

Ry — ]Rfr and G : RT — Ry such that C; and C; in Theorem 4.1 are equal
1

to G1(852) and G2(8,2). The Co(5 ) (the key to obtain G1) in the proof of
Theorem 4. 1 can be obtalned by changing of coordinates to reduce L° f@0) o A.

The C; (8 " )and k (8 : ) in (7.6) (the key to obtain G) can be obtained by going
through carefully the proof of Page 356 to Page 378 in [15]. Finally, we can take
8 satisfy C(d, L)-§, ? < C-Ip(R) and let A* = (2G2(Ip(R) Ip(R))*P/ 1=
in Lemma 4.4. Tracklng the proof in Theorem 1.1, we can find a concrete Ij,(R)
with enough mild growth such that the results in Theorem 1.1 still hold true.

e In [24], the well-known Bismut—Elworthy—Li’s formula (cf. [2]) was proved. But
even if o (x) = I;«4 (in this case, we do not need to truncate o), it seems difficult
to prove the Bismut—Elworthy—Li’s formula for the solution of SDEs (1.1) under
assumptions of this paper due to IE[HVX,R (x) ||2] < C(R) and C(R) — o0 when
R — oo.

1
VoR‘p dx> <CW. L) 5,7 + 0y(R)).
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e The local estimates (6.23), (6.25) and (6.24) are seemingly not enough to obtain
the onto property of the map x — X;(w, x). In fact, if we define

v |+ () 20
0, x =0.

We just can obtain forany k € N, x, y € {x : % < |x| <1} U {0},
E[|2:(x) = Z:(IP] < Ck) [x — yIP.

Notice that, the domain {x : % < |x| < 1}U{0} is not connected, we cannot obtain
x = Z;(x) exist a continuous version on {x : |x| < 1}.

e For the critical case, i.e., p; = d, our idea will not work since Zvonkin’s transfor-
mation cannot be used. On the other hand, (HP) and (HZ ) seemingly indicate that
the order of growth will be degenerated in the critical case.

The rest of this paper is organized as follows: In Sect. 2, we will present some pre-
liminary knowledge. In Sect. 3, we devote to construct the cutoff functions to truncate
SDEs (1.1) and verify assumptions. In Sect. 4, we provide a proof of Krylov’s estimate
and Khasminskii’s estimate. In Sect. 5, we use Zvonkin’s transformation to estimate
truncated SDEs (3.1). In Sect. 6, we complete the proof of the main Theorem 1.1.
Finally, we give a detailed proof of Theorem 4.1 in Appendix.

2 Preliminary
In this section, we introduce some notations, function spaces and well-known theorems
which will be used in this paper.

We use := as a way of definition. Let N be the collection of all positive integer. For
anya,b € R,seta Ab := min{a, b} and a vV b := max{a, b}. We use a < b to denote
there is a constant C such that a < Cb, use a < b to denote a < b and b < a. For

functions f and g, we use f * g to denote the convolution of f and g.
Let L?(RY) be LP -space on R4 with norm

4
£, = (/ | f17 dx) <+oo, VfeLPRY.
R4
Let WP (R4) be Sobolev space on R? with norm

m
1y = 20| Vs < oor v € wr e,
i=0

where V? denotes the i-order gradient operator.
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For0 <« € Rand p € [1, +00), the Bessel potential space H”‘*P(Rd) is defined
by

HYP .= (I — A)" 3 (LP(RY))
with norm

1 lap = | = 37| v e mer @),

Let C*(R?) be Holder space on R? with norm

ZHVZfH + sup VLan(X)y—VZthf(y”

< 400, YfeC*RY,
X#y lx

I fllce :=

where o] denotes the integer part of «. Let C0 (R9) be a collection of all smooth
function with compact support in R<.
For o € (0,2) and p € (1, +00), we have

ey = [ = a%0p] <011, + | A% 7] . )

where A% := —(—A)% is the fractional Laplacian.
Let f be alocally integrable function on R, M be the Hardy-Littlewood maximal
operator defined by

Mf(x):= sup

f&x+y)dy,
0<R<+o00 |B(R)| JB(R)

here, with a bit of abuse of notations, | B(R)| denotes the volume of ball B(R).

Theorem 2.1 (Sobolev embedding theorem) Ifk > [ > 0,p <dand1 < p < q <
oo satisfy k — % =1- %, then

HP(RY) — HY(RY).
Ify >0andy <o — %, then
H*P(RY) — C7(RY).

Theorem 2.2 (Hadamard’s theorem) If a function ¢ : R? — R? is a k-order smooth
function (k > 1) and satisfy:

(1) limjyj— o0 l@(x)| = 00
(ii) forall x € RY, the Jacobian matrix V(x) is an isomorphism of R?;

Then ¢ is a C*-diffeomorphism of RY.
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Theorem 2.3 (i) There exists a constant Cq such that for all ¢ € C>®[RY) and
X,y € RY,

lp(x) =@ < Cq-1x —y|- M |Ve| (x) + M|Ve|(y)).

(ii) For any p > 1, there exists a constant Cy, ), such that for all ¢ € LP(RY),

1 1
(/ (M<P(X))pdx> "< Ca,p </ lpCo)|? dx) "
R4 Rd

3 Truncated SDEs

In this section, we will construct some precise cutoff functions to truncate SDEs (1.1)
and verify that the truncated SDEs

dXR = bR(XR)dt + o R(XR)dW,, €0, T],
VR _ y 3.1
o =x € RY,
satisfy the following assumptions:
(HbR) There exist two positive constants 8 and B such that for all R > 1,
1
R p1 r1 ~
| ax) ™ < gl + B,
R
where p; > d is a constant.
(H‘ITR) There exists a positive constant § € (0, 1) such that for all x, & € R4,
~1 ~ 1
5l = @™ Twe| =52 g,
and forall x, y € R4,
[of e o] =53 -7, (3.2)

where § is a constant only depend on é and d.
(HgR) There exist two positive constants S and ,5 such that for all R > 1,

(/.

where p; > d is a constant and C(d, §, p1) is a constant only depend on d, §
and pj.

Vok H”‘ dx> z < (C(d, 5, p1) + (481, 3R) + 45)),
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Let W be a d-dimensional standard Wiener process, independent of W and let

We can verify that Wis a (d 4+ m)-dimensional standard Wiener process. In SDEs
(3.1), the coefficients bR and o X are defined by

bR(x) == b(x)Ljy<r, oR(x) == [pro, hra1(x),

where ¢ is a matrix defined by

1
60 2
ox) = .
_1
872/ 4xa
The cutoff function kg is defined by
0, x| < R,
2 (x| = R)%, R < x| < 3%,
hr(x) = 2 2 3R
1— 2 (x| —2R?2, 3R < x| <2R,
1, x| > 2R.
It is easy to verify hg satisfy
0, x| < R, 0, x| <R,
hrp(x)=1€(0,1) R<|x|<2R, |Vhgl(x)={<% R<Ix|<2R,
1 |x| > 2R, 0 x| > 2R.
Similarly, we can construct a cutoff function pg satisfy
1 x| < 2R, 0, x| < 2R,
prR(X) = 1€ (0,1) 2R <Ix| <3R, [Vprl(®)={1<% 2R <Ix|<3R,
0 |x| > 3R, 0 |x| > 3R.

Clearly, (H™) hold by the definition of 5. Notice that
(0" (0*) T, &) = pploo "6, &) + hz(55 &, €),

by the definitions of pg, hg, 6 and assumption (H‘f), we have
1 _
SOIER = (@R @™)TE,8) <267 |2, Ve eRY 33)
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On the other hand, it is easy to see for all x, y € B(2R)\B(R),
2 2 - o w
lhr(x) — hr(y)I Sﬁlx—yl SE(4R) lx = y[” =8lx—=y[®, VR=I,

and for all x, y ¢ B(2R)\B(R), we have |hg(x) —hr(y)| < |x —y|®, VR > 1.
Hence, forall x, y € R?, we obtain

lhr(x) —hr(MI <8lx —yI”, VR=>1 (34

Similarly, we can obtain

lorR(x) — prRW| < 121x — |7, VR >1. (3.5

Therefore, we have

o® 0 = o)
<lpr(x) — prMI lo )l + lprWMI lo(x) —o W + lloll |hr(x) —hr(Y)]
< (125*%41% S 88’%d%) Ix — |7, (3.6)

where the last inequality is due to (3.4) and (3.5). Combining (3.3) with (3.6), we
verified the (HJ").
By the definition oR® = [pro, hré] and direct computation, we obtain

J.

= /H;d IIVor(x)o(x)+ pr(x) Vo (x), Vhr(x) & (x) + hr(x) Vo ()] dx

P
vok| 1dx=fRd IVpr o, hg G1IP dx

54”‘{/ IVor(x)o (x)[I7! dx—i-/ [Vhg(x)o ()P dx
BGR)\B(QR)

BQ2R\B(R)
+/ Vo P! dx}
B(3R)

=47V (N1 + L2+ J3).
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Note that [Vpg| < 2 in BGR)\B(2R), |Vhg| < 2 in B(2R)\B(R) and (H$), there
exists a constant C(d, §, pp) only depend on d, § and p; such that for all R > 1,

[

2 Pl
J1 < / (—5 d2) dx < C(d, 8, p)RI"P' < CWd, 8, py),
BGR\BCR) \ R

2 P1
I < / (—5—%d%> dx < C(d, 8, p1)R*™P' < C(d, 5, p1),
BQR\B(R) \ R

< f Vo7 dx < (B, 3R) + B)P.
B(3R)
Together, Jp, J> and J3 imply (HgR).

4 Krylov’s Estimate and Khasminskii’s Estimate

In this section, we shall prove Krylov’s estimate and Khasminskii’s estimate. We need
the following result about elliptic PDEs (4.1).

Theorem 4.1 Suppose o® satisfies (H‘IIR), p € (1,00), then for any f € LP(R?),
there exists a unique u € W2P(RY)Y such that

Loy = f, (4.1)

where

< 1
Lo Oy (x) = EZ(O'R)ik(x)(aR)jk(x)aia.i”(x)
ik

and ) > ~C (C = CUd, w, 5, p) > 2 is a constant ). Furthermore, for a C; =
Cl(dv wv 85 p) > 0’

lullz,, < Crlifll,- (4.2)

Moreover, for any a € [0,2) and p’ € [1, co] with % <2—a+ %,

(a—Z—t—%—i/

2050,

”u”oc,p’ = CQ)‘-

where C1(d, w, S, p) and Cr(d, w, S, p,a, p') > 0 are both independent of A.
We believe that Theorem 4.1 is standard although we do not find them in any refer-

ence. In [26], authors proved Theorem 4.1 hold true when o ® = I. For convenience
of the reader, we combine [26] with [25] to give a detailed proof in Appendix.
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In order to prove Krylov’s estimate and Khasminskii’s estimate, we need to solve
the following elliptic equation:

(L(TR(X) R R vk = f A > PCas (4.3)
where f € L?(RY) and A" > 1is a constant depend on C>, d, p; and ||bR ||p1.

Lemma4.2 If HbR”p| < oo and (H‘I’R) hold, then for any p € (% Vv 1, p1], we can
find a constant

-1
N (2C2 ”I’RH )2(1‘51)
P1

such that for any f € LP(R?), there exists a unique solution u® € W>P[R%) to
Eq. (4.3) and

— d_d
MRHzpfzcl (NP (et =9

R bR
uf o <2C0f1l, =2,
a,p

where Cy and C, are two constants in Theorem 4.1, o € [0, 2) and p’ € [1, co] with
Q-a+d-9)>0

Proof By Theorem 4.1, for any f € L”(Rd), we have
o=t e
2,p P

A(z—w%—%)ﬂ H O — Lnk(x))flf

T —

where A > C (C > 2), (2—a+§ —%) > 0 and Cy, C do not depend on .

Since A2% = (2C, ||bR ||pl)2p1/(p1—d), it is easy to see for any A > )»bR,

canl#172 o

1
< -.
p 2
Let ug = 0 and for n € N define
ulf o= (" — 07 — bR vk ).

By (4.4) and replacing (A — 21 with (L"R(") — ) in the proof of [26, Theorem
3.3 (ii)], we completed the proof. ]

Now, we provide the main result of this section.
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Theorem4.3 If ||bR ||p1 < 00 and (H‘I’R) hold and {XSR}SE[(),T] is a solution of SDE
3.1), thenforany0 <ty <t <T, f € LP(RY) (p > % Vv 1), we have

) 11 d d _ _d
E7 [ f FXE (x))ds] <40 (I3 15 + (12 5 ) (=100 111,
0]
4.5)
where Cy is the constant in Theorem 4.1, pY - 2Cy ||bR ||pl)2pl/(p1_d). Moreover,
for any a > 0 we have

T
]E|:exp (a/ ‘f(XSR(x))‘ ds):| <e
0

d d
4aCy (1T + 11221571 ) 171,

1 —e!

cexp| T

Proof The proof is divided into three steps.
Step (i) We replace (A — A)~! with (L7“® — 2)~! in the proof of Theorem 3.4
of Zhang and Zhao [26]. Notice that

(%)
)

= (2o
P1

is enough to ensure CoA(@/P1=D/2 HbR le < % for all » > ab Repeating the proof
of Theorem 3.4 (ii) of Zhang and Zhao [26], for all 2 > A*", we obtain

£ [/ll f(xf(x»ds] = ko =) ””RH 2 H”R H
1o b

e¢]

~d ~(4
= 2Ca(ny —t0)A> [ f I, +4C2)»(2” ) 1Al - (4.6)

Let « = Tl and A = Kkt —19) L. Dueto0 <19 < t; < T, we have x> AbR.
Taking A = k() — 1)~ ! into (4.6), we proved the Krylov’s estimate (4.5).
Step (ii) Taking 0 < 7y < f; < oo satisfy

1 —e !

d d
4aC> (KTP +Kﬁ‘1) 11,
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Ifty —t9 < T in (4.7), by the Corollary 3.5 in Zhang and Zhao [26], we have

([ ot e (5

Since e* =) 07 %x”, we have
4
EZ0 [exp{a/ ‘f(XsR(x))) ds”
0]
7|5 1 "
-7 Xl
n=0 " o

1_» n
—E7 |:(a /
n! o

(1—e Y =e. (4.8)

FXE) ds) }

M

fXE)| ds) ]

0

n

M2

=
0

3
Il

Step (iii) Finally, by virtual of the estimate (4.8), we obtain

T
E[exp a f FxRoo)| dsH

[M]+1

<E|expla Zf )f(xR(x))’ds

LMJ+1

t
=FE H exp{a/ti_l

i=1

o) ds}

[1Mm)

-E Hexp{a/ti ’f(XSR(x))‘ds}
ti—1

L i=1

I M]+1
<) |:exp :a/ f(XSR(x))‘ ds}:|:|
M)

LM]

<e-E Hexp{ /

fXE@) ds} < M+

where M = tlzto < - < fim)4+1 = T satisfies g — 0 < 11 — 1o,
ti—tici=t1—tf@@=1,...,[M]+1).
If 1y — to > T in (4.7), it is obvious that

T 1 — 671
E [/ f(XSR(x)ds)} < .
0 a
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by a similar argument, we have

T
E[exp{a[ ’f(Xf(x))‘ dsH <e.
0

We completed the proof. O

In particular, in the proofs of Lemma 4.4 and Theorem 4.5, replacing A" with
AR = (4c3BL,(R)+5)*)" /tP1=d e can obtain the following lemma and theorem:

Lemma 4.4 If(HbR) and (H‘I’R) hold, then for any p € (% Vv 1, p1], we can find a
constant

-1
AR = (4C3(BI,(R) + 3)2)(1*@ (4.9)

such that for any f € LP(R?), there exists a unique solution u® € W>P([R%) to
Eq. (4.3) and

Q—a+d -4y
HMRHZp < 2C1 ”f“pa A o plp / HMRH(XP/ < 2C2 ”f“p ()\’ > )\R)’

where C| and C; are two constants in Theorem 4.1, a € [0, 2) and p’ € [1, 0o] with

d d
Q-a+4-4)>0

Theorem 4.5 [f (HY") and (HS") hold and {XR}scpo.71 is a solution of SDE (3.1),
then forany0 <ty <t <T, f € LP(RY) (p > % Vv 1), we have

z n R RoL R4 1 |—d
E7 / FxReds | <40 (ITARF + 112857 ) (0 =0 171,
1o
(4.10)

where Cy is the constant in Theorem 4.1, AR = (4C§(,31b(R) + B)z)pl/(plfd). More-
over, for any a > 0 we have

E |:exp (a /(;T }f(XSR(x))‘ ds>:|

4aCy (112805 + (1285 171,

<e-exp|T 4.11)

1 —e!
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Corollary 4.6 (Generalized 1t6’s formula) If (H") and (HS") hold and {X R};cio.11
is a solution of SDE (3.1), then for any f € W>P(R?) with p > % V 1, we have

t t
PO = e+ [ @ b8 v s+ [0, R ai.
(4.12)
Proof We just need to consider the case p € (d, pi] since W>P < W?P! when

p > p1.
By Holder’s inequality and Sobolev’s embedding theorem, we have

R
TR 7 IY P U B A7 VY VU B CREY
VAl

P1—p
Let ¢ be a nonnegative smooth function with compact support in the unit ball of R?

and fRd p(x)dx = 1. Set ¢, (x) := n"go(nx), fn = f * ¢, and applying Itd formula
to f,. By (4.13), we have

Let p = 2(5—%, we have

LD = )+ bR V(= f)

) SIS = falla,, = 0. (4.14)

t 2
E ‘ / (VB = v, xBy), o R(x Ry awy)
0

2 t 2
§HURH E/ ‘Vf(Xf)—Vf,,(Xf)‘ ds
o 0
<HIVE=VEP <If=Ffll?s-
S A IR VA TP
SIS = fall3, = 0. (4.15)

where the second inequality is due to Krylov’s estimate (4.10) and the last inequality
is due to Sobolev’s embedding theorem. Together, (4.14) and (4.15) imply (4.12). O

5 Zvonkin’s Transformation
Let u® solve the following PDE
(L7 D _ pyuR £ bR . vuR = _pR,

By Lemma 4.4, we have

_d
o P P BT T
p1

P1 1,00

2,p1
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)

d 1
Let Af; = yaR and y(21’1 2= % it is easy to check

< [ur], =y FH < 62

[v7]|
1,00 2

00
Define
Dr(x) = x +uR(x),
then
L7"®og 4 bR . Vdg = auf.
By (5.2), forall A > Af,, we have

1
<_s
oo~ 2

R H (5.3)

77, <

| .
o 2

By the definition of ® g (x) and (5.3), we have

1
m |[Prx)| =00, Zlx—y[=[Pr(x) = Pr(Y)| =2|x —y].

li
[x]—00
Therefore, by Theorem 2.2, we obtain O : RY - RYisa Cl-diffeomorphism and

VDRl <2, HWb;lH <2 (5.4)

o0

Theorem 5.1 Let YtR = CDR(XIR), then XtR solve equation (3.1) if and only if YtR
solves

{dY,R =bR(YR)ydt +6R(YR)dW,, 1€]0,T], 5.5)

YR = og(x),

where bR (y) == auf o @31 (y) and 58 () := (VOR(HoR() 0 @' ().

Proof Applying It6 formula (4.12) to ®g(XF), we obtain
t t -
dr(XF) = CIDR(x)+A/ uR(Xf)ds+f Vor(XBak(xXRyaw;.
0 0

Noticing that Y = ®g(X[F), we obtain Y solves (5.5). Similarly, applying Ito
formula (4.12) to CDEI (Y, ,R), we completed the proof. O
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6 The Proof of Theorem 1.1

Proof In this section, the letters C and C will denote some unimportant constant whose
value is independent of R and may change in different places. Whose dependence on
parameters can be traced from the context. We also use C(7') and C(N) to emphasize
the constant C depend on 7 and N, respectively.

Firstly, we prove SDE (3.1) exists a unique strong solution.

Theorem 6.1 Under (HY"), (HS") and (HS"), for all x € RY, the SDE (3.1) exists a
unique strong solution.

Proof By Theorem 5.1, we only need to prove SDE (5.5) exists a unique strong solu-
tion. By the definition of bR, &R and Lemma 4.4, for all » > AZ, we have

el =22 1997 =
o

1
2
=2l - <c (| ) o
oo P1 4 P1

Note that b® and & ¥ are both continuous and bounded. By Yamada—Watanabe’s the-
orem, we only need to show the pathwise uniqueness. Performing the same procedure
in [26, Theorem 3.1], we completed the proof. O

IA

||

+ HVUR‘

Lemma 6.2 Under (HP"), (HS") and (HS"), let {XR(x)}sei0.1) and (X R ()}sero.r]
be two solutions of SDE (3.1) with initial conditions X(If (x) = x and Xée ) =y
respectively, then for any a € R, we have

B[|xkow - xFo)| ] =€ (exp (6 (Wf'd)) -y, (62)

E [(1 + ‘Xf(x)r) } < C(exp (T25)) (14 1xP)", 6.3)
and for all p > 2,
E [ sup Xf(x)\p] < CA+1xl” + @57, (6:4)
0<s<t

E[ sup [XR(x) — XR(y)‘ ] <exp <c ()\R)m—d)) Ix —y|?, (6.5)
0<s<t

where C is independent of B, B and R.

Proof For ®g(x) # ®r(y),take 0 < & < |[Pr(x) — ®g(y)| and set

r = inf | |[YA@r(0) - YR@R ()| = €]
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For convenience, we define ZR := YR(®r(x)) — YR(®Pr(y)) where
{YSR(CDR(x))}SE[(),T] and {YSR(CDR(y))}SE[o,T] are the solutions of SDE (5.5) with ini-
tial conditions YR (P (x)) = Pg(x) and Y& (PR (y)) = ®r(y), respectively.

By It6 formula, we have

R ¢ _ B o
Zt/\‘rs = |Dr(x) — Pr(y)|
e RI“72, R =R, yR ~R/yR ~
+/0 o |Zg (Zg, (07 (Y (x) — o™ (Y (v))) dWy)
e RI“72, R 7R yR "R R
+/0 o|Zg (Zg, (07 (Y5 (x)) = b7 (Y (»))) ds
INTe =2 _ B 2
[ ]aE feraten —ataf o] as
tATe Ol(Ol _ 2) a4 B 2
+/0 — zZR )(oR(YSR(x)) — R Ry zR| as.
(6.6)
Set
~ ~ T
B, . @) —o’i(Yf(y))) zs 67
|ZE]
and
~ ~ - ~ 2
A Uz GRoRe) — bR arfon) | 5 SR e) - f 0]
s 2 2
|Z&] |Z§]
_ ~ ~ 2
N 2D |5 R(yR(x)) — R (R ()T ZE| ©5)
|zE[*
By (6.6), we have
o INTe o ~
‘z}‘;% = [Pr(x) — Pr(M)|* +/0 zR .| (Asds +BgdWy).
By the Doléans—Dade’s exponential, we obtain
« IATe -
ZR .| = 1®r(x) — PR(y)[* exp ( fo B, d W,
1 tAT, INTg
—-/ B, |2 ds—i—/ A, ds). (6.9)
2 Jo 0
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By the definitions of % and 6 ® in Theorem 5.1 and Lemma 2.3(i), it is easy to see

) =58 = Calr = 31 (MR | @7 @) + M| Vo | (@5 o))

+ Calx =y (M| V2R| @7 @) + M| V2| (@5 0D)

(6.10)
and
bR = bR )| = [k o 05! (1) — 2 0 @7 (v)|
= 1Ca |07 (@) — @' )
x (M (wR (@%' (1) + M ‘WR (@;l(y)))
< 3Ca lx = 31 (M |VuR| @7 (0) + M| VuR | (@7 (1))
6.11)

Firstly, we shall prove that for any u > 0,

TATe - (1_1)*‘
E |:exp (,u/ |BS|2 ds>i| < C(e) - exp <C [AR] 1 ) ,
0

and

T Ate " |_d -1
E |:CXP (M/ |Asl dS>] < C(e) - exp (C [AR]( 75) ) )
0

Combine the definitions of (6.8), (6.7) with (6.10), (6.11), we only need to estimate

T Ate
M, :=E |:exp (/ M ‘VZMR)Z (X (x) ds):| ,
0

My :=E |:exp (/TM& M ”VURH2 (XX (x)) ds)] ,
0

and

T Ate
Ms:=E [exp (/ AM )WR‘ (Xf(x))dsﬂ .
0
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Take f = M |V2uR|* and p = & in (4.11), then we have

(-#)"

P1(p1—2)Cs ((Tm% + (TAR)%—I) [ v v2ur]?

1—e!

rr
2

My <e-exp| T

d _ d
We can take TAR > 1, then (TAR) 71 ! < (TARyrr, By Theorem 2.3 (ii) and (5.1), we have

HM ‘VzuR‘z

2 2
slvael, <l
[4% p1 p1

Therefore,

Tt g2 100
M <e-exp C[(AR)W ‘bRH ]
P1
-1
§e~eXp<(~3[AR](l_'§1‘) )

where the second inequality is due to (HbR) and (4.9).
Similarly, taking f = M || Vo kR ||2 and p = % in (4.11), we obtain

‘il]O;l)

My <e-exp|C [(A )m

Taking f = )LZ - M |VuR| and p = oo, we obtain

—1
M3 < e-exp ((Nj . AR> <e-exp (6 [AR](I_%) ) .

By Novikov’s criterion, the process

AT, - AT,
I > exp (2/ B, dW, — 2/ B, |2 ds> = M
0 0
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is a continuous exponential martingale. By Holder’s inequality, we obtain

1

o 1 AT AT 7
<2%x — y|* (EM])? <E [exp (f |By|* ds + 2/ Al ds)])
0 0

I\

1
< C(a, e) exp (6 [AR](“E) ) e — y[2.

ZR

tATe

E

Lete | 0, we have

|

Moreover, if « > 0, then

o ~ _d -1
YR @R = YF@r)| ] = Cle erexp (C R (=5) ) lx — y[®.

E[|xR0 - xRo)|' | =B [|or! 0 @pem — o7 0k @ro)| ]
il

-1
< Cla, e) exp (6 [AR]<"5IT) ) x—y[*.  (6.12)

10(
= [vor'] [

ee]

zf

Notice that

YR @r(0) = YR@R(D)| = [@r(XE ) - @R )]

)

< 2|xF @) - XF )

if @ < 0, then

[04
Xfe - xRl =27

YR(@r(x)) — Y,R(®R(y)))a

-1
< C(a, e) exp (é [AR](I_;T) ) e — y[®. (6.13)

Together, (6.12) and (6.13) imply (6.2).
Notice that

Dr(PL' (X)) =x, Drx) =x+uf(x),
we have
d>1;1 x) + uR(CD;1 (x)) = x.
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Therefore,

1
@RIV |07 ()] = Ixl + k]| < 1xl+ 3. (6.14)
By XR(x) = @' (YR(®r(x))), (5.4) and (6.14), we have

1(1+
2

ri@ren|) <1+

XFw|=2(1+

vi@g@|).
Combining the inequality

1 2 2 2

S+ XD = A+ 1xI7) = (1 + [xD7,

we can obtain

(1 + ‘Xf(x)‘z)a < C(a) (1 +

2 o
CIEN ) ,

where C(x) = 8% v 87%. Therefore, we just need to consider the estimate of
2 o
E[(1+[rF@ren) ]
o
Applying It6 formula to (1 + |YSR(CI>R(x))|2> , we have

<1+

2 a—1 "
YR vX ) (YR GR(yByawy)

o t
2) :(1+|c1>R(x)|2)“+2a/ <1+
0
t b
+2a/ (1+ ) (b(Y®y, Y]y ds
0
t a—1
+a/ <1+ 2) ”cf(YsR)szs
0
t
+2a(a—l)/ <1+
0

By (6.1) and (6.15), we obtain

B[(1+

Using Gronwall’s inequality, we proved (6.3).

YR

vk

2

vk ds.

a—2
2) )6_R(YSR)YSR

v rr

2\ ¢ - 2 - - t
> :|§C(1+|x| )“+(CAR+C)/ E[<l+
0

o
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It is easy to see

8| s x|
0<s<t

§E|:sup

0<s<t

<1>;1(YYR(<I>R(x>>>)”}

—1,vR -1 —1 P
<E [ sup | @7 (Y (@r(x)) — ©7'0) + 05 O] ]

O<s<t

< C(p)lE[

”} +cp o' o

0<s<t

<C(p)E [ sup

0<s<t

R p
rF@reo|” | +co.

where the last inequality is due to HVCDEI H < 2 and @EI(O) < 1/2. So, we only
o0

need to estimate [E [SUP0§s§z ’YSR(CDR(x))|p] , p =12
By Eq. (5.5), we have

p
E| sup
0<s<t

=C(pE [IQR(X)I” + sup

0<s<t

vk

+ sup

0<s<t

s P N -~ |?
/bR(Y,R)dr /&R(YrR)dW,
0 0

= C(p)(I) + I + I3). (6.15)

It is not hard to see

= (et

uf| ) scwa+ixn,
o=t [l ar] <o 5] < g
13<E[( R(YR)H dr)g}ftg

So, we obtained (6.4).

I/\

- p P p
o=t
00
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Notice that

0<t<T

E [ sup |07 (VR (@r(0)) - <b;1(YtR(<1>R<y>)>}p}

0<t<T

<2’E [ sup |1 (@r(x)) - Yf(%(y))]”} :

we only need to estimate E[supy<, 7 |ZR |p]. By (6.9), we have

E| sup !
0<t<T
! . %
< |Pr(x) — PrO)I” (E sup Mi(1) <eXp (2/ |As | dS>>
0<r<T 0

, % T %
< 10(x) = 2r()I (EMI(T)) (exp (2 [ ias ds>)

1

T
< |[Pr(x) — DR(I? (EM4(T))F (eXP (6/ B, |? dS>>4
0

T 3
X (exp <2/ |Ag| ds))
0
~ ~ _PL
<C (exp (C (xR)m—d)) lx =17,

zf

where

t - k2 t
My (1) := exp (k/ B, dW, — —/ IB; | ds) )
0 2 Jo

We proved (6.5). O
Let D;(x) := supy<y<, [Xs(x)|, Tr(x) ;= inf{t > 0, |X;(x)| > R} and similarly,
let D,R(x) = SUPg<s<s ‘Xf(x)|, tg(x) = inf{t > 0, ’X,R(x)| > R}. Itis easy to see

{Di(x) = R} = {tr <1}, (D] (x) = R} = {rf <1).
By the definitions of b® and %, it is not hard to obtain

{tr <t} C {tf <1).
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For all x € B(N), we have

P(tg < 1) <P(zf <) =P(DF(x) > R)
E[|DFx)|"]
< ' - Tl
< o
_ G+ "+ 05
< o

k]

where the second inequality is due to Markov’s inequality, the last inequality is due
to Lemma 6.2. By the definition of A% in (4.9), we can obtain (A%)" /R" — 0 when
R — oo. Hence, we have tg — oo when R — 00. On the other hand, by the
definitions of b® and o ®, we observe that if D;(x) < R, then X,(x) = XX (x), i.e.,
Xi(x) = XtR(x) for all t < tp. By Theorem 6.1, SDE (3.1) exists a unique strong
solution. We can define X;(x) = XIR (x) for t < tg. Itis clear that {X;(x)};c(0,7] 1S
the unique strong solution of SDE (1.1).
By (6.4) and definition of AR, for all x € B(N), we have

M8

E [ sup IXz(X)Ip}

p
]E[ DR(x) ]1{R—1§DT(x)<R}]
0<t<T

=
I

1

A
e
&

p
DR(x) 1{R—1§Dr(x)<R}:| + C(N)

=
M)

1

Df(x) 2”] [POOF 0 = R—l)] +C(N)

IA
WK
=

R=2 =
00 - 1 R—1 2p1k
)2 ElD; (x)P]2
< DR . C(N
_Rg [P ] R—pr T
i (DR ))*12 - BI(DE ' ()12 e
- (R—D7P
< C(N). (6.16)
where the last inequality is due to (6.4) and the definition of A%,
For all x, y € B(N), we consider the following estimate
E[ sup | X;(x) — Xz(y)lp}
0<t<T
Rin _ vRoN|?
Z sup [ X, (x) — X, (V)| L{r—1<Dr()vDr(»<R)
R=1 0=<t<T
~ T\ %
=Y (E] s [xFw - xFo["]) B(preyv Dron = R-1)
R=1 0<t<T
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1

o0 2]7 2
<y (E[ sup|XF) - xF )] ])

0<t<T

D=

x (P(Dr) = R= D +B(Dr() = R— 1)’

1

= (1@[ sup_ [ Xf(x) — xf(y)f”])z

0<t<T

BIf—

x (POf ') = R= D +POF () = R- 1))

o0 2
< Z (]E|: sup ‘X,R(x) — X,R(y)‘zpi|)

0<r<T

E(D?‘l(x))%] E[(DE (v
(R — 1) (R— 1)

S R\n
+Zélx yI? (exp <C(AR)p1 d)) (2 )
R=2
Ee i en(eon) e
R=2
<> Clx—yl? (eXP <2C(AR m—d)) (2+le ) Clx— yI?

2
) +Clx —y?

R=2
o 24
+ RX::ZC x — y|? (exp (2(: (ARypi- ,)) ((R _|y1|)) (6.17)

where the last inequality we used the fact that we can find a constant C (E, p1,d,n(B))
such that for all A® > C(C, p1,d, n(B)),

By < exp (5 (AR)f’fld) . (6.18)

~ ~ _d -1 ~
In fact, if let f satisfy 2C28)*" "7 = C(C, p1,d, n(B)), then for all R > 1, AR
satisfy (6.18), where n(B) be decided by (6.19).
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On the other hand, by the definitions of AR and I,(R), we have

gC® 2+ 1M

u«:[ sup | X, (x) — Xt(y)d =) CBHRV G

0<t<T R—2

o
~ Q2+ 1yl
+ > Ce. ﬁ)RC(ﬂ)m +Clx —yl”.
R=2
Therefore, take n satisfy
CB)+1<n, (6.19)

we obtain

E[ sup |X,<x)—xt(y>|f’] = (1M + A+ ) e = yI7. (6.20)

0<t<T

By Lemma 2.1 in [21], (6.16) and (6.20), we proved Theorem 1.1(A).
Following the proof of Zhang [24], it is not hard to prove for any bounded measur-
able function f andt € [0, T],

x > E[f(XR(x))] is continuous. (6.21)

For any x, y € B(N), we have
ELF (X = fG D]
= [E[(f X1 = FGOM Lize ]| + 211 f oo PGt > 7)
= E[(FXF@ = FOROM gz ]| + 21/l PC > 70)

= [E[(FXF@ = FROMD ]|+ 4171 PG > ). (6.22)

Together, (6.22), (6.21) and tg — oo when R — oo imply Theorem 1.1(B).

Lemma 6.3 Under (HP), (HY) and (HS), let { X (x)};ej0,71 and { X (y) }se(0,7) are two
solutions of SDE (1.1) with initial conditions Xo(x) = x and Xo(y) =y, respectively,
thenforall0 <t <T,a € Randx,y € B(N), we have

E[lX/(x) — X, (NI*] < C(N) |x — y|*, (6.23)
E [(1 n |X,(x)|2)“] < CV) (1 " |x|2)a, (6.24)

and forall p > 2,
E[|X,(x) — X;(x)|”] < C(N) |t — 5] . (6.25)
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Proof Set D;(x) := supg;<, | X;(x)| and D;(y) := supg—;<, | X:(y)|. Itis easy to see
if D;(x) < R and D;(y) < R, then X;(x) = X[R(x), X:(y) = X[R(y). Moreover, by
Lemma 6.2, similar to (6.17), for all t € [0, T] and x, y € B(N), we have

El1X:(x) = X:(DI*]

:RilJE[
(¢]
(¢]

1
Zoo [ a1\ ? R=1(yy)2n R—1, \\2n7\ 2
- (E X[R(X)—XtR(y)‘z )z(E[(DT (x)) ]+E[(DT () ])

R Ry |*
XE) = XF O Ligorzpywovnro<r]

1

2071\ 2 %
XR ) - XtR(y)‘ ) P(DT(X) v Dr(y) = R — 1)

M

=
Il

1

2a\ 2
X0 = xR ) )2(P(DroozR—1)+P<DT<y)zR—1>)

2

M

=
Il
-

= L (R — 1)2n (R — 1)2”
+Clx —y|*

SCA+Ix"+ 1" lx = yI*

<CWN) |x —yI*,

and

00 20 % R—1 2, %
E n
sZ(E[(HP‘f@(z) D (%) FC+ e

C(1+Ix|") (1 +Ix*)*
< C(N)(1 + [x[H)~.

=

On the other hand, it is not hard to obtain

EHX,R(X) - XsR(x)‘p]
< CPIE[|rR@r () - v @r0o|']

<C(T)(1+0B)P) |t —s7,
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where the last inequality is due to

gl
gl

Moreover, for all t, s € [0, T] and x € B(N), we have

t
/ bRy Ry dr

P
R
] < 168150 It = 517,
s

and

13
/ R Ryaw,

p
~R 4
]SHU 15 It — 512 .
s

E[1X:(x) — Xs(0)|7]

o0
p
= E EHXZR(X)—XSR(X)‘ ﬂ{R—lgDT(x)<R}]
R=1

00 1 R—1 3
=3 <E [|xF e - X‘f(x)\]z”)z (M) L Cl—sp}

—1)2
= (R —1)%p
o 1+ [xI? + WFyp)?
< C(T)( I + G57) It =52 +Clr —s|2
(R—1?
R=2
< CA+ xPP) e —s|?
=CIN) |t —s|2
We completed the proof. O

By Lemma 6.3, forall p > 2,¢,s € [0, T] and x, y € B(N), we have
P
E[1X/(0) = X,0I"] = €V (v = y17 + 1t = 51%).

By Kolmogorov’s lemma, we can obtain for any N € N, there exists a P-null set Ey
such that for any w ¢ En, X.(w,-) : [0,T] x B(N) — R4 is continuous. If we set
E:=U}_,En, then P(E) = 0 and

X.(w,): 10, T] x R? - R? is continuous, Vo ¢ Z.

Similar to the standard argument (cf. [14]), the proof for any ¢ € [0, T'], almost all
w, the maps x — X;(w, x) are one-to-one due to (6.23) and (6.25). For the reader’s
convenience, we give the details of one-to-one property.

Forx # y € RY, set

1

A KXo
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then

|%(t, x, ) — Z(s,x', Y|
_ X = X)) = X6 + X0
1X:(x) = X)X () — X (3]
- | X0 (x) = X, (0] + [ X (x) = XD+ | X (0) = X (0] + | X0 0 — X0
- 1X:(x) — X, X5 (x") — X, ()]

By Holder inequality, we have

E |2, x, y) — (s, x', Y)|" < C-E[|X,(x) — X, [*" + | X, (x') = X, )[*?
+ X 0) = X OO + X0 — X607 ]
E[1x0 - X )
E [|Xs(x’) - Xs(y/)|*4”]% .

Moreover, for all x, y, x’, y/ € B(N) and |x — y| A ]x/ — y/| > &, we obtain

E|%t, x,y) — Z(s, x', y)|"
< C(N) <|x —x/ip + |t —slg + |y —y/|p + |t —s|%>e_2p.

Choose p > 4(d + 1), by Kolmogorov’s lemma, there exists a P-null set E¢ y such
that for all w ¢ E y, the mapping (¢, x, y) — Z(t, x, y) is continuous on

{(t,x,y) €[0,T] x B(N) x B(N) : |x —y| > %} VkeNy.

Set B := U,ff’NZl, Ek. N, then for any w ¢ &, the mapping (¢, x, y) > Z(t, x, y) is
continuous on

{(t,x,y) € [0, TIx RY x RY : x £ y).

We proved one-to-one property. O
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7 Appendix

The Proof of Theorem 4.1: Step (i) Suppose o ®(x) does not depend on x, Krylov
proved the estimate (4.2) in [8, Page 109]. Therefore, If oB(x) = 0% (xp), then

R _
] N s

Step (ii) Suppose for some x € R?

[o® 0 = o) <

1
. (7.1)
2572C,

we consider the following equation
Lo G0, _ay +g=0,
R R .. R .
where g := L% @) — L77(0) 1 ¢ By (7.1) and the definition of L7 ), we obtain
1
Il < 5 el + 11, -
Hence, by Step (i), we have
1
lusslp < Collgly < 5 sl + Coll £

ie.,

luxxll, = 2Co 1l -

Step (iii) Define a smooth cutoff function as follows:

1, x| <1,
((x)=43€][0,1], 1 <x <2,
0 [x| > 2.

Fix a small constant & which will be determined below.

For fixed z € RY, let
X —z
guw=;( ).
£
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It is easy to check that

J.

Multiply both side of (4.1) by ¢ (x), we have

X';j(x)(') dz = ed=ip /Rd ‘vfg(z)(p dz>0, j=0,1,2. (12

L7 ugs) = hugd) + g8 =0,

where g := (L7 ®u)¢f — L7 uef) — fif.
Let

&R @) =0 ((x = 2 () + 2).
It is easy to obtain
LUR(X)(MCZS) — L&R(X)(MCZE),

since gfe(x) =1 for [x — z] < 2e and {f(x) =0 for [x — z| > 2&.
By (3.2) and the definition of gf, we have

~_1
<677 [4e|7,

|68 —6R@| <572 o - e

and
lgil, < Iresl, + 87" lust [, + 87" Il [l [, -

By Step (ii), if

1
LUR(X)M—)»M—Ff:O, HO-R()C)—()'R()C())H = =T

2672Cy
then
luxxll, =2Co L fIl, -
Now, we consider the following equation:
L7 O ) = nugt) = gt
and take ¢ to be small enough so that
AR AR 51 o) !
Ho x)—6 (z)H <577 4e” < ——,
2672C
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then

@Dl =2¢0 &2,

<2¢o ([l rezl, + 8" Mt [€Ou L, + 87 il [l ],) - 73)
According to Fubini’s theorem, (7.2) and (7.3), it is easy to check
f f |eE)ax|” dxdz < C(p,e, 871, Co) (luxllh + lullh + 1 £17) -
R4 JRA
Moreover, we have
fecl < [ s e[ dz

S f | @) ex = @ (€)x —uE)x |} dz
Rd
C(p.e, 571, Co) (luxllhy + lully + 1 £115)

1 -
3 luxellp + C(p. e, 871, Colully + I£15),

IA

IA

where the third inequality is due to (7.2) and (7.3) and the last inequality is due to
luxlly = Cllluxxllp + llull ), (7.4)
and Young’s inequality. Therefore, we proved
lucll, < C(p.e. 571 Co)llull, + 1£11,).

Since Au = L"R(")u — f, we have

Ml = (HL"R%HP + ||f||,,>
<Cd, @5, p) (lull, + I £1l,)-
Hence, we obtain
luxll, + A llull, < Cd, @, 8, p) (lull, + 1 £1l,,) -
Notice that A > (C(d, w, S, p) + 1), we obtain
il + llull, < Cd, .8, p) I £1l,- (7.5)
Combine (7.5) with (7.4), we obtain

lullz,, < Ci1(d. .8, p) I 1l -
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Step (iv) Set
7, f(x) :=/ SFWpe@, x,y)dy,
]Rd

where p(¢, x, y) is the fundamental solution of the operator 9; — Lo Tt is well
known that

Vip@ x| = Cje 8. dy IR n e mi M en - (q.6)

By [25, Lemm~a 3.4], for any p, p’ € (1, 00) and a € [0, 2), there exists a constant
C=C(d,w,$, p,a, p')such that for any f € L?(RY),

d_
1T Flley < CCE35430) gy (7.7)

Let f € W>P(R?) and
u(x) = /ooe—“T,f(x)dz.
0

By (7.6) and the definition of 7;, it is easy to check u € W2P(R?) and u satisfies
(4.1). Indeed,

o R (x) * u of(x)
L7y = | e | FOILT o x, y) dy di
o0
= [ [ rometrdya
0 R4

o0
= fRd F) (e_“p(t,x,y)lgo +k/0 e_“p(t,x,y)dt> dy
= f(x) + ru(x).
By Jensen’s inequality, we obtain

/

p

o0 o
/ eMAIT, f(x)dt
0

4 e’} /
<(5) ([ e fasmol )
=\x )

14 [e’e)
|u|P’s(1) (/ re M T, F (1P dr).
A 0

AT, f(x)

and
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By Fubini’s theorem, we have

’ [), o0
sl = () ([
? A 0

A%Zf(x)HZi dt) (7.8)

and

, IN? /o ,
||u||§,s<x> (/0 re M N T 1Y) dr>. (1.9)

Moreover, by (2.1), (7.7), (7.8) and (7.9), if (% +a— %) /2 < pl <1, then

/ (1 Py 00 Cwd
- —t 4 )P
||M||(lx7 r S "f”z <)\’> )\,/ e [t 2 2p Ty ¢
’ 0

Py —p
<
=Iflp ~ Cs-ted)r
A 2 2p 2y
’ P/<a*2+ a’)/2
=1£1Ip PV

where the second inequality is due to Laplace transformation.

Step (v) In this step, we will use weak convergence argument to prove the existence
of (4.1). Let ¢ be a nonnegative smooth function in R? which satisfies fRd px)dx =1
and support in {x € R? : |x| < 1}. Let

on(x) :=nlp(nx), on =0 %k@u, foi=[%pu,

where * denotes the convolution.
Denote u,, be the solution of

L"f(x)u,, — Ay = fp.
By the Step (iii) and Step (iv), we have

lunll2,, = Cr S,

and

—24+d_4d)
lunlle, < Cz)»(a P >/ IAu, .

Since W27 (R?) is weakly compact, we can find a subsequence still denoted by u,,
and u € WP (R?) such that u,—u in W>P (R?).
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For any test function ¢ € C§° (R%), we have

/d <Lf7m(x)un _ L‘T(x)un> ¢dx
R

= C¢ lom — olloo ”(urz)xx”p

< Cyllom —ollo I £, = 0 (m — 0) uniformly in n,
and for fixed m

/Rd (La,,l(x)un —~ L"m(X)u) ddx — 0, as n— oo.
Hence, we obtain

/Rd <L0n(x)un — La(x)u) ¢pdx — 0, as n— oo.

Notice that

(LoD, @) — ity @) = (fur D).

Take n — o0, we obtain
(L7Du, ¢) — (u, ) = (f, p).
On the other hand, let p, := p,p—_/l and keep in mind u,—u in w2.p (Rd), we have
lully,,r = H (1 — A%> uH = sup / <(I — A%) u(x), ¢(x)> dx

P peCP®Igll,, <1 I/R?
/ <u,,(x), (1 — A%) ¢(x)> dx
Rd
= sup lim

/ <(1 — A%) 1y (x), ¢(x)> dx
$eC R ]l <1 IIRY

< sup sup H (I — A%) Uy
npeCF R[4, <1

= sup lim
PeCP R (1]l <1 "

P

(=502 1,

= sup lupllg,,y < C2i
n

We completed the proof. O
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