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Abstract
The existence condition H < 1/d for first-order derivative of self-intersection local
time for d ≥ 3 dimensional fractional Brownian motion was obtained in Yu (J Theoret
Probab 34(4):1749–1774, 2021). In this paper, we establish a limit theorem under the
nonexistence critical condition H = 1/d.
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1 Introduction

Consider a d-dimensional fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1), which is a d-dimensional centered Gaussian process BH = {BH

t , t ≥
0} with component processes being independent copies of a 1-dimensional centered
Gaussian process BH ,i , i = 1, 2, . . . , d and the covariance function given by

E[BH ,i
t BH ,i

s ] = 1

2

[
t2H + s2H − |t − s|2H

]
.
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Note that B
1
2
t is a classical standard Brownian motion. Let D = {(r , s) : 0 < r < s <

t}. The self-intersection local time (SLT) of fBm was first investigated in Rosen [13]
and formally defined as

αt (y) =
∫

D
δ(BH

s − BH
r − y)drds,

where BH is a 2-dimensional fBm and δ is the Dirac delta function. It was further
investigated in Hu [4], Hu and Nualart [6]. In particular, Hu and Nualart [6] showed
its existence whenever Hd < 1. Moreover, αt (y) is Hölder continuous in time of any
order strictly less than 1 − H which can be derived from Xiao [15].

The derivative of self-intersection local time (DSLT) for fBm was first considered
in the works by Yan et al. [16, 17], where the ideas were borrowed form Rosen [14].
The DSLT for fBm has two versions. One is extended by the Tanaka formula (see in
Jung and Markowsky [9]):

α̃′
t (y) = −H

∫

D
δ′(BH

s − BH
r − y)(s − r)2H−1drds.

The other is from the occupation-time formula (see Jung and Markowsky [10]):

α̂′
t (y) = −

∫

D
δ′(BH

s − BH
r − y)drds.

Motivated by the first-order DSLT for fBm in Jung and Markowsky [10] and the
k-th-order derivative of intersection local time (ILT) for fBm in Guo et al. [3], we will
consider the following k-th-order DSLT for fBm in this paper,

α̂
(k)
t (y) = ∂k

∂
k1
y1 . . . ∂

kd
yd

∫

D
δ(BH

s − BH
r − y)drds

= (−1)|k|
∫

D
δ(k)(BH

s − BH
r − y)drds,

where k = (k1, . . . , kd) is a multi-index with all ki being nonnegative integers and
|k| = k1 + k2 + · · · + kd , δ is the Dirac delta function of d variables and δ(k)(y) =

∂k

∂
k1
y1 ...∂

kd
yd

δ(y) is the k-th-order partial derivative of δ.

Set

fε(x) = 1

(2πε)
d
2

e− |x |2
2ε = 1

(2π)d

∫

Rd
ei〈p,x〉e−ε

|p|2
2 dp,

where 〈p, x〉 = ∑d
j=1 p j x j and |p|2 = ∑d

j=1 p
2
j .
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Since the Dirac delta function δ can be approximated by fε(x), we approximate
δ(k) and α̂

(k)
t (y) by

f (k)
ε (x) = i |k|

(2π)d

∫

Rd
pk11 . . . pkdd ei〈p,x〉e−ε

|p|2
2 dp

and

α̂
(k)
t,ε (y) = (−1)|k|

∫

D
f (k)
ε (BH

s − BH
r − y)drds, (1.1)

respectively.
If α̂

(k)
t,ε (y) converges to a random variable in L p as ε → 0, we denote the limit by

α̂
(k)
t (y) and call it the k-th DSLT of BH .
Recently, Yu [18] studied the existence and Hölder continuity conditions of α̂(k)

t (y)
and related limit theorem in critical case. We recall the existence condition for α̂(k)

t (y)
in L2 as follows.

Theorem 1.1 [18] For 0 < H < 1 and α̂
(k)
t,ε (y) defined in (1.1), let # :=

#{ki is odd, i = 1, 2, . . . d} denotes the odd number of ki , for i = 1, 2, . . . , d.
If H < min{ 2

2|k|+d , 1
|k|+d−# , 1

d } for |k| = ∑d
j=1 k j , then α̂

(k)
t (0) exists in L2.

Note that, if |k| = 1, the existence condition of α̂
(k)
t (0) is H < 1/d, and Hd = 1 is

the critical condition of α̂
(k)
t (y) for any d ≥ 2. When Hd = 1 for d = 2, Markowsky

[11] proved the limit theorem for |k| = 1.

Theorem 1.2 [11] α̂
(k)
t,ε (y) is defined in (1.1) with y = 0. Suppose that H = 1

2 , d = 2
and |k| = 1, then as ε → 0,

(
log 1/ε

)−1
α̂

(k)
t,ε (0)

law→ N
(
0, σ 2

0

)
.

In this paper, we will consider the case of Hd = 1 for any d ≥ 3 and |k| = 1,
and prove a limit theorem for α̂

(k)
t,ε (0). Without loss of generality, we assume that

k1 = 1, k2 = 0, . . . , kd = 0 for the multi-index k = (k1, . . . , kd), and for the
convenience of writing, we will abbreviate α̂

(1,0,...,0)
t,ε (0) as α̂

(1)
t,ε (0) in the subsequent

content of this paper without causing confusion.

Theorem 1.3 α̂
(k)
t,ε (y) is defined in (1.1) with y = 0. Suppose that Hd = 1 for any

d ≥ 3 and |k| = 1. Then, as ε → 0, we have

(
ε− 1

H log 1/ε
)H− 1

2
α̂

(1)
t,ε (0)

law→ N (0, σ 2),

where σ 2 = 2Ht3−4H

(2π)d (1−2H)2
.
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When |k| = 1, under the condition H > 1/d, the behavior of α̂
(1)
t,ε (0) as ε → 0

is also of interest. One would expect a central limit theorem to exist, but this remains
unproved. Nevertheless, we venture the following conjecture

(1) If H = 2
d+2 > 1

d and d ≥ 3, (log 1
ε
)γ1(H)α̂

(1)
t,ε (0) converges in distribution to a

normal law for some γ1(H) < 0;
(2) If H > 1

2 ≥ 2
d+2 and d ≥ 2, εγ2(H)α̂

(1)
t,ε (0) converges in distribution to a normal

law for some γ2(H) > 0;
(3) If 2

d+2 < H < 1
2 and d ≥ 3, εγ3(H)(log 1

ε
)γ4(H)α̂

(1)
t,ε (0) converges in distribution

to a normal law for some γ3(H) > 0 and γ4(H) < 0.
The paper has the following structure.We state some preliminary lemmas in Sect. 2.

Section3 is to prove themain result. Throughout this paper, if notmentioned otherwise,
the letter C , with or without a subscript, denotes a generic positive finite constant and
may change from line to line.

2 Preliminaries

In this section, we present two basic lemmas, which will be used in Sect. 3. The first
lemma gives the bounds on the quantity of λρ − μ2, which could be obtained from
the Appendix B in [9] or Lemma 3.1 in [4]. In fact, λ, ρ and μ represent the three
quantities of the covariance matrix of the increment of fBm, and the bound estimation
of λρ − μ2 is beneficial for the subsequent calculation of the convergence of multiple
integrals, which will bring a lot of convenience to the proof in Sect. 3.

Lemma 2.1 Let

λ = |s − r |2H , ρ = |s′ − r ′|2H ,

and

μ = 1

2

(
|s′ − r |2H + |s − r ′|2H − |s′ − s|2H − |r − r ′|2H

)
.

Case (i) Suppose that D1 = {(r , r ′, s, s′) ∈ [0, t]4 | r < r ′ < s < s′}, let r ′−r = a,
s − r ′ = b, s′ − s = c. Then, there exists a constant K1 such that

λρ − μ2 ≥ K1

(
(a + b)2Hc2H + a2H (b + c)2H

)

and

2μ = (a + b + c)2H + b2H − a2H − c2H .

Case (ii) Suppose that D2 = {(r , r ′, s, s′) ∈ [0, t]4 | r < r ′ < s′ < s}, let
r ′ − r = a, s′ − r ′ = b, s − s′ = c. Then, there exists a constant K2 such that

λρ − μ2 ≥ K2 b
2H

(
a2H + c2H

)
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and

2μ = (a + b)2H + (b + c)2H − a2H − c2H .

Case (iii) Suppose that D3 = {(r , r ′, s, s′) ∈ [0, t]4 | r < s < r ′ < s′}, let
s − r = a, r ′ − s = b, s′ − r ′ = c. Then, there exists a constant K3 such that

λρ − μ2 ≥ K3(ac)
2H

and

2μ = (a + b + c)2H + b2H − (a + b)2H − (c + b)2H .

The second lemma shows the Wiener chaos expansion of α̂
(k)
t,ε (0) with |k| = 1.

Before that, we need to explain some notations. We will denote byH the Hilbert space
obtained by taking the completion of the space of step functions endowed with the
inner product

〈1[a,b],1[c,d]〉H = E[(BH ,1
b − BH ,1

a )(BH ,1
d − BH ,1

c )], (2.1)

where BH ,1 is a 1-dimensional fBm. The mapping 1[0,t] → BH ,1
t can be extended to

a linear isometry between H and a Gaussian subspace L2(�,F , P). For any integer
q ∈ N, we denote by H⊗q and H	q the q-th tensor product of H, and the q-th
symmetric tensor product of H, respectively.

Similarly, for d-dimensional fBm BH = (BH ,1, . . . , BH ,d), we can define cor-
responding Hilbert space Hd and tensor product spaces (Hd)⊗q and (Hd)	q . If
h = (h1, . . . , hd) ∈ Hd , we set BH (h) = ∑d

j=1 B
H , j (h j ). Then h 
→ BH (h)

is a linear isometry between Hd and the Gaussian subspace of L2(�1 × · · · ×
�d ,F1 × · · · × Fd , P1 × · · · × Pd) generated by BH . The q-th Wiener chaos of
L2(�1 × · · · × �d ,F1 × · · · × Fd , P1 × · · · × Pd), denoted by Hq , is the closed
subspace of L2(�1 × · · · × �d ,F1 × · · · × Fd , P1 × · · · × Pd) generated by the
variables

{ d∏
j=1

Hqj (B
H , j (h j ))|

d∑
j=1

q j = q, h j ∈ H, ‖h j‖H = 1
}
,

where Hq is the q-th Hermite polynomial, defined by

Hq(x) = (−1)qex
2/2 dq

dxq
e−x2/2.
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For q ∈ N, q ≥ 1 and h ∈ Hd of the form h = (h1, . . . , hd) with ‖h j‖H = 1, we
can write

h⊗q =
d∑

i1,...,iq=1

hi1 ⊗ · · · ⊗ hiq .

For such h, we define the mapping

Iq(h
⊗q) =

d∑
i1,...,iq=1

d∏
j=1

Hqj (i1,...,iq )(B
H , j (h j )), j = 1, . . . , d

whereq j (i1, . . . , iq) denotes the number of indices in (i1, . . . , iq) equal to j . The range
of Iq is contained in Hq . This mapping provides a linear isometry between (Hd)	q

(equipped with the norm
√
q!‖ · ‖(Hd )⊗q ) and Hq (equipped with the L2-norm). Here

multiple stochastic integral In is the d-dimensional version see in Jaramillo andNualart
[8] (or in Flandoli and Tudor [2]).

It also holds that In( f ) = In( f̃ ), where f̃ denotes the symmetrization of f . We
recall that any square integrable random variable F which is measurable with respect
to the σ -algebra generated by BH can be expanded into an orthogonal sum of multiple
stochastic integrals

F =
∞∑
n=0

In( fn),

where fn ∈ (Hd)	n are (uniquely determined) symmetric functions and I0( f ) =
E(F).

The proof process ofWiener chaos expansion also requires the knowledge ofMalli-
avin derivative D with respect to fBm BH . Denote by C∞

b (Rn) the space of bounded
smooth functions on R

n . Consider the space of random variables

S := {F = g(BH ( f1), . . . , B
H ( fn)), g ∈ C∞

b (Rn), f j ∈ Hd , j = 1, . . . , d}.

The Malliavin derivative of F ∈ S, denoted by DF , is given by

DF =
n∑
j=1

∂ j g(B
H ( f1), . . . , B

H ( fn)) f j .

By iteration, we can define the n-th derivatives Dn for every n ≥ 2, which is an
element of L2(�, (Hd)⊗n). For example, we write for the smooth function f ,

D f (BH ,1
t , . . . , BH ,d

t ) = D f (BH (h1), . . . , B
H (hd ))

=
d∑
j=1

∂ j f (B
H (h1), . . . , B

H (hd ))h j , h j ∈ Hd , j = 1, 2, . . . , d,

123
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where h j = 1[0,t]e j , j = 1, 2, . . . , d and

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1). (2.2)

Similarly,

D
n f (BH ,1

t , . . . , BH ,d
t )

=
d∑

i1,...,in=1

∂i1 · · · ∂in f (BH ,1
t , . . . , BH ,d

t )

n⊗
j=1

(1[0,t]ei j ),
(2.3)

where 1[0,t]ei j ∈ Hd ,
⊗n

j=1(1[0,t]ei j ) ∈ (Hd)⊗n, i j ∈ {1, 2, . . . , d}, j =
1, 2, . . . , n.

More detailed introductions to Malliavin derivative and multiple stochastic integral
can be found in Nualart [12], Hu [5] and the references therein.

Lemma 2.2 Let α̂(k)
t,ε (y) be defined in (1.1), then we have the Wiener chaos expansion

for k = (1, 0 . . . , 0),

α̂
(k)
t,ε (0) =

+∞∑
q=1

I2q−1( f2q−1,ε).

(i) If d = 2, f2q−1,ε is the element of (H2)⊗(2q−1) given by

f2q−1,ε(x1, . . . , x2q−1) = βq

∫

0<r<s<t
(|s − r |2H + ε)−q−1

2q−1⊗
j=1

(1[r ,s]ei j )(x j )drds,

where βq = (−1)q

2π(2q−1)!
∑

q1+q2=q,q1≥1
(2q−1)!(2q1)!

(2q1−1)!(q1)!(q2)!2q and 1[r ,s]ei j ∈ H2, i j ∈
{1, 2}, j = 1, 2, . . . , 2q − 1, (ei j defined in (2.2)).

(ii) If d ≥ 3, f2q−1,ε ∈ (Hd)⊗(2q−1)

f2q−1,ε(x1, . . . , x2q−1) = βq,d

∫

0<r<s<t
(|s − r |2H + ε)−q−d/2

2q−1⊗
j=1

(1[r ,s]ei j )(x j )drds,

where βq,d = (−1)q

(2q−1)!(2π)d/2

∑
q1+···+qd=q,q1≥1

(2q−1)!(2q1)!
(2q1−1)!(q1)!···(qd )!2q and 1[r ,s]ei j ∈

Hd , i j ∈ {1, 2, . . . , d}, j = 1, 2, . . . , 2q − 1.

Proof The proof adopts a method similar to Lemma 7 in Hu and Nualart [6] (or the
Appendix A in Das and Markowsky [1]).
(i) For the case d = 2, by Stroock’s formula,

α̂
(k)
t,ε (0) = i

(2π)2

∫ t

0

∫ s

0

∫

R2
ei〈ξ,BH

s −BH
r 〉ξ1e−ε|ξ |2/2dξdrds
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=
+∞∑
q=1

I2q−1( f2q−1,ε),

where f2q−1,ε ∈ (H2)⊗(2q−1) and

fn,ε ≡ fn,ε(x1, . . . , xn) = 1

n!
∫

0<r<s<t
E[Dn

x1,...,xn∂1 fε(B
H
s − BH

r )]drds

with x j ∈ [0, t] for all j = 1, 2, . . . , n.
Let i j ∈ {1, 2} for all j = 1, 2, . . . , n. Then by (2.3), we can compute the expec-

tation

E[Dn
x1,...,xn∂1 fε(B

H
s − BH

r )] =
2∑

i1,...,in=1

E[∂i1 · · · ∂in∂1 fε(BH
s − BH

r )]
n⊗
j=1

(1[r ,s]ei j )(x j ),

where (1[r ,s]ei j )(x j ) ∈ H2, i j ∈ {1, 2}, j = 1, 2, . . . , n, (ei j defined in (2.2)) and

E[∂i1 · · · ∂in∂1 fε(BH
s − BH

r )]

= in+1

(2π)2

∫

R2
ξ1(ξi1ξi2 · · · ξin )E[ei〈ξ,BH

s −BH
r 〉]e−ε|ξ |2/2dξ

= in+1

(2π)2

∫

R2
ξ1(ξi1ξi2 · · · ξin )e− 1

2 (|s−r |2H+ε)|ξ |2dξ

= (i)n+1(2π)−1(|s − r |2H + ε)−1− n+1
2 E[X1Xi1Xi2 · · · Xin ],

with the independent identical distribution standard Gaussian random variables Xin
and

E[X1Xi1Xi2 · · · Xin ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2m1)!(2m2)!
(m1)!(m2)!2m , ifn = 2(m1 + m2) − 1,

the number of ik = 1 is 2m1 − 1

and the number of ik = 2is 2m2,

0, otherwise.

Then, for n = 2q − 1 = 2(q1 + q2) − 1 with the number of ik = 1 is 2q1 − 1 and the
number of ik = 2 is 2q2, the summation

2∑
i1,...,in=1

1{n=2(q1+q2)−1}1{#{ik=1}=2q1−1}1{#{ik=2}=2q2} =
∑

q1+q2=q,q1≥1

(2q − 1)!
(2q1 − 1)!(2q2)! ,

where #{ik = x} denotes the number of ik = x . This gives

2∑
i1,...,in=1

E[X1Xi1Xi2 · · · Xin ]
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=
2∑

i1,...,in=1

1{n=2(q1+q2)−1}1{#{ik=1}=2q1−1}1{#{ik=2}=2q2}
(2q1)!(2q2)!
(q1)!(q2)!2q

=
∑

q1+q2=q,q1≥1

(2q − 1)!
(2q1 − 1)!(2q2)!

(2q1)!(2q2)!
(q1)!(q2)!2q .

Thus, we have

f2q−1,ε(x1, . . . , x2q−1) = βq

∫

0<r<s<t
(|s − r |2H + ε)−q−1

2q−1⊗
j=1

(1[r ,s]ei j )(x j )drds,

where βq = (−1)q

2π(2q−1)!
∑

q1+q2=q,q1≥1
(2q−1)!(2q1)!

(2q1−1)!(q1)!(q2)!2q .

(ii) Similarly, we can prove the case of d ≥ 3.

α̂
(k)
t,ε (0) =

+∞∑
q=1

I2q−1( f2q−1,ε),

where f2q−1,ε ∈ (Hd)⊗(2q−1) and

fn,ε(x1, . . . , xn) = (ι)n+1

n!
1

(2π)d/2

∫

0<r<s<t
(|s − r |2H + ε)−(n+1/2−d/2)

n⊗
j=1

(1[r ,s]ei j )(x j )drds

×
d∑

i1,...,in=1

E[X1Xi1 Xi2 · · · Xin ],

with (1[r ,s]ei j )(x j ) ∈ Hd , i j ∈ {1, 2, . . . , d}, j = 1, 2, . . . , n.
Note that

E[X1Xi1Xi2 · · · Xin ] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2m1)!···(2md )!
(m1)!···(md )!2m , if n = 2(m1 + · · · + m2) − 1,

the number of ik = 1 is 2m1 − 1

and the number of ik = � is 2m�

for � = 2, . . . , d,

0, otherwise.

Then, for n = 2q − 1 = 2(q1 + · · · + qd) − 1 with the number of ik = 1 is 2q1 − 1
and the number of ik = � is 2q�, the summation

d∑
i1,...,in=1

1{n=2(q1+···+qd )−1}1{#{ik=1}=2q1−1}1{#{ik=2}=2q2} × · · · × 1{#{ik=d}=2qd }

=
∑

q1+···+qd=q,q1≥1

(2q − 1)!
(2q1 − 1)!(2q2)! · · · (2qd)! .
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This gives

d∑
i1,...,in=1

E[X1Xi1 Xi2 · · · Xin ] =
∑

q1+···+qd=q,q1≥1

(2q − 1)!
(2q1 − 1)!(2q2)! · · · (2qd )!

(2q1)! · · · (2qd )!
(q1)! · · · (qd )!2q

=
∑

q1+···+qd=q,q1≥1

(2q − 1)!(2q1)!
(2q1 − 1)!(q1)! · · · (qd )!2q .

Thus,

f2q−1,ε(x1, . . . , x2q−1) = βq,d

∫

0<r<s<t
(|s − r |2H + ε)−q−d/2

2q−1⊗
j=1

(1[r ,s]ei j )(x j )drds,

where βq,d = (−1)q

(2q−1)!(2π)d/2

∑
q1+···+qd=q,q1≥1

(2q−1)!(2q1)!
(2q1−1)!(q1)!···(qd )!2q . ��

Lemma 2.3 If Hd = 1, as ε → 0, we have
(i)

∫ ε
− 1

H

0
xH− 1

2 (1 + xH )−
d
2 −1dx = O

(
log

1

ε

)

and
(ii)

∫ 1

0
x2H (ε + x2H )−

d
2 −1dx = O

(
log

1

ε

)
.

Proof For (i), by L’Hôspital’s rule, we have

lim
ε→0

1

log 1
ε

∫ ε
− 1

H

0
xH− 1

2 (1 + xH )−
d
2 −1dx = lim

ε→0

1

H
ε−1− 1

2H (1 + ε−1)−
d
2 −1

= lim
ε→0

1

H
(ε + 1)−

d
2 −1

= 1

H
,

where we use the condition Hd = 1 in the second equality.

For (ii), take the variable transformation x = yε
1
2H ,

lim
ε→0

1

log 1
ε

∫ 1

0
x2H (ε + x2H )−

d
2 −1dx = lim

ε→0

1

log 1
ε

∫ ε
− 1
2H

0
y2H (1 + y2H )−

d
2 −1dy

= lim
ε→0

1

2H
(ε + 1)−

d
2 −1
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= 1

2H
,

where we use L’Hôspital’s rule and the condition Hd = 1 in the second equality.
��

3 Proof of Theorem 1.3

In this section, the proof of Theorem 1.3 is taken into account, we will consider the
case of Hd = 1 for any d ≥ 3 and |k| = 1. By Lemma 2.2, α̂(1)

t,ε (0) has the following
chaos decomposition

α̂
(1)
t,ε (0) =

∞∑
q=1

I2q−1( f2q−1,ε),

where

f2q−1,ε(x1, . . . , x2q−1) =
∫

D
f2q−1,ε,s,r (x1, . . . , x2q−1)drds

with D = {(r , s) : 0 < r < s < t}, where

f2q−1,ε,s,r (x1, . . . , x2q−1) := βq,d(|s − r |2H + ε)−q−d/2
2q−1⊗
j=1

(1[r ,s]ei j )(x j ).

For q = 1,

E

[∣∣∣I1( f1,ε)
∣∣∣
2] =

∫

D2
〈 f1,ε,s,r , f1,ε,s′,r ′ 〉Hddrdsdr ′ds′, (3.1)

whereHd is the Hilbert space obtained by taking the completion of the step functions
(see in Sect. 2).

For q > 1, we have to describe the terms 〈 f2q−1,ε,s1,r1 , f2q−1,ε,s2,r2〉(Hd )⊗(2q−1) ,
where (Hd)⊗(2q−1) is the (2q − 1)-th tensor product ofHd . For every x, u1, u2 > 0,
we define

μ(x, u1, u2) = |E[BH ,1
u1 (BH ,1

x+u2 − BH ,1
x )]|. (3.2)

For j = 1, 2, . . . , 2q − 1, i j ∈ {1, 2, . . . , d},

〈1[r ,s]ei j ,1[r ,s]ei j 〉Hd = 〈1[r ,s],1[r ,s]〉H. (3.3)

Then, we have

〈 f2q−1,ε,s1,r1 , f2q−1,ε,s2,r2〉(Hd )⊗(2q−1)
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= β2
q,d(|s1 − r1|2H + ε)−q−d/2(|s2 − r2|2H + ε)−q−d/2

× 〈12q−1
[r1,s1],1

2q−1
[r2,s2]〉H⊗(2q−1)

=: β2
q,dG

(q,d)
ε,r2−r1(s1 − r1, s2 − r2), (3.4)

where

G(q,d)
ε,x (u1, u2) =

(
ε + u2H1

)− d
2 −q(

ε + u2H2

)− d
2 −q

μ(x, u1, u2)
2q−1.

Note that equations (3.2)–(3.4) here can degenerate into the case d = 1 of the equations
(2.18)–(2.19) in Jaramillo and Nualart [7].

Before completing the proof of the main result, we give some useful lemmas below.

Lemma 3.1

lim
ε→0

E

[( 1

log 1
ε

α̂
(1)
t,ε (0)

)2] = σ 2,

where σ 2 = 2Ht3−4H

(2π)d (1−2H)2
.

Proof Let (X ,Y ) ∈ R×R be a jointly Gaussian vector with mean zero and covariance

A = (Ai, j )i, j=1,2, let f A is the density of (X ,Y ) and f1,ε(x) = 1√
2πε

e− x2
2ε , x ∈ R be

a 1-dimensional density function. Then,

E[XY f1,ε(X) f1,ε(Y )] =
∫

R2
xy f1,ε(x) f1,ε(y) f A(x, y)dxdy

= (2π)−2ε−1|A|−1/2
∫

R2
xye− 1

2 (x,y)(ε−1 I+A−1)(x,y)T dxdy

= (2π)−1ε−1|A|−1/2| Ã|1/2
∫

R2
xy f Ã(x, y)dxdy

= (2π)−1|ε I + A|−1/2 Ã1,2

= (2π)−1ε2|ε I + A|− 3
2 A1,2,

where Ã := (ε−1 I + A−1)−1, f Ã denotes the density of a Gaussian vector with mean
zero and covariance Ã = ( Ãi, j )i, j=1,2.

Similarly, let� = (�i, j )i, j=1,2 be the covariance matrix of (BH ,1
s − BH ,1

r , BH ,1
s′ −

BH ,1
r ′ ), and �d−1 be the covariance matrix of (B̃H

s − B̃H
r , B̃H

s′ − B̃H
r ′ ) (B̃H denotes

the (d − 1)-dimensional fBm). The notations f� and f�d−1 represent their density
functions, respectively. It is easy to find that �d−1 is a block diagonal matrix, and that
the dimension of it is 2(d − 1) × 2(d − 1). Then,

(2πε)−(d−1)
∫

R2(d−1)
e− x22+y22+···+x2d+y2d

2ε f�d−1(x2, . . . , xd , y2, . . . , yd)dx2 · · · dxddy2 · · · dyd
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=
(

(2πε)−1
∫

R2
e− x2+y2

2ε f�(x, y)dxdy

)d−1

= (
(2π)−1|ε I + �|−1/2)d−1

.

Thus, for any Gaussian vector (X ,Y ) ∈ R
d ×R

d and k-th (k = (1, 0, . . . , 0)) order
derivative, we have

E[ f (1)
ε (X) f (1)

ε (Y )] = 1

ε2
(2πε)−d

E

[
X1Y1e

− X21+···+X2d+Y21 +···+Y2d
2ε

]

= 1

ε2
(2πε)−1

∫

R2
x1y1e

− x21+y21
2ε f�(x1, y1)dx1dy1

× (2πε)−(d−1)
∫

R2(d−1)
e− x22+y22+···+x2d+y2d

2ε f�d−1 (̃x, ỹ)dx̃d ỹ

= ε−2(2π)−1ε2|ε I + �|− 3
2 �1,2 × (2π)−(d−1)|ε I + �|− d−1

2

= (2π)−d |ε I + �|− d
2 −1�1,2,

where x̃ = (x2, . . . , xd), ỹ = (y2, . . . , yd).
Thus,

E

[∣∣∣̂α(1)
t,ε (0)

∣∣∣
2] = V1(ε) + V2(ε) + V3(ε)

with

Vi (ε) = 2

(2π)d

∫

Di

|ε I + �|− d
2 −1|μ|drdsdr ′ds′, (3.5)

where Di (i=1, 2, 3) defined in Lemma 2.1 and� is a covariancematrix with�1,1 = λ,
�2,2 = ρ, �1,2 = μ given in Lemma 2.1.

Next, we will split the proof into three parts to consider V1(ε), V2(ε) and V3(ε),
respectively.

For the V1(ε) term, changing the coordinates (r , r ′, s, s′) by (r , a = r ′ − r , b =
s − r ′, c = s′ − s) and integrating the r variable, we get

V1(ε) ≤ C
∫

[0,t]4
|ε I + �|− d

2 −1|μ|drdadbdc

= C
∫

[0,t]3
|ε I + �|− d

2 −1|μ|dadbdc
=: Ṽ1(ε).

Applying Lemma 2.1 Case (i), for some C > 0, we get

|ε I + �| = (ε + �1,1)(ε + �2,2) − �2
1,2 = ε2 + ε(�1,1 + �2,2) − |�|
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≥ C
[
ε2 + ε((a + b)2H + (b + c)2H ) + a2H (c + b)2H + c2H (a + b)2H

]

≥ C
[
ε2 + (a + b)H (b + c)H (ε + (ac)H )

]

≥ C(a + b)H (b + c)H (ε + (ac)H ), (3.6)

where we use the Young’s inequality in the second to last inequality.
Substituting (3.6) and

|μ| = 1

2

∣∣∣(a + b + c)2H + b2H − a2H − c2H
∣∣∣ ≤ √

λρ = (a + b)H (b + c)H

into the integrand of Ṽ1(ε),

Ṽ1(ε) ≤ C
∫

[0,t]3
(a + b)−

Hd
2 (b + c)−

Hd
2

(
ε + (ac)H

)− d
2 −1

dadbdc

≤ C
∫

[0,t]3
(a + b)H− Hd

2 (a + b)−H (b + c)−
Hd
2

(
ε + (ac)H

)− d
2 −1

dadbdc

≤ C
∫

[0,t]3
b−H− Hd

2 aH− Hd
2

(
ε + (ac)H

)− d
2 −1

dadbdc

≤ Cε
1
H − d

2 −1
∫ tε− 1

H

0

∫ t

0
aH− Hd

2

(
1 + (ac)H

)− d
2 −1

dadc,

where we make the change of variable c = c ε− 1
H in the last inequality.

By L’Hôspital’s rule, we have

lim
ε→0

Ṽ1(ε) ≤ lim
ε→0

−Ct
H ε−1− 1

H
∫ t
0 a

H− 1
2 (1 + t HaHε−1)− d

2 −1da

(1 − 1
2H )ε− 1

2H

= lim
ε→0

Ct
H

1
2H − 1

∫ tε− 1
H

0
aH− 1

2 (1 + t HaH )−
d
2 −1da

= O

(
log

1

ε

)
,

where we have used Lemma 2.3 in the last equality.
So, we can obtain

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

V1(ε) = 0. (3.7)
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For the V2(ε) term, changing the coordinates (r , r ′, s, s′) by (r , a = r ′ − r , b =
s′ − r ′, c = s − s′) and integrating the r variable, then by (3.5), we get

V2(ε) ≤ C
∫

[0,t]3
|ε I + �|− d

2 −1|μ|dadbdc =: Ṽ2(ε).

By Lemma 2.1 Case (ii),

|ε I + �| = (ε + �1,1)(ε + �2,2) − �2
1,2 ≥ ε2 + ε((a + b + c)2H + b2H )

+K2b
2H (a2H + c2H ).

Then, we have

Ṽ2(ε) ≤ C
∫

[0,t]3
|μ|

(
ε((a + b + c)2H + b2H ) + b2H (a2H + c2H )

)− d
2 −1

dadbdc.

Next, we need to estimate this integral over the regions {b ≤ (a ∨ c)} and {b >

(a∨c)} separately, and denote these two integrals by Ṽ2,1(ε) and Ṽ2,2(ε), respectively.
Note that

|μ| = 1

2

(
(a + b)2H + (b + c)2H − a2H − c2H

)

= Hb
∫ 1

0

(
(a + bv)2H−1 + (c + bv)2H−1

)
dv

≤ b2H ∧
(
2Hb(a ∧ c)2H−1

)
.

If b ≤ (a ∨ c), we choose |μ| ≤ b2H . Thus,

Ṽ2,1(ε) ≤ C
∫

[0,t]3
b2H

(
ε(a ∨ c)2H + b2H (a ∨ c)2H

)− d
2 −1

dadbdc

≤ C
∫

[0,t]3
(a ∨ c)−1−2Hb2H

(
ε + b2H

)− d
2 −1

dadbdc

≤ C
∫ t

0
b2H

(
ε + b2H

)− d
2 −1

db

= O(log
1

ε
), as ε → 0,

where we have used Lemma 2.3 in the last equality and the following fact

ε2 + ε((a + b + c)2H + b2H ) + b2H (a2H + c2H ) ≥ ε(a ∨ c)2H + b2H (a ∨ c)2H .
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If b > (a ∨ c), we choose |μ| ≤ 2Hb(a ∧ c)2H−1. Similarly, we have

lim sup
ε→0

Ṽ2,2(ε)

log 1
ε

≤ lim sup
ε→0

C

log 1
ε

∫

[0,t]3
b(a ∧ c)2H−1[b2H (ε + (a ∨ c)2H )]− d

2 −1dadbdc

≤ lim sup
ε→0

C

log 1
ε

∫ t

0
b−2Hdb

∫

[0,t]2
(a ∧ c)2H−1(ε + (a ∨ c)2H )]− d

2 −1dcda

≤ lim sup
ε→0

C

log 1
ε

∫ t

0

∫ a

0
c2H−1[ε + a2H ]− d

2 −1dcda

= lim sup
ε→0

C

log 1
ε

∫ t

0
a2H (ε + a2H )−

d
2 −1da < ∞,

where we have used the following fact

ε2 + ε((a + b + c)2H + b2H ) + b2H (a2H + c2H ) ≥ εb2H + b2H (a ∨ c)2H .

So, by the above result, we can obtain

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

V2(ε) = 0. (3.8)

For the V3(ε) term.

V3(ε) = 2

(2π)d

∫

D3

|ε I + �|−d/2−1|μ|dsdrds′dr ′.

By changing the coordinates (r , r ′, s, s′) by (r , a = s − r , b = r ′ − s, c = s′ − r ′),
then from (3.2) and Lemma 2.1 Case (iii), we can write

μ(a + b, a, c) = |μ| = 1

2

∣∣∣(a + b + c)2H + b2H − (b + c)2H − (a + b)2H
∣∣∣

= H(1 − 2H)ac
∫ 1

0

∫ 1

0
(b + ax + cy)2H−2dxdy.

and |ε I + �| = ε2 + ε(a2 H + c2 H ) + (ac)2 H − μ(a + b, a, c)2. It is not hard to see
that

V3(ε) = 2

(2π)d

∫

[0,t]3
1(0,t)(a + b + c)(t − a − b − c)|ε I + �|−d/2−1|μ|dadbdc

= 2

(2π)d

∫

[0,tε− 1
2H ]2×[0,t]

1(0,t)(b + ε
1
2H (a + c))

× (t − b − ε
1
2H (a + c))μ(ε

1
2H a + b, ε

1
2H a, ε

1
2H c)

[
(1 + a2H )(1 + c2H ) − ε−2μ(ε

1
2H a + b, ε

1
2H a, ε

1
2H c)2

] d
2 +1

ε
1
H −2(d/2+1)dadcdb,
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where we change the coordinates (a, b, c) by (ε− 1
2H a, b, ε− 1

2H c) in the last equality.
Denote

Ṽ3(ε) = 2

(2π)d

∫

Oε,3

1(0,t)(b + ε
1
2H (a + c))

× (t − b − ε
1
2H (a + c))μ(ε

1
2H a + b, ε

1
2H a, ε

1
2H c)

[
(1 + a2H )(1 + c2H ) − ε−2μ(ε

1
2H a + b, ε

1
2H a, ε

1
2H c)2

] d
2 +1

ε
1
H −2(d/2+1)dadcdb,

where Oε,3 = {[0, tε− 1
2H ]2 × [(log 1

ε
)−1, t]}.

We conclude that

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

V3(ε) = lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

Ṽ3(ε). (3.9)

Indeed,

lim sup
ε→0

(
ε− 1

H log 1/ε
)2H−1|V3(ε) − Ṽ3(ε)|

≤ lim sup
ε→0

CH ,d,t

(
ε− 1

H log 1/ε
)2H−1

∫

[0,tε− 1
2H ]2×[0,(log 1

ε
)−1]

εμ(a, a, c)

×
[
(1 + a2H )(1 + c2H ) − μ2(a, a, c)

]− d
2 −1

ε
1
H −2(d/2+1)dadcdb

≤ lim sup
ε→0

CH ,d,t

(
ε− 1

H log 1/ε
)2H−1

(ε log
1

ε
)−1

×
∫

[0,tε− 1
2H ]2

(a ∧ c)2H
[
(1 + a2H )(1 + c2H )

]− d
2 −1

dadc

≤ lim sup
ε→0

CH ,d,tε
1
H −3

(
log 1/ε

)2H−2
∫

[0,tε− 1
2H ]2

(ac)H
[
(1 + a2H )(1 + c2H )

]− d
2 −1

dadc

≤ lim sup
ε→0

CH ,d,tε
1
H −3

(
log 1/ε

)2H−2

= 0,

where we use

μ(ε
1
2H a + b, ε

1
2H a, ε

1
2H c) ≤ μ(ε

1
2H a + 0, ε

1
2H a, ε

1
2H c) = εμ(a, a, c)

in the first inequality and use μ(a, a, c) ≤ (a ∧ c)2H ,

(1 + a2H )(1 + c2H ) − μ2(a, a, c) ≥ 3

4
(1 + a2H )(1 + c2H )

in the second inequality.
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By the definition of μ(a + b, a, c), it is easy to find

μ(ε
1
2H a + b, ε

1
2H a, ε

1
2H c) = H(1 − 2H)ε

1
H ac

∫

[0,1]2
(b + ε

1
2H av1 + ε

1
2H cv2)

2H−2dv1dv2

and use the Taylor’s theorem for integrand,

ε− 1
H μ(ε

1
2H a + b, ε

1
2H a, ε

1
2H c) = H(1 − 2H)acb2H−2 + O(ε

1
2H ac(a + c)).

Similarly, the denominator of the integrand in V3(ε) can be rewritten as

[
(1 + a2H )(1 + c2H ) − ε−2μ(ε

1
2H a + b, ε

1
2H a, ε

1
2H c)2

]− d
2 −1

=
[
(1 + a2H )(1 + c2H )

]− d
2 −1 + O

(
ε

2
H −2a2c2[(1 + a2H )(1 + c2H )]− d

2 −3
)
.

It is easy to see that

lim
ε→0

(
log 1/ε

)2H−1
∫ t

(log 1
ε
)−1

b2H−2db = 1

1 − 2H
,

and

lim
ε→0

(
ε− 1

H

)2H−1
∫

[0,tε− 1
2H ]2

ε
1
2H + 2

H −d−2ac(a + c)
[
(1 + a2H )(1 + c2H )

]− d
2 −1

dadc

+ lim
ε→0

(
ε− 1

H

)2H−1
∫

[0,tε− 1
2H ]2

ε
2
H −2+ 2

H −d−2a3c3
[
(1 + a2H )(1 + c2H )

]− d
2 −3

dadc

= 0. (3.10)

Then, by L’Hôspital’s rule, we have

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

Ṽ3(ε)

= H(1 − 2H)
2

(2π)d
lim
ε→0

(
log 1/ε

)2H−1
∫ t

(log 1
ε
)−1

(t − b)b2H−2db

× lim
ε→0

(
ε− 1

H

)2H−1
∫

[0,tε− 1
2H ]2

ac
[
(1 + a2H )(1 + c2H )

]− d
2 −1

dadc

= H(1 − 2H)
2

(2π)d
× t

1 − 2H
× t2−4H

(1 − 2H)2
.

(3.11)

Together (3.7), (3.8), (3.9) and (3.11), we can see

lim
ε→0

E

[∣∣∣
(
ε− 1

H log 1/ε
)H−1/2

α̂
(1)
t,ε (0)

∣∣∣
2] = 2Ht3−4H

(2π)d(1 − 2H)2
=: σ 2.

��
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Lemma 3.2 For I1( f1,ε) given in (3.1), then

lim
ε→0

E

[∣∣∣
(
ε− 1

H log 1/ε
)H−1/2

I1( f1,ε)
∣∣∣
2] = σ 2.

Proof From (3.1), we can find

E

[∣∣∣I1( f1,ε)
∣∣∣
2] =

(
V (1)
1 (ε) + V (1)

2 (ε) + V (1)
3 (ε)

)
, (3.12)

where V (1)
i (ε) = 2

∫
Di

〈 f1,ε,s1,r1 , f1,ε,s2,r2〉Hd dr1dr2ds1ds2 for i = 1, 2, 3, and
〈 f1,ε,s1,r1 , f1,ε,s2,r2〉Hd was defined in (3.4). Then we have

0 ≤ V (1)
i (ε) ≤ Vi (ε). (3.13)

Combining (3.13) with (3.7) and (3.8), we can see

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1(

V (1)
1 (ε) + V (1)

2 (ε)
)

= 0.

Thus, we only need to consider
(
ε− 1

H log 1/ε
)2H−1

V (1)
3 (ε) as ε → 0.

By (3.1), (3.4) and (3.12) we have

V (1)
3 (ε) = 2β2

1,d

∫

D3

G(1)
ε,r ′−r (s − r , s′ − r ′)drdsdr ′ds′

= 2β2
1,d

∫

[0,t]3

∫ t−(a+b+c)

0
1(0,t)(a + b + c)(ε + a2H )−d/2−1

× (ε + c2H )−d/2−1μ(a + b, a, c)ds1dadbdc

= 2H(1 − 2H)β2
1,d

∫ t

0

∫

[0,tε− 1
2H ]2

∫

[0,1]2
1(0,t)

(
(b + ε

1
2H (a + c)

)

×
(
t − b − ε

1
2H (a + c)

)

×
[
(1 + a2H )(1 + c2H )

]−d/2−1
ac

(
b + ε

1
2H (av1 + cv2)

)2H−2
dv1dv2dadcdb.

Note that

∫

[0,1]2

(
b + ε

1
2H (av1 + cv2)

)2H−2
dv1dv2 = b2H−2 + O(ε

1
2H (a + c))

and

∫

[0,1]2

(
t − b − ε

1
2H (a + c)

)[
(1 + a2H )(1 + c2H )

]−d/2−1
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ac
(
b + ε

1
2H (av1 + cv2)

)2H−2
dv1dv2

= (t − b)b2H−2ac
[
(1 + a2H )(1 + c2H )

]−d/2−1

+ O

(
ε

1
2H (a + c)ac

[
(1 + a2H )(1 + c2H )

]−d/2−1
)

.

Similar to (3.9), we get

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

V (1)
3 (ε) = lim

ε→0

(
ε− 1

H log 1/ε
)2H−1

Ṽ (1)
3 (ε),

where

Ṽ (1)
3 (ε) = 2H(1 − 2H)β2

1,d

∫ t

(log 1
ε
)−1

∫

[0,tε− 1
2H ]2

∫

[0,1]2
1(0,t)

(
(b + ε

1
2H (a + c)

)

(
t − b − ε

1
2H (a + c)

)

×
[
(1 + a2H )(1 + c2H )

]−d/2−1
ac

(
b + ε

1
2H (av1 + cv2)

)2H−2
dv1dv2dadcdb.

According to (3.10) and (3.11), we can find that

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

Ṽ (1)
3 (ε)

= 2H(1 − 2H)β2
1,d lim

ε→0

(
log 1/ε

)2H−1
∫ t

(log 1
ε
)−1

(t − b)b2H−2db

× lim
ε→0

(
ε− 1

H

)2H−1
∫

[0,tε− 1
2H ]2

ac
[
(1 + a2H )(1 + c2H )

]− d
2 −1

dadc

= H(1 − 2H)
2

(2π)d
× t

1 − 2H
× t2−4H

(1 − 2H)2
= σ 2,

where we use β2
1,d = 1

(2π)d
in the second equality.

Thus,

lim
ε→0

(
ε− 1

H log 1/ε
)2H−1

V (1)
3 (ε) = σ 2.

��
Proof of Theorem 1.3 By Lemmas 3.1–3.2 and

α̂
(1)
t,ε (0) = I1( f1,ε) +

∞∑
q=2

I2q−1( f2q−1,ε),
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we can see

lim
ε→0

E

[∣∣∣
(
ε− 1

H log 1/ε
)H−1/2 ∞∑

q=2

I2q−1( f2q−1,ε)

∣∣∣
2] = 0.

Since I1( f1,ε) is Gaussian, we have, as ε → 0,

(
ε− 1

H log 1/ε
)H−1/2

I1( f1,ε)
law→ N (0, σ 2).

Thus,

(
ε− 1

H log 1/ε
)H−1/2

α̂
(1)
t,ε (0)

law→ N (0, σ 2),

as ε → 0. This completes the proof. ��
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