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Abstract
In this paper, we consider (upward skip-free) discrete-time and discrete-spaceMarkov
additive chains (MACs) and develop the theory for the so-called ˜W and˜Z scale matri-
ces, which are shown to play a vital role in the determination of a number of exit
problems and related fluctuation identities. The theory developed in this fully discrete
set-up follows similar lines of reasoning as the analogous theory for Markov additive
processes in continuous time and is exploited to obtain the probabilistic construction
of the scale matrices, identify the form of the generating function and produce a simple
recursion relation for ˜W, as well as its connection with the so-called occupation mass
formula. In addition to the standard one- and two-sided exit problems (upwards and
downwards), we also derive distributional characteristics for a number of quantities
related to the one- and two-sided ‘reflected’ processes.
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1 Introduction

Exit problems for stochastic processes are a classic topic in applied probability and
has received a great deal of attention within the literature. In the continuous setting
(time and space), exit problems for so-called upward skip-free processes, known in the
literature as ‘spectrally negative Lévy processes’, have been extensively considered
in [5] (Chapter VII), [18] (Chapter 8) and references therein, by means of fluctuation
theory where semi-explicit expressions are derived in terms of the so-called ‘scale
functions’. On the other hand, in the fully discrete setting exit problems for general
discrete-time randomwalks are excellently treated in [10, 13], among others, bymeans
of probabilistic arguments and include, as particular cases, the corresponding upward
skip-free random walks. That is, a random walk for which downward jumps are unre-
stricted but upward jumps are constrained to amagnitude of at most one, emulating the
upward ‘drift’ in continuous-time. More recently, [3] implement the ideas underlying
the exit problems for continuous spectrally negative Lévy processes for their discrete
random walk counterparts and derive exit problems and other fluctuation identities in
terms of analogous ‘discrete scale functions’.

A natural generalisation of the above processes are the broad family of Markov
additive processes (MAPs), which incorporate an externally influencingMarkov envi-
ronment, providing greater flexibility to the characteristics of the underlying process
in terms of its claim frequency and severity distributions, see [1] (Chapter XI). Within
this generalised framework, the existence of multidimensional scale functions, known
as ‘scale matrices’, was first discussed in [19] and were used to derive fluctuation
identities and first passage results for continuous-timeMAPs. [14] extended the initial
findings of [19] by providing the probabilistic construction of the scale matrices, iden-
tifying their transforms and considering an extensive study of exit problems including
one-sided and two-sided exits, as well as exits for reflected processes via implementa-
tion of the occupation density formula. Further studies onMAPs and their exit/passage
times can be found in [4, 8, 9], among others. More recently, [16], derive and com-
pare results for continuous-time MAPs with lattice (discrete-space) and non-lattice
support. It is worth noting here that the authors in this work do discuss some of the
corresponding results for the fully discrete (time and space) MAP model considered
in this paper; however, only a limited number of results are stated and a variety of
important steps and proofs were omitted.

This paper bridges the gap between the aforementioned works and provides a the-
oretical framework for fully discrete, upward skip-free MAPs, in terms of ‘discrete
scale matrices’, spelling out the differences in results, methodologies and necessary
adjustments for deriving fluctuation identities between discrete and continuousMAPs.
In particular, we derive results for the first passage theory, including one and two-sided
exit problems as well as the under(over)-shoots upon exit via the associated ‘reflected’
process. The motivation for deriving such a framework comes from the discrete set-up
having known advantages over the continuous-time models. For example, it is known
that theWiener–Hopf factorisation can be replaced by a simple Laurent series (see [3]).
Moreover, due to the equivalence between a discrete MAP and a Markov-modulated
random walk, this paper provides a more flexible random walk model and enriches
the numerous applications of random walk theory across a variety of disciplines.
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The paper is organised as follows: In Sect. 2, we define theMAP in discrete time and
space and derive the so-called occupation mass matrix formula, from which we obtain
some useful identities to be used in the following sections. In Sect. 3, we introduce
some fundamental matrices associated to the discrete MAP, identify the first of two
discrete scalematrices and derivematrix expressions for the one and two-sided upward
exit problem. In Sect. 4, we derive results for the corresponding one and two-sided
reflected processes, including the over-shoot and under-shoot upon exit which are
then used in Sect. 5 to derive expressions for the one and two-sided downward exit
problems of the original (non-reflected) discrete MAP.

2 Preliminaries

A fully discrete (time and space) MAP, which we will call a Markov Additive Chain
(MAC), is defined as a bivariate discrete-timeMarkov chain (X , J ) = {(Xn, Jn)}n�0,
on the product space Z × E , where Xn ∈ Z describes the level of the underly-
ing process, whilst Jn ∈ E = {1, 2, . . . , N } describes the phase of some external
Markov chain (which affects the dynamics of Xn) having transition probability matrix
P, such that for i, j ∈ E , (P)i j = P (J1 = j |J0 = i). It is assumed throughout this
work that the Markov chain {Jn}n�0 is ergodic such that its stationary distribution
π� = (π1, . . . , πN ) exists and is unique. The defining property of the MAC is the
conditional independence and stationarity of law governing Xn , given Jn . That is,
given that {JT = i} for some fixed T ∈ N, the Markov chain {(XT+n − XT , JT+n)}
is independent of FT (the natural filtration to which the bivariate process (X , J )

is adapted) and {(XT+n − XT , JT+n)} d= {(Xn − X0, Jn)}, given {J0 = i} for
any phase state i ∈ E . This is known as the Markov additive property, a conse-
quence of which is that the level process {Xn}n�0 is translation invariant on the
lattice.

Intuitively, the MAC is simply a Markov-modulated random walk where {Xn}n�0
evolves according to the random walk Xn = Y1 + Y2 + · · · + Yn , where {Yk}k�1 is
a sequence of conditionally i.i.d. random variables with common, conditional distri-
bution q̃i j (y) = P(Y1 = y|J1 = j, J0 = i), and thus, probability mass matrix ˜Q(y),
with i , j-th element

(

˜Q(y)
)

i j = q̃i j (y). As such, and due to the invariance property,

the transition probability matrix of (X , J ) has a block-like structure with blocks ˜Am

which represent the (one-step) transition matrix for an increase ofm levels in {Xn}n�0
whilst capturing the phase transitions of {Jn}n�0, such that

˜Am = ˜Q(m) ◦ P, (2.1)

where ◦ denotes entry-wise products (Hadamard multiplication). In the remainder of
this paper,we assume that X = {Xn}n≥0 mayonly increase by atmost one level per unit
timewhilst experiencing downward jumps of arbitrary size. That is, for all i, j ∈ E , we
have q̃i j (m) = P(Y1 = m|J1 = j, J0 = i) � 0 for m � 1 and q̃i j (m) = 0 otherwise,
which leads to˜Q(m) = 0 and thus˜Am = 0 form = 2, 3, . . . .. In this sense, we say that
X possesses an ‘upward skip-free’ property, an advantage of which is that the value
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of X is known at stopping time corresponding to ‘upward’ crossing/hitting of a given
level (see below). This corresponds to the discrete analogue of a ‘spectrally negative’
MAP in the continuous setting, which have important applications to workload and
surplus processes in queuing and risk theory, respectively (see [1, 2] for more details).

2.1 MACMatrix Generator

It has already been noted that the dynamics of the level process (X ) within the MAC
depends on the phase transitions of the external Markov chain (J ). As such, the
majority of quantities and results presented in this paper depend on the initial and
final states of {Jn}n�0 and thus, are given in matrix form. With this in mind, let us
define the expectation matrix operator Ex (·; Jn) which denotes an N × N matrix
with i, j-th element (Ex (· ; Jn))i j = E

(· 1(Jn= j)|X0 = x, J0 = i
)

, where 1(·) rep-
resents the indicator function, and corresponding probability matrix Px (· , Jn) with
elements (Px (· , Jn))i j = P(· , Jn = j |X0 = x, J0 = i). Moreover, we denote
E (· ; Jn) ≡ E0 (· ; Jn), having associated probability measure P (· , Jn) ≡ P0 (· , Jn)
and thus, we can define the probability generating matrix (p.g.m.) of the process
{Xn}n�0 with initial level X0 = 0, for at least |z| � 1 and z �= 0, by E

(

z−Xn ; Jn
)

,
which satisfies

E

(

z−Xn ; Jn
)

= (

˜F(z)
)n

, ˜F(z) := E

(

z−X1 ; J1
)

=
∞
∑

m=−1

zm˜A−m, (2.2)

and for z = 1, we have˜F(1) = P = ∑∞
m=−1

˜A−m .

Remark 1 Note that since the matrices ˜A−m are probability transition matrices, such
that ˜A−m � 0 (non-negative), it follows that for z > 0, the matrix ˜F(z) is also non-
negative. Hence, by the Perron–Frobenius theorem, ˜F(z) has a (simple) eigenvalue,
denoted κ(z), which is greater than or equal in absolute value than all other eigenval-
ues with corresponding left and right (column) eigenvectors, denoted 	v(z) and 	h(z),
respectively, such that 	v(z)�˜F(z) = κ(z)	v(z)� and˜F(z)	h(z) = κ(z)	h(z). Moreover,
since˜F(1) = P is a stochastic matrix, using standard facts from matrix analysis (see
[7]) we have κ(1) = 1 and it can be shown that κ ′(1) determines the asymptotic drift
of the level process {Xn}n�0 (see Section 1.3 in [11, 22]), given by

lim
n→∞

Xn

n
= −κ ′(1) = −π�

∞
∑

m=−1

m ˜A−me.

Within the theory of continuous-time Lévy processes, it is often desirable to analyse
the process prior to some independent exponential ‘killing time’ as this can emulate the
role of Laplace transforms or generating functions within the calculations (see [18]).
For a MAP, this exponential killing time can alternatively be incorporated via an
enlargement to the state space of the Markov chain with the addition of an ‘absorbing’
(killing) state and analysing the process prior to absorption (see [14] for details).
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In a similar way, let us enlarge the state space E to E ∪ {†}, where † denotes an
absorbing state, often called the cemetery state, and we set X = ∂ whenever J = †.
Moreover, let us assume that the (one-step) ‘absorption’ probability is the same from
all states and denoted by 1 − v = P (J1 = †|J0 = i), for all i ∈ E , such that the
corresponding ‘non-absorption’ probability (survival) is given by v ∈ (0, 1]. Now, due
to the addition of this cemetery state, it is clear that the probability transition matrix
for transitions between the ‘transient’ (when v < 1) states of E is dependent on v.
Let us define this by P(v) ≡ vP, where P denotes the stochastic probability transition
matrix defined in Sect. 2, in the absence of an absorbing state or ‘killing’ (v = 1).
Hence, it follows that P(v)	e = vP	e = v	e and thus, for v < 1, P(v) is sub-stochastic
and its Perron–Frobenius eigenvalue is less than 1 (see [7]). Finally, it follows that the
absorption or ‘killing’ time of the Markov chain, denoted gv = inf{n > 0 : Jn = †},
is geometrically distributed with parameter v ∈ (0, 1] and we have

E
(

z−Xn ; n < gv, Jn
) = vn˜F(z)n = (

v˜F(z)
)n = (

˜F
v
(z)

)n (2.3)

where˜F
v
(z) := E

(

z−X1; 1 < gv, J1
) = v˜F(z) with˜F(z) denoting the matrix gener-

ator of the MAC in the absence of killing, as defined as in Eq. (2.2). The connection
between the killed process and transforms/generating functions of the non-killed pro-
cess is evident when we note that Eq. (2.3) is equivalent to E

(

vnz−Xn ; Jn
)

for a
‘non-killed’ MAC. Further advantages of working with the killed process are dis-
cussed in more details in later sections. Throughout the remainder of this paper, we
generally suppress the explicit notation that absorption has not yet occurred but point
out that it is assumed implicitly. As such, the results derived in the following are, in
fact, much more general than they appear, with only a handful of these generalisations
being stated explicitly.

2.2 Occupation Times

It is well known that occupation times and their densities play an important role within
the theory of Lévy processes and their fluctuations. In a continuous environment, the
definition of the occupation density/time of a process at a given level has to be treated
with some care and detail (see [5, 14]) however, in the fully discrete model considered
in this paper, the mathematical definition is intuitive.

Let us define by ˜L(x, j, n), the occupation mass denoting the number of periods
the process {(Xn, Jn)}n≥0 is in state (x, j) ∈ Z × E , up to and including time n � 0,
such that

˜L(x, j, n) =
n

∑

k=0

1(Xk=x,Jk= j). (2.4)
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Then, for some measurable non-negative function f , we have the so-called discrete
occupation mass formula

n
∑

k=0

f (Xk) 1(Jk= j) =
∑

x∈Z
f (x) ˜L (x, j, n) . (2.5)

From the above definition, it is clear that ˜L(x, j, n) is a non-decreasing (monotone)
process in n � 0, which is adapted to the natural filtrationFn . Therefore, if we further
define the N -dimensional square occupation mass matrix, denoted˜L(x, n), with i, j-
th element given by

(

˜L(x, n)
)

i j = E
(

˜L
(

x, j, n
)∣

∣J0 = i
)

. Then, by application of the
strong Markov property, analogously to Proposition 8 in [14], we have the following
proposition.

Proposition 1 Let

τx = inf{n � 0 : Xn = x},

denote the first ‘hitting’ time of the level x ∈ Z. Then, for the occupation mass matrix
˜L(x, n), it follows that

˜L(x,∞) = P
(

τx < ∞, Jτx
)

˜L, (2.6)

where
(

P
(

τx < ∞, Jτx
))

i j = P
(

τx < ∞, Jτx = j |J0 = i
)

and ˜L := ˜L(0,∞) is the
occupation mass matrix at the level 0 over an infinite-time horizon, which has strictly
positive entries.

Remark 2 Let us point out some of the advantages of working with the killed process
at this point:

(i) If we include the implicit killing in the calculations explicitly, then for v ∈ (0, 1],
the probability P

(

τx < ∞, Jτx
)

becomes

P
(

τx < gv, Jτx
) =

∞
∑

n=0

P(τx = n, n < gv, Jn)

=
∞
∑

n=0

vnP(τx = n, Jn) = E
(

vτx ; Jτx
)

,

where in the second equality we have used the fact that P(v) = vP. That is, the
probability matrix P(τ < ∞, Jτx ) becomes the generator matrix E(vτx ; Jτx ), if
one imposes ‘killing’ explicitly. As mentioned above, throughout this work we
will keep killing implicit as it greatly simplifies the presentation but highlight
that the above idea holds for all results.

(ii) Similarly, by superimposing killing in Proposition 1, we have that

˜Lv(x,∞) = E
(

vτx ; Jτx
)

˜Lv,
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with ˜Lv := ˜Lv(0,∞), such that the i, j-th element of ˜Lv(x, n) is given
by

(

˜Lv(x, n)
)

i j = E
(

˜Lv(x, j, n)
∣

∣J0 = i
)

, where ˜Lv(x, j, n) = ∑n
k=0

1(Xk=x,Jk= j,k<gv). Note that since P is sub-stochastic, then {Xk = x} implies
that {k < gv} and thus ˜Lv(x, j, n) coincides with ˜L(x, j, n).

The main reason for introducing the theory of occupation times and their associated
mass matrices, is due to their relationship with the one-step p.g.m., namely ˜F(z).
This connection is highlighted in the following auxiliary theorem which provides the
foundations for many of the results in the following sections.

Theorem 1 For all z ∈ (0, 1] such that I − ˜F(z) is non-singular, it follows that

∑

x∈Z
z−x

P
(

τx < ∞, Jτx
)

˜L = (

I − ˜F(z)
)−1

, (2.7)

where τx is the first hitting time of the level x ∈ Z.

Proof First note by the occupation mass formula, that for any j ∈ E , we have

n
∑

k=0

z−Xk1(Jk= j) =
∑

x∈Z
z−x

˜L(x, j, n).

Taking expectations in the above equation and considering the limit as n → ∞, yields

lim
n→∞

n
∑

k=0

E

(

z−Xk1(Jk= j)
∣

∣J0 = i
)

= lim
n→∞

∑

x∈Z
z−x

E
(

˜L(x, j, n)
∣

∣J0 = i
)

,

from which, since z−x is non-negative for z > 0, we can apply the monotone conver-
gence theorem to obtain

∞
∑

k=0

E

(

z−Xk1(Jk= j)
∣

∣J0 = i
)

=
∑

x∈Z
z−x

E
(

˜L(x, j,∞)
∣

∣J0 = i
)

.

Equivalently, in matrix form the above expression can be written as

∞
∑

k=0

˜F(z)k =
∑

x∈Z
z−x

˜L(x,∞) =
∑

x∈Z
z−x

P
(

τx < ∞, Jτx
)

˜L (2.8)

where the last equality comes from the result of Proposition 1. Finally, we note that
the geometric series on the l.h.s. converges to (I − ˜F(z))−1 as long as κ(z) < 1 and
the result follows using analytic continuation to extend the domain of convergence to
all z ∈ (0, 1] such that (I −˜F(z))−1 exists. �
Remark 3 Note that the result of Theorem 1 holds in the presence of killing (v < 1),
since P(v) is sub-stochastic and thus κv(1) < 1, where κv(z) is the Perron–Frobenius
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eigenvalue of˜F
v
(z). Hence, by continuity of κv(z), there exists a small interval around

z = 1 for which κv(z) < 1. In addition,˜Lmust have finite entries as under killing the
Markov chain is transient and the expected number of visits to any state is finite.

3 Upward Exit Problems

In this section, we discuss and derive results on exit problems for upward skip-free
MACs above and below a fixed level or strip. In the first instance, we will utilise the
upward skip-free property of the level process, {Xn}n�0, to determine expressions for
upward exit times (one and two-sided), then extend the theory to consider downward
exit problems. These expressions are given in terms of so-called fundamental and scale
matrices associated to the MAC, where the existence of the latter was first discussed
in [19] and extended the notion of scale functions associated to Lévy processes (see
[3, 18] for more details).

All the results given in this section are stated from an initial level X0 = 0 which,
due to the invariance property, can be generalised to an arbitrary level, say x0 ∈ Z,
via an appropriate shift.

Let us denote by τ±
x , the first time the level process {Xn}n�0 up(down)-crosses the

level x ∈ Z, such that

τ+
x = inf{n � 0 : Xn � x} and τ−

x = inf{n � 0 : Xn � x}. (3.1)

We note that in a ‘spectrally negative’ MACwith upward drift of one per unit time, for
x � X0 the random stopping times τ+

x (crossing time) and τx (hitting time) coincide.
Moreover, we have that Xτ+

x
= Xτx = x .

3.1 One-Sided Exit Upward

The key observation for the first passage upwards is that the stationary and independent
increments as well as the skip-free property provide an embedded Markov structure.
To see this, recall that Xτ+

1
= Xτ1 = 1, which together with the strong Markov and

Markov additive properties, imply that the process {Jτn }n�0 is a (time-homogeneous)
discrete-time Markov chain, given X0 = 0, with some probability transition matrix
˜G, such that for a ≥ 0,

P
(

τa < ∞, Jτa
) = ˜G

a
, ˜G = P

(

τ1 < ∞, Jτ1
)

, (3.2)

with i, j-th element given by (˜G)i j = P
(

τ1 < ∞, Jτ1 = j | J0 = i
)

for i, j ∈ E .

Remark 4 In the case of no killing, i.e. v = 1 and κ ′(1) � 0 (non-negative drift), the
matrix ˜G is a stochastic matrix and sub-stochastic otherwise.

The transition probability matrix ˜G is widely known as the fundamental matrix of
the MAC and contains the probabilistic characteristics to determine upward passage
times and the corresponding phase state at passage. That is, determining the matrix ˜G

123



1060 Journal of Theoretical Probability (2024) 37:1052–1078

provides the probability of hitting any upper level a � 0 and the phase of {Jn}n�0 at
this hitting time.

The matrix ˜G has a long history in the theory of structured stochastic matrices (see
for, e.g. Lemma 4.2 in [7]) and can be computed by conditioning on the first time
period, i.e.

˜G = P
(

τ1 < ∞, Jτ1
) =

∞
∑

m=−1

˜A−m˜G
m+1 =

(
∞
∑

m=−1

˜A−m˜G
m
)

˜G.

Multiplying on the right by ˜G
−1

, assuming it exists (see Remark 7), and using the
definition of˜F(z) given in Eq. (2.2), it follows that the fundamental matrix, ˜G, is the
right solution of ˜F(·) = I, which is a well-known equation established in [21] and
further studied in [7, 11, 12, 22], among others.

Remark 5 Let us discuss a few important observations about the fundamental matrix
˜G and its significance within applied probability:

(i) For the continuous-time (scalar) spectrally negative Lévy process, the funda-
mental matrix ˜G, corresponds to the of inverse Laplace exponent at zero, namely
�(0), i.e. the solution to ψ(β) = 0, where ψ(β) denotes the Laplace exponent
of the Lévy process (see [18]).

(ii) It follows by definition that E
(

˜G
−Xn ; Jn

)

is a martingale. In fact, it is clear that
in the matrix setting, there exists another solution (left solution) to ˜F(·) = I,
say ˜R, which would also result in the martingale E

(

˜R
−Xn ; Jn

)

. It turns out
that the matrix ˜R is actually the counterpart of ˜G for the ‘time-reversed MAC’
and is considered another fundamental matrix. The time-reversed MAP and the
corresponding matrix ˜R are considered in [15] for the continuous-time (lattice)
case and we direct the reader to this paper for more details.

(iii) Superimposing killing in the above produces the transform of the first passage
time, namely E

(

vτa ; Jτa
)

, such that

E
(

vτa ; Jτa
) = ˜G

a
v,

˜Gv = E
(

vτ1; Jτ1
)

, (3.3)

and ˜Gv is the right solution of˜F(·) = v−1I.
(iv) As discussed in [15], the right solutions of the above equations cannot be deter-

mined analytically except in some special cases. However, there exist a number
of numerical algorithms which can be employed, e.g. the iterative algorithm
[21], logarithmic reduction [20] and the cyclic reduction [6], to name a few. For
further details on the variety of algorithms available for solving such equations,
see [7] and references therein.

3.2 Two-Sided Exit Upward - {�+a < �−−b}

Within the literature of spectrally negative Lévy processes and their fully discrete
counterparts [3], the common approach to solving two-sided exit problems relies on
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the introduction of a family of functions, Wq and Zq , known as the q-scale functions
(see [18] for details). The extension of these auxiliary, one-dimensional scale functions
to the multidimensional MAP setting was first proposed in [19], where the existence
of the corresponding ‘scale matrices’ was shown and were further investigated in [14]
who derived their probabilistic interpretation within the continuous setting.

For v ∈ (0, 1], the discrete ˜Wv scale matrix is defined as the mapping ˜Wv : N →
R

N×N , with ˜Wv(0) = 0 (the matrix of zeros), such that

˜Wv(n) =
[

˜G
−n
v − E

(

vτ−n ; Jτ−n

)

]

˜Lv, (3.4)

where we write ˜W1(n) =: ˜W(n) for the 1-scale matrix. The definition of the scale
matrix above is only unique up to a multiplicative constant and the presence of the
infinite-time occupationmatrix,˜Lv , is somewhat arbitrary here but is included in order
to obtain the most concise form for the p.g.m.of ˜Wv(·), which is derived in Theorem 2
(see also [14]).

In the two-sided exit problem,we are interested in the timeof exiting a (fixed) ‘strip’,
[−b, a], consisting of an upper and lower level denoted by a and −b, respectively,
such that a > 0 > −b. More formally, we are interested in the events {τ+

a < τ−
−b }

and {τ+
a > τ−

−b }, which correspond to the upward and downward exits from the strip
[−b, a], respectively. In this section, we are concerned with the former (upward exit).
The latter (downward exit) will be discussed in a later section as its derivation depends
on alternative methods.

Let us denote by ρ(·), the spectral radius of a matrix. That is, if 
(A) denotes the
spectrum of a matrix A, then ρ (A) = max{|λi | : λi ∈ 
(A)}.

3.2.1 Two-Sided Exit Theory for Non-singular ˜A1

Theorem 2 Assume that ˜A1 is non-singular. Then, there exists a matrix ˜W : N →
R

N×N with ˜W(0) = 0, which is invertible and satisfies

P
(

τ+
a < τ−

−b, Jτ+
a

) = ˜W(b)˜W(a + b)−1, (3.5)

where
(

P
(

τ+
a < τ−

−b , Jτ+
a

))

i j = P
(

τ+
a < τ−

−b , Jτ+
a

= j |J0 = i
)

and ˜W(·) has
representation

˜W(n) =
(

˜G
−n − P

(

τ−n < ∞, Jτ−n

)

)

˜L. (3.6)

Furthermore, it holds that

∞
∑

n=0

zn˜W(n) =
(

˜F(z) − I
)−1

, (3.7)
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for z ∈ (0, 1] such that z /∈ 
(˜G), and

˜W(n) = ˜G
−n

˜L
+
(n), (3.8)

where˜L
+
(n) := E

[

˜L (0, τn)
]

, denotes the expected number of times the process visits
0 before hitting level n ∈ N

+.

Proof Following the same line of logic as in [14], we note that the events {τ+
a < τ−

−b}
and {τa < τ−b} are equivalent due to the upward skip-free property of {Xn}n�0. This
follows from the fact that in order to drop below −b and then hit a, the process must
visit−b on the way. Thus, conditioning on possible events and employing the Markov
additive property, we obtain

P
(

τa < ∞, Jτa
) = P

(

τa < τ−b, Jτa
) + P

(

τa > τ−b, Jτ−b

)

P
(

τa+b < ∞, Jτa+b

)

and

P
(

τ−b < ∞, Jτ−b

) = P
(

τa > τ−b, Jτ−b

) + P
(

τa < τ−b, Jτa
)

P
(

τ−(a+b) < ∞, Jτ−(a+b)

)

.

Now, by recalling that P
(

τa < ∞, Jτa
) = ˜G

a
, solving the second equation

w.r.t.P
(

τa > τ−b, Jτ−b

)

and substituting the resulting equation into the first, yields

P
(

τa < τ−b, Jτa
)

[

P
(

τ−(a+b) < ∞, Jτ−(a+b)

)

˜G
a+b − I

]

= P
(

τ−b < ∞, Jτ−b

)

˜G
a+b − ˜G

a
. (3.9)

Finally, by multiplying through by −˜G
−(a+b)

on the right, we have

P
(

τa < τ−b, Jτa
)

[

˜G
−(a+b) − P

(

τ−(a+b) < ∞, Jτ−(a+b)

)

]

= ˜G
−b − P

(

τ−b < ∞, Jτ−b

)

,

or equivalently

P
(

τa < τ−b, Jτa
) = ˜W(b)˜W(a + b)−1,

given that ˜W(·)−1 exists (see Remark 7). Note that the above result is derived in the
absence of the occupation mass matrix, ˜L, within the definition of ˜W(n), reinforcing
the point that the scale matrix is uniquely defined up to a (matrix) multiplicative
constant. The choice for including ˜L in the definition of ˜W(n), which is only well
defined as long as ˜L has finite entries (see Remark 3 for conditions), will become
apparent in the following.

To prove Eq. (3.7), let us take the transform of the scale matrix and recall the
definition given in Eq. (3.6), to obtain

∞
∑

n=0

zn ˜W(n) =
∞
∑

n=0

zn˜G
−n

˜L −
∞
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L, (3.10)
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where the first term on the r.h.s. satisfies

∞
∑

n=0

zn˜G
−n

˜L =
∞
∑

n=0

(

z˜G
−1

)n
˜L =

(

I − z˜G
−1

)−1
˜L, (3.11)

for all z ∈ (0, γ ), where γ := min{|λi | : λi ∈ 
(˜G)}.
For the second term of Eq. (3.10), under the conditions of Theorem 1, we have

(

I −˜F(z)
)−1 =

∞
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L +
∞
∑

n=1

z−n
P
(

τn < ∞, Jτn
)

˜L

=
∞
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L +
∞
∑

n=1

z−n
˜G

n
˜L

for all z ∈ (0, 1] such that (I−˜F(z)
)−1 exists. Moreover, for z ∈ (ρ(˜G), 1] (ρ(˜G) < 1

is true as long as ˜G is invertible and this follows from the assumption that the matrix
˜A1 is non-singular, see also Remark 7 ), the geometric series on the r.h.s. converges
and the above equation can be rewritten as

(

I −˜F(z)
)−1 =

∞
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L +
(

(

I − z−1
˜G

)−1−I
)

˜L

=
∞
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L − (

I − z˜G
−1)−1

˜L, (3.12)

once we prove a common domain of convergence, i.e.
(

I − ˜F(z)
)−1 exists for some

z ∈ (ρ(˜G), 1]. In fact, for ρ(˜G) < 1, see Lemma 4 in [8], it can be shown that the
zeros of det[I −˜F(z)] coincide with the eigenvalues of ˜G for z ∈ (0, 1] and thus, the
above holds.

Now, note that if wemultiply Eq. (3.12) from the left by I−z˜G
−1

and from the right
by I−˜F(z), then both sides of the resulting equation are analytic for z ∈ (0, 1]. Hence,
since the matrices

(

I − z˜G
−1)

and
(

I −˜F(z)
)

are invertible as long as z /∈ 
(˜G) and
thus for z ∈ (0, γ ), the aforementioned multiplication can be reversed and Eq. (3.12)
holds for z ∈ (0, γ ) by analytic continuation. The result follows by substituting the
above equation, along with Eq. (3.11), into Eq. (3.10) and using analytic continuation
to extend the domain from z ∈ (0, γ ) to z ∈ (0, 1] such that z /∈ 
(˜G).

To prove Eq. (3.8), we use similar arguments to those used for the result of Propo-
sition 1, to show that for n � 0

˜L = ˜L
+
(n) + P

(

τn < ∞, Jτn
)

P
(

τ−n < ∞, Jτ−n

)

˜L, (3.13)
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where ˜L
+
(n) := E

(

˜L(0, τn)
)

, from which it follows that

˜L
+
(n) =

[

I − P
(

τn < ∞, Jτn
)

P
(

τ−n < ∞, Jτ−n

))

]

˜L =
[

I − ˜G
n
P

(

τ−n < ∞, Jτ−n

)

]

˜L.

Multiplying this expression through by ˜G
−n

(on the left) and recalling the form of
˜W(n) given in Eq. (3.6), the result follows immediately. So far we assume only that
ρ(˜G) < 1, hence by Remark 4 that either v < 1 or that v = 1 and κ ′(0) > 0. To
handle the remaining (limiting) case of v = 1 and κ ′(0) ≤ 0, we can follow the proof
of Theorem 1 in [14]. Namely we can use the representation (3.8) of the scale function,
take v → 1 and observe that matrices ˜G, ˜L

+
(n) and˜F(z) properly converge. �

Remark 6 In [15], the authors derive an equivalent result to Theorem 2 for a
continuous-time MAP in the lattice and non-lattice case. Although their study focuses
purely on the continuous-time case, they do point out the connection for the discrete-
time model (Remark 6 in [15]) but do not provide any proof or further details.

Remark 7 (Invertibility of˜L
+
(n), ˜G and ˜W(n)) Throughout the proof of the previous

theorem and results earlier in this paper, we required invertibility of the fundamental
matrix ˜G and the scale matrix ˜W(n). We will now look at under what conditions such
invertibility holds:

(i) Following similar arguments as in [15], since the level process starts at X0 = 0,
the expected number of visits at 0 before the process reaches level n � 0, namely
˜L

+
(n) = E

[

˜L(0, τn)
]

, satisfies

˜L
+
(n) = I + �n ˜L

+
(n),

where �n is a probability matrix with i, j-th element containing the probability
of a second visit to level 0 before reaching level n and doing so in phase j ,
conditioned on the starting point (0, i). Note that �n is clearly a sub-stochastic,
non-negative matrix, which implies ρ

(

�n
)

< 1 and thus I − �n is invertible.

Hence, ˜L
+
(n) is also invertible, since from the above expression it follows that

(I − �n)˜L
+
(n) = I.

(ii) In order to show that ˜G is invertible, recall that

˜G =
∞
∑

m=−1

˜A−m˜G
m+1 = ˜A1 +

∞
∑

m=0

˜A−m˜G
m+1

,

from which it follows that

˜A1 = ˜G −
∞
∑

m=0

˜A−m˜G
m+1 =

(

I −
∞
∑

m=0

˜A−m˜G
m
)

G =
(

I − �1

)

G

Therefore, since I−�1 is invertible,˜G is invertible provided that˜A1 is invertible.
Finally, since ˜L

+
(n) is invertible and given ˜G is invertible, then by Eq. (3.8) it

is clear that ˜W(n) is also invertible.
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Although Theorem 2 provides a number of representations for ˜W, in the discrete case
the scale matrix also satisfies a recursive relation. The recursion below generalises the
recursion for the scale function derived in [3] and has also been discussed in [15].

Corollary 1 For b � 1, the scale matrix ˜W(·), defined in Theorem 2, satisfies the
following recursive equation

˜W(b + 1) = ˜A
−1
1

(

˜W(b) −
b−1
∑

m=0

˜A−m˜W(b − m)
)

, (3.14)

with ˜W(1) = ˜A
−1
1 .

Proof To prove the recursive relation, consider the two-sided hitting probability
P
(

τ+
a < τ−

−b; Jτ+
a

)

and condition on the first time step. Then, for a, b � 1, we
have

P
(

τ+
a < τ−

−b; Jτ+
a

) =
1

∑

m=−(b−1)

˜AmPm
(

τ+
a < τ−

−b; Jτ+
a

)

=
1

∑

m=−(b−1)

˜AmP
(

τ+
a−m < τ−

−(b+m); Jτ+
a−m

)

,

where the last equality follows from the Markov additive property. Further, using
Theorem 2 and multiplying on the right by ˜W(a + b), the above expression can be
rewritten as

˜W(b) =
1

∑

m=−(b−1)

˜Am ˜W(b + m).

and the recursive expression given in Eq. (3.14) follows directly after some basic
algebraic manipulations. For ˜W(1), recall Remark 7 that ˜L

+
(1) = (I − �1)

−1 and

also that ˜A
−1
1 = ˜G

−1
(I − �1)

−1 = ˜G
−1

˜L
+
(1) = ˜W(1), from Theorem 2. �

Remark 8 Under the same line of logic as Remark 5, we recall that the above results are
more general than explicitly stated. For example, by superimposing killing Eq. (3.5)
is equivalent to

E

(

vτ+
a ; τ+

a < τ−
−b, Jτ+

a

)

= ˜Wv(b)˜Wv(a + b)−1, (3.15)

for v ∈ (0, 1], where ˜Wv(·) is defined in Eq. (3.4) with the rest of the results amended
accordingly.
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3.2.2 Two-Sided Exit Theory for Arbitrary ˜A1

In Theorem 2, we rely on the fact that ˜A1 is non-singular, which in turn ensures ˜G
is non-singular by Remark 7. However, it turns out that a similar result can also be
derived for arbitrary ˜A1 in terms of matrices closely related to the ˜W scale matrix.

To see this, let us define ˜L
−
(n) := E

(

˜L (0, τ−n)
)

for n � 0, ˜M(n) :=
E

(

˜L
(−n, τ−(n+1)

))

and recall ˜R is related to the ‘time-reversed’ counterpart of ˜G
(see Remark 5). Then, we have the following theorem.

Theorem 3 Assume the matrix ˜A1 is singular. Then, there exists a matrix ˜V : N →
R

N×N with ˜V(0) = I, which is invertible and satisfies

P
(

τ+
a < τ−

−b, Jτ+
a

) = ˜V(b)˜R
a
˜V(a + b)−1, (3.16)

where

˜V(n) = ˜L
−
(n) =

[

I − P
(

τ−n < ∞, Jτ−n

)

˜G
n
]

˜L.

Furthermore, it holds that

˜L
−
(n) =

n−1
∑

k=−1

˜M(k)˜R
k

(3.17)

and for z ∈ (0, 1] such that z /∈ 
(˜G), also

∞
∑

n=0

zn˜M(n) = (

I − ˜F(z)
)−1

(

I − z−1
˜R

)

. (3.18)

Proof Assume now that the matrix ˜G is singular (which, by Remark 7, is equivalent
to the requirement that the matrix ˜A1 is singular). Then, from equation (3.9) we can
obtain an alternative representation for the two-sided exit probability of the form

P
(

τ+
a < τ−

−b, Jτ+
a

) = ˜H(b)˜G
a
˜H(a + b)−1,

where

˜H(n) = I − P

(

τ−−n < ∞, Jτ−−n

)

˜G
n
,

for n � 0, as long as this matrix is invertible (see below). Moreover, by similar
arguments as in Eq. (3.13), it follows that

˜L = ˜L
−
(n) + P

(

τ−n < ∞, Jτ−n

)

P
(

τn < ∞, Jτn
)

˜L,
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or equivalently

˜L
−
(n) =

[

I − P
(

τ−n < ∞, Jτ−n

)

˜G
n
]

˜L.

Now, although we do not discuss in much details here the definition and probabilistic
interpretation of the matrix ˜R, [15] explain that the matrix ˜R

n
comprises of i, j-th

elements representing the expected number of visits to level n � 0 in phase j before
the first return to the level 0, given X0 = 0 and J0 = i . Hence, using this interpretation,
we observe that

˜G
n
˜L = E

(

˜L(n,∞)
) = ˜L˜R

n

and therefore, straightforward calculations show that Eq. (3.16) holds for ˜V(n) =
˜L

−
(n) as long as this matrix is invertible for all n � 0. Note that this can easily

be verified by employing the same argument as in (i) of Remark 7 for n � 0 and
considering �−n instead of �n .

To prove Eq. (3.17), we use similar arguments as [15] and employ the Markov
property to obtain

˜L
−
(n + 1) = ˜L

−
(n) + ˜M(n)˜R

n
,

and, in particular, ˜L
−
(1) = ˜M(0), from which the result follows directly.

Finally, to prove the transform in Eq. (3.18), we again follow the methodology of
[15] and first note that by conditioning on the first time period, for n � 1, we have

˜M(n) =
n

∑

m=−1

˜A−m ˜M(n − m), (3.19)

whilst, for n = 0, it follows that

˜M(0) = I + ˜A1˜M(1) + ˜A0˜M(0). (3.20)

Taking transforms on both sides of Eq. (3.19) and noting the above expression for
˜M(0), after some algebraic manipulations (see Appendix), we obtain

∞
∑

n=0

zn ˜M(n) = I − z−1
˜A1˜M(0) +˜F(z)

∞
∑

k=0

zk ˜M(k)

= I − z−1
˜R +˜F(z)

∞
∑

k=0

zk ˜M(k), (3.21)

where in the last equality we have use the probabilistic interpretation of ˜R to note that
˜R = ˜A1˜L

−
(1) = ˜A1˜M(0). The result follows directly by solving the above expression

for the transform and holds as long as I −˜F(z) is invertible. �
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Although the result of Theorem 3 is clearly more general than that of Theorem 2,
as it does not require invertibility of ˜A1, it deviates from the well-known form and
methodology of scale matrices (functions) seen throughout the literature. As such,
since the purpose of this paper is to demonstrate and derive the fully discrete analogue
of the well-known ‘scale theory’ for MACs, we will assume the invertibility of ˜A1
throughout the rest of this paper but point out that all the following results could also
be generalised to the arbitrary case (see [15] for more details of such results in the
continuous-time setting).

At this point, it is natural to consider the corresponding downward exit problems
(one and two-sided). However, in order to do this we must first discuss some fluctu-
ation problems for the associated ‘reflected’ MAC process which is discussed in the
following section.

4 Exit Problems For ReflectedMACs

In this section, we deviate from the basic MAC described above and consider the
associated two-sided reflection of the process {Xn}n�0 with respect to a strip [−d, 0]
with d > 0. The choice of strip is purely for notational convenience and can easily
be converted to the general strip [−b, a] by shifting the process appropriately. The
main result of this section is given in Theorem 4 which is interesting in its own right,
but is also used to derive the aforementioned downward exit problems of the original
(un-reflected) MAC.

Following the same line of logic as in [14], let us define the reflected process by

Hn = Xn + R−
n − R+

n ,

where R−
n and R+

n are known as regulators for the reflected process at the barriers −d
and 0, respectively, which ensure that the process {Hn}n�0 remains within the strip
[−d, 0] for all n ∈ N. Note that in continuous-time and space, the reflected process
{Hn}n�0 corresponds to the solution of the so-called Skorohod problem (see [17]).
By the construction of {Hn}n�0, it is clear that {R−

n }n�0 and {R+
n }n�0 are both non-

decreasing processes, with R−
0 = R+

0 = 0, when X0 in [−d, 0], which only increase
during periods when Hn = −d and Hn = 0, respectively. Moreover, since {Xn}n�0 is
‘spectrally negative’ the upward regulator {R+

n }n�0 increases by at most one per unit
time.

Now, let us denote by ρk , the right inverse of the regulator {R+
n }n�0, defined by

ρk = inf{n � 0 : R+
n > k} = inf{n � 0 : R+

n = k + 1}, (4.1)

such that R+
ρk

= k+1. Then, since an increase in {R+
n }n�0 only occurs whilst Hn = 0,

it follows that Hρk = 0 and thus, R−
ρk

= (k + 1) − Xρk . Hence, by the strong Markov
property of {Xn}n�0, we have that

{(

R−
ρk

, Jρk
)}

k�0
is itself a MAC with random

initial position (R−
ρ0

, Jρ0) when X0 ∈ [−d, 0] and non-negative jumps within the
level process {R−

ρk
}k�0. Thus, in a similar way as for the original MAC (X , J ), we
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can define its p.g.m. , given X0 = 0, by

E
(

zR
−
ρk ; Jρk

) = (

˜F
∗
(z)

)k+1
, ˜F

∗
(z) := E

(

z
R−

ρ0 ; Jρ0
)

. (4.2)

Remark 9 In the continuous case, X0 = 0 is a regular point on (0,∞) and thus, it

follows that ρ0 = 0 a.s. and thus E
(

z
R−

ρ0 ; Jρ0
) = I (see [14] for details). However, in

the fully discrete set-up, we have already mentioned that R−
ρ0

is random for X0 = 0
and is due to the possibility of the process experiencing a negative jump in the first time
period such that ρ0 �= 0. Moreover, the process may drop below the lower level −d
(resulting in a jump in {R−

n }n�0) before the stopping time ρ0 , and justifies the choice

of the p.g.m.E
(

z
R−

ρ0 ; Jρ0
)

above, compared to E
(

z
R−

ρ1 ; Jρ1
)

in the continuous case

(see [14]). On the other hand, we note that if X0 = 1, then E1
(

zR
−
ρ0 ; Jρ0

) = I, since
R+
0 = 1, and thus ρ0 = 0. The latter observation will play a crucial role in analysing

the distribution of (R−
ρ0

, Jρ0), which is given in the following theorem in terms of the
second v-scale matrix, denoted ˜Zv , and defined for z ∈ (0, 1] and v ∈ (0, 1], by

˜Zv(z, n) = z−n
[

I +
n

∑

k=0

zk ˜Wv(k)
(

I − v˜F(z)
)

]

, (4.3)

with ˜Zv(z, 0) = I, for all z ∈ (0, 1] and v ∈ (0, 1] and ˜Z1(z, n) =: ˜Z(z, n).

Theorem 4 For z ∈ (0, 1], such that z /∈ 
(˜G), and x ∈ [−d, 1] it holds that˜Z(z, d +
1) is invertible and

Ex
(

z
R−

ρ0 ; Jρ0
) = ˜Z(z, d + x)˜Z(z, d + 1)−1, (4.4)

where˜Z(z, n) is defined by Eq. (4.3).

Proof The proof of this theorem actually follows a similar line of logic as the proof
of Theorem 1; however, due to the nature of the reflected process, the calculations
require greater attention.

First note that since Hρk = 0 for each k ∈ N, we have Xρk = k + 1 − R−
ρk

and thus {(Xρk , Jρk )}k�0 is a MAC having unit (upward) drift and downward jumps
described by {R−

ρk
}k�0 with random ‘initial’ position Xρ0 = 1 − R−

ρ0
. Moreover, its

occupation mass in the bivariate state (y, j) ∈ Z × E is defined by ˜L∗(y, j,∞) =
∑∞

k=0 1
(

Xρk=y,Jρk= j
) and thus, from the occupation mass formula in Eq. (2.5), we

have

∞
∑

k=0

z−Xρk 1(Jρk= j) =
∑

m∈Z
z−m

˜L∗(m, j,∞).
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Taking expectations on both sides of this expression, conditioned on the initial state
X0 = x ∈ [−d, 1], and writing in matrix form yields

∞
∑

k=0

Ex

(

z−Xρk ; Jρk
)

=
∑

m∈Z
z−m

˜L
∗
x (m,∞), (4.5)

where ˜L
∗
x (m,∞) is the infinite-time occupation matrix with i, j-th element given by

(

˜L
∗
x (m,∞)

)

i j = Ex
(

˜L∗(m, j,∞) | J0 = i
)

.
Let us now treat the left-hand side and right-hand side of Eq. (4.5) separately. Firstly,

using the fact that Xρk = k + 1 − R−
ρk
, along with the strong Markov and Markov

additive properties of {R−
ρk

}k�0, the l.h.s. of Eq. (4.5) can be rewritten in the form

∞
∑

k=0

Ex

(

z−Xρk ; Jρk
)

=
∞
∑

k=0

z−(k+1)
Ex

(

zR
−
ρk ; Jρk

)

=
∞
∑

k=0

z−(k+1)
Ex

(

z
R−

ρ0 ; Jρ0
)

E
(

z
R−

ρk−1 ; Jρk−1

)

= Ex
(

z
R−

ρ0 ; Jρ0
)

∞
∑

k=0

z−(k+1)(
˜F

∗
(z)

)k

= Ex
(

z
R−

ρ0 ; Jρ0
)

z−1(I − z−1
˜F

∗
(z)

)−1
, (4.6)

for all z ∈ (0, 1] such that z > (ρ(˜F
∗
(z)). We note that since {(Xρk , Jρk )}k�0 is a

MAC, it holds that E(z−Xρk ; Jρk ) = (

E(z−Xρ0 ; Jρ0)
)k+1. Now, let us define τ 1 =

inf{ρk � 0 : Xρk = 1} and G to be the probability transition matrix such that
P(τ 1 < ∞, Jτ 1) = G, which is sub-stochastic, (implying ρ(G) < 1) in the case of
killing or no killing and negative drift. Then, based on similar arguments as those
discussed in the proof of Theorem 2, since the eigenvalues of G coincide with the
roots of I − E(z−Xρ0 ; Jρ0) = (I − z−1

˜F
∗
(z)), then we conclude that I − z−1

˜F
∗
(z) is

invertible for z ∈ (ρ(G), 1]. In fact, since {Xn}n�0 is an upward skip-free process, it
follows that τ 1 = τ1 for X0 ∈ [−d, 1], which implies G = ˜G, and thus I− z−1

˜F
∗
(z)

is invertible for z ∈ (ρ(˜G), 1]. Hence, by applying the same analytic continuation
argument as in Theorem 2, the above expression holds for z ∈ (ρ(˜G), 1).

Now, for the r.h.s. of Eq. (4.5), let us introduce the matrix quantity ˜C−y whose
individual i, j-th elements denote the probability of the process {Xn}n�0 first hitting
some level −y < 0 from initial states X0 = 0 and J0 = i , and then hitting the upper
level (d + 1) − y whilst Jn = j , such that

˜C−y = P
(

τ−y < ∞, Jτ−y

)

P−y
(

τd+1−y < ∞, Jτd+1−y

)

= P
(

τ−y < ∞, Jτ−y

)

P
(

τd+1 < ∞, Jτd+1

) = P
(

τ−y < ∞, Jτ−y

)

˜G
d+1

. (4.7)
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Using this quantity, it is possible to show that for X0 = x ∈ [−d, 1]

˜L
∗
x (m,∞) = [

1(m>0)Px
(

τm < ∞, Jτm
) + 1(m�0)˜Cm−(d+1)−x

]

∞
∑

k=0

(

˜C−(d+1)
)k

.

To see this, note that ˜L∗(m, j,∞) corresponds to the (local) time points ρk (increases
in {R+

n }n�0) such that Xρk = m and Jρk = j , or alternatively, time points k � 0
for which {R+

n }n�0 is increasing and Xk = m and Jk = j . Then, for m > 0, the
first increase of ˜L∗(m, j,∞) is at τm , otherwise, for m � 0, {Xn}n�0 has to first
visit the state (level) m − (d + 1) to ensure that at the next time the process {Xn}n�0
visits the level m < 0, the ‘reflected process’ {Hn}n�0 was at its upper boundary
in the previous time period (Hn−1 = 0), resulting in an increase of {R+

n }n�0. Every
subsequent increase of ˜L∗(m, j,∞) is obtained in a similar way. Thus, the above
equation follows by application of the strong Markov and Markov additive properties.

Taking transforms on both sides of the above equation, it yields

∑

m∈Z
z−m

˜L
∗
x (m,∞) =

(
∞
∑

m=1

z−m
Px

(

τm < ∞, Jτm
) +

0
∑

m=−∞
z−m

˜Cm−(d+1)−x

)
∞
∑

k=0

(

˜C−(d+1)
)k

=
(

∞
∑

m=1

z−m
˜G

m−x +
0

∑

m=−∞
z−m

P
(

τm−(d+1)−x < ∞, Jτm−(d+1)−x

)

˜G
d+1

)

× (

I − ˜C−(d+1)
)−1

, (4.8)

where we have used the fact that
∑∞

k=0

(

˜C−(d+1)
)k = (

I−˜C−(d+1)
)−1 in the presence

of killing, since ˜C−(d+1) is a sub-stochastic matrix and thus, its Perron–Frobenius
eigenvalue is less than 1. Now, the first term inside the brackets of the last expression

is clearly equivalent to−(

I− z˜G
−1)−1

˜G
−x

for all z ∈ (ρ(˜G), 1], whilst by the change
of variable k = m − (d + 1) − x , the second term within the brackets becomes

z−(d+1)−x
−(d+1+x)

∑

k=−∞
z−k

P
(

τk < ∞, Jτk
)

˜G
d+1

= z−(d+1)−x
∞
∑

m=d+1+x

zmP
(

τ−m < ∞, Jτ−m

)

˜G
d+1

,

and thus, after some algebraicmanipulations (seeAppendix), Eq.(4.8) can be rewritten
as

∑

m∈Z
z−m

˜L
∗
x (m,∞) = z−1

˜Z(z, d + x)(I −˜F(z))−1
˜W(d + 1)−1, (4.9)
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where ˜Z(z, n) is defined in Eq. (4.3). Finally, by combining Eqs. (4.6) and (4.9), we
obtain for z ∈ (ρ(˜G), 1)

Ex
(

z
R−

ρ0 ; Jρ0
)(

I − z−1
˜F

∗
(z)

)−1 = ˜Z(z, d + x)(I −˜F(z))−1
˜W(d + 1)−1.(4.10)

To complete the proof, it remains to determine the form of the matrix˜F
∗
(z). To do this,

let x = 1 into the above expression which, after using the fact that E1
(

z
R−

ρ0 ; Jρ0
) = I

since in this case ρ0 = 1 and taking inverses on both sides, gives

I − z−1
˜F

∗
(z) = ˜W(d + 1)(I −˜F(z))−1

˜Z(z, d + 1)−1.

Note that this expression shows that ˜Z(z, d + 1) is an invertible matrix as long as
˜W(d + 1) is invertible and after solving w.r.t.˜F

∗
(z) also gives

˜F
∗
(z) = z

[

I − ˜W(d + 1)(I −˜F(z))−1
˜Z(z, d + 1)−1

]

. (4.11)

The result follows by substituting the above expression for˜F
∗
(z) back into Eq. (4.10),

re-arranging and employing analytic continuation in a similar way as previous.
�

Remark 10 We point out that setting X0 = x = 0 in the result of Theorem 4, gives an
equivalent representation for˜F

∗
(z) in terms of the ˜Z scale matrix only, i.e.

˜F
∗
(z) = ˜Z(z, d)˜Z(z, d + 1)−1.

Moreover, we note that based on its definition, it is also possible to use the recursive
relation of ˜W(·), given in Corollary 1, to obtain explicit values of ˜Z(z, ·).
Although the result of Theorem 4 is interesting in its own right, its main importance in
this paper is as a stepping stone for proving a similar result for the associated one-sided
reflected process (see Sect. 4.1 below) and consequently, the two-sided and one-sided
(as a limiting case) downward exit problems for the original (non-reflected) MAC.

4.1 One-Sided Reflection

As discussed in the previous section, the downward exit problems can be solved using
an auxiliary result for the one-sided (lower) reflected process. As such, let us define

Yn = Xn + R−b
n ,

where R−b
n = −b − (−b ∧ Xn) with Xn = infk�n{Xk}, denotes a lower reflecting

barrier at the level −b � 0. Note that this is equivalent to shifting the two-sided
reflected process of the previous section and letting the upper reflecting barrier tend
to infinity. Then, by direct application of Theorem 4 we get the following corollary.
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Corollary 2 For X0 = 0, z ∈ (0, 1] such that z /∈ 
(˜G), a > 0 and b � 0, it holds
that

E

(

zR
−b
τa ; Jτa

)

= ˜Z(z, b)˜Z(z, a + b)−1, (4.12)

Proof Note that ifwe setd = (a−1)+b inTheorem4, then {(Hn+(a−1), R−
n )}n�0 up

to time ρ0 coincides with {(Yn, R−b
n )}n�0 up to time τa , given that H0 + (a−1) = Y0.

Hence, the result follows directly from Theorem 4 with x = −(a − 1). �

5 Downward Exit Problems

For the one and two-sided downward exit problems, we are interested in the events
{τ−

−b < ∞} and {τ−
−b < τ+

a }, respectively.Unlike the upward exit, due to the possibility
of downward jumps in the MAC, the stopping time τ−

−b is not necessarily equivalent
to the first hitting time of the level −b < 0, i.e. τ−

−b �= τ−b. It is for this reason that
we cannot employ the Markov type structure seen for the upward exit identities and,
instead, rely on the results of the reflected processes of the previous section.

Although it would appear easier to derive in the first instance, it turns out that the
one-sided downward exit problem can easily be obtained as a limiting case of the
related two-sided case and as such, is considered in the following.

5.1 Two-Sided Exit Downward - {�−−b < �+a }

For the two-sided downward exit problem, we are interested in the time of exiting
the fixed ‘strip’, [−b, a], such that {τ−

−b < τ+
a }. Using the result for the transform of

the downward regulator for the one-sided reflected process, we obtain the following
corollary.

Corollary 3 For z ∈ [0, 1] such that z /∈ 
(˜G), it holds that for any a, b > 0, we have

E

(

z
−X

τ
−
−b ; τ−

−b < τ+
a , Jτ−

−b

)

= zb−1[
˜Z(z, b − 1) − ˜W(b)˜W(a + b)−1

˜Z(z, a + b − 1)
]

.

Proof Consider the one-sided reflected process of Sect. 4.1. Then, by the strong
Markov and Markov additive properties, it follows that for b > 0, we have

E

(

z
R−(b−1)

τ
+
a ; Jτ+

a

)

= P
(

τ+
a < τ−

−b; Jτ+
a

)

+E

(

z
−(b−1)−X

τ
−
−b ; τ−

−b < τ+
a , Jτ−

−b

)

E

(

z
R0

τ
+
a+b−1 ; Jτ+

a+b−1

)

.

Re-arranging this expression and using the identities of Theorem 2 and Corollary 2
the result follows immediately. �
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5.2 One-Sided Exit Downward

For the one-sided exit problem, we are now interested in the event that of down-
crossing the level −b < 0, whilst the upward movement of the MAC is unrestricted,
i.e. {τ−

−b < ∞} which, as already mentioned, can be viewed as a limiting case of the
corresponding two-sided problem as a → ∞. In fact, this is the argument used to
obtain the following one-sided downward exit identity.

Corollary 4 Assume we are not in the case of no killing and zero drift, i.e. it is not true
that both v = 1 and κ ′(1) = 0. Then, ˜L is invertible and, for z ∈ (0, 1] such that
z /∈ 
(˜G) and b > 0, we have

E

(

z
−X

τ
−
−b ; J

τ
−
−b

)

= zb−1
[

˜Z(z, b − 1) − z˜W(b)˜L
−1(

I − z˜G
−1)−1

˜L(˜F(z) − I)
]

.

(5.1)

Proof Firstly, the invertibility of ˜L follows from Remark 3, for which it cannot hold
that both v = 1 and κ ′(1) = 0. On the other hand, Eq. (5.2) follows from taking the
limit of the two-sided case (see Corollary 3) as the upper barrier tends to infinity, i.e.
a → ∞. In order to evaluate the value of the limit of ˜W(b)˜W(a+b)−1

˜Z(z, a+b−1)
as a → ∞, note that by the definition of the scale matrix˜Z(z, n), and using Eq. (3.7),
it follows that

˜Z(z, a + b − 1) = z−(a+b−1)
(

I +
a+b−1
∑

k=0

zk ˜W(k)
(

I −˜F(z)
)

)

= z−(a+b−1)
∞
∑

k=a+b

zk ˜W(k)
(

˜F(z) − I
)

=
∞
∑

n=1

zn ˜W(n + a + b − 1)
(

˜F(z) − I
)

.

Moreover, by using the fact that ˜W(n) = ˜G
−n

˜L(n) (see Theorem 2), multiplication
of the above expression by ˜W(a + b)−1 on the left yields

˜W(a + b)−1
˜Z(z, a + b − 1) = ˜L

−1
(a + b)

∞
∑

n=1

zn˜G
−(n−1)

˜L(n + a + b − 1)
(

˜F(z) − I
)

,

which, after taking a → ∞ and using dominated convergence theorem, gives

lim
a→∞

˜W(a + b)−1
˜Z(z, a + b − 1) = ˜L

−1
z

∞
∑

n=0

(

z˜G
−1)n

˜L
(

˜F(z) − I
)

= ˜L
−1

z
(

I − z˜G
−1)−1

˜L
(

˜F(z) − I
)

,
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for z ∈ (0, γ ), where ˜L is the infinite-time occupation mass matrix defined in Propo-
sition 1. Finally, by analytic continuation, it can be shown that the above holds for all
z ∈ (0, 1] such that z /∈ 
(˜G) and thus, by taking the limit as a → ∞ in Corollary 3,
using the above expressions and re-arranging, we obtain the result. �
Remark 11 We point out once again that by explicitly imposing killing, Corollary 3
and consequently Corollary 4 equivalently yield the following joint transforms for
v ∈ (0, 1]

E

(

vτ−
−b z

−X
τ
−
−b ; τ−

−b < τ+
a , Jτ−

−b

)

= zb−1[
˜Zv(z, b − 1) − ˜Wv(b)˜Wv(a + b)−1

˜Zv(z, a + b − 1)
]

,

and

E

(

vτ−
−b z

−X
τ
−
−b ; J

τ
−
−b

)

= zb−1
[

˜Zv(z, b − 1) − z˜Wv(b)˜L
−1
v

(

I − z˜G
−1
v

)−1
˜Lv(˜Fv(z) − I)

]

.

(5.2)

where ˜Wv(·) and ˜Zv(z, ·) are defined as in Eqs. (3.4) and (4.3), respectively.
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Appendix

Proof of Eq. (3.21). It follows from the results of Eq. (3.19) and (3.20), that

∞
∑

n=0

zn ˜M(n) = ˜M(0) +
∞
∑

n=1

zn
n

∑

m=−1

˜A−m ˜M(n − m)

= I +
∞
∑

n=0

zn
n

∑

m=−1

˜A−m ˜M(n − m)

= I +
∞
∑

n=0

zn
n+1
∑

k=0

˜A−(n−k) ˜M(k)

= I +
∞
∑

n=0

zn˜A−n ˜M(0) +
∞
∑

n=0

zn
n+1
∑

k=1

˜A−(n−k) ˜M(k)

123



1076 Journal of Theoretical Probability (2024) 37:1052–1078

= I +
∞
∑

n=0

zn˜A−n ˜M(0) +
∞
∑

k=1

zk
∞
∑

n=k−1

zn−k
˜A−(n−k) ˜M(k)

= I +
∞
∑

n=0

zn˜A−n ˜M(0) +
∞
∑

i=−1

zi˜A−i

∞
∑

k=1

zk ˜M(k)

= I − z−1
˜A1˜M(0) +˜F(z)

∞
∑

k=0

zk ˜M(k),

where, in the last equality, we have used the series definition of˜F(z) given in Eq. (2.2).
�
Proof of Eq. (4.9). To prove Eq. (4.9), first note that

k
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L =
⎡

⎣

∞
∑

n=0

znP
(

τ−n < ∞, Jτ−n

) −
∞
∑

n=k+1

znP
(

τ−n < ∞, Jτ−n

)

⎤

⎦˜L.

Then, solving Eq. (3.12) w.r.t.
∑∞

n=0 z
n
P
(

τ−n < ∞, Jτ−n

)

˜L and substituting into the
above equation, we have

k
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L = (

I −˜F(z)
)−1

+(

I − z−1
˜G

−1)−1
˜L −

∞
∑

n=k+1

znP
(

τ−n < ∞, Jτ−n

)

˜L. (A.2)

Now, at this point, consider the definition of the scale matrix, ˜W(n), given in Eq. (3.6).
Multiplying this expression through by zn and summing from 0 to k on both sides,
gives

k
∑

n=0

znP
(

τ−n < ∞, Jτ−n

)

˜L =
k

∑

n=0

zn˜G
−n

˜L −
k

∑

n=0

zn ˜W(n), (A.3)

and thus by equating the r.h.s. of Eqs. (A.2) and (A.3) and re-arranging, we obtain

∞
∑

n=k+1

znP
(

τ−n < ∞, Jτ−n

) =
k

∑

n=0

zn ˜W(n)˜L
−1 + (

I −˜F(z)
)−1

˜L
−1 −

k
∑

n=0

zn˜G
−n

+ (

I − z˜G
−1)−1

=
k

∑

n=0

zn ˜W(n)˜L
−1 + (

I −˜F(z)
)−1

˜L
−1

− (

I − z˜G
−1)−1(I − (z˜G

−1
)k+1)+(

I − z˜G
−1)−1
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=
k

∑

n=0

zn ˜W(n)˜L
−1 + (

I −˜F(z)
)−1

˜L
−1

+ (

I − z˜G
−1)−1

(z˜G
−1

)k+1, (A.4)

which provides an expression for the second term of Eq. (4.8). Thus, letting k = d+ x
in the above expression and substituting into Eq. (4.8), we have that

∑

m∈Z
z−m

˜L
∗
x (m, ∞) =

[

−(

I − z˜G
−1)−1

˜G
−x + z−(d+1)−x

( d+x
∑

n=0

zn ˜W(n)˜L
−1 + (

I −˜F(z)
)−1

˜L
−1

+ (

I − z˜G
−1)−1

(z˜G
−1

)d+x+1
)

˜G
d+1

]

(

I − ˜C−(d+1)
)−1

= z−(d+1)−x

[

d+x
∑

n=0

zn ˜W(n) + (

I −˜F(z)
)−1

]

˜L
−1

˜G
d+1 (

I − ˜C−(d+1)
)−1

(A.5)

Now, setting n = d + 1 in Eq. (3.6) and multiplying from the right by ˜L
−1

˜G
d+1

,
yields

˜W(d + 1)˜L
−1

˜G
d+1 = I − P

(

Jτ−(d+1)

)

˜G
d+1

= I − ˜C−(d+1),

by the definition of ˜C−y given in Eq. (4.7) and thus, it follows that

(

I − ˜C−(d+1)
)−1 = ˜G

−(d+1)
˜L˜W(d + 1)−1.

Finally, substituting the above equation into Eq. (A.5), we get that

∑

m∈Z
z−m

˜L
∗
x (m,∞) = z−(d+1)−x

[

d+x
∑

n=0

zn ˜W(n) + (

I −˜F(z)
)−1

]

˜W(d + 1)−1

= z−1z−(d+x)

[

d+x
∑

n=0

zn ˜W(n)
(

I −˜F(z)
) + I

]

(

I −˜F(z)
)−1

˜W(d + 1)−1

= z−1
˜Z(z, d + x)(I −˜F(z))−1

˜W(d + 1)−1,

where the last equation follows from the definition of the ˜Z scale matrix given in
Eq. (4.3). �
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