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Abstract

The existence condition H < 1/d for first-order derivative of self-intersection local
time for d > 3 dimensional fractional Brownian motion was obtained in Yu (J Theoret
Probab 34(4):1749-1774, 2021). In this paper, we establish a limit theorem under the
nonexistence critical condition H = 1/d.
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1 Introduction

Consider a d-dimensional fractional Brownian motion (fBm) with Hurst parameter
H € (0, 1), which is a d-dimensional centered Gaussian process B = {B,H , >
0} with component processes being independent copies of a 1-dimensional centered
Gaussian process B i = 1,2, ..., d and the covariance function given by

. . 1
E(B/" BH:1] = 3 [zZH +s2H — —s|2H].
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Note that B/ is a classical standard Brownian motion. Let D = {(r,s) : 0 <r < s <
t}. The self-intersection local time (SLT) of fBm was first investigated in Rosen [13]
and formally defined as

ar (y) :/ s(BE — BM — y)drds,
D

where B is a 2-dimensional fBm and § is the Dirac delta function. It was further
investigated in Hu [4], Hu and Nualart [6]. In particular, Hu and Nualart [6] showed
its existence whenever Hd < 1. Moreover, «;(y) is Holder continuous in time of any
order strictly less than 1 — H which can be derived from Xiao [15].

The derivative of self-intersection local time (DSLT) for fBm was first considered
in the works by Yan et al. [16, 17], where the ideas were borrowed form Rosen [14].
The DSLT for fBm has two versions. One is extended by the Tanaka formula (see in
Jung and Markowsky [9]):

@ (y) = _H/ 8 (B — BH — y)(s — r)*"~'drds.
D
The other is from the occupation-time formula (see Jung and Markowsky [10]):
&) = —/ §' (B — BI — y)drds.
D

Motivated by the first-order DSLT for fBm in Jung and Markowsky [10] and the
k-th-order derivative of intersection local time (ILT) for fBm in Guo et al. [3], we will
consider the following k-th-order DSLT for fBm in this paper,

8k
~(k
0‘:( )(y) = W/ S(BsH - BrH — y)drds
vl -+ 0yg JD
— (_1)”"/ s®(BH — BH — yydrds,
D
where k = (kq, ..., kg) is a multi-index with all k; being nonnegative integers and

|k| = ki + ko + - -+ + kg, 8 is the Dirac delta function of d variables and §® (y) =
i i 770(y) is the k-th-order partial derivative of é.
vi - %va

Set

0

1 Ix[? 1 .
= 2 = — i(p.x) ,—
fet) Qre)? ¢ (2m)? /Rd o

Ip|2

2 dp,

d d
where (p, x) =} 5_; pjx; and Ip> = pBya p?.
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Since the Dirac delta function § can be approximated by f;(x), we approximate
8% and & (y) b
and o, “(y) by

1kl 2

1 ; lpl

1PwW=5 )d/ pi P e dp
T Rd

and
a® (y) = (= / OB — B — yydrds, (1.1)
D

respectively.
If a(k) (y) converges to a random variable in L? as ¢ — 0, we denote the limit by
t(k) (y) and call it the k-th DSLT of BH.
Recently, Yu [18] studied the existence and Holder continuity conditions of &,k) )

and related limit theorem in critical case. We recall the existence condition for oz,k) )
in L? as follows.

Theorem 1.1 [18] For 0 < H < 1 and G\2(y) defined in (1.1), let # :=
#{k; is odd, i = 1,2,...d} denotes the odd number ofk,, fori =1,2,...,d.
IfH < min{mﬁ, m, é}for k| = Zd 1 kj, then o, )(0) exists in L2,

Note that, if |k| = 1, the existence condition of oz(k) 0)isH < 1/d,and Hd = 11is

the critical condition of oz(k) (y) forany d > 2. When Hd = 1 for d = 2, Markowsky
[11] proved the limit theorem for |k| = 1.

Theorem 1.2 [111@") (y) is defined in (1.1) with y = 0. Suppose that H = 1, d =2
and |k| = 1, then as ¢ — 0,

(log 1/8) oz,(kE)(O) fay N (0, 002) .

In this paper, we will consider the case of Hd = 1 for any d > 3 and |k| = 1,
and prove a limit theorem for &‘,(kg) (0). Without loss of generality, we assume that
ki = 1,kh = 0,...,k; = 0 for the multi- 1ndex k = (k1,...,ks), and for the
convenience of wrltlng, we will abbreviate oz,( . )(0) as at( 18 (0) in the subsequent
content of this paper without causing confusion.

Theorem 1.3 @) () is defined in (1.1) with y = 0. Suppose that Hd = 1 for any
d >3 and |k| = 1. Then, as ¢ — 0, we have

(s—%logl/g) ZA(I)(O) 9N, 02),

2 2HPTMH

where o = G127
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When |k| = 1, under the condition H > 1/d, the behavior of 6?,(’18) 0)ase — 0
is also of interest. One would expect a central limit theorem to exist, but this remains
unproved. Nevertheless, we venture the following conjecture

(LIfH = ﬁ > dl and d > 3, (log é)”l (H )fx\l(’lg) (0) converges in distribution to a
normal law for some y;(H) < 0;

QIfH > % > ﬁ andd > 2, en2H )fx\l(’lg) (0) converges in distribution to a normal
law for some y»(H) > 0;

Q) If ﬁ < H < Jandd > 3,67 (log 1yr+(H )6?;’15) (0) converges in distribution
to a normal law for some y3(H) > 0 and y4(H) < 0.

The paper has the following structure. We state some preliminary lemmas in Sect. 2.
Section 3 is to prove the main result. Throughout this paper, if not mentioned otherwise,
the letter C, with or without a subscript, denotes a generic positive finite constant and
may change from line to line.

2 Preliminaries

In this section, we present two basic lemmas, which will be used in Sect. 3. The first
lemma gives the bounds on the quantity of Ap — %, which could be obtained from
the Appendix B in [9] or Lemma 3.1 in [4]. In fact, A, p and u represent the three
quantities of the covariance matrix of the increment of fBm, and the bound estimation
of Ap — u? is beneficial for the subsequent calculation of the convergence of multiple
integrals, which will bring a lot of convenience to the proof in Sect. 3.

Lemma 2.1 Let
k=|s—r|2H, p=|S/—r/|2H,
and

1
= E('S/ —rPH s — P s — P _r/|2H).

Case (i) Suppose that D1 = {(r,r',s,s") € [0, 11*|r <7 <s < &'}, letr'—r = a,
s —r' =b, s’ —s = c. Then, there exists a constant K| such that

wo—u? =K ((a F)2HRH 4 g2H (p c)”’)
and
2u=(a+b+c)?H 1 —g2H _ 21,

Case (i) Suppose that Dy = {(r,r',s,s") € [0,¢t]* | r <1’ < s < s}, let
r'—r=a, s’ —r =b,s —s' = c. Then, there exists a constant K, such that

)Lp_uz > K, p*H (a2H+CZH)
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and
2= (a+b)* + b +c)?H — g — 21,

Case (iii) Suppose that D3 = {(r,r',s,s') € [0,1]* | r < s < ' < s}, let
s—r=a,r —s=>b,s —r' =c. Then, there exists a constant K3 such that

2o — u? = Ksz(ae)*

and
2u=(a+b+c)* +b* — (a+ )" — (c+ )",
The second lemma shows the Wiener chaos expansion of fx\,(fcg) (0) with |k| = 1.

Before that, we need to explain some notations. We will denote by H the Hilbert space
obtained by taking the completion of the space of step functions endowed with the
inner product

(Liap1s Lo, = BBy — BEy (BT — BH-1)), @.1)

where Bf-! is a 1-dimensional fBm. The mapping L0, — BtH ' can be extended to
a linear isometry between 7 and a Gaussian subspace L*($2, F, P). For any integer
g € N, we denote by H®? and H®? the g-th tensor product of H, and the g-th
symmetric tensor product of H, respectively.

Similarly, for d-dimensional fBm BY = (B#:! ... BH:4) we can define cor-
responding Hilbert space H¢ and tensor product spaces (H%)®¢ and (H¢)®¢. If
h = (h',...,h?% € H?, we set B (h) = 27:1 BH-J(hJy. Then h — BH(h)
is a linear isometry between H? and the Gaussian subspace of L*(Q] x --- X
Qu, F1 x -+ x Fg, P x -+ x Py) generated by BH . The g-th Wiener chaos of
L2(Q) X -+ x Qq, Fy X -+ X Fg,P| x -+ x Pg), denoted by 6, is the closed
subspace of Lz(Ql X o0 X Qg, F1 X o+ X Fg,P1 x -+ x Py) generated by the
variables

d d
[TT o, (B WIS a5 =417 € H, 1071y =1},

j=1 j=1

where H, is the g-th Hermite polynomial, defined by

_ a4 e
Hy(x) = (=1D)e dxqe .
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Forg € N, g > 1 and h € H? of the form i = (h', ..., h%) with |h/ | = 1, we
can write

d
h®1 — Z WM. .Qh.

For such &, we define the mapping

d d
L(h® = > ] Hy.ipBHI0)). j=1.....d

i1,.0ig=1j=1

whereq; (i1, ..., iy) denotes the number of indicesin (i1, . . ., iy) equal to j. Therange
of 1, is contained in $),. This mapping provides a linear isometry between (H4)©9
(equipped with the norm /g!| - || (Hdy®q) and $)4 (equipped with the L?-norm). Here
multiple stochastic integral 7, is the d-dimensional version see in Jaramillo and Nualart
[8] (or in Flandoli and Tudor [2]).

It also holds that I,,(f) = I, ( f ), where f denotes the symmetrization of f. We
recall that any square integrable random variable F which is measurable with respect
to the o-algebra generated by B! can be expanded into an orthogonal sum of multiple
stochastic integrals

F =Y IL(f.
n=0

where f, € (H?)®" are (uniquely determined) symmetric functions and Ip(f) =
E(F).

The proof process of Wiener chaos expansion also requires the knowledge of Malli-
avin derivative D with respect to fBm B . Denote by C,°(R") the space of bounded
smooth functions on R”. Consider the space of random variables

S:={(F=gB"(f),....,B(f), g e C;°R"), fj e H', j=1,....d}.

The Malliavin derivative of F € S, denoted by DF, is given by

DF =) ;8B " (fi)..... B (f) ;.

j=1

By iteration, we can define the n-th derivatives D" for every n > 2, which is an
element of L2(2, (H%)®"). For example, we write for the smooth function f,

DfBHEY, . BEY =DfB ). ..., B (hy))

d
=0, fB(hy)..... B (ha))hj. hjeH! j=1.2.....d,
j=1
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where hj =19 e, j=1,2,...,d and
e1=(1,0,...,0),e0=(0,1,0,...,0),...,e4=1(0,...,0,1). 2.2)

Similarly,
]D)”f(BH’l ..., B

n
Z all .Hainf(BlI-I’l’""BTI{’d)®(]l[0,t]el‘j)s
j=1

(2.3)

\1Vh26re lne;, € HY, Qj_i(oner)) € HH®ij € (1,2,....d},j =
,2,...,n

More detailed introductions to Malliavin derivative and multiple stochastic integral
can be found in Nualart [12], Hu [5] and the references therein.
Lemma 2.2 Let fx\,(kg) (v) be defined in (1.1), then we have the Wiener chaos expansion
fork=(1,0...,0),

a0 = ZIZq—l(f2q—l,e)-

g=1

() Ifd =2, frq—1,¢ is the element of (H*®C4=D given by

2g—1

Prg-1,e(x1, ... X2g-1) = ﬁq/ (s — " 4 &)7a7! ® (Ljr s1€i;)(xj)drds,
O<r<s<t j=1
_ _(=Dh7 2g—1)!(24q1)! . 2 ..
where By = 52, 1 Lagitar=g.i=1 To-Diaoitnz @ Losie, € H.ij e
{1,2},j=1,2,...,2¢q 1,(el-j defined in (2.2)).
(ii)Ifd = 3, fag—1. € (HH®D
2g—1
frg—16(1. - X2g1) = By / (Is = rIP" +&)772 Q) (L s1ei)) (x))drds,
O<r<s<t =1
_ (=14 2g-1!2q))! .
where Bo.a = G oDiamP Lgi+taa=a.a1=1 = Digi-qomr 94 Lirsiei; €

HAije{l,2,...,d}, j=1,2,...,2g — 1.

Proof The proof adopts a method similar to Lemma 7 in Hu and Nualart [6] (or the
Appendix A in Das and Markowsky [1]).
(1) For the case d = 2, by Stroock’s formula,

A(k) i€, BE-BH) . —elg?)2
. (0) = (27_[)2/ / A; 'gle d&drds
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+o0
= Dhy-1(frg-1.).

g=1

where fog—1.. € (H*)®?4~D and

1 n H H
fn,s = fn,a(xh coXp) = }? 0 E[Dxl,...,xn alfe(Bs - Br )]drds
FJO0<r<s<t

with x; € [0, ¢f]forall j =1, 2,.
Leti; € {I,2}forall j =1, 2 , n. Then by (2.3), we can compute the expec-
tation

2 n
ED}, o feBf —BNI= > Eld, 9,00 f:(BY — BN Ay s€i,)(x)),

iy in= j=1

where (]l[,,s]eij)(xj) e H2, ijef{l,2},j=12,...,n, (eij defined in (2.2)) and

E(;, - -~ 8,31 f: (B — BI)]
n+1

~ )2
n+1

(27-[)2/ §1(8i,6i, -+ 6iye 1(‘Sfr|2H+5)|§|2d%-

. — _q_ntl
= @O en)y (s = rP + &) T T EIX X Xy - X, ],

/51(&1&2 & E[e! B —B 1ol 2gg

with the independent identical distribution standard Gaussian random variables X;,
and

R, ifn = 2(m1 4+ m2) — 1,
the number of iy = 1is2m; — 1
E[X1Xi Xiy -+ Xi,] = . .
and the number of i = 2is 2m>,
0, otherwise.

Then, forn = 2g — 1 = 2(q1 + ¢q2) — 1 with the number of iy = 1is 2¢q; — 1 and the
number of iy = 2 is 2¢», the summation

(2q = 1)!
Z Ln=2(gr+gn-1 Liti=t=201 -1 Lipli=21=202) = ) a1 — DI2g)!
i1yeensin=1 q1+42=4.91=1 ' '

where #{i;y = x} denotes the number of iy = x. This gives

2
Z E[X1X;, X, - - Xi,]
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2

_ Z 1 vty L 1)—201 1) L =212 }(241)!(2cI2)!

- n=2(q1+q2)— ix=1}=2q1— W=2)=2q2} N N1og

i1yomsin=1 (g1)'(g2)'124
Z 2g — D! 2qD!2q)!
(21 — D1(2g2)! (g1)(g2)129°

q1+92=q,q1>1
Thus, we have

2g—1

frg-1e@1 . xag 1) = By / (s = rlP" + )77 Q) (N s1ei,) (xj)drds,
O<r<s<t j=1 '
(=19 (2g—D!2q1)!
where f; = 277(2q D1 Zai+a=.q121 @ DG g
(ii) Similarly, we can prove the case of d > 3.

A(k)(o) Z[Zq,](qufl,é‘)’

g=1

where fo,_1, € (H9)®24=D and

([)n+1 1 B _ n
FreGet o) == )dﬂ/ (Is = r[?# 4 &)= H272 (1, ypei;) (xj)drds
n. us O<r<s<t =1

d
x> EIXi X Xip - X,

iyenin=1

with (L e )(xj) € HY,ij € {1,2,....d}, j=1,2,....n

Note that
Ol i =20my + -+ ma) — 1,
the number of iy = 1is2m; — 1
ElX1 X, Xi,--- X, 1= and the number of iy = £ is 2my
for =2,...,d,
0, otherwise.

Then, forn =2qg — 1 =2(q1 + - - - + qq) — 1 with the number of iy = 11is 2q; — 1
and the number of i, = £ is 2q¢, the summation

Z Lin=2(g1+-+g0 -1 L i =11=2q: -1} Lt =2)=2¢0} X -+ X Ligfip=ay=244)

Ilyeeey in=1

_ Z 2qg — 1)!
N — | l... 1’
qi+-+qa=q.q1=1 (2q1 D!(2g2)! 2g4)!
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This gives
d
X, 1 (2 — 1! (21! - (294)!
> EIXiXi Xi, - X1 = > G DG G a0 @

i1,esin= q1++qa=q.q1=1
_ Z (2g — D!2q1)!
g1 — DU gD)! -+ (ga)'29”

q1+-+qa=q.q1=1

Thus,
2g—1
P11, - x2g—1) = Bga (s —r*H 4+ &)71742 Q) (1, s1ei,) (x)drds,
J
O<r<s<t =1
_ (=D? (2g—1)!(2q1)!
where 8y 4 = Qq—D12)i? Lt aa=g.q1>1 Qg1 =D gD (qa)'2 " =

Lemma23 I[fHd =1, as ¢ — 0, we have

(i)

1
e H-1 Hy—4-1 1
/ x7TT2(14+x")"27 dx=0<log—>
0 &

and

(ii)

1
1
/ (e 4 257 1qy — 0 <log —> .
0 I

Proof For (i), by L’Hospital’s rule, we have

1
1 e H—1 Hy—%-1 N ST —1y,—4-1
im — x"T2(A+x")727 ' dx = lim —e¢ 2H(l+¢e ) 2
s—)O]ogg 0 e—0 H
lim — (¢ 4+ 1)~¢7!
= lim —(e
e—0 H
1
=5

where we use the condition Hd = 1 in the second equality.
For (ii), take the variable transformation x = ye2#,

1

1 & 2H
1
/Ox2”<e+x”’>—‘5—1dx=;g%loglfo (A4 )75y

lim i
e—0 log =

&

lim (e 4 )74
= lim
al—>0 2H ¢
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1
2H

)

where we use L’Hospital’s rule and the condition Hd = 1 in the second equality.
]

3 Proof of Theorem 1.3

In this section, the proof of Theorem 1.3 is taken into account, we will consider the

case of Hd = 1 forany d > 3 and |k| = 1. By Lemma 2.2, b?t(l; (0) has the following

chaos decomposition

A<1>(O) Z[zq_l(ﬁq_l,s),

qg=1

where
Srg—1,e(x1, ..., x2g-1) =/ Frg-1.e5.r(X1, ..., X2g—1)drds
D

with D = {(r,s) : 0 <r < s < t}, where

2g—1
Pragtesr@, o xag1) = Bgalls — P + )77 Q) (M g€ (x)).
j=1
Forg =1,
2 / /
EHII (fie) ] = | fresrs e )padrdsdr'ds’, G.1)
D

where H is the Hilbert space obtained by taking the completion of the step functions
(see in Sect.2).

For g > 1, we have to describe the terms (f2g—1,¢.5;.r» fzq—1,a,sz,r2)(Hd)®<zq_1),
where (H?)®24=1 is the (2q — 1)-th tensor product of H. For every x, uy, up >0,
we define

u(x,uy,uz) = [E(BIY (B, — B, (3.2)

Forj=1,2,...,2¢g—1,ij €{l,2,...,d},

(Lrs1€ijs Lprosieiy) e = (Lprs)s Lirosy)me (3.3)
Then, we have

(f2g—1.e.51.r15 J2q—1.6.50.72) ()@ Ca—1)
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=Bl (s = r1 P + )71 (|5 — 1P 4 £) 702

2g—1 2g—
x <]l[r1 sl ]l[rz ?2]>H®(2‘1 b
—- G(q .d) _ _ 3.4
_‘ﬁqd &,r)— rl(sl ry, 82 rz)v ( . )

where

d d
d ~54 —5-4 -
z(?(,lx (U, u2) = (8 + M%H> (8 + ugH) e, uy, up)®=L

Note that equations (3.2)—(3.4) here can degenerate into the case d = 1 of the equations
(2.18)—(2.19) in Jaramillo and Nualart [7].
Before completing the proof of the main result, we give some useful lemmas below.

Lemma 3.1

tim (1 re0e0) ] =o

2Hl3 4H

2 _
where o = Gl 2H7

Proof Let (X, Y) € R x Rbe ajointly Gaussian vector with mean zero and covariance

x2
A = (A; )i j=12,let f4 is the density of (X, ¥) and f} .(x) = ﬂ%e*z,x cRbe
a 1-dimensional density function. Then,

E[XY 1.0 (X) f1.e(P)] = fR 1) fie () Fa e, y)dndy

_ (2n)‘25_1|A|_1/2/ xye—%(x,y)(s_'I+A_])(x,y)dedy
R2

= (271)—18—1|A|—1/2|x|1/2/ xyfi(x, y)dxdy
RZ

= Qm) el + A|TV2A,

= @m)'Plel + A2 A,

where A := (6711 + A™! )y, f7 denotes the density of a Gaussian vector with mean

zero and covariance A = (A; ;) j=1,2-

H1 pH1_

Similarly, let ¥ = (X; ;);, j=1,2 be the covariance matrix of (BSH’l — B, S
BrP,l’l), and 9! be the covariance matrix of (§SH — §rH, E{?’ — Eﬁ) (EH denotes
the (d — 1)-dimensional fBm). The notations fx and fyxa«-1 represent their density

functions, respectively. It is easy to find that ¢~ is a block diagonal matrix, and that
the dimension of it is 2(d — 1) x 2(d — 1). Then,

2.2 2.2
Xy yy e txgtyy

(2778)7([171)/2((1 b e 2 fzd—l(xz, ey Xd, V2, --~7J’d)dxz"'dxddy2~-~dyd
R2d—
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. _ x2+y2 d—1
= | Q2me) e 2% fy(x,y)dxdy
]RZ

(@m) Vel 4+ x71/2)"!

Thus, for any Gaussian vector (X, Y) € R? x R? and k-th (k = (1,0, ..., 0)) order
derivative, we have

2 2,42
X4t X IVt

2
EL£D(X) £ ()] = Sizamrduz |:X1Y1ezsi|

1 O _xht
= 8—2(2718) ,X1yieT Sz (x1, y1)dxidy;
R

2,2 2.2
\2+}2+ +‘(d+\d

X (27‘[8)7(1171)/ e fsa-1 (X, ¥)dxXdy
R2d—-1)

3 d—1
=e2Qn) '2lel + 272181 x Q7)Y Vel + 27T

Qm) el + 727155,

where X = (x2, ..., x2), 5y = (¥2, ..., Yd)-
Thus,

] = Vi(e) + Va(e) + Va(e)
with

Vi(e) = / lel + 3|~ 21| ;u|drdsdr'ds’, (3.5)

@yl

where D; (i=1, 2, 3) defined in Lemma 2.1 and X is a covariance matrix with X1 1 = A,
Y22 = p, X1 2 = p given in Lemma 2.1.

Next, we will split the proof into three parts to consider Vi(e), V2(¢) and V3(g),
respectively.

For the V| (¢) term, changing the coordinates (r,r’,s,s )by (r,a =r' —r,b =
s —r',c =5’ — s) and integrating the r variable, we get

Vi(e)

IA

c/ lel + =|~27! | u|drdadbde
(0,17

c/ el + 3|77~ |u|dadbdc
0.
=: Vi(e).
Applying Lemma 2.1 Case (i), for some C > 0, we get
el +X|=(e+ Z11)(e+ X20) — Efz =2 +e(T11+ T0) — | X
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> C[sz +e(@+b) P+ b+ +a* e+ + P+ b)ZH]

> C[e2 +@+nHb+e)e+ (ac)H)]
>Cla+b B +o0) @+ (ao)?), (3.6)

where we use the Young’s inequality in the second to last inequality.
Substituting (3.6) and

1
uu:Eka+b+o”f+#H—&H—cw\gJMn=w+me+@H

into the integrand of \71 (e),

d

27

V() 5c/ @+b)yFb+o % (8+(ac) ) dadbdc
[0,¢]3

_d_q
< C/ @+bi"F @by Hp+o (a i (ac)H> > dadbde
[0,¢13

IA

_d_q
c/ b_H_HTdaH_HTd(a—}—(ac)H) > dadbdc
[0,

d

1
o 4-1
% §-1 / / 1+(ac) ) : dadc,

1
where we make the change of variable ¢ = ¢ ¢ 7 in the last inequality.

By L’Hospital’s rule, we have

| /\

Ct 7]77f a ;(1+tHaH8_1)7%7]da

1
(1 — 5p)e

lim Vi (¢) < lim
e—0 e—0

1
Ct “H

te H

1 d

= hn}) : el / a2+ "a")y"27da
e—>0 —~— —

2H
1
=0 (log —) ,
€

where we have used Lemma 2.3 in the last equality.
So, we can obtain

lim (a*% log 1 /8)211_1 Vi(e) = 0. (.7)

e—0
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For the V,(¢) term, changing the coordinates (r,r’,s,s )by (r,a=r"—r,b =
s —r’,c = s —s’) and integrating the r variable, then by (3.5), we get

Va(e) < c/ el + 3|77 |u|dadbde =: Va(e).
[0,¢13

By Lemma 2.1 Case (ii),

lel + 2| = (e + T1.)(e + Ta2) — B, = & +e((a+ b+ 0> +b°7)
+K 02 H (2 4 21,

Then, we have

d

~ -4_1
Va(e) < C f M (s((a + b+ 4y L (@ cZH)) ° dadbdc.
]3

[0,¢
Next, we need to estimate this integral over the regions {b < (a Vv ¢)} and {b >

(a Vv c)} separately, and denote these two integrals by/V;’T(s) and V3 2 (¢), respectively.
Note that

1
ul = —((a +021 4 (b4 o) — M - c2H)
2
1
— Hb/ ((a +hv) 1 4 e+ bu)”’*l) dv
0
< b A <2Hb(a A c)ZH—l) .

If b < (a Vv c), we choose || < b2 Thus,

— _d_q
Vare) <C / p2H <£(a v )2t 4 b2 (g v o) ) 2" dadbdc

[0,13

IA

_d_q
c / (av ¢y ~2Hp2H (s +p2H ) > dadbde
[0,713
t _%_1
< c/ b (o) b
0
1
= O(log-), as ¢ — 0,
€
where we have used Lemma 2.3 in the last equality and the following fact
e?+e((a+b+o + )+ 0 (@ + 2y > e(av o) + b @@ v o).

@ Springer



Journal of Theoretical Probability (2024) 37:2054-2075 2069

Ifb > (a V), we choose || < 2Hb(a A ¢)?~1. Similarly, we have

T
timsup 22%) < tim sup < / bla A6 (e + (@ v )] £ dadbde
e—0 P e—0 10g A [0,113
: c ' on 2H-1 2H\1—4-1
< lim sup I b db (a Nc) (e+(aVve)™)] 27 'deda
e—0 log s Jo (0,2
C 4 a d
§limsup—]/ / c2H_l[8+a2H]_7—ldcda
e—0 log- Jo Jo
t
= lim sup 1 / aZH(e+a2H)7%71da < 00,
e—0 10g = 0

where we have used the following fact
2 +e(@+b+ ) + b2y 4 bPH (@20 £ 2Hy > p?H L p2H (g v ¢)?H

So, by the above result, we can obtain

2H

lim (a*% log 1/8) e = 0. (3.8)

e—0

For the V3(¢) term.

2 d
Vi(e) = W/m lel + 2|72 u|dsdrds’dr’.

By changing the coordinates (r,r',s,s) by (r,a=s—r,b=r"—s,c=s"—1r'),
then from (3.2) and Lemma 2.1 Case (iii), we can write

1
pnla+b,a,c)=|ul = 5‘(a+b+c)2H +b0*H — b+ ) — (a+b)*H

1 1
=H( - 2H)ac/ / (b + ax + cy)*2dxdy.
0o Jo

and |e] + 2| = 2+ e(a*H + 2 1) + (ac)* ™ — u(a+b, a, ¢). It is not hard to see
that

2
Vi(e) = —— / Tona+b+c)t —a—b—c)el + 279> u|dadbde
@2m)* Jio,p3

2

1
= — Lo,n(b+e2d (a+c))
@) Soue b puion ¢

1 1 1 1
5 (—b— e @t DuEha+benaee)  oupin g

44
[(1 + a?H)(1 + 2H) — s*%(sﬁa +beMa, sﬁc)z] ’
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where we change the coordinates (a, b, ¢) by (s’ﬁa, b, 8’ﬁc) in the last equality.
Denote

~ 2 1
70 = Gy [, boote+ e a+0)

(t—b— eﬁ(a +c))u(5ﬁa + b, 8ﬁa, 8ﬁc)

1 e 2@/ 2D dadedp,
1

[
[(l + a?H)(1 + 2H) — a—zu(sﬁa +b, S#a, Eﬁc)z] :

_ L

where O3 = {[0, te727 > x [(log 1)1, ]}.
We conclude that

2H

lim (77 log1/¢) Vi) = i (e log1 )2H_1x7() (3.9)
egr%)e ogl/e 38—8%8 ogl/e 3(€). .

Indeed,

. 2H-1 -
lim sup (e*ﬁ log 1 /s) Va(e) — V(o)

e—0

e—0

| 2H-1
< limsupCH,d,,<s_Flog 1/8) / . en(a,a,c)
[0.re™ 28 12 x[0,(log 1)~!]

_d_
x [(1 +a*y(1 + M) — 1y’ (a, a, c)] 2 e w2/ 2D 4dedb

) | 2H-1 1,
< hmsupCH,d,,<€_F log 1/8) (elog g)_

e—0

_d_
x/ 1 (a/\c)zH[(l—}—aZH)(l—{—CZH)] 7 dade
[

0,re” 2H ]2
2H-2 -4
51imsuch,d,,e%*3(1og1/s) / 1 (ac)H[(1+a2H)(1+c2H)] " dade
e—0 [0,r67 2H ]2
L, 2H-2
<limsupCpq 4,67~ (log 1/8)

e—0

= 0’
where we use

1 1 1 1 1 1
u(EMa+b,e2Ha,e?ic) < u(e?Ha+0,82Ha,c?dc) = gu(a, a, c)

in the first inequality and use u(a, a,c) < (a A c)zH R

3
(14 a*"y(1 4y — u*(a,a,c) > 20+ a?fy(1 +

in the second inequality.
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By the definition of u(a + b, a, c), it is easy to find

1 1 1 1 1 1
wEea+b,ea,e2fc) = H(l —2H)sﬁac/ (b + e av) + £27 cvp)2H 2 dy; dvy
[0,1]

and use the Taylor’s theorem for integrand,
_1 1 L L 2H-2
e Hu(e2Ha+b,e2Ha,e2q8c) = H(1 —2H)ach + 0(82Hac(a + ¢)).
Similarly, the denominator of the integrand in V3(¢) can be rewritten as

L L L

[(1 + @A+ 2y — e 2u(eMa + b, e7 a, £70 c)2]72

_d_
_ [(1 +a*")(1 +C2H)] C O(sF*Z 2211 + a2 (1 +C2H)]7—73)
It is easy to see that
2H-1 [! 1
1m(og /s) /<uog;>lb db = .

and

2H-1 -4
lim (e*%) / 1 e%+%*d*2ac(a+c)[(1+a2H)(1+c2H)] 2" dadc
[0,16 " 20 |2

e—0

. _1\2H-1 ~2+F-d-2,3,3 2H N
+ lim (8 H) ) eH H [(1 +a )1 +c¢ )] dadc
e—0 [0 m*ﬁ]z
=0. (3.10)

Then, by L’Hospital’s rule, we have

. . 2H-1 .,
lim (g—ﬁ log 1 /g) V3(e)
E—>

2 2H-1 [!
= H(l = 2H) = lim (log | /g) / (t — b)p*H2dp
2 (log 1)1
o e (3.11)
x lim (fﬁ) / 1 ac[(l + a2+ CZH)] 2" dade
£—0 [0’[8_ﬁ]2
t l2_4H
— H(1—2H .
( o *T=2m * T =20H)
Together (3.7), (3.8), (3.9) and (3.11), we can see
| 1/2 2H3 4
. 1 ~(1) _ _. 52
gf})EH(S Hlogl/g) “’E(O)‘ ]= Qmd(1—2H2 7
O
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Lemma3.2 For I1(f1,) given in (3.1), then

lim EH(s—% log 1/e)H71/211 (fi.e) 2] =02

e—0

Proof From (3.1), we can find

EHII (fie) 2] - (Vl(l)(e) + v + vgl)(e)), (3.12)

where VV(e) = 2 Jp, (Fresirs Alesor)padridrdsidsy for i = 1,2,3, and
(f1,e,51,r1> f1,6,50,r )¢ Was defined in (3.4). Then we have

0= V) < Vice). (3.13)

Combining (3.13) with (3.7) and (3.8), we can see

. =10y M) _
Im%) e Hlogl/e Vit +V, () =0.
E—>

2H—1
Thus, we only need to consider (8’% log 1/8) V3(1)(8) ase — 0.
By (3.1), (3.4) and (3.12) we have

V3(l)(£) = 2/312,de Gf;,lr)’—r (s —r,s —r')drdsdr'ds’
3

t—(a+b+c) 5 Ji
:2,312,0,/ / Ty (@+b+c)(e +a*h)=4/2=
[0,713 Jo

x (e + CZH)_d/Z_lpL(a + b, a, c)ds;dadbdc

4 1
=2H(1 _ZH)ﬂlz,d[ / n / ]l(o,r)((b+£ﬁ(a+c))
0 J[0.ce" 2012 J[0,172

x (r—b—gﬁ(aJrc))

H

—d/2—1 2H-2
X [(1 +a*( +02H)] ac(b—i—eﬁ(av] +cv2)) dvidvydadcedb.

Note that
1 2H-2 2H-2 1
(b + £77 (av; + cvz)) dvydvs = B2 4 O(77 (a + ¢))
[0.172

and

/[o 2 (t —b— gﬁ(a + c)) [(1 + a1 +62H)]—d/2_1
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. 2H-2
ac(b—}—sﬁ(avl +cv2)> dviduvy

—d/2—1
= (- b)bZH_zac[(l + M) + CZH)]

+0 (mL(a + C)ac[(l +a2H)a + czﬂ)]d/21> .

Similar to (3.9), we get

) o 2H-1 g ) g 2H-1 g
lim (8 " log 1/8) V37 (e) = lim (8 " log 1/8) Vi (e),
e—0 e—0

where

t

~ 1
VD (e) =2H(1 —2H)p2 / 1 / IL(Q,)((b—l—eﬁ(a—l—c))
(log =" Ji0,16728 12 J[0,112

(t—b—sﬁ(a—i—c))

—d/2—1 2H-2
X [(1 + azH)(l + czH)] ac(b + sﬁ (avy + cvz)) dvidvadadedb.

According to (3.10) and (3.11), we can find that

) 0 2H-1 -y
hrr(l) (8 H log 1/8) V37 (e)
E—>
t

2H—1
=2H(1 — 2H)ﬁ12,d ‘Eli_r)%<log 1/8) /(.1 ) l(t — b)b*H2dp
og ;)~

: _1\2H-l 2H ]!
x lim (8 H) / . ac[(l +a )1 +c )] dadc
e—0 [0,76 2H ]2

¢ l‘2_4H

=H(-2H =02
( Y omd X T=2m “G—2m2 ="

where we use ,612 q=
Thus,

ﬁ in the second equality.

) 0 2H-1 ) )
hmO (e 7 log 1/8) Vi;(e) =0".
£—

Proof of Theorem 1.3 By Lemmas 3.1-3.2 and

&0 = 1(f1.0) + Y Dg-1(frg-1.6).

q=2

@ Springer



2074 Journal of Theoretical Probability (2024) 37:2054-2075

W€ can see

s

lim E : 1 1 Y E Dy—1(f2g—
H
81m U (8 og /8) 2q 1( 2q 1,8)

q=2

Since I (f1,¢) is Gaussian, we have, as ¢ — 0,

H-1/2
(e—% log 1/8) L(fi.) Y N, o?).

Thus,
H_
(e*ﬁlogl/s) a,“g(O) Y N0, o),

as ¢ — 0. This completes the proof. O
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