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Abstract
In this paper, we study the weak differentiability of global strong solution of stochastic
differential equations, the strong Feller property of the associated diffusion semi-
groups and the global stochastic flow property in which the singular drift b and
the weak gradient of Sobolev diffusion σ are supposed to satisfy

∥
∥|b| · 1B(R)

∥
∥
p1

≤
O((log R)(p1−d)2/2p21 ) and

∥
∥‖∇σ‖ · 1B(R)

∥
∥
p1

≤ O((log(R/3))(p1−d)2/2p21 ), respec-
tively. The main tools for these results are the decomposition of global two-point
motions in Fang et al. (Ann Probab 35(1):180–205, 2007), Krylov’s estimate, Khas-
minskii’s estimate, Zvonkin’s transformation and the characterization for Sobolev
differentiability of random fields in Xie and Zhang (Ann Probab 44(6):3661–3687,
2016).

Keywords Weak differentiability · Strong Feller property · Stochastic flow · Krylov’s
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1 Introduction andMain Results

In this paper, we consider the following d-dimension stochastic differential equations
(SDEs, for short)

{

dXt = b(Xt ) dt + σ(Xt ) dWt , t ∈ [0, T ],
X0 = x ∈ R

d .
(1.1)
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Here, {Wt }t∈[0,T ] is a standard Wiener process in Rm which is defined on a complete
filtered probability space (�,F ,P, {Ft }t≥0). The coefficients b : R

d → R
d and

σ : Rd → R
d×m are both Borel measurable function. It is well known that stochas-

tic differential equation defines a global stochastic homeomorphism flow if b and σ

satisfy global Lipschitz conditions and linear growth conditions. In the past decades,
for the non-Lipschitz coefficients SDEs there is increasing interest about their solu-
tions and their properties (for example, the strong completeness property, the weak
differentiability, stochastic homeomorphism flow property and so on).

Yamada and Ogura [22] proved the existence of global flow of homeomorphisms
for one-dimensional SDEs under local Lipschitz and linear growth conditions. Li [16]
proved the strong completeness property of SDEs (1.1) by studying the derivative flow
equation of SDEs (1.1). Fang and Zhang [3] used the Gronwall-type estimate to study
SDEs under non(local) Lipschitz conditions. Fang et al. [4] proved that Stratonovich
equation defines a global stochastic homeomorphism flow if the coefficients are just
locally Lipschitz and Lipschitz coefficients with mild growth. Chen and Li [1] studied
Sobolev regularity of Eq. (1.1) and strong completeness property when b and σ are
Sobolev coefficients.

When σ = I and b is bounded and measurable, Veretennikov [19] first proved
existence and uniqueness of the strong solution. When σ = I and b satisfy

(
∫ T

0

(∫

Rd
|b|p dx

) q
p

dt

) 1
q

< ∞, p, q ∈ [2,∞),
2

q
+ d

p
< 1, (1.2)

Krylov and Röckner [13] used the technique of PDEs to prove the existence and
uniqueness of the strong solution. The similar result in time-homogeneous case was
obtained by Zhang and Zhao [26], who dropped the assumption

∫ t
0 |b(Xs)|2 ds <

∞, a.s.. Fedrizzi andFlandoli [5] proved the existence of a stochastic flowofα-Hölder
homeomorphisms for solutions of SDEs aswell asweakdifferentiability of solutions of
SDEs under condition (1.2). Zhang [24, 25] extended the results ofKrylov andRöckner
[13] to the case of multiplicative noises. This extension allowed for the establishment
of the well-posedness of solutions and the verification of weak differentiability in
solutions. Additionally, it was proven that the solutions form a stochastic flowof home-
omorphisms in R

d . Key tools employed in this research included Krylov’s estimate
and Zvonkin’s transformation. In [21], a characterization for Sobolev differentiability
of random field was established. With the characterization, the weak differentiabil-
ity of solutions was proved under local Sobolev integrability and sup-linear growth
assumptions. We refer the reader to [6, 7, 20, 21, 23–25, 27] and references therein
for applications of Krylov’s estimate, Zvonkin’s transformation and the characteriza-
tion for Sobolev differentiability of random field. More recently, the critical case, i.e.,
p = d in time-homogeneous case, 2

q + d
p = 1 in time-inhomogeneous have been

explored, see [9–12, 17, 18] and references therein.
In [4], Fang, Imkeller and Zhang obtained a global estimates by employing global

decomposition of two-point motions and local estimates. In this paper, we will base
on the decomposition, Krylov’s estimate, Khasminskii’s estimate, Zvonkin’s transfor-
mation and the characterization of Sobolev differentiability of random fields to obtain
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the well-posedness and the weak differentiability of solutions, the strong Feller prop-
erty of associated semigroups and stochastic flow property of SDEs (1.1) under the
following assumptions:

(Hb) There exist two positive constants β and β̃ such that for all R ≥ 1,

(∫

B(R)

|b(x)|p1 dx

) 1
p1 ≤ β Ib(R) + β̃,

where B(R) := {x ∈ R
d; |x | ≤ R} is a ballwith center 0 and radius R, |·|denote

the Euclidean norm, p1 > d is a constant and Ib(R) = (log R+1)(p1−d)2/(2p21).
(Hσ

1 ) There exists a constant δ ∈ (0, 1) such that for all x, ξ ∈ R
d ,

δ
1
2 |ξ | ≤

∣
∣
∣σ

	(x)ξ
∣
∣
∣ ≤ δ− 1

2 |ξ | ,

and there exists a constant � ∈ (0, 1) such that for all x, y ∈ R
d ,

‖σ(x) − σ(y)‖ ≤ δ− 1
2 |x − y|� .

Here, we denote σ	 the transpose of matrix σ , ‖·‖ the Hilbert–Schmidt norm.
(Hσ

2 ) There exist two positive constants β and β̃ (same with (Hb)) such that for all
R ≥ 1,

(∫

B(R)

‖∇σ‖p1 dx

) 1
p1 ≤ β Iσ (R) + β̃,

where ∇σ := [∇σ 1, . . . ,∇σm] and Iσ (R) = (log(R/3) + 1)(p1−d)2/(2p21).

Our main results are given as the following theorem:

Theorem 1.1 Under the conditions (Hb), (Hσ
1 ) and (Hσ

2 ), there exists a unique global
strong solution to (1.1). Moreover, we have the following conclusions:

(A) For all t ∈ [0, T ] and almost all ω, the mapping x 
→ Xt (ω, x) is Sobolev
differentiable and for any p ≥ 2, there exist constants C, n > 0 such that for
Lebesgue almost all x ∈ R

d ,

E

[

sup
t∈[0,T ]

‖∇Xt (x)‖p

]

≤ C(1 + |x |n),

where ∇ denotes the gradient in the distributional sense.
(B) For any t ∈ [0, T ] and any bounded measurable function f on R

d ,

x 
→ E[ f (Xt (x))] is continuous,

i.e., the semigroup Pt f (x) := E[ f (Xt (x))] is strong Feller.
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(C) For all t ∈ [0, T ], x ∈ R
d and almost all ω, the mapping (t, x) 
→ Xt (ω, x) is

continuous on [0, T ] × R
d and for almost all ω, x 
→ Xt (ω, x) is one-to-one on

R
d .

These results will be proved in Sect. 6.
Wewould like to compare thework in [21, 24, 26]with the present paper and explain

the contributions made in this paper. Following the proof of [26], we generalized [26,
Theorem 3.1] to multiplicative noises (cf. Theorem 6.1). In the time-inhomogeneous
case, Xie and Zhang [21] proved the weak differentiability of SDEs and the strong
Feller property of the associated diffusion semigroup under local Sobolev integrability
and sup-linear growth assumptions. In the present paper, we removed the sup-linear
growth condition (H2) in [21] by replacing the local Sobolev integrability (H1) in [21]
with stronger assumptions (Hb), (Hσ

1 ) and (Hσ
2 ), proved the weak differentiability of

SDEs and the strong Feller property of the associated diffusion semigroup in the time-
homogeneous case. In the time-inhomogeneous case, Zhang [24] proved the solution
of SDEs forms a stochastic flow of homeomorphisms under conditions:

|b| , ‖∇σ‖ ∈ L p1
loc(R+; L p1(Rd)) (p1 > d + 2).

In the time-homogeneous case, the conditions will be

|b| , ‖∇σ‖ ∈ L p1(Rd) (p1 > d). (1.3)

Ourmain result Theorem 1.1(C) strengthens the one-to-one property of stochastic flow
in [24, Theorem 1.1] by improving the conditions (1.3) with mild growth conditions
(Hb) and (Hσ

2 ).
For the proof of Theorem 1.1, there are two main difficulties. The one is finer

estimates depend on R is necessary for us to obtain the order of growth in (Hb) and
(Hσ

2 )by the decompositionof global two-pointmotions.Byour knowledge, all existing
results about Krylov’s estimate and Khasminskii’s estimate such as [21, 24–26] do not
obviously depend on radius R.

Another difficulty is that we need an appropriate truncation for σ due to SDEs (1.1)
with multiplicative noises. If we directly truncate σ by characteristic function 1|x |≤R ,
then the truncated σ will be degenerate. Chen and Li [1] provides a truncation method
which can guarantee truncated σ is not degenerate, but it seems difficult to estimate
the gradient of truncated σ by (Hσ

2 ).
We also give some remarks related to the proof of our main results and conditions

posed in it.

• In Theorem 1.1, we just consider the time-homogeneous case, but by carefully
tracking the proof of Theorem 1.1, our idea still work for time-inhomogeneous
case.

• If the condition (Hσ
1 ) of Theorem 1.1 is replaced by

(Hσ
1 )loc A constant δR ∈ (0, 1) depends on R such that for all x ∈ B(R), ξ ∈ R

d ,

δ
1
2
R |ξ | ≤

∣
∣
∣σ

	(x)ξ
∣
∣
∣ ≤ δ

− 1
2

R |ξ | ,
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and there exist two constants L > 0 and � ∈ (0, 1) such that for all x, y ∈ R
d ,

‖σ(x) − σ(y)‖ ≤ L |x − y|� ,

where the growth of δ−1
R is mild about R. The techniques in the proof of Theo-

rem 1.1 still can be used. Indeed, if b and σ satisfy
∥
∥|b| · 1B(R)

∥
∥
p1

≤ O( Ĩb(R)),
∥
∥‖∇σ‖ · 1B(R)

∥
∥
p1

≤ O( Ĩb(R/3)) and the assumption (Hσ
1 )loc holds true, then

the following assumptions:
(HσR

1 )loc A positive constant δ̃
−1/2
R = C(d, L) · (δ

−1/2
R ) > 0 depends on R such

that for all x, ξ ∈ R
d ,

δ̃
1
2
R |ξ | ≤

∣
∣
∣(σ

R)	(x)ξ
∣
∣
∣ ≤ δ̃

− 1
2

R |ξ | ,

and for all x, y ∈ R
d ,

∥
∥
∥σ

R(x) − σ R(y)
∥
∥
∥ ≤ δ̃

− 1
2

R |x − y|� .

(HσR

2 )loc There exist constants C(d, L) such that for all R ≥ 1,

(∫

Rd

∥
∥
∥∇σ R

∥
∥
∥

p1
dx

) 1
p1 ≤ C(d, L) · δ̃

− 1
2

3R + O( Ĩb(R)),

hold true, where O( Ĩb(R))means there exist two constantsC > 0 and R0 such that
O( Ĩb(R)) ≤ C Ĩb(R) ∀ R ≥ R0. On the other hand, by going through carefully
the proof of Theorem 4.1 we can find two continuous increasing functions G1 :
R+ → R+ and G2 : R+ → R+ such that C1 and C2 in Theorem 4.1 are equal

to G1(δ̃
− 1

2
R ) and G2(δ̃

− 1
2

R ). The C0(δ̃
− 1

2
R ) (the key to obtain G1) in the proof of

Theorem 4.1 can be obtained by changing of coordinates to reduce Lσ R(x0) to 
.

TheC j (δ̃
− 1

2
R ) and k j (δ̃

− 1
2

R ) in (7.6) (the key to obtainG2) can be obtained by going
through carefully the proof of Page 356 to Page 378 in [15]. Finally, we can take

δ̃
− 1

2
3R satisfyC(d, L) · δ̃− 1

2
3R ≤ C · Ĩb(R) and let λR = (2G2( Ĩb(R)) Ĩb(R))2p1/(p1−d)

in Lemma 4.4. Tracking the proof in Theorem 1.1, we can find a concrete Ĩb(R)

with enough mild growth such that the results in Theorem 1.1 still hold true.
• In [24], the well-known Bismut–Elworthy–Li’s formula (cf. [2]) was proved. But
even if σ(x) ≡ Id×d (in this case, we do not need to truncate σ ), it seems difficult
to prove the Bismut–Elworthy–Li’s formula for the solution of SDEs (1.1) under

assumptions of this paper due to E[∥∥∇X R
t (x)

∥
∥
2] ≤ C(R) and C(R) → ∞ when

R → ∞.
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• The local estimates (6.23), (6.25) and (6.24) are seemingly not enough to obtain
the onto property of the map x 
→ Xt (ω, x). In fact, if we define

Xt (x) :=
⎧

⎨

⎩

(

1 +
∣
∣
∣Xt

(
x

|x |2
)∣
∣
∣

)−1
, x = 0,

0, x = 0.

We just can obtain for any k ∈ N, x, y ∈ {x : 1
k ≤ |x | ≤ 1} ∪ {0},

E
[|Xt (x) − Xt (y)|p

] ≤ C(k) |x − y|p .

Notice that, the domain {x : 1
k ≤ |x | ≤ 1}∪{0} is not connected, we cannot obtain

x 
→ Xt (x) exist a continuous version on {x : |x | ≤ 1}.
• For the critical case, i.e., p1 = d, our idea will not work since Zvonkin’s transfor-
mation cannot be used. On the other hand, (Hb) and (Hσ

2 ) seemingly indicate that
the order of growth will be degenerated in the critical case.

The rest of this paper is organized as follows: In Sect. 2, we will present some pre-
liminary knowledge. In Sect. 3, we devote to construct the cutoff functions to truncate
SDEs (1.1) and verify assumptions. In Sect. 4, we provide a proof of Krylov’s estimate
and Khasminskii’s estimate. In Sect. 5, we use Zvonkin’s transformation to estimate
truncated SDEs (3.1). In Sect. 6, we complete the proof of the main Theorem 1.1.
Finally, we give a detailed proof of Theorem 4.1 in Appendix.

2 Preliminary

In this section,we introduce some notations, function spaces andwell-known theorems
which will be used in this paper.

We use := as a way of definition. Let N be the collection of all positive integer. For
any a, b ∈ R, set a∧ b := min{a, b} and a∨ b := max{a, b}. We use a � b to denote
there is a constant C such that a ≤ Cb, use a � b to denote a � b and b � a. For
functions f and g, we use f ∗ g to denote the convolution of f and g.

Let L p(Rd) be L p-space on Rd with norm

‖ f ‖p :=
(∫

Rd
| f |p dx

) 1
p

< +∞, ∀ f ∈ L p(Rd).

Let Wm,p(Rd) be Sobolev space on Rd with norm

‖ f ‖m,p :=
m
∑

i=0

∥
∥
∥∇ i f

∥
∥
∥
p

< +∞, ∀ f ∈ Wm,p(Rd),

where ∇ i denotes the i-order gradient operator.
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For 0 ≤ α ∈ R and p ∈ [1,+∞), the Bessel potential space Hα,p(Rd) is defined
by

Hα,p := (I − 
)−
α
2 (L p(Rd))

with norm

‖ f ‖α,p :=
∥
∥
∥(I − 
)

α
2 f
∥
∥
∥
p
, ∀ f ∈ Hα,p(Rd).

Let Cα(Rd) be Hölder space on R
d with norm

‖ f ‖Cα :=
�α�
∑

i=0

∥
∥
∥∇ i f

∥
∥
∥∞ + sup

x =y

∣
∣∇�α� f (x) − ∇�α� f (y)

∣
∣

|x − y|α−�α� < +∞, ∀ f ∈ Cα(Rd),

where �α� denotes the integer part of α. Let C∞
0 (Rd) be a collection of all smooth

function with compact support in R
d .

For α ∈ (0, 2) and p ∈ (1,+∞), we have

‖ f ‖α,p �
∥
∥
∥(I − 


α
2 ) f

∥
∥
∥ � ‖ f ‖p +

∥
∥
∥


α
2 f
∥
∥
∥
p
, (2.1)

where 

α
2 := −(−
)

α
2 is the fractional Laplacian.

Let f be a locally integrable function onRd ,M be the Hardy–Littlewood maximal
operator defined by

M f (x) := sup
0<R<+∞

1

|B(R)|
∫

B(R)

f (x + y) dy,

here, with a bit of abuse of notations, |B(R)| denotes the volume of ball B(R).

Theorem 2.1 (Sobolev embedding theorem) If k > l > 0, p < d and 1 ≤ p < q <

∞ satisfy k − d
p = l − d

q , then

Hk,p(Rd) ↪→ Hl,q(Rd).

If γ ≥ 0 and γ < α − d
p , then

Hα,p(Rd) ↪→ Cγ (Rd).

Theorem 2.2 (Hadamard’s theorem) If a function ϕ : Rd → R
d is a k-order smooth

function (k ≥ 1) and satisfy:

(i) lim|x |→∞ |ϕ(x)| = ∞;
(ii) for all x ∈ R

d , the Jacobian matrix ∇ϕ(x) is an isomorphism of Rd ;

Then ϕ is a Ck-diffeomorphism of Rd .
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Theorem 2.3 (i) There exists a constant Cd such that for all ϕ ∈ C∞(Rd) and
x, y ∈ R

d ,

|ϕ(x) − ϕ(y)| ≤ Cd · |x − y| · (M |∇ϕ| (x) + M |∇ϕ| (y)) .

(ii) For any p > 1, there exists a constant Cd,p such that for all ϕ ∈ L p(Rd),

(∫

Rd

(

Mϕ(x)
)p

dx

) 1
p ≤ Cd,p

(∫

Rd
|ϕ(x)|p dx

) 1
p

.

3 Truncated SDEs

In this section, we will construct some precise cutoff functions to truncate SDEs (1.1)
and verify that the truncated SDEs

{

dX R
t = bR(X R

t ) dt + σ R(X R
t )dW̃t , t ∈ [0, T ],

X R
0 = x ∈ R

d ,
(3.1)

satisfy the following assumptions:

(HbR ) There exist two positive constants β and β̃ such that for all R ≥ 1,

(∫

Rd

∣
∣
∣bR(x)

∣
∣
∣

p1
dx

) 1
p1 ≤ β Ib(R) + β̃,

where p1 > d is a constant.
(HσR

1 ) There exists a positive constant δ̃ ∈ (0, 1) such that for all x, ξ ∈ R
d ,

δ̃
1
2 |ξ | ≤

∣
∣
∣(σ

R)	(x)ξ
∣
∣
∣ ≤ δ̃− 1

2 |ξ | ,

and for all x, y ∈ R
d ,

∥
∥
∥σ

R(x) − σ R(y)
∥
∥
∥ ≤ δ̃− 1

2 |x − y|� , (3.2)

where δ̃ is a constant only depend on δ and d.
(HσR

2 ) There exist two positive constants β and β̃ such that for all R ≥ 1,

(∫

Rd

∥
∥
∥∇σ R

∥
∥
∥

p1
dx

) 1
p1 ≤

(

C(d, δ, p1) + (4β Iσ (3R) + 4β̃)
)

,

where p1 > d is a constant and C(d, δ, p1) is a constant only depend on d, δ
and p1.
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Let W be a d-dimensional standard Wiener process, independent of W and let

W̃ :=
[
W
W

]

.

We can verify that W̃ is a (d + m)-dimensional standard Wiener process. In SDEs
(3.1), the coefficients bR and σ R are defined by

bR(x) := b(x)1|x |≤R, σ R(x) := [ρRσ, hR σ̄ ](x),

where σ̄ is a matrix defined by

σ̄ (x) ≡

⎛

⎜
⎜
⎝

δ− 1
2

. . .

δ− 1
2

⎞

⎟
⎟
⎠

d×d

.

The cutoff function hR is defined by

hR(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0, |x | ≤ R,
2
R2 (|x | − R)2, R ≤ |x | ≤ 3R

2 ,

1 − 2
R2 (|x | − 2R)2, 3R

2 < |x | ≤ 2R,

1, |x | > 2R.

It is easy to verify hR satisfy

hR(x) =

⎧

⎪⎨

⎪⎩

0, |x | ≤ R,

∈ (0, 1) R < |x | ≤ 2R,

1 |x | > 2R,

|∇hR | (x) =

⎧

⎪⎨

⎪⎩

0, |x | ≤ R,

≤ 2
R R < |x | ≤ 2R,

0 |x | > 2R.

Similarly, we can construct a cutoff function ρR satisfy

ρR(x) =

⎧

⎪⎨

⎪⎩

1, |x | ≤ 2R,

∈ (0, 1) 2R < |x | ≤ 3R,

0 |x | > 3R,

|∇ρR | (x) =

⎧

⎪⎨

⎪⎩

0, |x | ≤ 2R,

≤ 2
R 2R < |x | ≤ 3R,

0 |x | > 3R.

Clearly, (HbR ) hold by the definition of bR . Notice that

〈σ R(σ R)	ξ, ξ 〉 = ρ2
R〈σσ	ξ, ξ 〉 + h2R〈σ̄ σ̄	ξ, ξ 〉,

by the definitions of ρR , hR , σ̄ and assumption (Hσ
1 ), we have

1

2
δ |ξ |2 ≤ 〈σ R(σ R)	ξ, ξ 〉 ≤ 2δ−1 |ξ |2 , ∀ ξ ∈ R

d . (3.3)
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On the other hand, it is easy to see for all x, y ∈ B(2R)\B(R),

|hR(x) − hR(y)| ≤ 2

R
|x − y| ≤ 2

R
(4R)1−� |x − y|� ≤ 8 |x − y|� , ∀ R ≥ 1,

and for all x, y /∈ B(2R)\B(R), we have |hR(x) − hR(y)| ≤ |x − y|� , ∀ R ≥ 1.
Hence, for all x, y ∈ R

d , we obtain

|hR(x) − hR(y)| ≤ 8 |x − y|� , ∀ R ≥ 1. (3.4)

Similarly, we can obtain

|ρR(x) − ρR(y)| ≤ 12 |x − y|� , ∀ R ≥ 1. (3.5)

Therefore, we have

∥
∥
∥σ

R(x) − σ R(y)
∥
∥
∥

≤ |ρR(x) − ρR(y)| ‖σ(x)‖ + |ρR(y)| ‖σ(x) − σ(y)‖ + ‖σ̄‖ |hR(x) − hR(y)|
≤
(

12δ− 1
2 d

1
2 + δ− 1

2 + 8δ− 1
2 d

1
2

)

|x − y|� , (3.6)

where the last inequality is due to (3.4) and (3.5). Combining (3.3) with (3.6), we
verified the (HσR

1 ).
By the definition σ R = [ρRσ, hR σ̄ ] and direct computation, we obtain

∫

Rd

∥
∥
∥∇σ R

∥
∥
∥

p1
dx =

∫

Rd
‖∇[ρR σ, hR σ̄ ]‖p1 dx

=
∫

Rd
‖[∇ρR(x) σ (x) + ρR(x)∇σ(x),∇hR(x) σ̄ (x) + hR(x)∇σ̄ (x)]‖p1 dx

≤ 4p1
{∫

B(3R)\B(2R)

‖∇ρR(x)σ (x)‖p1 dx +
∫

B(2R)\B(R)

‖∇hR(x)σ̄ (x)‖p1 dx

+
∫

B(3R)

‖∇σ‖p1 dx

}

:= 4p1 (J1 + J2 + J3).
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Note that |∇ρR | ≤ 2
R in B(3R)\B(2R), |∇hR | ≤ 2

R in B(2R)\B(R) and (Hσ
2 ), there

exists a constant C(d, δ, p1) only depend on d, δ and p1 such that for all R ≥ 1,

J1 ≤
∫

B(3R)\B(2R)

(
2

R
δ− 1

2 d
1
2

)p1
dx ≤ C(d, δ, p1)R

d−p1 ≤ C(d, δ, p1),

J2 ≤
∫

B(2R)\B(R)

(
2

R
δ− 1

2 d
1
2

)p1
dx ≤ C(d, δ, p1)R

d−p1 ≤ C(d, δ, p1),

J3 ≤
∫

B(3R)

‖∇σ(x)‖p1 dx ≤ (β Iσ (3R) + β̃)p1 .

Together, J1, J2 and J3 imply (HσR

2 ).

4 Krylov’s Estimate and Khasminskii’s Estimate

In this section, we shall prove Krylov’s estimate and Khasminskii’s estimate. We need
the following result about elliptic PDEs (4.1).

Theorem 4.1 Suppose σ R satisfies (HσR

1 ), p ∈ (1,∞), then for any f ∈ L p(Rd),
there exists a unique u ∈ W 2,p(Rd) such that

Lσ R(x)u − λu = f , (4.1)

where

Lσ R(x)u(x) := 1

2

∑

i jk

(σ R)ik(x)(σ
R) jk(x)∂i∂ j u(x)

and λ > C (C = C(d,�, δ̃, p) ≥ 2 is a constant ). Furthermore, for a C1 =
C1(d,�, δ̃, p) > 0,

‖u‖2,p ≤ C1 ‖ f ‖p . (4.2)

Moreover, for any α ∈ [0, 2) and p′ ∈ [1,∞] with d
p < 2 − α + d

p′ ,

‖u‖α,p′ ≤ C2 λ

(

α−2+ d
p− d

p′
)

/2 ‖ f ‖p ,

where C1(d,�, δ̃, p) and C2(d,�, δ̃, p, α, p′) > 0 are both independent of λ.

We believe that Theorem 4.1 is standard although we do not find them in any refer-
ence. In [26], authors proved Theorem 4.1 hold true when σ R ≡ I . For convenience
of the reader, we combine [26] with [25] to give a detailed proof in Appendix.
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In order to prove Krylov’s estimate and Khasminskii’s estimate, we need to solve
the following elliptic equation:

(Lσ R(x) − λ)uR + bR · ∇uR = f , λ ≥ λb
R
, (4.3)

where f ∈ L p(Rd) and λb
R

> 1 is a constant depend on C2, d, p1 and
∥
∥bR

∥
∥
p1
.

Lemma 4.2 If
∥
∥bR

∥
∥
p1

< ∞ and (HσR

1 ) hold, then for any p ∈ ( d2 ∨ 1, p1], we can
find a constant

λb
R =

(

2C2

∥
∥
∥bR

∥
∥
∥
p1

)2
(

1− d
p1

)−1

such that for any f ∈ L p(Rd), there exists a unique solution uR ∈ W 2,p(Rd) to
Eq. (4.3) and

∥
∥
∥uR

∥
∥
∥
2,p

≤ 2C1 ‖ f ‖p , λ

(

2−α+ d
p′ − d

p

)

/2
∥
∥
∥uR

∥
∥
∥

α,p′ ≤ 2C2 ‖ f ‖p (λ ≥ λb
R
),

where C1 and C2 are two constants in Theorem 4.1, α ∈ [0, 2) and p′ ∈ [1,∞] with
(2 − α + d

p′ − d
p ) > 0.

Proof By Theorem 4.1, for any f̃ ∈ L p(Rd), we have

∥
∥
∥(λ − Lσ R(x))−1 f̃

∥
∥
∥
2,p

≤ C1

∥
∥
∥ f̃
∥
∥
∥
p
,

λ

(

2−α+ d
p′ − d

p

)

/2
∥
∥
∥(λ − Lσ R(x))−1 f̃

∥
∥
∥

α,p′ ≤ C2

∥
∥
∥ f̃
∥
∥
∥
p
, (4.4)

where λ > C (C > 2), (2 − α + d
p′ − d

p ) > 0 and C1,C2 do not depend on λ.

Since λb
R = (2C2

∥
∥bR

∥
∥
p1

)2p1/(p1−d), it is easy to see for any λ ≥ λb
R
,

C2λ

(
d
p1

−1
)

/2
∥
∥
∥bR

∥
∥
∥
p1

≤ 1

2
.

Let u0 = 0 and for n ∈ N define

uR
n := (Lσ R(x) − λ)−1( f − bR · ∇uR

n−1).

By (4.4) and replacing (
 − λ)−1 with (Lσ R(x) − λ)−1 in the proof of [26, Theorem
3.3 (ii)], we completed the proof. ��

Now, we provide the main result of this section.
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Theorem 4.3 If
∥
∥bR

∥
∥
p1

< ∞ and (HσR

1 ) hold and {X R
s }s∈[0,T ] is a solution of SDE

(3.1), then for any 0 ≤ t0 < t1 ≤ T , f ∈ L p(Rd) (p > d
2 ∨ 1), we have

E
Ft0

[∫ t1

t0
f (X R

s (x)) ds

]

≤ 4C2

(

[Tλb
R ] d

2p + [Tλb
R ] d

2p −1
)

(t1 − t0)
1− d

2p ‖ f ‖p ,

(4.5)
where C2 is the constant in Theorem 4.1, λb

R = (2C2
∥
∥bR

∥
∥
p1

)2p1/(p1−d). Moreover,
for any a > 0 we have

E

[

exp

(

a
∫ T

0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

)]

≤ e

· exp

⎛

⎜
⎜
⎜
⎝
T

⎡

⎢
⎣

4aC2

(

[Tλb
R ] d

2p + [Tλb
R ] d

2p −1
)

‖ f ‖p

1 − e−1

⎤

⎥
⎦

(

1− d
2p

)−1⎞

⎟
⎟
⎟
⎠

.

Proof The proof is divided into three steps.
Step (i) We replace (
 − λ)−1 with (Lσ R(x) − λ)−1 in the proof of Theorem 3.4

of Zhang and Zhao [26]. Notice that

λb
R =

(

2C2

∥
∥
∥bR

∥
∥
∥
p1

)2
(

1− d
p1

)−1

is enough to ensure C2λ
(d/p1−1)/2

∥
∥bR

∥
∥
p1

≤ 1
2 for all λ ≥ λb

R
. Repeating the proof

of Theorem 3.4 (ii) of Zhang and Zhao [26], for all λ̃ ≥ λb
R
, we obtain

E
Ft0

[∫ t1

t0
f (X R

s (x)) ds

]

≤ λ̃(t1 − t0)
∥
∥
∥uR

∥
∥
∥∞ + 2

∥
∥
∥uR

∥
∥
∥∞

≤ 2C2(t1 − t0)λ̃
d
2p ‖ f ‖p + 4C2λ̃

(
d
2p −1

)

‖ f ‖p . (4.6)

Let κ = Tλb
R
and λ̃ = κ(t1 − t0)−1. Due to 0 ≤ t0 < t1 ≤ T , we have λ̃ ≥ λb

R
.

Taking λ̃ = κ(t1 − t0)−1 into (4.6), we proved the Krylov’s estimate (4.5).
Step (ii) Taking 0 ≤ t0 < t1 < ∞ satisfy

t1 − t0 =
⎛

⎜
⎝

1 − e−1

4aC2

(

κ
d
2p + κ

d
2p −1

)

‖ f ‖p

⎞

⎟
⎠

(

1− d
2p

)−1

. (4.7)
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If t1 − t0 ≤ T in (4.7), by the Corollary 3.5 in Zhang and Zhao [26], we have

E
Ft0

[(∫ t1

t0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

)n]

≤ n!
(
1 − e−1

a

)n

.

Since ex =∑∞
n=0

1
n! x

n , we have

E
Ft0

[

exp

{

a
∫ t1

t0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

}]

= E
Ft0

[ ∞
∑

n=0

1

n!
(

a
∫ t1

t0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

)n
]

=
∞
∑

n=0

1

n!E
Ft0

[(

a
∫ t1

t0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

)n]

≤
∞
∑

n=0

(1 − e−1)n = e. (4.8)

Step (iii) Finally, by virtual of the estimate (4.8), we obtain

E

[

exp

{

a
∫ T

0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

}]

≤ E

⎡

⎣exp

⎧

⎨

⎩
a

�M�+1
∑

i=1

∫ ti

ti−1

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

⎫

⎬

⎭

⎤

⎦

= E

⎡

⎣

�M�+1
∏

i=1

exp

{

a
∫ ti

ti−1

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

}
⎤

⎦

= E

⎡

⎣

�M�
∏

i=1

exp

{

a
∫ ti

ti−1

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

}

×E
Ft�M�

[

exp

{

a
∫ t�M�+1

t�M�

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

}]]

≤ e · E
⎡

⎣

�M�
∏

i=1

exp

{

a
∫ ti

ti−1

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

}
⎤

⎦ ≤ eM+1,

where M = T
t1−t0

and 0 ≤ t0 < t1 < · · · < t�M�+1 = T satisfies t0 − 0 ≤ t1 − t0,
ti − ti−1 = t1 − t0 (i = 1, . . . , �M� + 1).

If t1 − t0 > T in (4.7), it is obvious that

E

[∫ T

0
f (X R

s (x) ds)

]

≤ 1 − e−1

a
,
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by a similar argument, we have

E

[

exp

{

a
∫ T

0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

}]

≤ e.

We completed the proof. ��

In particular, in the proofs of Lemma 4.4 and Theorem 4.5, replacing λb
R
with

λR = (4C2
2 (β Ib(R)+β̃)2

)p1/(p1−d), we can obtain the following lemma and theorem:

Lemma 4.4 If (HbR ) and (HσR

1 ) hold, then for any p ∈ ( d2 ∨ 1, p1], we can find a
constant

λR = (4C2
2 (β Ib(R) + β̃)2

)
(

1− d
p1

)−1

(4.9)

such that for any f ∈ L p(Rd), there exists a unique solution uR ∈ W 2,p(Rd) to
Eq. (4.3) and

∥
∥
∥uR

∥
∥
∥
2,p

≤ 2C1 ‖ f ‖p , λ
(2−α+ d

p′ − d
p )/2

∥
∥
∥uR

∥
∥
∥

α,p′ ≤ 2C2 ‖ f ‖p (λ ≥ λR),

where C1 and C2 are two constants in Theorem 4.1, α ∈ [0, 2) and p′ ∈ [1,∞] with
(2 − α + d

p′ − d
p ) > 0.

Theorem 4.5 If (HbR ) and (HσR

1 ) hold and {X R
s }s∈[0,T ] is a solution of SDE (3.1),

then for any 0 ≤ t0 < t1 ≤ T , f ∈ L p(Rd) (p > d
2 ∨ 1), we have

E
Ft0

[∫ t1

t0
f (X R

s (x)) ds

]

≤ 4C2

(

[TλR] d
2p + [TλR] d

2p −1
)

(t1 − t0)
1− d

2p ‖ f ‖p ,

(4.10)
where C2 is the constant in Theorem 4.1, λR = (4C2

2 (β Ib(R) + β̃)2
)p1/(p1−d)

. More-
over, for any a > 0 we have

E

[

exp

(

a
∫ T

0

∣
∣
∣ f (X R

s (x))
∣
∣
∣ ds

)]

≤ e · exp

⎛

⎜
⎜
⎜
⎝
T

⎡

⎢
⎣

4aC2

(

[TλR] d
2p + [TλR] d

2p −1
)

‖ f ‖p

1 − e−1

⎤

⎥
⎦

(

1− d
2p

)−1⎞

⎟
⎟
⎟
⎠

. (4.11)
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Corollary 4.6 (Generalized Itô’s formula) If (HbR ) and (HσR

1 ) hold and {X R
s }s∈[0,T ]

is a solution of SDE (3.1), then for any f ∈ W 2,p(Rd) with p > d
2 ∨ 1, we have

f (X R
t ) = f (x) +

∫ t

0
(Lσ R(x) f + bR · ∇ f )(X R

s ) ds +
∫ t

0
〈∇ f (X R

s ), σ R(X R
s ) dW̃s〉.

(4.12)

Proof We just need to consider the case p ∈ (d, p1] since W 2,p ↪→ W 2,p1 when
p > p1.

By Hölder’s inequality and Sobolev’s embedding theorem, we have

∥
∥
∥Lσ R(x) f + bR · ∇ f

∥
∥
∥
p

� ‖ f ‖2,p +
∥
∥
∥bR

∥
∥
∥
p1

‖∇ f ‖ p1 p
p1−p

� ‖ f ‖2,p . (4.13)

Let ϕ be a nonnegative smooth function with compact support in the unit ball of Rd

and
∫

Rd ϕ(x) dx = 1. Set ϕn(x) := ndϕ(nx), fn := f ∗ ϕn and applying Itô formula
to fn . By (4.13), we have

∥
∥
∥Lσ R(x)( f − fn) + bR · ∇( f − fn)

∥
∥
∥
p

� ‖ f − fn‖2,p → 0. (4.14)

Let p̄ = dp
2(d−p) , we have

E

∣
∣
∣
∣

∫ t

0
〈(∇ f (X R

s ) − ∇ fn(X
R
s )), σ R(X R

s ) dW̃s〉
∣
∣
∣
∣

2

�
∥
∥
∥σ

R
∥
∥
∥

2

∞ E

∫ t

0

∣
∣
∣∇ f (X R

s ) − ∇ fn(X
R
s )

∣
∣
∣

2
ds

�
∥
∥
∥|∇ f − ∇ fn|2

∥
∥
∥
p̄

� ‖ f − fn‖21,2 p̄
� ‖ f − fn‖22,p → 0, (4.15)

where the second inequality is due to Krylov’s estimate (4.10) and the last inequality
is due to Sobolev’s embedding theorem. Together, (4.14) and (4.15) imply (4.12). ��

5 Zvonkin’s Transformation

Let uR solve the following PDE

(Lσ R(x) − λ)uR + bR · ∇uR = −bR .

By Lemma 4.4, we have

∥
∥
∥uR

∥
∥
∥
2,p1

≤ 2C1

∥
∥
∥bR

∥
∥
∥
p1

, λ

(

1− d
p1

)

/2
∥
∥
∥uR

∥
∥
∥
1,∞ ≤ 2C2

∥
∥
∥bR

∥
∥
∥
p1

(λ ≥ λR). (5.1)

123



2592 Journal of Theoretical Probability (2024) 37:2576–2614

Let λR
H = γ λR and γ

( d
2p1

− 1
2 ) = 1

2 , it is easy to check

∥
∥
∥∇uR

∥
∥
∥∞ ≤

∥
∥
∥uR

∥
∥
∥
1,∞ ≤ γ

(
d

2p1
− 1

2

)

= 1

2
. (5.2)

Define

�R(x) := x + uR(x),

then

Lσ R(x)�R + bR · ∇�R = λuR .

By (5.2), for all λ ≥ λR
H , we have

∥
∥
∥uR

∥
∥
∥∞ ≤ 1

2
,

∥
∥
∥∇uR

∥
∥
∥∞ ≤ 1

2
. (5.3)

By the definition of �R(x) and (5.3), we have

lim|x |→∞
|�R(x)| = ∞,

1

2
|x − y| ≤ |�R(x) − �R(y)| ≤ 2 |x − y| .

Therefore, by Theorem 2.2, we obtain �R : Rd → R
d is a C1-diffeomorphism and

‖∇�R‖∞ ≤ 2,
∥
∥
∥∇�−1

R

∥
∥
∥∞ ≤ 2. (5.4)

Theorem 5.1 Let Y R
t := �R(X R

t ), then X R
t solve equation (3.1) if and only if Y R

t
solves

{

dY R
t = b̃R(Y R

t ) dt + σ̃ R(Y R
t ) dW̃t , t ∈ [0, T ],

Y R
0 = �R(x),

(5.5)

where b̃R(y) := λuR ◦ �−1
R (y) and σ̃ R(y) := (∇�R(·)σ R(·)) ◦ �−1

R (y).

Proof Applying Itô formula (4.12) to �R(X R
t ), we obtain

�R(X R
t ) = �R(x) + λ

∫ t

0
uR(X R

s ) ds +
∫ t

0
∇�R(X R

s )σ R(X R
s ) dW̃s .

Noticing that Y R
t = �R(X R

t ), we obtain Y R
t solves (5.5). Similarly, applying Itô

formula (4.12) to �−1
R (Y R

t ), we completed the proof. ��
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6 The Proof of Theorem 1.1

Proof In this section, the lettersC and C̃will denote some unimportant constant whose
value is independent of R and may change in different places. Whose dependence on
parameters can be traced from the context. We also use C(T ) and C(N ) to emphasize
the constant C depend on T and N , respectively.

Firstly, we prove SDE (3.1) exists a unique strong solution.

Theorem 6.1 Under (HbR
1 ), (HσR

1 ) and (HσR

2 ), for all x ∈ R
d , the SDE (3.1) exists a

unique strong solution.

Proof By Theorem 5.1, we only need to prove SDE (5.5) exists a unique strong solu-
tion. By the definition of b̃R , σ̃ R and Lemma 4.4, for all λ ≥ λR

H , we have

∥
∥
∥b̃R

∥
∥
∥∞ ≤ 1

2
λ,

∥
∥
∥∇b̃R

∥
∥
∥∞ ≤ λ,

∥
∥
∥σ̃

R
∥
∥
∥∞ ≤ 2

∥
∥
∥σ

R
∥
∥
∥∞ ,

∥
∥
∥∇σ̃ R

∥
∥
∥
p1

≤ C

(∥
∥
∥bR

∥
∥
∥
p1

+
∥
∥
∥∇σ R

∥
∥
∥
p1

)

(6.1)

Note that b̃R and σ̃ R are both continuous and bounded. By Yamada–Watanabe’s the-
orem, we only need to show the pathwise uniqueness. Performing the same procedure
in [26, Theorem 3.1], we completed the proof. ��
Lemma 6.2 Under (HbR ), (HσR

1 ) and (HσR

2 ), let {X R
s (x)}s∈[0,T ] and {X R

s (y)}s∈[0,T ]
be two solutions of SDE (3.1) with initial conditions X R

0 (x) = x and X R
0 (y) = y,

respectively, then for any α ∈ R, we have

E

[∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

α] ≤ C̃
(

exp

(

C̃ (λR)
p1

p1−d

))

|x − y|α , (6.2)

E

[(

1 +
∣
∣
∣X R

t (x)
∣
∣
∣

2
)α]

≤ C̃
(

exp
(

C̃ λR)
) (

1 + |x |2
)α

, (6.3)

and for all p ≥ 2,

E

[

sup
0≤s≤t

∣
∣
∣X R

s (x)
∣
∣
∣

p
]

≤ C̃ (1 + |x |p + (λR)p), (6.4)

E

[

sup
0≤s≤t

∣
∣
∣X R

s (x) − X R
s (y)

∣
∣
∣

p
]

≤ C̃
(

exp

(

C̃ (λR)
p1

p1−d

))

|x − y|p , (6.5)

where C̃ is independent of β, β̃ and R.

Proof For �R(x) = �R(y), take 0 < ε < |�R(x) − �R(y)| and set

τε := inf
{∣
∣
∣Y R

t (�R(x)) − Y R
t (�R(y))

∣
∣
∣ ≤ ε

}

.
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For convenience, we define Z R
t := Y R

t (�R(x)) − Y R
t (�R(y)) where

{Y R
s (�R(x))}s∈[0,T ] and {Y R

s (�R(y))}s∈[0,T ] are the solutions of SDE (5.5) with ini-
tial conditions Y R

0 (�R(x)) = �R(x) and Y R
0 (�R(y)) = �R(y), respectively.

By Itô formula, we have

∣
∣
∣Z R

t∧τε

∣
∣
∣

α = |�R(x) − �R(y)|α

+
∫ t∧τε

0
α

∣
∣
∣Z R

s

∣
∣
∣

α−2 〈Z R
s , (σ̃ R(Y R

s (x)) − σ̃ R(Y R
s (y))) dW̃s〉

+
∫ t∧τε

0
α

∣
∣
∣Z R

s

∣
∣
∣

α−2 〈Z R
s , (b̃R(Y R

s (x)) − b̃R(Y R
s (y)))〉 ds

+
∫ t∧τε

0

α

2

∣
∣
∣Z R

s

∣
∣
∣

α−2 ∥∥
∥σ̃

R(Y R
s (x)) − σ̃ R(Y R

s (y))
∥
∥
∥

2
ds

+
∫ t∧τε

0

α(α − 2)

2

∣
∣
∣Z R

s

∣
∣
∣

α−4 ∣
∣
∣(σ̃

R(Y R
s (x)) − σ̃ R(Y R

s (y)))	Z R
s

∣
∣
∣

2
ds.

(6.6)

Set

Bs := α
(

σ̃ R(Y R
s (x)) − σ̃ R(Y R

s (y))
)	

Z R
s

∣
∣Z R

s

∣
∣2

(6.7)

and

As := α〈Z R
s , (b̃R(Y R

s (x)) − b̃R(Y R
s (y)))〉

∣
∣Z R

s

∣
∣2

+
α
2

∥
∥σ̃ R(Y R

s (x)) − σ̃ R(Y R
s (y))

∥
∥
2

∣
∣Z R

s

∣
∣2

+
α(α−2)

2

∣
∣σ̃ R(Y R

s (x)) − σ̃ R(Y R
s (y)))	Z R

s

∣
∣
2

∣
∣Z R

s

∣
∣
4 . (6.8)

By (6.6), we have

∣
∣
∣Z R

t∧τε

∣
∣
∣

α = |�R(x) − �R(y)|α +
∫ t∧τε

0

∣
∣
∣Z R

s∧τε

∣
∣
∣

α (
As ds + Bs dW̃s

)

.

By the Doléans–Dade’s exponential, we obtain

∣
∣
∣Z R

t∧τε

∣
∣
∣

α = |�R(x) − �R(y)|α exp
(∫ t∧τε

0
Bs dW̃s

−1

2

∫ t∧τε

0
|Bs |2 ds +

∫ t∧τε

0
As ds

)

. (6.9)
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By the definitions of b̃R and σ̃ R in Theorem 5.1 and Lemma 2.3(i), it is easy to see

∣
∣
∣σ̃

R(x) − σ̃ R(y)
∣
∣
∣ ≤ Cd |x − y|

(

M
∣
∣
∣∇σ R

∣
∣
∣ (�

−1
R (x)) + M

∣
∣
∣∇σ R

∣
∣
∣ (�

−1
R (y))

)

+ Cd |x − y|
(

M
∣
∣
∣∇2uR

∣
∣
∣ (�

−1
R (x)) + M

∣
∣
∣∇2uR

∣
∣
∣ (�

−1
R (y))

)

,

(6.10)

and

∣
∣
∣b̃R(x) − b̃R(y)

∣
∣
∣ =

∣
∣
∣λuR ◦ �−1

R (x) − λuR ◦ �−1
R (y)

∣
∣
∣

≤ λCd

∣
∣
∣�

−1
R (x) − �−1

R (y)
∣
∣
∣

×
(

M
∣
∣
∣∇uR

∣
∣
∣ (�

−1
R (x)) + M

∣
∣
∣∇uR

∣
∣
∣ (�

−1
R (y))

)

≤ λCd |x − y|
(

M
∣
∣
∣∇uR

∣
∣
∣ (�

−1
R (x)) + M

∣
∣
∣∇uR

∣
∣
∣ (�

−1
R (y))

)

.

(6.11)

Firstly, we shall prove that for any μ > 0,

E

[

exp

(

μ

∫ T∧τε

0
|Bs |2 ds

)]

≤ C(e) · exp
(

C̃ [λR]
(

1− d
p1

)−1
)

,

and

E

[

exp

(

μ

∫ T∧τε

0
|As | ds

)]

≤ C(e) · exp
(

C̃ [λR]
(

1− d
p1

)−1
)

.

Combine the definitions of (6.8), (6.7) with (6.10), (6.11), we only need to estimate

M1 := E

[

exp

(∫ T∧τε

0
M
∣
∣
∣∇2uR

∣
∣
∣

2
(X R

s (x)) ds

)]

,

M2 := E

[

exp

(∫ T∧τε

0
M
∥
∥
∥∇σ R

∥
∥
∥

2
(X R

s (x)) ds

)]

,

and

M3 := E

[

exp

(∫ T∧τε

0
λM

∣
∣
∣∇uR

∣
∣
∣ (X R

s (x)) ds

)]

.
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Take f = M
∣
∣∇2uR

∣
∣
2
and p = p1

2 in (4.11), then we have

M1 ≤ e · exp

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T

⎡

⎢
⎢
⎣

p1(p1 − 2)C2

(

(TλR)
d
p1 + (TλR)

d
p1

−1
)∥
∥
∥M

∣
∣∇2uR

∣
∣
2
∥
∥
∥ p1

2

1 − e−1

⎤

⎥
⎥
⎦

(

1− d
p1

)−1
⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We can take TλR > 1, then (TλR)
d
p1

−1
< (TλR)

d
p1 . By Theorem 2.3 (ii) and (5.1), we have

∥
∥
∥
∥
M
∣
∣
∣∇2uR

∣
∣
∣

2
∥
∥
∥
∥ p1

2

�
∥
∥
∥∇2uR

∥
∥
∥

2

p1
�
∥
∥
∥bR

∥
∥
∥

2

p1
.

Therefore,

M1 ≤ e · exp
⎛

⎝C̃
[

(λR)
d
p1

∥
∥
∥bR

∥
∥
∥

2

p1

]
(

1− d
p1

)−1⎞

⎠

≤ e · exp
(

C̃ [λR]
(

1− d
p1

)−1
)

,

where the second inequality is due to (HbR ) and (4.9).

Similarly, taking f = M
∥
∥∇σ R

∥
∥
2
and p = p1

2 in (4.11), we obtain

M2 ≤ e · exp
⎛

⎝C̃
[

(λR)
d
p1

∥
∥
∥∇σ R

∥
∥
∥

2

p1

]
(

1− d
p1

)−1⎞

⎠

≤ e · exp
⎛

⎝C̃
[

λR + (λR)
d
p1

]
(

1− d
p1

)−1⎞

⎠

≤ e · exp
(

C̃ [λR]
(

1− d
p1

)−1
)

.

Taking f = λR
H · M ∣

∣∇uR
∣
∣ and p = ∞, we obtain

M3 ≤ e · exp
(

C̃ · λR
)

≤ e · exp
(

C̃ [λR]
(

1− d
p1

)−1
)

.

By Novikov’s criterion, the process

t 
→ exp

(

2
∫ t∧τε

0
Bs dW̃s − 2

∫ t∧τε

0
|Bs |2 ds

)

=: Mε
t
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is a continuous exponential martingale. By Hölder’s inequality, we obtain

E

∣
∣
∣Z R

t∧τε

∣
∣
∣

α ≤ 2α |x − y|α (EMε
t

) 1
2

(

E

[

exp

(∫ t∧τε

0
|Bs |2 ds + 2

∫ t∧τε

0
|As | ds

)]) 1
2

≤ C(α, e) exp

(

C̃ [λR]
(

1− d
p1

)−1
)

|x − y|α .

Let ε ↓ 0, we have

E

[∣
∣
∣Y R

t (�R(x)) − Y R
t (�R(y))

∣
∣
∣

α] ≤ C(α, e) exp

(

C̃ [λR]
(

1− d
p1

)−1
)

|x − y|α .

Moreover, if α > 0, then

E

[∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

α] = E

[∣
∣
∣�

−1
R (Y R

t (�R(x))) − �−1
R (Y R

t (�R(y)))
∣
∣
∣

α]

≤
∥
∥
∥∇�−1

R

∥
∥
∥

α

∞ E

[∣
∣
∣Z R

t

∣
∣
∣

α]

≤ C(α, e) exp

(

C̃ [λR]
(

1− d
p1

)−1
)

|x − y|α . (6.12)

Notice that

∣
∣
∣Y R

t (�R(x)) − Y R
t (�R(y))

∣
∣
∣ =

∣
∣
∣�R(X R

t (x)) − �R(X R
t (y))

∣
∣
∣

≤ 2
∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣ ,

if α < 0, then

∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

α ≤ 2−α
∣
∣
∣Y R

t (�R(x)) − Y R
t (�R(y))

∣
∣
∣

α

≤ C(α, e) exp

(

C̃ [λR]
(

1− d
p1

)−1
)

|x − y|α . (6.13)

Together, (6.12) and (6.13) imply (6.2).
Notice that

�R(�−1
R (x)) = x, �R(x) = x + uR(x),

we have

�−1
R (x) + uR(�−1

R (x)) = x .
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Therefore,

|�R(x)| ∨
∣
∣
∣�

−1
R (x)

∣
∣
∣ ≤ |x | +

∥
∥
∥uR

∥
∥
∥∞ ≤ |x | + 1

2
. (6.14)

By X R
s (x) = �−1

R (Y R
s (�R(x))), (5.4) and (6.14), we have

1

2

(

1 +
∣
∣
∣Y R

s (�R(x))
∣
∣
∣

)

≤ 1 +
∣
∣
∣X R

s (x)
∣
∣
∣ ≤ 2

(

1 +
∣
∣
∣Y R

s (�R(x))
∣
∣
∣

)

.

Combining the inequality

1

2
(1 + |x |)2 ≤ (1 + |x |2) ≤ (1 + |x |)2,

we can obtain

(

1 +
∣
∣
∣X R

s (x)
∣
∣
∣

2
)α

≤ C(α)

(

1 +
∣
∣
∣Y R

s (�R(x))
∣
∣
∣

2
)α

,

where C(α) = 8α ∨ 8−α . Therefore, we just need to consider the estimate of

E

[(

1 + ∣∣Y R
s (�R(x))

∣
∣
2
)α]

.

Applying Itô formula to
(

1 + ∣∣Y R
s (�R(x))

∣
∣
2
)α

, we have

(

1 +
∣
∣
∣Y R

t

∣
∣
∣

2
)α

= (1 + |�R(x)|2)α + 2α
∫ t

0

(

1 +
∣
∣
∣Y R

s

∣
∣
∣

2
)α−1

〈Y R
s , σ̃ R(Y R

s )dW̃s〉

+ 2α
∫ t

0

(

1 +
∣
∣
∣Y R

s

∣
∣
∣

2
)α−1

〈b̃(Y R
s ),Y R

s )〉 ds

+ α

∫ t

0

(

1 +
∣
∣
∣Y R

s

∣
∣
∣

2
)α−1 ∥

∥
∥σ(Y R

s )

∥
∥
∥

2
ds

+ 2α(α − 1)
∫ t

0

(

1 +
∣
∣
∣Y R

s

∣
∣
∣

2
)α−2 ∣

∣
∣σ̃

R(Y R
s )Y R

s

∣
∣
∣

2
ds.

By (6.1) and (6.15), we obtain

E

[(

1 +
∣
∣
∣Y R

t

∣
∣
∣

2
)α]

≤ C̃(1 + |x |2)α + (C̃ λR + C̃)

∫ t

0
E

[(

1 +
∣
∣
∣Y R

s

∣
∣
∣

2
)α]

ds.

Using Gronwall’s inequality, we proved (6.3).

123



Journal of Theoretical Probability (2024) 37:2576–2614 2599

It is easy to see

E

[

sup
0≤s≤t

∣
∣
∣X R

s (x)
∣
∣
∣

p
]

≤ E

[

sup
0≤s≤t

∣
∣
∣�

−1
R (Y R

s (�R(x)))
∣
∣
∣

p
]

≤ E

[

sup
0≤s≤t

∣
∣
∣�

−1
R (Y R

s (�R(x))) − �−1
R (0) + �−1

R (0)
∣
∣
∣

p
]

≤ C(p)E

[

sup
0≤s≤t

∣
∣
∣Y R

s (�R(x))
∣
∣
∣

p
]

+ C(p)
∣
∣
∣�

−1
R (0)

∣
∣
∣

p

≤ C(p)E

[

sup
0≤s≤t

∣
∣
∣Y R

s (�R(x))
∣
∣
∣

p
]

+ C(p),

where the last inequality is due to
∥
∥
∥∇�−1

R

∥
∥
∥∞ ≤ 2 and �−1

R (0) ≤ 1/2. So, we only

need to estimate E
[

sup0≤s≤t

∣
∣Y R

s (�R(x))
∣
∣
p
]

, p ≥ 2.

By Eq. (5.5), we have

E

[

sup
0≤s≤t

∣
∣
∣Y R

s

∣
∣
∣

p
]

≤ C(p)E

[

|�R(x)|p + sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
b̃R(Y R

r ) dr

∣
∣
∣
∣

p

+ sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
σ̃ R(Y R

r ) dW̃r

∣
∣
∣
∣

p
]

:= C(p)(I1 + I2 + I3). (6.15)

It is not hard to see

I1 ≤
(

x +
∥
∥
∥uR

∥
∥
∥∞

)p ≤ C(p)(1 + |x |p),

I2 ≤ E

[

t p−1
∫ t

0

∣
∣
∣b̃R(Y R

r )

∣
∣
∣

p
dr

]

≤ t p
∥
∥
∥b̃R

∥
∥
∥

p

∞ ≤ 1

2p
t pλp,

I3 ≤ E

[(∫ t

0

∥
∥
∥σ̃

R(Y R
r )

∥
∥
∥

2
dr

) p
2
]

≤ t
p
2

∥
∥
∥σ̃

R
∥
∥
∥

p

∞ ≤ t
p
2 2p

∥
∥
∥σ

R
∥
∥
∥

p

∞.

So, we obtained (6.4).
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Notice that

E

[

sup
0≤t≤T

∣
∣
∣�

−1
R (Y R

t (�R(x))) − �−1
R (Y R

t (�R(y)))
∣
∣
∣

p
]

≤ 2pE

[

sup
0≤t≤T

∣
∣
∣Y R

t (�R(x)) − Y R
t (�R(y))

∣
∣
∣

p
]

,

we only need to estimate E[sup0≤t≤T

∣
∣Z R

t

∣
∣
p]. By (6.9), we have

E

[

sup
0≤t≤T

∣
∣
∣Z R

t

∣
∣
∣

p
]

≤ |�R(x) − �R(y)|p
(

E sup
0≤t≤T

M2
1 (t)

) 1
2 (

exp

(

2
∫ T

0
|As | ds

)) 1
2

≤ |�R(x) − �R(y)|p
(

EM2
1 (T )

) 1
2
(

exp

(

2
∫ T

0
|As | ds

)) 1
2

≤ |�R(x) − �R(y)|p (EM4(T ))
1
4

(

exp

(

6
∫ T

0
|Bs |2 ds

)) 1
4

×
(

exp

(

2
∫ T

0
|As | ds

)) 1
2

≤ C̃
(

exp

(

C̃ (λR)
p1

p1−d

))

|x − y|p ,

where

Mk(t) := exp

(

k
∫ t

0
Bs dW̃s − k2

2

∫ t

0
|Bs |2 ds

)

.

We proved (6.5). ��
Let Dt (x) := sup0≤s≤t |Xs(x)|, τR(x) := inf{t ≥ 0, |Xt (x)| > R} and similarly,

let DR
t (x) := sup0≤s≤t

∣
∣X R

s (x)
∣
∣, τ R

R (x) := inf{t ≥ 0,
∣
∣X R

t (x)
∣
∣ > R}. It is easy to see

{Dt (x) ≥ R} = {τR ≤ t}, {DR
t (x) ≥ R} = {τ R

R ≤ t}.

By the definitions of bR and σ R , it is not hard to obtain

{τR ≤ t} ⊂ {τ R
R ≤ t}.
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For all x ∈ B(N ), we have

P(τR ≤ t) ≤ P(τ R
R ≤ t) = P(DR

t (x) ≥ R)

≤ E[∣∣DR
t (x)

∣
∣
n]

Rn

≤ C̃(1 + |x |n + (λR)n)

Rn
,

where the second inequality is due to Markov’s inequality, the last inequality is due
to Lemma 6.2. By the definition of λR in (4.9), we can obtain (λR)n/Rn → 0 when
R → ∞. Hence, we have τR → ∞ when R → ∞. On the other hand, by the
definitions of bR and σ R , we observe that if Dt (x) < R, then Xt (x) = X R

t (x), i.e.,
Xt (x) = X R

t (x) for all t < τR . By Theorem 6.1, SDE (3.1) exists a unique strong
solution. We can define Xt (x) = X R

t (x) for t < τR . It is clear that {Xt (x)}t∈[0,T ] is
the unique strong solution of SDE (1.1).

By (6.4) and definition of λR , for all x ∈ B(N ), we have

E

[

sup
0≤t≤T

|Xt (x)|p
]

≤
∞
∑

R=1

E

[∣
∣
∣DR

T (x)
∣
∣
∣

p
1{R−1≤DT (x)<R}

]

≤
∞
∑

R=2

E

[∣
∣
∣DR

T (x)
∣
∣
∣

p
1{R−1≤DT (x)<R}

]

+ C(N )

≤
∞
∑

R=2

E

[∣
∣
∣DR

T (x)
∣
∣
∣

2p
] 1

2 [

P(DR−1
T (x) ≥ R − 1)

] 1
2 + C(N )

≤
∞
∑

R=2

E

[∣
∣
∣DR

T (x)
∣
∣
∣

2p
] 1

2 · E[(DR−1
t (x))2p] 12

(R − 1)p
+ C(N )

≤
∞
∑

R=2

E[(DR
T (x))2p] 12 · E[(DR−1

T (x))2p] 12
(R − 1)p

+ C(N )

≤ C(N ). (6.16)

where the last inequality is due to (6.4) and the definition of λR .
For all x, y ∈ B(N ), we consider the following estimate

E

[

sup
0≤t≤T

|Xt (x) − Xt (y)|p
]

=
∞
∑

R=1

E

[

sup
0≤t≤T

∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

p
1{R−1≤DT (x)∨DT (y)<R}

]

≤
∞
∑

R=1

(

E

[

sup
0≤t≤T

∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

2p
]) 1

2

P

(

DT (x) ∨ DT (y) ≥ R − 1
) 1

2
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≤
∞
∑

R=1

(

E

[

sup
0≤t≤T

∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

2p
]) 1

2

×
(

P(DT (x) ≥ R − 1) + P(DT (y) ≥ R − 1)
) 1

2
.

≤
∞
∑

R=1

(

E

[

sup
0≤t≤T

∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

2p
]) 1

2

×
(

P(DR−1
T (x) ≥ R − 1) + P(DR−1

T (y) ≥ R − 1)
) 1

2

≤
∞
∑

R=2

(

E

[

sup
0≤t≤T

∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

2p
]) 1

2

×
(

E[(DR−1
T (x))2n]

(R − 1)2n
+ E[(DR−1

T (y))2n]
(R − 1)2n

) 1
2

+ C |x − y|p

≤
∞
∑

R=2

C̃ |x − y|p
(

exp

(

C̃ (λR)
p1

p1−d

))
(1 + |x |n)
(R − 1)n

+
∞
∑

R=2

C̃ |x − y|p
(

exp

(

C̃ (λR)
p1

p1−d

))
(λR)n

(R − 1)n

+
∞
∑

R=2

C̃ |x − y|p
(

exp

(

C̃ (λR)
p1

p1−d

))
(1 + |y|n)
(R − 1)n

+ C |x − y|p

≤
∞
∑

R=2

C̃ |x − y|p
(

exp

(

2C̃ (λR)
p1

p1−d

))
(2 + |x |n)
(R − 1)n

+ C |x − y|p

+
∞
∑

R=2

C̃ |x − y|p
(

exp

(

2C̃ (λR)
p1

p1−d

))
(2 + |y|n)
(R − 1)n

, (6.17)

where the last inequalitywe used the fact that we can find a constantC(C̃, p1, d, n(β))

such that for all λR ≥ C(C̃, p1, d, n(β)),

(λR)n ≤ exp

(

C̃ (λR)
p1

p1−d

)

. (6.18)

In fact, if let β̃ satisfy (2C2β̃)
2(1− d

p1
)−1 = C(C̃, p1, d, n(β)), then for all R ≥ 1, λR

satisfy (6.18), where n(β) be decided by (6.19).
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On the other hand, by the definitions of λR and Ib(R), we have

E

[

sup
0≤t≤T

|Xt (x) − Xt (y)|p
]

≤
∞
∑

R=2

C(β, β̃)RC(β) (2 + |x |n)
(R − 1)n

+
∞
∑

R=2

C(β, β̃)RC(β) (2 + |y|n)
(R − 1)n

+ C |x − y|p .

Therefore, take n satisfy

C(β) + 1 < n, (6.19)

we obtain

E

[

sup
0≤t≤T

|Xt (x) − Xt (y)|p
]

≤ C
(

(1 + |x |n) + (1 + |y|n)
)

|x − y|p . (6.20)

By Lemma 2.1 in [21], (6.16) and (6.20), we proved Theorem 1.1(A).
Following the proof of Zhang [24], it is not hard to prove for any bounded measur-

able function f and t ∈ [0, T ],

x 
→ E[ f (X R
t (x))] is continuous. (6.21)

For any x, y ∈ B(N ), we have

|E [ f (Xt (x) − f (Xt (y)))]|
≤ ∣∣E [( f (Xt (x) − f (Xt (y))))1{t≤τR}

]∣
∣+ 2 ‖ f ‖∞ P(t > τR)

≤
∣
∣
∣E

[

( f (X R
t (x) − f (X R

t (y))))1{t≤τR}
]∣
∣
∣+ 2 ‖ f ‖∞ P(t > τR)

≤
∣
∣
∣E

[

( f (X R
t (x) − f (X R

t (y))))
]∣
∣
∣+ 4 ‖ f ‖∞ P(t > τR). (6.22)

Together, (6.22), (6.21) and τR → ∞ when R → ∞ imply Theorem 1.1(B).

Lemma 6.3 Under (Hb), (Hσ
1 ) and (Hσ

2 ), let {Xt (x)}t∈[0,T ] and {Xt (y)}t∈[0,T ] are two
solutions of SDE (1.1)with initial conditions X0(x) = x and X0(y) = y, respectively,
then for all 0 ≤ t ≤ T , α ∈ R and x, y ∈ B(N ), we have

E[|Xt (x) − Xt (y)|α] ≤ C(N ) |x − y|α , (6.23)

E

[(

1 + |Xt (x)|2
)α] ≤ C(N )

(

1 + |x |2
)α

, (6.24)

and for all p ≥ 2,

E[|Xt (x) − Xs(x)|p] ≤ C(N ) |t − s| p
2 . (6.25)
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Proof Set Dt (x) := sup0≤s≤t |Xt (x)| and Dt (y) := sup0≤s≤t |Xt (y)|. It is easy to see
if Dt (x) < R and Dt (y) < R, then Xt (x) = X R

t (x), Xt (y) = X R
t (y). Moreover, by

Lemma 6.2, similar to (6.17), for all t ∈ [0, T ] and x, y ∈ B(N ), we have

E[|Xt (x) − Xt (y)|α]

=
∞
∑

R=1

E

[∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

α

1{R−1≤DT (x)∨DT (y)<R}
]

≤
∞
∑

R=1

(

E

[∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

2α
]) 1

2

P

(

DT (x) ∨ DT (y) ≥ R − 1
) 1

2

≤
∞
∑

R=1

(

E

[∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

2α
]) 1

2 (

P(DT (x) ≥ R − 1) + P(DT (y) ≥ R − 1)
) 1

2

≤
∞
∑

R=2

(

E

[∣
∣
∣X R

t (x) − X R
t (y)

∣
∣
∣

2α
]) 1

2
(

E[(DR−1
T (x))2n]

(R − 1)2n
+ E[(DR−1

T (y))2n]
(R − 1)2n

) 1
2

+ C |x − y|α
≤ C (1 + |x |n + |y|n) |x − y|α
≤ C(N ) |x − y|α ,

and

E

[(

1 + |Xt (x)|2
)α]

=
∞
∑

R=1

E

[(

1 +
∣
∣
∣X R

t (x)
∣
∣
∣

2
)α

1{R−1≤DT (x)<R}
]

≤
∞
∑

R=2

(

E

[(

1 +
∣
∣
∣X R

t (x)
∣
∣
∣

2
)2α
]) 1

2
(

E[(DR−1
T (x))2n]

(R − 1)2n

) 1
2

+ C(1 + |x |2)α

≤ C
(

1 + |x |n ) (1 + |x |2 )α
≤ C(N )(1 + |x |2)α.

On the other hand, it is not hard to obtain

E

[∣
∣
∣X R

t (x) − X R
s (x)

∣
∣
∣

p]

≤ C(p)E
[∣
∣
∣Y R

t (�R(x)) − Y R
s (�R(x))

∣
∣
∣

p]

≤ C(T )
(

1 + (λR)p
) |t − s| p

2 ,
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where the last inequality is due to

E

[∣
∣
∣
∣

∫ t

s
b̃R(Y R

r ) dr

∣
∣
∣
∣

p]

≤ ||b̃R ||p∞ |t − s|p ,

and

E

[∣
∣
∣
∣

∫ t

s
σ̃ R(Y R

r ) dW̃r

∣
∣
∣
∣

p]

≤ ||σ̃ R ||p∞ |t − s| p
2 .

Moreover, for all t, s ∈ [0, T ] and x ∈ B(N ), we have

E[|Xt (x) − Xs(x)|p]

=
∞
∑

R=1

E

[∣
∣
∣X R

t (x) − X R
s (x)

∣
∣
∣

p
1{R−1≤DT (x)<R}

]

≤
∞
∑

R=2

(

E

[∣
∣
∣X R

t (x) − X R
s (x)

∣
∣
∣

]2p
) 1

2
(

E[(DR−1
T (x))2p]

(R − 1)2p

) 1
2

+ C |t − s| p
2

≤
∞
∑

R=2

C(T )

(

1 + |x |p + (λR)p
)2

(R − 1)p
|t − s| p

2 + C |t − s| p
2

≤ C(1 + |x |2p) |t − s| p
2

≤ C(N ) |t − s| p
2 .

We completed the proof. ��
By Lemma 6.3, for all p ≥ 2, t, s ∈ [0, T ] and x, y ∈ B(N ), we have

E
[|Xt (x) − Xs(y)|p

] ≤ C(N )
(

|x − y|p + |t − s| p
2

)

.

By Kolmogorov’s lemma, we can obtain for any N ∈ N, there exists a P-null set �N

such that for any ω /∈ �N , X ·(ω, ·) : [0, T ] × B(N ) → R
d is continuous. If we set

� := ∪∞
N=1�N , then P(�) = 0 and

X ·(ω, ·) : [0, T ] × R
d → R

d is continuous, ∀ω /∈ �.

Similar to the standard argument (cf. [14]), the proof for any t ∈ [0, T ], almost all
ω, the maps x 
→ Xt (ω, x) are one-to-one due to (6.23) and (6.25). For the reader’s
convenience, we give the details of one-to-one property.

For x = y ∈ R
d , set

R(t, x, y) := 1

|Xt (x) − Xt (y)| ,
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then

∣
∣R(t, x, y) − R(s, x ′, y′)

∣
∣

≤
∣
∣Xt (x) − Xt (y) − Xs(x ′) + Xs(y′)

∣
∣

|Xt (x) − Xt (y)| |Xs(x ′) − Xs(y′)|
≤
∣
∣Xt (x) − Xt (x ′)

∣
∣+ ∣∣Xt (x ′) − Xs(x ′)

∣
∣+ ∣∣Xt (y) − Xt (y′)

∣
∣+ ∣∣Xt (y′) − Xs(y′)

∣
∣

|Xt (x) − Xt (y)| |Xs(x ′) − Xs(y′)| .

By Hölder inequality, we have

E
∣
∣R(t, x, y) − R(s, x ′, y′)

∣
∣p ≤ C · E[ ∣∣Xt (x) − Xt (x

′)
∣
∣2p + ∣∣Xt (x

′) − Xs(x
′)
∣
∣2p

+ ∣∣Xt (y) − Xt (y
′)
∣
∣2p + ∣∣Xt (y

′) − Xs(y
′)
∣
∣2p
] 1
2

· E
[

|Xt (x) − Xt (y)|−4p
] 1
4

· E
[∣
∣Xs(x

′) − Xs(y
′)
∣
∣−4p

] 1
4
.

Moreover, for all x, y, x ′, y′ ∈ B(N ) and |x − y| ∧ ∣∣x ′ − y′∣∣ > ε, we obtain

E
∣
∣R(t, x, y) − R(s, x ′, y′)

∣
∣p

≤ C(N )
(∣
∣x − x ′∣∣p + |t − s| p

2 + ∣∣y − y′∣∣p + |t − s| p
2

)

ε−2p.

Choose p > 4(d + 1), by Kolmogorov’s lemma, there exists a P-null set �k,N such
that for all ω /∈ �k,N , the mapping (t, x, y) 
→ R(t, x, y) is continuous on

{

(t, x, y) ∈ [0, T ] × B(N ) × B(N ) : |x − y| >
1

k

}

∀ k ∈ N+.

Set � := ∪∞
k,N=1, �k,N , then for any ω /∈ �, the mapping (t, x, y) 
→ R(t, x, y) is

continuous on

{(t, x, y) ∈ [0, T ] × R
d × R

d : x = y}.

We proved one-to-one property. ��
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7 Appendix

The Proof of Theorem 4.1: Step (i) Suppose σ R(x) does not depend on x , Krylov
proved the estimate (4.2) in [8, Page 109]. Therefore, If σ R(x) ≡ σ R(x0), then

∥
∥
∥(λ − Lσ R(x0))−1 f

∥
∥
∥
2,p

≤ C0 ‖ f ‖p .

Step (ii) Suppose for some x0 ∈ R
d

∥
∥
∥σ

R(x) − σ R(x0)
∥
∥
∥ ≤ 1

2δ̃− 1
2C0

, (7.1)

we consider the following equation

Lσ R(x0)u − λu + g = 0,

where g := Lσ R(x) − Lσ R(x0) + f . By (7.1) and the definition of Lσ R(x), we obtain

‖g‖p ≤ 1

2C0
‖uxx‖p + ‖ f ‖p .

Hence, by Step (i), we have

‖uxx‖p ≤ C0 ‖g‖p ≤ 1

2
‖uxx‖p + C0 ‖ f ‖p ,

i.e.,

‖uxx‖p ≤ 2C0 ‖ f ‖p .

Step (iii) Define a smooth cutoff function as follows:

ζ(x) =

⎧

⎪⎨

⎪⎩

1, |x | ≤ 1,

∈ [0, 1], 1 < x < 2,

0 |x | ≥ 2.

Fix a small constant ε which will be determined below.
For fixed z ∈ R

d , let

ζ ε
z (x) := ζ

(
x − z

ε

)

.

123



2608 Journal of Theoretical Probability (2024) 37:2576–2614

It is easy to check that

∫

Rd

∣
∣
∣∇ j

x ζ
ε
z (x)

∣
∣
∣

p
dz = εd− j p

∫

Rd

∣
∣
∣∇ jζ(z)

∣
∣
∣

p
dz > 0, j = 0, 1, 2. (7.2)

Multiply both side of (4.1) by ζ ε
z (x), we have

Lσ R(x)(uζ ε
z ) − λ(uζ ε

z ) + gε
z = 0,

where gε
z := (Lσ R(x)u)ζ ε

z − Lσ R(x)(uζ ε
z ) − f ζ ε

z .
Let

σ̂ R(x) := σ R((x − z)ζ 2ε
z (x) + z).

It is easy to obtain

Lσ R(x)(uζ ε
z ) = L σ̂ R(x)(uζ ε

z ),

since ζ 2ε
z (x) = 1 for |x − z| ≤ 2ε and ζ ε

z (x) = 0 for |x − z| > 2ε.
By (3.2) and the definition of gε

z , we have

∥
∥
∥σ̂

R(x) − σ̂ R(z)
∥
∥
∥ ≤ δ̃− 1

2

∣
∣
∣(x − z)ζ 2ε

z

∣
∣
∣

� ≤ δ̃− 1
2 |4ε|� ,

and

∥
∥gε

z

∥
∥
p ≤ ∥∥ f ζ ε

z

∥
∥
p + δ̃−1

∥
∥|ux |

∣
∣(ζ ε

z )x
∣
∣
∥
∥
p + δ̃−1

∥
∥|u| ∣∣(ζ ε

z )xx
∣
∣
∥
∥
p .

By Step (ii), if

Lσ R(x)u − λu + f = 0,
∥
∥
∥σ

R(x) − σ R(x0)
∥
∥
∥ ≤ 1

2δ̃− 1
2C0

,

then

‖uxx‖p ≤ 2C0 ‖ f ‖p .

Now, we consider the following equation:

L σ̂ R(x)(uζ ε
z ) − λ(uζ ε

z ) = gε
z

and take ε to be small enough so that

∥
∥
∥σ̂

R(x) − σ̂ R(z)
∥
∥
∥ ≤ δ̃− 1

2 |4ε|� ≤ 1

2δ̃− 1
2C0

,
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then

∥
∥(uζ ε

z )xx
∥
∥
p ≤ 2C0

∥
∥gε

z

∥
∥
p

≤ 2C0

(∥
∥ f ζ ε

z

∥
∥
p + δ̃−1

∥
∥|ux |

∣
∣(ζ ε

z )x
∣
∣
∥
∥
p + δ̃−1

∥
∥|u| ∣∣(ζ ε

z )xx
∣
∣
∥
∥
p

)

. (7.3)

According to Fubini’s theorem, (7.2) and (7.3), it is easy to check

∫

Rd

∫

Rd

∣
∣(uζ ε

z )xx
∣
∣p dx dz ≤ C(p, ε, δ̃−1,C0)

(‖ux‖p
p + ‖u‖p

p + ‖ f ‖p
p
)

.

Moreover, we have

‖uxx‖p
p �

∫

Rd

∥
∥(u)xx · ζ ε

z

∥
∥p
p dz

�
∫

Rd

∥
∥(uζ ε

z )xx − (u)x (ζ
ε
z )x − u(ξε

z )xx
∥
∥p
p dz

≤ C(p, ε, δ̃−1,C0)
(‖ux‖p

p + ‖u‖p
p + ‖ f ‖p

p
)

≤ 1

2
‖uxx‖p

p + C(p, ε, δ̃−1,C0)(‖u‖p
p + ‖ f ‖p

p),

where the third inequality is due to (7.2) and (7.3) and the last inequality is due to

‖ux‖p ≤ C(‖uxx‖p + ‖u‖p), (7.4)

and Young’s inequality. Therefore, we proved

‖uxx‖p ≤ C(p, ε, δ̃−1,C0)(‖u‖p + ‖ f ‖p).

Since λu = Lσ R(x)u − f , we have

λ ‖u‖p ≤
(∥
∥
∥Lσ R(x)u

∥
∥
∥
p

+ ‖ f ‖p

)

≤ C(d,�, δ̃, p)
(‖u‖p + ‖ f ‖p

)

.

Hence, we obtain

‖uxx‖p + λ ‖u‖p ≤ C(d,�, δ̃, p)
(‖u‖p + ‖ f ‖p

)

.

Notice that λ > (C(d,�, δ̃, p) + 1), we obtain

‖uxx‖p + ‖u‖p ≤ C(d,�, δ̃, p) ‖ f ‖p . (7.5)

Combine (7.5) with (7.4), we obtain

‖u‖2,p ≤ C1(d,�, δ̃, p) ‖ f ‖p .
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Step (iv) Set

Tt f (x) :=
∫

Rd
f (y)ρ(t, x, y) dy,

where ρ(t, x, y) is the fundamental solution of the operator ∂t − Lσ R(x). It is well
known that

∣
∣
∣∇ j

x ρ(t, x, y)
∣
∣
∣ ≤ C j (�, δ̃, d)t− j/2(2t)−d/2e−k j (�,δ̃,d)|x−y|2/(2t). (7.6)

By [25, Lemma 3.4], for any p, p′ ∈ (1,∞) and α ∈ [0, 2), there exists a constant
C = C(d,�, δ̃, p, α, p′) such that for any f ∈ L p(Rd),

‖Tt f ‖α,p′ ≤ Ct

(

− α
2 − d

2p + d
2p′
)

‖ f ‖p . (7.7)

Let f ∈ W 2,p(Rd) and

u(x) :=
∫ ∞

0
e−λt Tt f (x) dt .

By (7.6) and the definition of Tt , it is easy to check u ∈ W 2,p(Rd) and u satisfies
(4.1). Indeed,

Lσ R(x)u(x) =
∫ ∞

0
e−λt

∫

Rd
f (y)Lσ R(x)ρ(t, x, y) dy dt

=
∫ ∞

0
e−λt

∫

Rd
f (y)∂tρ(t, x, y) dy dt

=
∫

Rd
f (y)

(

e−λtρ(t, x, y)
∣
∣
∞
0 + λ

∫ ∞

0
e−λtρ(t, x, y) dt

)

dy

= f (x) + λu(x).

By Jensen’s inequality, we obtain

∣
∣
∣


α
2 u
∣
∣
∣

p′
=
∣
∣
∣
∣

∫ ∞

0
e−λt


α
2 Tt f (x) dt

∣
∣
∣
∣

p′

≤
(
1

λ

)p′ (∫ ∞

0
λe−λt

∣
∣
∣


α
2 Tt f (x)

∣
∣
∣

p′
dt

)

and

|u|p′ ≤
(
1

λ

)p′ (∫ ∞

0
λe−λt |Tt f (x)|p′

dt

)

.
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By Fubini’s theorem, we have

∥
∥
∥


α
2 u
∥
∥
∥

p′

p′ ≤
(
1

λ

)p′ (∫ ∞

0
λe−λt

∥
∥
∥


α
2 Tt f (x)

∥
∥
∥

p′

p′ dt

)

(7.8)

and

‖u‖p′
p′ ≤

(
1

λ

)p′ (∫ ∞

0
λe−λt ‖Tt f (x)‖p′

p′ dt

)

. (7.9)

Moreover, by (2.1), (7.7), (7.8) and (7.9), if ( dp + α − d
p′ )/2 < 1

p′ ≤ 1, then

‖u‖p′
α,p′ � ‖ f ‖p′

p

(
1

λ

)p′

λ

∫ ∞

0
e−λt t

(− α
2 − d

2p + d
2p′ )p

′
dt

≤ ‖ f ‖p′
p λ−p′ 1

λ

(

− α
2 − d

2p + d
2p′
)

p′

= ‖ f ‖p′
p λ

p′
(

α−2+ d
p − d

p′
)

/2
,

where the second inequality is due to Laplace transformation.
Step (v) In this step, we will use weak convergence argument to prove the existence

of (4.1). Letϕ be a nonnegative smooth function inRd which satisfies
∫

Rd ϕ(x) dx = 1
and support in {x ∈ R

d : |x | ≤ 1}. Let

ϕn(x) := ndϕ(nx), σn := σ ∗ ϕn, fn := f ∗ ϕn,

where ∗ denotes the convolution.
Denote un be the solution of

Lσ R
n (x)un − λun = fn .

By the Step (iii) and Step (iv), we have

‖un‖2,p ≤ C1 ‖ f ‖p

and

‖un‖α,p′ ≤ C2λ

(

α−2+ d
p − d

p′
)

/2 ‖ f ‖p .

Since W 2,p(Rd) is weakly compact, we can find a subsequence still denoted by un
and u ∈ W 2,p(Rd) such that un⇀u in W 2,p(Rd).
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For any test function φ ∈ C∞
0 (Rd), we have

∫

Rd

(

Lσm (x)un − Lσ(x)un
)

φ dx

≤ Cφ ‖σm − σ‖∞ ‖(un)xx‖p

≤ Cφ ‖σm − σ‖∞ ‖ f ‖p → 0 (m → 0) uniformly in n,

and for fixed m

∫

Rd

(

Lσm (x)un − Lσm (x)u
)

φ dx → 0, as n → ∞.

Hence, we obtain

∫

Rd

(

Lσn(x)un − Lσ(x)u
)

φ dx → 0, as n → ∞.

Notice that

〈Lσn(x)un, φ〉 − 〈λun, φ〉 = 〈 fn, φ〉.

Take n → ∞, we obtain

〈Lσ(x)u, φ〉 − 〈λu, φ〉 = 〈 f , φ〉.

On the other hand, let p∗ := p′
p′−1 and keep in mind un⇀u in W 2,p(Rd), we have

‖u‖α,p′ =
∥
∥
∥

(

I − 

α
2

)

u
∥
∥
∥
p′ = sup

φ∈C∞
0 (Rd );‖φ‖p∗≤1

∣
∣
∣
∣

∫

Rd

〈(

I − 

α
2

)

u(x), φ(x)
〉

dx

∣
∣
∣
∣

= sup
φ∈C∞

0 (Rd );‖φ‖p∗≤1
lim
n→∞

∣
∣
∣
∣

∫

Rd

〈

un(x),
(

I − 

α
2

)

φ(x)
〉

dx

∣
∣
∣
∣

= sup
φ∈C∞

0 (Rd );‖φ‖p∗≤1
lim
n→∞

∣
∣
∣
∣

∫

Rd

〈(

I − 

α
2

)

un(x), φ(x)
〉

dx

∣
∣
∣
∣

≤ sup
n

sup
φ∈C∞

0 (Rd );‖φ‖p∗≤1

∥
∥
∥

(

I − 

α
2

)

un
∥
∥
∥
p′

= sup
n

‖un‖α,p′ ≤ C2λ

(

α−2+ d
p − d

p′
)

/2 ‖ f ‖p .

We completed the proof. ��
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