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Abstract
Independent Haar-unitary randommatrices and independent Haar-orthogonal random
matrices are known to be asymptotically liberating ensembles, and they give rise
to asymptotic free independence when used for conjugation of constant matrices.
G. Anderson and B. Farrel showed that a certain family of discrete random unitary
matrices can actually be used to the same end. In this paper, we investigate fluctuation
moments and higher-ordermoments induced on constant matrices by conjugationwith
asymptotically liberating ensembles. We show for the first time that the fluctuation
moments associated with second-order free independence can be obtained from con-
jugation with an ensemble consisting of signed permutation matrices and the discrete
Fourier transform matrix. We also determine fluctuation moments induced by various
related ensembles where we do not get known expressions but others related to traffic
free independence.

Keywords Free probability · Random matrices · Fluctuation moments · Discrete
Fourier transform matrix

Mathematics Subject Classification (2020) 46I54 · 60B20 · 15B52

1 Introduction

1.1 Background

Random matrices are matrix-valued random variables that were first investigated in
mathematical statistics [29] and then in nuclear physics [28]. Over the years, its study
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has evolved into a theory with applications to pure and applied sciences such as
numerical analysis [6], analytic number theory [10], and wireless communications
[24].

One of the main topics in random matrix theory is the study of limiting, or asymp-
totic, properties of random matrix ensembles. The term random matrix ensemble is
used in the literature to refer to a sequence of randommatrices {XN }∞N=1, or a sequence
of families of random matrices {{XN ,i }i∈I }∞N=1, where the considered random matri-
ces increase in size with respect to N . Their limiting properties are those arising
from letting N go to infinity. Joint eigenvalue distributions, eigenvalues spacing, con-
centration inequalities, large deviation principles, maximal eigenvalues, and central
limit theorems are some examples of limiting properties, for an introduction on these
subjects one can consult [2].

Now, introduced byD. Voiculescu in his research on vonNeumann algebras in [25],
free probability theory has played a key role in the study of random matrices when
multiple ensembles need to be considered. A main notion from free probability is that
of asymptotic free independence.

Definition 1 Let I be a non-empty set. Suppose {XN ,i }∞N=1 is a randommatrix ensem-
ble for each i ∈ I where each XN ,i is a N -by-N randommatrix.We say that {XN ,i }∞N=1
with i ∈ I are asymptotically freely independent if the following two conditions
hold:

(AF.1) for each index i ∈ I and every integer m ≥ 1 the limit

lim
N→∞ E

[
tr
(
Xm
N ,i

)]
,

where tr (·) denotes the normalized trace 1
N Tr (·), exists and

(AF.2) for all integers m ≥ 1, all indexes i1, i2, . . . , im ∈ I satisfying i1 �=
i2, i2 �= i3, . . . , im−2 �= im−1, im−1 �= im , and im �= i1 and all polynomi-
als p1, p2, . . . , pm in the algebra C[x], we have

lim
N→∞ E

[
tr
(
YN ,1YN ,2 · · · YN ,m

)] = 0

where YN ,k = pk
(
XN ,ik

)− E
[
tr
(
pk
(
XN ,ik

))]
IN .

The first connection between free probability and randommatrices was established
byD.Voiculescuwhen he showed in [26] that independentGaussian unitary ensembles
converge to free semicircular random variables, a result which generalizes Wigner’s
semicircular law and entails the asymptotic free independence of independent Gaus-
sian unitary ensembles. The list of random matrix ensembles exhibiting asymptotic
free independence has been extended since then, and it now includes: independent
Wishart ensembles, independent Gaussian orthogonal ensembles, independent Haar-
unitary distributed ensembles, independent Haar-orthogonal distributed ensembles,
among others. The monograph [27] and the book [20] are standard introductions to
free probability, and the recent monograph [18] is an excellent source presenting mul-
tiples directions in which the relation between free probability and random matrices
has been extended.
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Another result due to D. Voiculescu in [26], and subsequently generalized by other
authors, states that conjugation by independent Haar-unitary distributed randommatri-
ces gives rise to asymptotic free independence. More concretely, assume DN ,i is a
self-adjoint N -by-N deterministic matrix for each index i ∈ I and each integer N ≥ 1
and suppose that

sup
N∈N

‖DN ,i‖ < ∞ and lim
N→∞ tr(Dm

N ,i ) exists (1.1)

for all i ∈ I and m ≥ 1; the random matrix ensembles {DN ,i }∞N=1 with i ∈ I might
or might not be asymptotically freely independent; however, if {UN ,i }i∈I is a family
of independent N -by-N Haar-unitary distributed random matrices for each N ≥ 1,
then {UN ,i DN ,iU

∗
N ,i }∞N=1 with i ∈ I are asymptotically freely independent. The same

conclusion holds if each UN ,i is Haar-orthogonal distributed, see [13].
Aiming to enclose all of those unitary random matrix ensembles that give rise to

asymptotic free independence when used for conjugation, B. Farrell and G. Anderson
introduced in [1] the notion of asymptotically liberating random matrix ensembles.

Definition 2 Suppose UN ,i is an N -by-N unitary random matrix for each index i ∈ I
and each integer N ≥ 1. The unitary random matrix ensemble

{{
UN ,i

}
i∈I
}∞
N=1

is
asymptotically liberating if for all indexes i1, i2, . . . , im ∈ I with i1 �= i2, i2 �=
i3, . . . , im−1 �= im , and im �= i1 there exists a constant C > 0 depending only on the
indexes i1, i2, . . . , im such that

∣∣∣∣E
[
Tr
(
UN ,i1 AN ,1U

∗
N ,i1UN ,i2 AN ,2U

∗
N ,i2 · · ·UN ,im AN ,mU

∗
N ,im

)]
∣∣∣∣

≤ C
∥∥AN ,1

∥∥ ∥∥AN ,2
∥∥ · · · ∥∥AN ,m

∥∥

for all integers N ≥ 1 and all matrices AN ,1, AN ,2, . . . , AN ,m ∈ MatN (C) each of
trace zero.

It follows immediately from the above definition that asymptotically liberating
ensembles gives rise to asymptotic free independence when used for conjugation.
Indeed, suppose {{UN ,i }i∈I }∞N=1 is an asymptotically liberating ensemble and assume
{DN ,i }∞N=1 with i ∈ I satisfy (1.1). Letting XN ,i = UN ,i DN ,iU

∗
N ,i , we have (1.1)

implies (AF.1) fromDefinition 1; moreover, if each YN ,k is as in (AF.2) fromDefinition
1, then

YN ,1YN ,2 · · · YN ,m = (UN ,i1 AN ,1U
∗
N ,i1)(UN ,i2 AN ,2U

∗
N ,i2) · · · (UN ,im AN ,mU

∗
N ,im )

where AN ,k denotes the matrix of trace zero pk(DN ,ik
) − tr(pk(DN ,ik

))IN , but (1.1)

also implies that supN

∥∥
∥AN ,k

∥∥
∥ < ∞, and hence, (AF.2) holds. As it was intended,

independentHaar-unitary randommatrix ensembles and independentHaar-orthogonal
random matrix ensembles are among those unitary random matrix ensembles shown
to be asymptotically liberating, see Theorem 2.8 in [1] or Lemma 3.
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A key feature of asymptotic free independence is that it provides us with universal
rules to compute limiting mixed moments out of individual ones. A limiting mixed
moment of the ensembles {XN ,i }∞N=1 with i ∈ I is a limit of the form

lim
N→∞ E

[
tr
(
XN ,i1XN ,i2 · · · XN ,im

)]
(1.2)

where at least twoof the indexes i1, i2, . . . , im ∈ I are distinct andnone of themdepend
on N . For instance, if {XN ,i }∞N=1 with i ∈ I are asymptotically free independent and
i1, i2 ∈ I are distinct, one can show that

lim
N→∞ E

[
tr
(
X1
N ,i1X

4
N ,i2X

7
N ,i1X

2
N ,i2

)]
= α

(i1)
8 α

(i2)
4 α

(i2)
2 + α

(i2)
6 α

(i1)
1 α

(i1)
7

− α
(i1)
1 α

(i2)
4 α

(i1)
7 α

(i2)
2

where α
(i)
m denotes limN→∞ E[tr(Xm

N ,i )] and is called the m-th limiting individual
moment of {XN ,i }∞N=1. The relation above, and any other derived from asymptotic
free independence to compute mixed moments, is called universal since it does not
depend on any particular choice of i1 and i2 and it only requires {XN ,i1}∞N=1 and
{XN ,i2}∞N=1 to be asymptotically freely independent.

At this point, one might wonder if there are universal rules for computing limiting
mixed moments of higher order out of individual ones. A limiting moment of n-th
order of the ensembles {XN ,i }∞N=1 with i ∈ I is defined to be a limit of the form

lim
N→∞ Nn−2cn[Tr(X̃ N ,1),Tr(X̃ N ,2), . . . ,Tr(X̃ N ,n)] (1.3)

where cn[·, . . . , ·] denotes the n-th classical cumulant and each X̃ N ,k is of the form

X̃ N ,k = X
N ,i (k)1

X
N ,i (k)2

· · · X
N ,i (k)mk

for some integermk ≥ 1 and some indexes i (k)1 , i (k)2 , . . . , i (k)mk ∈ I not depending on N .
The choice of the normalization factor Nn−2 appearing in (1.3) is due to what has been
observed for the behavior of (1.3) when each XN ,i is a Gaussian unitary ensemble.
Since the limiting moment (1.3) is just a generalization of (1.2), we call it mixed if
at least two of the indexes i (1)1 , . . . , i (1)m1 , i

(2)
1 , . . . , i (2)m2 , . . . , i

(n)
1 , . . . , i (n)

mn are distinct,
and individual, otherwise.

Themost studiedmoments of higher order aremoments of second order, also known
as fluctuation moments. A fluctuation moment of the ensembles {XN ,i }∞N=1 with i ∈ I
is then a limit of the form

lim
N→∞Cov[Tr(XN ,i1XN ,i2 · · · XN ,im1

),Tr(XN ,im1+1XN ,im1+2 · · · XN ,im1+m2
)] (1.4)

for some integersm1,m2 ≥ 1 and indexes i1, i2, . . . , im1 , im1+1, im1+2, . . . , im1+m2 ∈
I . A common practice in free probability theory to determine combinatorially (1.3), or
(1.4), is that of calculating limiting moments of products of cyclically alternating and

123



1976 Journal of Theoretical Probability (2023) 36:1972–2039

centered random matrices, as in (AF.2) from Definition 1. For fluctuation moments,
this means one must consider limits of the form

lim
N→∞Cov

[
Tr(YN ,1YN ,2 · · · YN ,m1),Tr(ZN ,1ZN ,2 · · · ZN ,m2)

]

where YN ,k and ZN ,l are given by

YN ,k = pk
(
XN ,ik

)− E
[
tr
(
pk
(
XN ,ik

))]
IN and

ZN ,l = ql
(
XN , jl

)− E
[
tr
(
ql
(
XN , jl

))]
IN (1.5)

for all polynomials p1, p2, . . . , pm1 , q1, q2, . . . , qm2 ∈ C[x] and all indexes i1, i2, . . . ,
im1

, j1, j2, . . . , jm2
∈ I satisfying the condition

i1 �= i2, i2 �= i3, . . . , im1−1 �= im1
, im1

�= i1, j1 �= j2, j2 �= j3, . . . , jm2−1 �= jm2
, jm2

�= j1.

(1.6)

Analyzing the fluctuation moments of complex Gaussian and complexWishart ran-
dom matrix ensembles, J. Mingo and R. Speicher found a relation between individual
and mixed moments of first and second order and introduced in [16] the notion of
asymptotic free independence of second order.

Definition 3 We say that the random matrix ensembles {XN ,i }∞N=1 with i ∈ I are
asymptotically freely independent of second order if they are asymptotically freely
independent and the following three conditions are satisfied:

(ASOF.1) for each index i ∈ I and all integers m, n ≥ 1 the limit

lim
N→∞Cov

[
Tr(Xm

N ,i ),Tr(X
n
N ,i )
]

exists,
(ASOF.2) for all integers m1,m2 ≥ 1, all indexes i1, i2, . . . , im1

, j1, j2, . . . , jm2
∈ I

satisfying (1.6), and all polynomials p1, p2, . . . , pm1 , q1, q2, . . . , qm2 in the
algebra C[x], if we take

YN = YN ,1YN ,2 · · · YN ,m1 and ZN = ZN ,1ZN ,2 · · · ZN ,m2

with YN ,k and ZN ,l given by (1.5) for 1 ≤ k ≤ m1 and 1 ≤ l ≤ m2, we
have

lim
N→∞Cov [Tr(YN ),Tr(ZN )] = δm1,m2 lim

N→∞

m1∑

l=1

m2∏

k=1

E
[
tr
(
YN ,k ZN ,l−k

)]
(1.7)

where l − k is taken modulo m2, and
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(ASOF.3) for every integer n ≥ 3, all polynomials p1, p2, . . . , pn in the algebra of non-
commutative polynomialsC 〈xi | i ∈ I 〉, lettingYN ,k = pk

({XN ,i }i∈I
)
, we

have

lim
N→∞ cn

[
Tr
(
YN ,1

)
,Tr

(
YN ,2

)
, . . . ,Tr

(
YN ,n

)] = 0

Similar to asymptotic free independence, asymptotic free independence of second
order provides uswith universal rules, via the conditions (ASOF.1) and (ASOF.2) above,
to calculate limiting mixed fluctuation moments out of individual ones. Moreover,
independent Gaussian unitary ensembles are asymptotically freely independent of
second order and conjugation by independent Haar-unitary random matrix ensembles
leads to asymptotic free independence of second order, see [16] and [15], respectively.

However, in contrast to moments of first order, fluctuation moments induced by
Haar-unitary randommatrix ensembles and those induced byHaar-orthogonal random
matrix ensembles differ. Investigating fluctuation moments of independent Gaussian
orthogonal ensembles, E. Redelmeier proved in [21] that if each {XN ,i }i∈I forms a
family of independent Gaussian orthogonal ensembles for every N ≥ 1, then the
ensembles {XN ,i }∞N=1 with i ∈ I satisfy (ASOF.1) and (ASOF.3) from Definition 3
but (ASOF.2) has to be replaced by the following:

(ASOF.2’) for all integers m1,m2 ≥ 1, all indexes i1, i2, . . . , im1
, j1, j2, . . . , jm2

∈
I satisfying (1.6), and all polynomials p1, p2, . . . , pm1 , q1, q2, . . . , qm2 in
the algebra C[x], if we take

YN = YN ,1YN ,2 · · · YN ,m1 and ZN = ZN ,1ZN ,2 · · · ZN ,m2

with YN ,k and ZN ,l given by (1.5) for 1 ≤ k ≤ m1 and 1 ≤ l ≤ m2, we
then have

lim
N→∞Cov [Tr(YN ),Tr(ZN )] = δm1,m2 lim

N→∞

m1∑

l=1

(
m2∏

k=1

E[tr(YN ,k ZN ,l−k)]

+
m2∏

k=1

E[tr(YN ,k Z
T
N ,l+k)]

)

(1.8)

where l − k and l + k are taken modulo m2.

Asymptotically freely independent ensembles satisfying (ASOF.1), (ASOF.2’), and
(ASOF.3) are called asymptotically freely independent of second order in the real sense.
Generalizing the findings of E. Redelmeier in [21], it was shown by J. Mingo and M.
Popa in [13] that independent orthogonally invariant ensembles are asymptotically
freely independent of second order in the real sense, and therefore, the fluctuation
moments induced by Haar-orthogonal ensembles are not described by (1.7) but (1.8)
instead.
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1.2 Objectives andMain Results

The aim of this paper is to investigate the behavior of the fluctuation moments,
and higher-order moments, resulting from conjugation by asymptotically liberating
ensembles. Since independent Haar-unitary and independent Haar-orthogonal are both
asymptotically liberating but the fluctuation moments each of them induces are dis-
tinct, we already know that the induced fluctuation moments depend on the specific
liberating ensemble used for conjugation. However, it might well be the case that
the relations in (1.7) and (1.8) cover all possible behaviors for fluctuation moments
induced by liberating ensembles; our first result shows that this is actually not the
case, adding even more evidence that fluctuation moments are more intricate than its
first-order counterpart.

It is illustrative and good for comparison to restate what the relations in (1.7)
and in (1.8) yield when Haar-unitary ensembles and Haar-orthogonal ensembles
are used of conjugation. So, let us assume XN ,1 = UN ,1DN ,1U

∗
N ,1 and XN ,2 =

UN ,2DN ,2U
∗
N ,2 for each integer N ≥ 1 where each sequence {DN ,i }∞N=1 satisfies

(1.1) and {UN ,1,UN ,2}∞N=1 is an asymptotically liberating ensemble. Note that if the
random matrices YN and ZN are as in (ASOF.2) from Definition 3, then we can write

YN = (UN ,i1 AN ,1U
∗
N ,i1

)(
UN ,i2 AN ,2U

∗
N ,i2

) · · · (UN ,i2m1
AN ,2m1

U∗
N ,i2m1

)
(1.9)

and

ZN = (UN , j1BN ,1U
∗
N , j1

)(
UN , j2BN ,2U

∗
N , j2

) · · · (UN , j2m2
BN ,2m2

U∗
N , j2m2

)
(1.10)

where AN ,k and BN ,l are deterministic matrices of trace zero given by

AN ,k = pk
(
DN ,ik

)− tr
(
pk
(
DN ,ik

))
IN and BN ,l = ql

(
DN , jl

)− tr
(
ql
(
DN , jl

))
IN
(1.11)

for 1 ≤ k ≤ 2m1 and 1 ≤ l ≤ 2m2. For simplicity, and without loss of generality, let
us assume i1 = j1. Now, if UN ,1 and UN ,2 are independent Haar-unitary ensembles,
it follows from (AF.2) in Definition 1 and the relation in (1.7) that the covariance
Cov [Tr(YN ),Tr(ZN )] converges to

lim
N→∞ δm1,m2

m1∑

l=1

2m2∏

k=1

tr
(
AN ,k BN ,2l−k

)
(1.12)

as N goes to infinity. On the other hand, if UN ,1 and UN ,2 are independent
Haar-orthogonal ensembles, then (AF.2) and (1.8) imply that Cov [Tr(YN ),Tr(ZN )]
converges to

lim
N→∞ δm1,m2

m1∑

l=1

(2m2∏

k=1

tr
(
AN ,k BN ,2l−k

)+
2m2∏

k=1

tr
(
AN ,k B

T
N ,2l+k

))

(1.13)
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Table 1 The rules for Cov
[
Tr(YN ),Tr(ZN )

]
with YN and ZN as in (1.9) and (1.10), respectively, and

UN ,1 and UN ,2 independent and uniformly distributed on the classical compact groups

Conjugation type Value of Cov
[
Tr(YN ),Tr(ZN )

]

UN ,1 and UN ,2 independent
Haar-unitary

∑m
l=1

∏2m
k=1 tr

(
AN ,k BN ,2 l−k

)

UN ,1 and UN ,2 independent
Haar-orthogonal

∑m
l=1

∏2m
k=1 tr

(
AN ,k BN ,2 l−k

)+∑m
l=1

∏2m
k=1 tr(AN ,k B

T
N ,2 l+k )

UN ,1 and UN ,2 independent
Haar-symplectic

1
4
∑m

l=1
∏2m

k=1 tr(AN ,k BN ,2l−k ) + 1
4
∑m−1

l=1
∏2m

k=1 tr(AN ,k B
T
N ,2l+k )

− 1
2
∏2m

k=1 tr(AN ,k B
T
N ,2m+k )

For simplicity, we only display the case m1 = m2

as N goes to infinity. Note that (1.1) alone guarantees the existence of each of the
limits above if each matrix DN ,i equals its transpose, regardless of what UN ,1 and
UN ,2 are.

Another ensemble shown to be asymptotically liberating, see Corollary 3.2
in [1], and a main focus in this paper, is the unitary random matrix ensemble
{WN , HNWN/

√
N , XN HNWN/

√
N } where WN is a random N -by-N signed per-

mutation matrix, XN is a random N -by-N signature matrix independent from
WN , and HN is the N -by-N discrete Fourier transform matrix. Our first result
shows that if we take pairs of distinct unitary matrices UN ,1 and UN ,2 from
{WN , HNWN/

√
N , XN HNWN/

√
N } and use them for conjugation, then the resulting

fluctuation moments vary with each pair and differ from those in (1.12) and in (1.13).

Theorem 1 Let DN ,1 and DN ,2 be N-by-N self-adjoint matrices for each integer
N ≥ 1 so that each {DN ,i }∞N=1 satisfies (1.1).

Suppose XN ,1 = UN ,1DN ,2U
∗
N ,1 and XN ,2 = UN ,2DN ,2U

∗
N ,2 where UN ,1 and

UN ,2 are distinct matrices from {WN , HNWN/
√
N , XN HNWN/

√
N }.

If YN and ZN aregivenbyYN = YN ,1YN ,2 · · · YN ,2m1 and ZN = ZN ,1ZN ,2 · · · ZN ,2m2

where YN ,k and ZN ,l are defined as in (1.5) for some polynomials p1, p2, . . . , p2m1 , q1,
q2, . . . , q2m2 ∈ C[x] and some indexes i1, i2, . . . , i2m1

, j1, j2, . . . , j2m2
∈ {1, 2} sat-

isfying (1.6) and i1 = j1, then the following holds:

(1) UN ,1 = WN and UN ,2 = HNWN/
√
N implies

Cov [Tr(YN ),Tr(ZN )]

= δm1,m2

m1∑

l=1

(2m1∏

k=1

tr
(
AN ,k BN ,2l−k

)+
2m1∏

k=1

tr
(
AN ,k B

T
N ,2l+k−1

))

+ O
(
N− 1

2

)

(2) UN ,1 = WN and UN ,2 = XN HNWN/
√
N implies

Cov [Tr(YN ),Tr(ZN )]
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= δm1,m2

m1∑

l=1

(2m1∏

k=1

tr
(
AN ,k BN ,2l−k

)+
2m1∏

k=1

tr
(
AN ,k ◦ BN ,2l+k−1

)
)

+ O
(
N− 1

2

)

(3) UN ,1 = HNWN/
√
N and UN ,2 = XN HNWN/

√
N implies

Cov [Tr(YN ),Tr(ZN )] =
2m1∑

l1=1

2m2∑

l2=1

m1∏

k1=1

tr
(
AN ,l1+k1−1AN ,l1−k1

) ·

m2∏

k2=1

tr
(
BN ,l2+k2−1BN ,l2−k2

)

+δm1,m2

2m1∑

l=1

(2m1∏

k=1

tr
(
AN ,k BN ,l−k

)
)

+ O
(
N− 1

2

)

with AN ,k and BN ,l defined as in (1.11), 2l − k, 2l + k − 1, l1 + k1 − 1, l1 − k1, and
l − k interpreted modulo 2m1, and l2 + k2 − 1 and l2 + k2 interpreted module 2m2.

The discovery of second-order behaviors deviating from second-order free inde-
pendence, and second-order free independence in the real sense, is not new. From
a more algebraic setting, the authors of [8] and [9] analyze fluctuation moments of
matrices with entries from a possibly non-commutative unital algebra and obtain dif-
ferent relations from those mentioned above. Additionally, the fluctuation moments
of symplectically invariant random matrices have been fully determined in [22]. In
particular, the relations (1.12) and (1.13) must be replaced by

lim
N→∞

δm1,m2

4

(
m1∑

l=1

2m2∏

k=1

tr(AN ,k BN ,2l−k) +
m1−1∑

l=1

2m2∏

k=1

tr(AN ,k B
T
N ,2l+k)

−2
2m2∏

k=1

tr(AN ,k B
T
N ,2m1+k)

)

when considering conjugation by independentHaar-symplectic randommatrix ensem-
bles.We recap inTable 1 thefluctuationmoments inducedbyconjugationwithmatrices
uniformly distributed on classical compact groups and in Table 2 the fluctuation
moments induced by conjugation with the matrices considered in this paper.

Notice (1.1) alone is not enough to guarantee the existence of limiting second-
order behaviors in Theorem 1, in contrast to (1.12) and (1.13). For instance, if
we want to take the limit as N goes to infinity in (3) from Theorem 1, we need
{DN ,1}∞N=1 and {DN ,2}∞N=1 to have a joint limiting distribution, i.e., we need that the
limit limN→∞ tr(DN ,i1

DN ,i2
· · · DN ,im

) exists for all integers m ≥ 1 and all indexes
i1, i2, . . . , im ∈ {1, 2}. This showswe cannot expect a classification for universal prod-
ucts of second order, in the spirit of [19] or [23], encompassing all of the second-order
behaviors exhibited by random matrices.
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Table 2 The rules for Cov
[
Tr(YN ),Tr(ZN )

]
with YN and ZN as in (1.9) and (1.10), respectively, when

UN ,1 and UN ,2 are as in the left column

Conjugation type Value of Cov
[
Tr(YN ),Tr(ZN )

]

WN and HNWN√
N

∑m
l=1

∏2m
k=1 tr

(
AN ,k BN ,2 l−k

)+∑m
l=1

∏2m
k=1 tr(AN ,k B

T
N ,2 l+k−1)

WN and XN HNWN√
N

∑m
l=1

∏2m
k=1 tr

(
AN ,k BN ,2 l−k

)+∑m
l=1

∏2m
k=1 tr

(
AN ,k ◦ BN ,2 l+k−1

)

HNWN√
N

and XN HNWN√
N

∑2m
l=1

∏2m
k=1 tr

(
AN ,k BN ,l−k

)+
∑2m

l1,l2=1
∏m

k=1 tr
(
AN ,l1+k−1AN ,l1−k

) · tr (BN ,l2+k−1BN ,l2−k
)

WN ,1 and
HNWN ,2√

N

∑m
l=1

∏2m
k=1 tr

(
AN ,k BN ,2 l−k

)

The first three rules in this table are distinct from the rules in Table 1
We only display the case m1 = m2 for simplicity

It would be desirable to have a master theorem encompassing all three cases in The-
orem 1. However, in our analysis of fluctuation moments, we arrive to combinatorics
that seem already too intricate when we consider each case separately. On this regard,
although we make no explicit use of the theory of traffic free independence of C.
Male, see [11], it is likely that our results will find a nice expression in terms of traffic
algebras. Tools from traffic algebras have been already used in [12] to describe joint
fluctuation moments of Wigner random matrices and deterministic matrices and their
lack of second-order independence. Finally, it is pointed out in [7] that traffic algebras
are closely related to A-tracial algebras, with both notions generalizing classical and
free independence. We hope to describe the results in this paper in terms of traffic or
A-tracial algebras in a future work.

Despite the fact that no pair of distinct unitary matrices UN ,1 and UN ,2 from the
ensemble {WN , HNWN/

√
N , XN HNWN/

√
N }∞N=1 leads to asymptotic free inde-

pendence of second order when used for conjugation, it turns out not much more is
needed to achieve this end, at least, partially. More concretely, if UN ,1 = WN ,1 and
UN ,2 = HNWN ,2/

√
N where WN ,1 and WN ,2 are independent N -by-N uniformly

distributed signed permutation matrices, then the fluctuation moments induced by
{UN ,1,UN ,2}∞N=1 are the same as if UN ,1 and UN ,2 were independent Haar-unitary,
i.e., the induced fluctuation moments are described by (1.12). Thus, we can think of
{WN ,1, HNWN ,2/

√
N }∞N=1 as an asymptotically liberating ensemble of second order.

Theorem 2 Let DN ,1 and DN ,2 be N-by-N self-adjoint matrices for each integer
N ≥ 1 so that each {DN ,i }∞N=1 satisfies (1.1). Suppose XN ,1 = UN ,1DN ,2U

∗
N ,1 and

XN ,2 = UN ,2DN ,2U
∗
N ,2 where UN ,1 = WN ,1 and UN ,2 = HNWN ,2/

√
N. Then,

{XN ,1}∞N=1 and {XN ,2}∞N=1 are asymptotically freely independent and they satisfy
(ASOF.1) and (ASOF.2) from Definition 3. In particular, if YN , ZN , AN ,k , and BN ,l

are given as in the previous theorem, then

Cov [Tr(YN ),Tr(ZN )] =δm1,m2

m1∑

l=1

(2m1∏

k=1

tr
(
AN ,k BN ,2l−k

)
)

+ O
(
N− 1

2

)
(1.14)
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Themain result in [1] gives sufficient conditions on a unitary randommatrix ensem-
ble to be asymptotically liberating. Using a different approach than the one of [1], we
have been able to prove that, under the same conditions, a unitary random matrix
ensemble not only is asymptotically liberating but also satisfies a natural generaliza-
tion of the boundedness condition in Definition 2 to cumulants of any order. More
concretely, we have the following lemma.

Lemma 3 Let UN ,i be an N-by-N unitary random matrix for each index i ∈ I and
each integer N ≥ 1.

Suppose the unitary random matrix ensemble U = {{UN ,i }i∈I }∞N=1 satisfies the
following two conditions:

(I) the families of random matrices {U∗
N ,i1

UN ,i2
}i1,i2∈I and {W∗U∗

N ,i1
UN ,i2

W}i1,i2∈I
are equal in distribution for every N-by-N signed permutation matrixW, and

(II) for each positive integer m and indexes i1, i2 ∈ I with i1 �= i2 there is a constant
Cm(i1, i2) independent from N such that

∥∥∥
∥
(
U∗

N ,i1UN ,i2

)
( j1, j2)

∥∥∥
∥
m

≤ Cm(i1, i2)N
−1/2

for all integers j1, j2 ∈ {1, 2, . . . , N }.
Now, given positive integers m1,m2, . . . ,mn, take m′

k = m′
k−1 + mk−1 for k =

2, 3, . . . , n with m′
1 = 0 and consider the permutation γ = (1, 2, . . . ,m′

1+m1)(m′
2+

1,m′
2+2, . . . ,m′

2+m2) · · · (m′
n+1, . . . ,m′

n+mn). If some indexes i1, i2, . . . , im ∈ I
are such that ik �= iγ (k) for k = 1, 2, . . . ,m where m = m1 + m2 + · · · + mn, then
there exists a constant C(i1, i2, . . . , im) such that for

YN ,k = (UN ,im′
k+1

Am′
k+1U

∗
N ,im′

k+1

)(
UN ,im′

k+2
Am′

k+2U
∗
N ,im′

k+2

) · · ·
(
UN ,im′

k+mk
Am′

k+mk
U∗

N ,im′
k+mk

)

with A1, A2, . . . , Am ∈ MN (C) each of trace zero, we have

∣∣cn
[
Tr
(
YN ,1

)
,Tr

(
YN ,2

)
, . . . ,Tr

(
YN ,n

)]∣∣ ≤ C(i1, i2, . . . , im) ‖A1‖ ‖A2‖ · · · ‖Am‖

The fact that a unitary random matrix ensemble {{UN ,i }i∈I }∞N=1 satisfying (I) and
(II) above is asymptotically liberating can now be seen as a particular case of the
previous lemma. Moreover, if UN ,i1 and UN ,i2 are independent Haar-unitary (resp.
Haar-orthogonal), then U∗

N ,i1
UN ,i2

is also Haar-unitary (resp. Haar-orthogonal), and
hence, U∗

N ,i1
UN ,i2

satisfies (I) and (II) above. Therefore, independent Haar-unitary
(Haar-orthogonal) random matrix ensembles are asymptotically liberating.

The customary definition of asymptotic free independence for random matrix
ensembles involves the convergence of a sequence of linear functionals on non-
commutative polynomials, see Proposition 14 and the comment right after its proof. In
a similar way, multi-linear functionals on non-commutative polynomials can be used
to analyze the behavior of moments of higher order, allowing us to show that unitary
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random matrix ensembles satisfying (I) and (II) above induce the bounded cumulants
property when used for conjugation.

Theorem 4 Let DN ,i be a self-adjoint N-by-N deterministic matrix, and let UN ,i

be an N-by-N unitary random matrix for each index i ∈ I and each integer
N ≥ 1. Suppose the unitary random matrix ensemble {{UN ,i }i∈I }∞N=1 satis-
fies (I) and (II) from the previous lemma and (1.1) holds. Then, the ensemble
{{UN ,i DN ,iU

∗
N ,i }i∈I }∞N=1 has the bounded cumulants property; namely, for all poly-

nomials p1, p2, p3, . . . in the algebra of non-commutative polynomials C 〈xi | i ∈ I 〉
taking YN ,k = pk({UN ,i DN ,iU

∗
N ,i }i∈I ) we have

sup
N

∣∣∣
∣cn
[
Tr
(
YN ,1

)
,Tr

(
YN ,2

)
, . . . ,Tr

(
YN ,n

)]
∣∣∣
∣ < ∞ (1.15)

for every integer n ≥ 1.

The term bounded cumulants property is borrowed from [14] where it is used to
prove several results concerning the limiting behavior of unitarily invariant random
matrix ensembles and some other random matrix ensemble with this property.

A few technical comments are worth before we present the organization of the
paper. Bounds of graph sums of square matrices, see [17] or Sect. 3, and the relations
(4.4) and (5.3) are some key components to our results. In particular, (4.4) reveals the
n-th cumulant from Lemma 3 can be written a sum where each term is a product of a
cumulant cn [π ] of the random variables (U∗

N ,i1
UN ,i2

)( j1, j2) and a graph sum of the
deterministic matrices Al . Sharp bounds for graph sums are provided in Theorem 5, so
the behavior and existence of higher-order moments depend largely on the cumulants
cn [π ], at least, in our approach. Estimates of c2 [π ] up to terms of order N−m−1/2 are
enough for Theorems 1 and 2 and constitute some of our main technical results, see
Proposition 17. The sharpness of our estimates for c2 [π ]—and, consequently, of the
terms of order N−1/2 appearing in Theorems 1 and 2—is addressed in the last section.
For higher-order moments with n ≥ 3, a finer description of cn [π ] than the one given
here is required. A full description of cn [π ] for the unitary matrices from Theorems 1
and 2 would mean to write graph sums of the discrete Fourier transform as a power
series in N 1/2, such expression for arbitrary π and arbitrary N is unknown to us at
the moment. For Haar-unitary and Haar-orthogonal ensembles, a full description of
cn [π ] as a power series in N−2 is already available via the Weingarten Calculus from
[4] and [5], so higher-order moments might be computed using (4.4) in this case.

1.3 Organization of this Paper

The rest of this paper is organized as follows. In Sect. 2, we introduce the main
definitions and the main notation for partitions, classical cumulants, matrices, and
non-commutative polynomials; we also establish the distribution of random signed
permutation matrices and random signature matrices. In Sect. 3, we review and prove
multiple results on graph sums of square matrices. Roughly speaking, a graph sum of
square matrices is a sum of products of entries of square matrices with the constraint
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that some of the entries from distinct matrices are indexed by the same summation
variable. Then, Sects. 4 and 5 are devoted to the proofs of our main results; concretely,
Lemma 3 and Theorem 4 are proved in Sect. 4, whereas Theorems 1 and 2 are proved in
Sect. 5. Finally, in Sect. 6, we give some concluding remarks including open questions
and further research projects.

2 Preliminaries

2.1 Set Partitions, the Möbius Inversion Function, and Classical Cumulants

A partition of a non-empty set S is a set of non-empty and pair-wise disjoint subsets
of S whose union is S, i.e., a set π is a partition of S if B ⊂ S and B �= ∅ for every
B ∈ π , B∩ B ′ �= ∅ implies B = B ′ for all B, B ′ ∈ π , and ∪B∈π B = S. The elements
of a partition are called blocks, a block is said to be even if it has even cardinality, and
similarly, a block is said to be odd if it has odd cardinality. A partition containing only
even blocks is called even, but if all of its blocks have exactly two elements, we refer
to it as a pairing. The total number of block in partition π is denoted by #(π) and we
let P(S), Peven(S), and P2(S) denote the set of all partitions of S, the set of all even
partitions of S, and the set of all pairing partitions of S, respectively.

Example The sets θ1 = {{−1,−3,−2, 2}, {1, 3}}, θ2 = {{−1,−2}, {2}, {1,−3, 3}},
and θ3 = {{−1,−3}, {1, 3}, {−2, 2}} are all partitions of {−1, 1, 2,−2,−3, 3}. The
partitions θ1 and θ3 are both even, but while θ3 is a pairing, θ1 is not. The partition θ2
is neither even nor odd since it contains two odd blocks, {2} and {1,−3, 3}, and one
even block, {−1, 2}.

We let [m] and [±m]denote the sets of integers {1, 2, . . . ,m} and {−1, 1,−2, 2, . . . ,
−m,m}, respectively. The sets [m] and [±m] are used extensively in this paper, so
we will omit the square brackets when referring to any of their sets of partitions.
Thus, for instance, we write Peven(±m) instead of Peven([±m]). Having fixed inte-
gers m1,m2 ≥ 1 and a partition π ∈ P(±(m1 + m2)), we denote by π1 and π2 the
restrictions of π to [±m1] and [±(m1 + m2)]\[±m1], respectively.

Every partition π ∈ P(S) defines an equivalence relation, denoted by ∼π , that has
the blocks of π as equivalence classes. Thus, given elements k, l ∈ S, we write k ∼π l
only if k and l belong to the same block of π . With this notation in mind, a partition
π ∈ P(±m) is called symmetric if k ∼π l implies −k ∼π −l.

The set of partitions P(S) becomes a partially ordered set with the partial order ≤
defined as follows: given partitions π and θ in P(S), we write π ≤ θ , and say that
π is a refinement of θ , if every block of π is contained in some block of θ . Note that
π ≤ θ if and only if k ∼π l implies k ∼θ l for all k, l ∈ S. In the previous example,
the partition π3 is a refinement of π1, and there is no other refinement between π1, π2,
and π3.

Consider now the function ζ : P(S) × P(S) → {1, 0} defined by

ζ(θ, η) =
{
1 if θ ≤ η

0 otherwise.
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This function is called the zeta function of P(S). It turns out that if S is a finite set,
then the system of equations

∑

η≤π≤θ

ζ(η, π)μ(π, θ) =
{
1 if η = θ

0 otherwise
for η, θ ∈ P(S) (2.1)

determines a function μ : P(S) × P(S) → Z called the Möbius function of P(S)

which can be explicitly computed, but first, let us establish the convention that
whenever we write η = {Bi1, Bi2 , . . . , Bir } for a partition η, it is always assumed
that blocks Bik and Bil are the same only if ik = il . Suppose now we are given
partitions π and θ in P(S). If π ≤ θ , we can write θ = {B1, B2, . . . , Br } and
π = {B1,1, B1,2, . . . , B1,m1 , . . . , Bn,mr } with Bk = ∪mk

l=1Bk,l for each k, and, in this
case, we have

μ(π, θ) =
n∏

k=1

(−1)mk−1(mk − 1)! . (2.2)

On the other hand, if π is not a refinement of θ , we have μ(π, θ) = 0. The Möbius
inversion formula states that given arbitrary functions f , g : P(S) → C, we have the
relation

∀θ ∈ P(S) f (θ) =
∑

π∈P(S)
π≥θ

g(π) ⇐⇒ ∀π ∈ P(S) g(π) =
∑

θ∈P(S)
θ≥π

μ(π, θ) f (θ)

(2.3)

The computation of Möbius function, Eq. (2.2), and the Möbius inversion formula,
Eq. (2.3), is well known, and their proofs can be found in [20, Lecture 10].

Let (	,F , P) be a classical probability space, and let L−∞(	,F , P) denote the
set of complex-valued random variables on (	,F , P) with finite moments of all
orders. The classical n-th cumulant on L−∞(	,F , P) is the n-linear functional cn :
L−∞(	,F , P) × · · · × L−∞(	,F , P) → C defined by

cn[x1, x2, x3, . . . , xn] =
∑

π∈P(n)

μ(π, 1n)
∏

B∈π

E

[
∏

b∈B
xb

]

(2.4)

for random variables x1, x2, x3, . . . , xn ∈ L−∞(	,F , P) and where E[·] denotes the
corresponding expected value. Note that if xk is a constant for some k ∈ [n] and n ≥ 2,
then cn[x1, x2, . . . , xn] = 0.

2.2 The Kernel Notation, Tuples, and Permutations

Let S1 and S2 be non-empty sets. We make the convention that for a function j : S1 →
S2, we put jk = j(k) for every k ∈ S1; additionally, if S1 = [±m] for some integerm ≥
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1, we identify the function j : S1 → S2 with the tuple ( j−1, j1, j−2, . . . , j−m, jm).
Moreover, the kernel of a function j : S1 → S2, denoted by ker (j), is defined as the
partition of S1 whose blocks are all of the non-empty pre-images of j, i.e.,

ker (j) = {j−1(s) �= ∅ | s ∈ S2} = {{k ∈ S1 | jk = s} �= ∅ | s ∈ S2}.

The group of all permutations on a non-empty set S is denoted by Sym(S); however,
if S = [m] or S = [±m] for some positive integer m, we simply write Sym(m)

and Sym(±m), respectively. Given permutations σl ∈ Sym(Sl) for l = 1, 2, we let
j ◦ σ 1 : S1 → S2 and σ 2 ◦ j : S1 → S2 denote the usual composition of functions, so
we have

j ◦ σ 1(k) = jσ1(k) and σ 2 ◦ j(k) = σ2( jk) ∀k ∈ S1.

Example The function j : [±3] → [4] given by

j(−1) = j(2) = j(3) = 4, j(1) = j(−3) = 1, and j(−2) = 3,

or, equivalently, ( j−1, j1, j−2, j2, j−3, j3) = (4, 1, 3, 4, 1, 4), has kernel

ker (j) = {{−1, 2, 3}, {1,−3}, {−2}}.

Additionally, if σ1 ∈ Sym(±3) is given σ1(k) = −k for every k ∈ [±3] and
σ2 ∈ Sym(4) is the cyclic permutation (1, 2, 3, 4), then j ◦ σ 1 = (1, 4, 4, 3, 4, 1) and
σ 2 ◦ j = (1, 2, 4, 1, 2, 1).

Given a permutation σ ∈ Sym(S) and a partition π ∈ P(S), we let σ ◦ π be the
partition in P(S) given by

σ ◦ π = {σ(B) | B ∈ π} = {{σ(k) | k ∈ B} | B ∈ π}.

The map π �→ σ ◦ π is a poset automorphism; in particular, it is order-preserving, so
for all partitions π, θ ∈ P(S) we get

π ≤ θ ⇐⇒ σ ◦ π ≤ σ ◦ θ.

Remark Note that a partitionπ ∈ P(S1) and a function j : S1 → S2 satisfyπ ≤ ker (j)
if only if the function j is constant when restricted to each of the blocks of π , i.e.,
jk = jl whenever k, l ∈ B for some block B ∈ π .
Moreover, for any permutations σl ∈ Sym(Sl) with l = 1, 2, we have that

ker (j ◦ σ 1) = σ−1
1 ◦ ker (j) and ker (j) = ker (σ 2 ◦ j).

2.3 Some RandomMatrices and the Joint Distribution of their Entries

Let I be a non-empty set. Suppose {Xi }i∈I and {Yi }i∈I are two families of N -by-
N random matrices defined on the same probability space. We say that {Xi }i∈I and
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{Yi }i∈I are equal in distribution if we have

E

[
m∏

k=1

Xik ( j−k, jk)

]

= E

[
m∏

k=1

Yik ( j−k, jk)

]

for all integers m ≥ 1, indexes i1, i2, . . . , im ∈ I , and functions j : [±m] → [N ].
A matrix X ∈ MatN (C) is a signature matrix if there exist signs ε1, . . . , εN ∈

{−1, 1} such that

X(i, j) =
{

εi if i = j
0 otherwise .

An N -by-N random matrix X is a uniformly distributed signature matrix if it is
uniformly distributed on the set of N -by-N signature matrices; in this case, for all
functions i, j : S → [N ] we have

E

[
∏

k∈S
X(ik, jk)

]

=
{
1, if i = j and ker (i) is an even partition
0, otherwise

(2.5)

A matrix W ∈ MatN (C) is a signed permutation matrix if there exist signs
ε1, . . . , εN ∈ {−1, 1} and a permutation σ ∈ Sym(N ) such that

W(i, j) = εiδi,σ ( j) =
{

εi if i = σ( j)
0 otherwise

.

An N -by-N random matrix W is a uniformly distributed signed permutation matrix
if it is uniformly distributed on the set of N -by-N signed permutation matrices; if that
is the case, for all functions i, j : S → [N ] we get

E

[
∏

s∈S
W (is, js)

]

=
{

(N−#(π))!
N ! , if π = ker (i) = ker (j) ∈ Peven(S)

0 , otherwise
(2.6)

Remark Suppose {Vi }i∈I is a family of N -by-N randommatrices distribution-invariant
under conjugation by signed permutation matrices, i.e., the families {Vi }i∈I and
{W ∗ViW }i∈I are equal in distribution for every signed permutation matrix W . Then,
for all integers m ≥ 1, indexes i1, i2, . . . , im ∈ I , and functions j : [±m] → [N ], we
have

E

[
m∏

k=1

Vik ( j−k, jk)

]

=
m∏

k=1

εσ( j−k )εσ( jk )E

[
m∏

k=1

Vik (σ ( j−k), σ ( jk))

]

(2.7)

for all signs ε1, . . . , εN ∈ {−1, 1} and permutations σ ∈ Sym(N ).
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2.4 Non-commutative Polynomials and their Evaluation on Families of Random
Matrices

Let I be a non-empty set. We denote byC 〈xi | i ∈ I 〉 the algebra of non-commutative
polynomials on the family of variables {xi | i ∈ I }. Let us recall that C 〈xi | i ∈ I 〉 is
the algebra over C with a basis consisting of all the words in the alphabet {xi | i ∈ I },
including the empty word which acts as multiplicative identity, and the product of two
basis elements is given by concatenation. Thus, a basis element is a word of the form

xi1xi2 · · · xir
for some integer r ≥ 0 and some indexes i1, i2, . . . , ir ∈ I , and if x j1x j2 · · · x jr is
another basis element, we have

(xi1xi2 · · · xir )(x j1x j2 · · · x js ) = xi1xi2 · · · xir x j1x j2 · · · x js .

Given polynomials p1, p2, . . . , pm in the algebra C 〈xi | i ∈ I 〉 and a set S = {k1 <

k2 < · · · < kn} ⊂ [m], we let
�∏

k∈S
pk := pk1pk2 · · · pkn . (2.8)

Suppose we are given random matrix ensembles {XN ,i }∞N=1 with i ∈ I where
each XN ,i is a N -by-N random matrix. For each non-commutative polynomial
p ∈ C 〈xi | i ∈ I 〉, we denote by

p
({XN ,i }i∈I

)

the randommatrix obtained from replacing each xi appearing in the polynomial p with
the random matrix XN ,i for every i ∈ I and the constant term of p, say α, with the
scalar multiple of the identity matrix α IN . For instance, if p(x1, x2) = x1x2 − x22 + 4,
then

p({XN ,i }i∈{1,2}) = XN ,1XN ,2 − X2
N ,2 + 4IN .

3 Graph Sums of SquareMatrices

In this section, we review and prove some useful results on graph sums of square
matrices. A graph sum of given matrices A1, A2, . . . , Am ∈ MatN (C) is a sum of the
form

∑

j:[±m]→[N ]
ker(j)≥π

A1( j−1, j1)A2( j−2, j2) · · · Am( j−m, jm) =
∑

j:[±m]→[N ]
ker(j)≥π

m∏

k=1

Ak( j−k, jk)

(3.1)
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for some partition π ∈ P(±m). Note that the condition ker (j) ≥ π in the sum above
is simply a restatement of a set of equalities between the indexes j±k . For example, if
we let π = {{1,−2}, {2,−3}, . . . , {m − 1,−m}, {m,−1}}, then ker (j) ≥ π only if
j1 = j−2, j2 = j−3, . . . , jm−1 = j−m , and jm = j−1, and thus, we get

∑

j:[±m]→[N ]
ker(j)≥π

m∏

k=1

Ak( j−k, jk) = Tr (A1A2 · · · Am) .

It is worth mentioning that although the labeling of the entries of Ak in (3.1) is not
customary, it has proven to be suitable for many of our calculations; moreover, for a
bijection σ : [±m] → S, the relation

∑

j:S→[N ]
ker(j)≥π̂

m∏

k=1

Ak( jσ(−k), jσ(k)) =
∑

j:[±m]→[N ]
ker(j)≥σ−1◦π̂

m∏

k=1

Ak( j−k, jk) ∀π̂ ∈ P(S) (3.2)

provides the link between the labeling of the entries of Ak in (3.1) and any other
labeling. For instance, if σ : [±m] → [2m] is given by σ(−k) = 2k − 1 and
σ(k) = 2k for 1 ≤ k ≤ m, then

∑

j:[2m]→[N ]
ker(j)≥π̂

m∏

k=1

Ak( j2k−1, j2k) = Tr (A1)Tr (A2) · · ·Tr (Am) =
∑

j:[±m]→[N ]
ker(j)≥π

m∏

k=1

Ak( j−k , jk)

where π̂ = {{1, 2}, {3, 4}, . . . , {2m−1, 2m}} and π = σ−1 ◦ π̂ = {{−1, 1}, {−2, 2},
. . . , {−m,m}}. The type of sums above are named graph sums because they can be
associated with certain graphs that, as we will see next, help us analyze the corre-
sponding sums.

3.1 Bounds of Graph Sums of General Square Matrices

Themain result in [17] concernsmore general graph sums, allowing thematrices Ak in
(3.1) to be rectangular and not necessarily square. For graph sums of square matrices,
however, the result takes the following form.

Theorem 5 Suppose π is a partition in P(±m). Then, there exists a rational number
τπ ∈ {1, 3

2 , 2, . . .} depending only on the partition π such that for every integer N ≥ 1
the following two conditions hold:

(a) for all matrices A1, A2, . . . , Am ∈ MatN (C), we have

∣∣∣
∣∣∣∣∣

∑

j:[±m]→[N ]
ker(j)≥π

m∏

k=1

Ak( j−k, jk)

∣∣∣
∣∣∣∣∣

≤ N τπ

m∏

k=1

‖Ak‖
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(b) there are some nonzero matrices B1, B2, . . . , Bm ∈ MatN (C) satisfying

∣∣
∣∣∣∣∣∣

∑

j:[±m]→[N ]
ker(j)≥π

m∏

k=1

Bk( j−k, jk)

∣∣
∣∣∣∣∣∣

= N τπ

m∏

k=1

‖Bk‖

Note that τπ is uniquely determined by (a) and (b). We call τπ the graph sum exponent
of π .

It is also shown in [17] that the graph sum exponent τπ can be algorithmically
computed analyzing the two-edge connectedness of a graph associated with π . For
the reader’s convenience, we recount such algorithm next.

Step 1. Given a partition π ∈ P(±m), consider the undirected graph Gπ resulting
from, first, taking edges E1, E2, . . . , Em with endpoints −1,+1,−2,+2,
. . . ,−m,+m, respectively, and, then, identifying endpoints when they
belong to the same block of π .

Step 2. Identify the cutting edges and the two-edge connected components of Gπ .
Recall that a cutting edge of a graph, also known as a bridge, is an edge
whose removal increases the number of connected components.
Moreover, a graph is two-edge connected if it is connected and has no cutting
edges, and, consequently, a two-edge connected component of a graph is a
subgraph that is maximal, under the usual graph inclusion, in the set of all
two-edge connected subgraphs

Step 3. Letting Fπ denote the graph with vertex set given by the set of all two-edge
connected components of Gπ and edge set given by the set of all cutting
edges of Gπ , the graph sum exponent τπ is given by

τπ =
∑

v vertex in Fπ

l(v) where l(v) :=
⎧
⎨

⎩

1
2 if deg(v) = 1,
1 if deg(v) = 0,
0 otherwise.

(3.3)

and deg(v) denotes the degree of the vertex v in the graph Fπ .

Example The undirected graph Gπ associated with the partition

π =
{ {−3}, {+3,+1,−2}, {−5,−1,−7,−4}, {+7}, {+2,+4}, {+6},

{−6,+5,+8}, {−8}, {−10,+12}, {+10,−12}, {−11,+11,−9}, {+9}
}

∈ P(±12)

can be represented as{-3} {+3,+1,-2}

{+6} {-6,+5,+8}
{+2,+4}

{+10,-12}

{-10,+12}{+7}
{-5,-1,-7,-4}

{+9}
{-11,+11,-9}

{-8}

E3E2
E6 E8

E4
E1

E5

E7
E10 E12

E11

E9
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Hence, the cutting edges of Gπ are E3, E5, E6, E7, E8, and E9; moreover, the
two-edge connected components of Gπ are exactly what remains of Gπ after removing
all of its cutting edges. The graph Fπ can be obtained from Gπ by shrinking each of
the two-edge connected components of Gπ to a vertex, and thus, if we represent the
cutting edges of Gπ with dashed lines, we obtain

1/2 0 1/2

1/20
1 1/2

1/21/2 E3
E6 E8E5

E7 E9
E3E2

E6 E8
E4
E1

E5
E7

E10 E12
E11

E9
where Fπ is the graph on the right and next to each of its vertices we have placed the
corresponding contribution l(v) to the graph sum exponent τπ . Therefore, we have
τπ = 4.

Having described the algorithm to compute τπ , we can now show that graph sum
exponents of even partitions can be easily calculated.

Proposition 6 If π ∈ P(±m) is an even partition, then the graph sum exponent τπ

equals the number of connected components of Gπ .

Proof By Equation (3.3), it suffices to show that the graph Gπ has no cutting edges.
Suppose Gπ has a cutting edge. If we remove such cutting edge, we get two disjoint
graphs, each of which has one single vertex of odd degree and the other vertices of
even degree. But, this contradicts the handshaking lemma that in any graph the sum of
degrees over all its vertices must be even. Thus, Gπ has no cutting edges, and hence,
all its connected components are two-edge connected. ��

Now, resulting from endowing each edge Ek in the graph Gπ with the direction
that goes from +k to −k, the directed graph �Gπ can sometimes be used to describe
the corresponding graph sum. In particular, a graph sum factors as a product of traces
of matrices when all connected components of Gπ are bouquets, to which we refer as
multiple loops, or cycles, each connected component gives rise to a trace. For example,
for the partition

π = {{1,−6}, {6, 5}, {−5, 7}, {−7,−1, }, {−2, 3}, {−3, 2}, {−4, 4}}

and given matrices A1, A2, . . . , A7 ∈ MatN (C), we have the graph sum

∑

j:[±7]→[N ]
ker(j)≥π

7∏

k=1

Ak( j−k, jk) = Tr
(
A1A6A

T
5 A

T
7

)
Tr
(
A2A3

)
Tr
(
A4 ◦ A8

)
(3.4)

where the right-hand side can be deduced from analyzing the directed graph �Gπ as
follows:
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(1) The corresponding directed graph �Gπ has exactly three connected components,
two cycles and one double-loop, and can be represented as

E3
E2

E7

E1 E6
E5{+7,-5} {+2,-3}

{-2,+3}
{+6,+5}

{+1,-6}
{-7,-1} E4 E8

-4,+4,-8,+8{     }
Each cycle and each one multiple-loop gives rise to a trace in the right-hand side
of (3.4).

(2) If a connected component of �Gπ is a cycle, we unfold it to obtain a horizontal line
and replace each edge Ek by the matrix Ak if the direction of Ek goes from right
to left in the horizontal line; otherwise, we replace Ek by AT

k , the transpose of Ak .
We then put the matrices Ak or AT

k in a trace Tr (·) as they appear when we read
the resulting horizontal line from left to right. For instance, the longest cycle of
�Gπ gives

E7 E1 E6 E5
{+7}

{+6,+5}{+1,-6}{-7,-1}

{-5}
AT
7 A1 A6 AT

5

And so, we obtain the trace Tr
(
AT
7 A1A6A

T
5

)
in (3.4). Note that Tr

(
A1A6A

T
5 A

T
7

)

and Tr
(
A2A3

)
do not depend on how the cycles in �Gπ are unfolded since for any

matrices A, B ∈ MatN (C) we have Tr (AB) = Tr (BA), Tr (A) = Tr
(
AT
)
, and

(AB)T = BT AT .
(3) On the other hand, a multiple-loop in �Gπ with edges Ek1 , Ek2 , . . . , Ekn yields the

trace of theHadamard product of Ak1 , Ak2 , . . . , Akn . Thisway,weget Tr (A4 ◦ A8)

in (3.4).

Thus, if π is now given by

π = {{−1,+6}, {+1,−6}, {−2,−7}, {+2,+7}, {−3,+3,−5,+5}, {−4,+4}},

the corresponding directed graph �Gπ can be represented as

E6
E1

E7
E2 E3 E5 E4

{-1,+6}{+1,-6} {-2,-7} {+2,+7} {-4,+4}{-3,+3,-5,+5} ,

and hence, we obtain

∑

j:[±7]→[N ]
ker(j)≥π

7∏

k=1

Ak( j−k, jk) = Tr (A1A6)Tr
(
A2A

T
7

)
Tr
(
A3 ◦ A5

)
Tr
(
A4

)
.
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3.2 Bounds of Graph Sums of The Discrete Fourier TransformMatrix

Although the bound for graph sums given by Theorem 5 is optimal in the set of all
square matrices, it might not be optimal for some graph sums involving the discrete
Fourier transform matrix. Let us recall that the N -by-N discrete Fourier transform
matrix is the symmetric matrix H with entries given by

H( j1, j2) = ω( j1−1)( j2−1) (3.5)

where ω = exp(− 2π
N

√−1) is a primitive N -th root of unity. Now, letting h(j) be
given by

h(j) =
m∏

k=1

H( j−2k+1, j2k−1)H
∗( j−2k, j2k) (3.6)

for each function j : [±2m] → [N ], Theorem 5 gives us that

∣∣∣∣
∣∣∣∣

∑

j:[±2m]→[N ]
ker(j)≥π

h(j)

∣∣∣∣
∣∣∣∣

≤ N τπ

m∏

k=1

‖H‖
m∏

k=1

∥
∥H∗∥∥ = Nm+τπ (3.7)

for any partition π ∈ P(±2m); on the other hand, since h(j) has absolute value 1, we
also obtain

∣∣∣∣∣
∣∣∣

∑

j:[±2m]→[N ]
ker(j)≥π

h(j)

∣∣∣∣∣
∣∣∣

≤
∑

j:[±2m]→[N ]
ker(j)≥π

1 = N #(π). (3.8)

Thus, if π is the partition {{2k − 1,−2k + 1, 2k,−2k} | k = 1, 2, . . . ,m}, then the
graph sum exponent τπ equals m, and hence, τπ + m = 2m, but also #(π) = m, so
(3.8) is a sharper bound than (3.7) in this case. In general, we prefer (3.8) over (3.7)
since (3.8) is invariant under re-labeling of the entries of H and H∗ in (3.6); namely,
given a permutation σ ∈ Sym(±2m) and letting

h(j ◦ σ ) =
m∏

k=1

H( jσ(−2k+1), jσ(2k−1))H
∗( jσ(−2k), jσ(2k))

for any function j : [±2m] → [N ], the inequality in (3.8) implies

∣∣∣∣∣∣
∣∣

∑

j:[±2m]→[N ]
ker(j)≥π

h(j ◦ σ )

∣∣∣∣∣∣
∣∣

≤ N #(σ−1◦π) = N #(π)
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since we have the relation

∑

j:[±2m]→[N ]
ker(j)≥π

h(j ◦ σ ) =
∑

j:[±2m]→[N ]
ker(j)≥σ−1◦π

h(j). (3.9)

Moreover, in the proof of Theorem 1, we will need to consider sums of the form

∑

j:[±2m]→[N ]
ker(j)=π

h(j ◦ σ ) =
∑

j:[±2m]→[N ]
ker(j)=σ−1◦π

h(j) (3.10)

where m = m1 + m2 for some integers m1,m2 ≥ 1 and σ ∈ Sym(±2m) is the
permutation with cycle decomposition given by

σ = (−1, 1,−2, 2, . . . ,−2m1, 2m1)

(−2m1 − 1, 2m1 + 1, . . . ,−2m1 − 2m2, 2m1 + 2m2). (3.11)

Although the sum in (3.10) is not a graph sum, it can be determined up to a term of
order N #π−1 analyzing (3.9) since for every partition π ∈ P(±2m) we have

∑

j:[±2m]→[N ]
ker(j)=π

h(j) =
∑

j:[±2m]→[N ]
ker(j)≥π

h(j) −
∑

θ∈P(±2m)
θ>π

∑

j:[±2m]→[N ]
ker(j)=θ

h(j). (3.12)

The rest of this section is devoted to find and classify partitions π such that (3.8)
becomes an equality. To do that, let us first associate a polynomial to each partition
π ∈ P(±2m).

The polynomial pπ . Given a partition π = {B1, B2, . . . , Br } ∈ P(±2m), we let
pπ (x1, x2, . . . , xr ), or simply pπ , be the polynomial obtained from the expression

−x−1x1 + x−2x2 − x−3x3 + · · · + x−2mx2m (3.13)

after replacing each variable xk by xl whenever k belongs to the block Bl . For instance,
if π = {B1 = {−1, 3}, B2 = {−3, 1}, B3 = {−2, 2}, B4 = {−4, 4}}, then

pπ (x1, x2, x3, x4) = −x1x2 + x3x3 − x2x1 + x4x4.

Equivalently, the polynomial pπ (x1, x2, . . . , xr ) is the image of (3.13) under the unique
homomorphism fromZ

[
x−1, x1, . . . , x−2m, x2m

]
toZ[x1, x2, . . . , xr ] such that xk �→

xl whenever k ∈ Bl . Note that pπ (x1, x2, . . . , xr ) has degree either 0 or 2 and can also
be explicitly defined as

pπ (x1, x2, . . . , xr ) =
∑

1≤t≤s≤r

at,sxtxs (3.14)
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where

at,t =
∑

k∈[2m]
−k,k∈Bt

(−1)k and at,s =
∑

k∈[2m]
−k∈Bt ,k∈Bs

(−1)k +
∑

l∈[2m]
l∈Bt ,−l∈Bs

(−1)l for t �= s;

(3.15)

moreover, pπ (x1, x2, . . . , xr ) satisfies the relation

∑

j:[±2m]→[N ]
ker(j)≥π

h(j) =
N−1∑

j1, j2,..., jr=0

e
2π

√−1
N pπ ( j1, j2,..., jr ). (3.16)

Therefore, (3.8) becomes an equality precisely when pπ (x1, x2, . . . , xr ) is the zero
polynomial. On the other hand, if pπ (x1, x2, . . . , xr ) is a nonzero polynomial, we can
then find a sharper bound than (3.8) via the reciprocity theorem for generalized Gauss
sums, see [3, Section 1.2] for a proof of this theorem.

The reciprocity theorem for generalized Gauss sums Suppose a, b, c are integers
with a, c �= 0 and ac + b even. Then,

S(a, b, c) :=
|c|−1∑

j=0

eπ
√−1 aj2+bj

c =
∣∣∣
c

a

∣∣∣
1
2
eπ

√−1 |ac|−b2
4ac

|a|−1∑

j=0

eπ
√−1−cj2−bj

a (3.17)

Proposition 7 If p(x1, x2, . . . , xr ) is a nonzero polynomial of degree at most 2 in
Z [x1, x2, . . . , xr ], then there exists a constant Cp independent of N such that

∣∣∣∣∣∣

N−1∑

j1, j2,..., jr=0

e− 2π
√−1
N p( j1, j2,..., jr )

∣∣∣∣∣∣
≤ CpN

r− 1
2 .

Proof Suppose p(x1, . . . , xr ) ∈ Z [x1, . . . , xr ] is a nonzero polynomial of degree
at most 2. Without loss of generality, we can assume that there is a nonzero linear
polynomial q1(x1, . . . , xr ) = α1x1 + α2x2 + · · · + αrxr ∈ Z [x1, x2, . . . , xr ] and a
polynomial q2(x2, . . . , xr ) ∈ Z [x2, x3, . . . , xr ] of degree at most 2 such that

p(x1, . . . , xr ) = x1q1(x1, . . . , xr ) + q2(x2, . . . , xr ).

Since we have the inequality

∣∣∣∣
∣∣

N−1∑

j1, j2,..., jr=0

e− 2π
√−1
N p( j1, j2,..., jr )

∣∣∣∣
∣∣
≤

N−1∑

j2,..., jr=0

∣∣∣∣
∣∣

N−1∑

j1=0

e− 2π
√−1
N j1q1( j1, j2,..., jr )

∣∣∣∣
∣∣
,
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we only need to show that there is a constant Cp independent from N such that

N−1∑

j2,..., jr=0

∣
∣∣∣∣∣

N−1∑

j1=0

e− 2π
√−1
N j1q1( j1, j2,..., jr )

∣
∣∣∣∣∣
≤ CpN

r− 1
2 .

Suppose α1 �= 0. Then, we have that

N−1∑

j1=0

e− 2π
√−1
N j1q( j1, j2,..., jm ) =

N−1∑

j1=0

eπ
√−1

−2α1 j
2
1−2

∑r
k=2 αk jk j1

N

= S

(

−2α1,−2
r∑

k=2

αk jk, N

)

where S(a, b, c) denotes the generalized Gauss quadratic sum as in (3.17). Thus, by
the reciprocity theorem for generalized Gauss sums, we get

∣∣∣
∣∣
S

(

−2α1,−2
r∑

k=2

αk jk, N

)∣∣∣
∣∣
≤
∣∣
∣∣

N

−2α1

∣∣
∣∣

1
2 |−2α1| = |2α1N | 12 ,

and therefore, we obtain

N−1∑

j2,..., jr=0

∣
∣∣∣∣∣

N−1∑

j1=0

e− 2π
√−1
N j1q1( j1, j2,..., jr )

∣
∣∣∣∣∣
≤ |2α1| 12 Nr− 1

2 .

Now, suppose α1 = 0. Recall that

N−1∑

j1=0

e− 2π
√−1
N j1q1( j1, j2,..., jr ) =

{
N , if q1( j1, . . . , jr ) =∑r

l=2 αl jl ≡ 0 mod N
0, otherwise

So, we have

N−1∑

j2,..., jr=0

∣∣∣∣
∣∣

N−1∑

j1=0

e− 2π
√−1
N j1q1( j1,..., jr )

∣∣∣∣
∣∣

= N · #
{

( j2, . . . , jr ) ∈ [0, N − 1]r−1 :
r∑

l=2

αl jl ≡ 0 mod N

}

.

But, since the polynomial q1(x1, . . . , xr ) = α1x1 +· · ·+αrxr is nonzero, we must
have αk �= 0 for some k �= 1, and hence, the equation

αkx + β ≡ 0 mod N
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has at most |αk | solutions in the set {0, 1, . . . , N − 1} for any given integer β. Thus,
we have

#

⎧
⎪⎪⎨

⎪⎪⎩
( j2, . . . , jr ) ∈ [0, N − 1]r−1 : αk jk +

r∑

l=2
l �=k

αl jl ≡ 0 mod N

⎫
⎪⎪⎬

⎪⎪⎭
≤ |αk | Nr−2,

and therefore, we get

N−1∑

j2,..., jr=0

∣∣
∣∣∣∣

N−1∑

j1=0

e− 2π
√−1
N j1q1( j1, j2,..., jr )

∣∣
∣∣∣∣
≤ |αk | Nr−1.

��
As an immediate consequence from (3.12), (3.16), and Proposition 7, we have the

following.

Corollary 8 If pπ (x1, x2, . . . , xr ) is a nonzero polynomial for some partition π =
{B1, B2, . . . , Br } ∈ P(±2m), then there is a constant C independent from N so that

∣∣
∣∣∣∣∣
∣

∑

j:[±2m]→[N ]
ker(j)=π

h(j)

∣∣
∣∣∣∣∣
∣

≤ CN #(π)− 1
2 .

The next two propositions establish necessary and sufficient conditions for
pπ (x1, x2, . . . , xr ) to be the zero polynomial. Roughly speaking, the polynomial
pπ (x1, x2, . . . , xr ) is zero if only and if the blocks of the partitionπ group the elements
of the set [±2m] in such a way that the positive and negative signs appearing in (3.13)
cancel each other out.

Proposition 9 Suppose π = {B1, B2, . . . , B2m} is a pairing partition in P(±2m).
Then the polynomial pπ (x1, x2, . . . , x2m) is zero if and only if π is a symmetric
partition such that k ∼π l implies k + l odd for all integers k, l ∈ [±2m].
Proof Suppose pπ (x1, x2, . . . , x2m) is the zero polynomial and take at,s as (3.15) for
1 ≤ t ≤ s ≤ 2m. To prove π is a symmetric partition such that k ∼π l implies k + l
odd for all integers k, l ∈ [±2m], it suffices to show that for every integer k ∈ [2m]
there exists an integer l ∈ [2m] such that k+ l is odd and either k ∼π l and−k ∼π −l
or k ∼π −l and −k ∼π l. Fix k ∈ [2m] and let t ′, s′ ∈ [2m] such that k ∈ Bt ′ and
−k ∈ Bs′ . Since pπ (x1, . . . , x2m) = ∑

1≤t≤s≤r at,sxtxs is the zero polynomial, we
must have at ′,s′ = 0. Now, if t ′ �= s′, from (3.15) we get that

at ′,s′ = (−1)k +
∑

l∈[2m]\{k}
l∈Bt ′ ,−l∈Bs′

(−1)l +
∑

l∈[2m]
−l∈Bt ′ ,l∈Bs′

(−1)l = 0, (3.18)
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which implies there exists l ∈ [2m] such that (−1)k + (−1)l is zero and either l ∈ Bt ′
and −l ∈ Bs′ or −l ∈ Bt ′ and l ∈ Bs′ . But this is equivalent to the desired conclusion.
A similar argument works for the case s = t .

Now, if the partition π is a symmetric pairing in P(±2m) such that k ∼π l implies
k+l odd for all integers k, l ∈ [±2m],we canwriteπ = {B1, B2, . . . , B2m}with B1 =
{−k1,−l1}, B2 = {k1, l1}, B3 = {−k2,−l2}, B2 = {k2, l2}, . . . , B2m = {km, l2m}
and k1, l1, k2, l2, . . . , lm ∈ [±2m] satisfying ki+li odd for i = 1, 2, . . . ,m.Moreover,
since

⋃2m
i=1 Bi = [±2m] and (−1)k = (−1)−k for k ∈ [±2m], we have

−x−1x1 + x−2x2 − x−3x3 + · · · + x−2mx2m =
m∑

i=1

[(−1)ki x−ki xki + (−1)li x−li xli ].

Therefore, from the definition of pπ (x1, x2, . . . , x2m) and the fact that ki + li is odd
for i = 1, 2, . . . ,m, we get

pπ (x1, x2, . . . , x2m) =
m∑

i=1

[(−1)ki x2i−1x2i + (−1)li x2i−1x2i ] = 0.

��
Proposition 10 Let π = {B1, B2, . . . , Bn} be a partition in P(±2m). If there is a
partition θ ∈ P(±2m) such that θ ≤ π and pθ is the zero polynomial, then pπ is also
the zero polynomial. Conversely, if pπ is the zero polynomial, then there is a symmetric
pairing partition θ ≤ π such that pθ is the zero polynomial.

Proof Suppose θ ≤ π andpθ is the zeropolynomial.Write θ = {B1,1, B1,2, . . . , B1,m1 ,

. . . , Bn,mn } with Bi = ∪mi
j=1Bi, j for i = 1, 2, . . . , n. Take A = Z

[
x1, x−1, . . . ,

x2m, x−2m

]
,B = Z[x1,1, x1,2, . . . , x1,m1 , . . . , xn,mn ], and C = Z[x1, x2, . . . , xn] and

let� : A → B and� : B → C be the unique homomorphisms such that�(xk) = xi, j
if k ∈ Bi, j and �(xi, j ) = xi . Note that (� ◦ �)(xk) = xl only if k ∈ Bl , and thus, by
definition of pπ and pθ , we have that

pπ = � ◦ �

(
m∑

k=1

(−1)kx−kxk

)

= � (pθ ) .

Hence, if pθ is the zero polynomial, so is pπ .
Suppose now pπ is the zero polynomial and let θ be a minimal element of the set

{π̂ ∈ P(±2m) : π̂ ≤ π and pπ̂ = 0} endowed with the partial order inherited from
P(±2m). Since pθ is the zero polynomial, it follows from the first part of Proposition
9’s proof that for every integer k ∈ [2m] there exists an integer l ∈ [2m] such that
k + l is odd and either k ∼θ l and −k ∼θ −l or k ∼θ −l and −k ∼θ l. Therefore, θ
lacks singletons and either θ is a pairing partition or θ has a block with at least three
elements. Let us assume θ = {C1,C2, . . . ,Cn} has a blockwith at least three elements,
say Cn . The previous property of θ—borrowed from the first part of Proposition 9’s
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proof—implies there are integers k, l ∈ [2m] such that k + l is odd and at least one
of the following conditions holds:

(1) +k,+l ∈ Cn and −k ∼θ −l
(2) +k,−l ∈ Cn and −k ∼θ +l
(3) −k,−l ∈ Cn and +k ∼θ +l
(4) −k,+l ∈ Cn and +k ∼θ −l

Assume (1) holds. Then, Cn\{k, l} is not empty, and hence, letting Ĉi = Ci

for i = 1, 2, . . . n − 1, Ĉn = Cn \ {k, l}, and Ĉn+1 = {k, l}, we have θ̂ =
{Ĉ1, Ĉ2, . . . , Ĉn+1} is a partition of [±2m] such that θ̂ � θ , i.e., θ ≥ θ̂ but θ �= θ̂ . Let
us show that pθ̂ must be the zero polynomial, contradicting the minimality of θ . Take
A = Z

[
x1, x−1, . . . , xm, x−m

]
,B = Z[x1, x2, . . . , xn], and B̂ = Z[x1, x2, . . . , xn+1]

and let � : A → B and �̂ : A → B̂ be the unique homomorphisms such that
�(xi ) = x j if i ∈ C j and �̂(xi ) = x j if i ∈ Ĉ j . Since �(xi ) = �̂(xi ) for
i ∈ [±2m]\{k, l}, we have

2m∑

i=1
i �=k,l

(−1)i�(x−i )�(xi ) =
2m∑

i=1
i �=k,l

(−1)i �̂(x−i )�̂(xi ).

Moreover, since −k ∼θ −l, we have �(x−k) = �(x−l) = �̂(x−k) = �̂(x−l), so we
get

0 = (−1)k�(x−k)�(xk) + (−1)l�(x−l)�(xl)

= (−1)k�̂(x−k)�̂(xk) + (−1)l�̂(x−l)�̂(xl)

since k+ l is odd,�(xk) = �(xl) = xn , and �̂(xk) = �̂(xl) = xn+1. Thus, we obtain

pθ̂ =
2m∑

i=1

(−1)i �̂(x−i )�̂(xi ) =
2m∑

i=1

(−1)i�(x−i )�(xi ) = pθ = 0

But then, θ is not minimal, and therefore, (1) does not hold. Similar arguments show
that neither (2), nor (3), nor (4) hold. Therefore, the partition θ must be a pairing, and,
in fact, a symmetric pairing by Proposition 9. ��
As mentioned earlier, in proving Theorem 1, we need to consider sums as in (3.10).
Note that if pσ−1◦π is the zero polynomial for some permutation σ ∈ Sym(±2m),
then h(j) = 1 for any function j : [±2m] → [N ] satisfying ker (j) ≥ σ−1 ◦ π , and
hence, we would get

∑

j:[±2m]→[N ]
ker(j)=π

h(j ◦ σ ) =
∑

j:[±2m]→[N ]
ker(j)=σ−1◦π

h(j) = N !
(N − #(π))! .
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On the other hand, if the polynomial pσ−1◦π is nonzero, we have that (3.10) is of
order N #(π)−1/2 by Corollary 8. We will now use the previous results to classify all
symmetric pairing partitions so that pσ−1◦π is the zero polynomial.

Lemma 11 Let m = m1 + m2 for some integers m1,m2 ≥ 1, and let σ be the
permutation given by (3.11). Suppose k and l are integers in [2m] andπ is a symmetric
pairing partition in P(±2m) such that pσ−1◦π is the zero polynomial. If −k ∼π l,
then σ−t (−k) ∼π σ t (l) for every integer t ≥ 0. On the other hand, if −k ∼π −l,
then σ t (−k) ∼π σ t (−l) for every integer t ≥ 0.

Proof Note that k̂ ∼π l̂ implies σ(−σ−1(k̂)) ∼π σ(−σ−1(l̂)). Indeed, by Proposition
10, the partition σ−1 ◦ π is symmetric since pσ−1◦π is the zero polynomial, and
hence, −σ−1(k̂) ∼σ−1◦π −σ−1(l̂) provided k̂ ∼π l̂, but in that case we must have
σ(−σ−1(k̂)) ∼π σ(−σ−1(l̂)). Note also that for every integer k̂ ∈ [±2m] we have

σ(−σ−1(k̂)) =
{

σ(k̂) if k̂ > 0
σ−1(k̂) if k̂ < 0

since for 1 ≤ k ≤ 2m we have σ−1(k) = −k, −σ−1(−k) < 0, and σ(−k) = k.
Now, suppose σ−t (−k) ∼π σ t (l) for some integer t ≥ 0. If t is even, then

k̂ = σ−t (−k) < 0 < σ t (l) = l̂, and hence σ−t−1(−k) = σ(−σ−1(k̂)) ∼π

σ(−σ−1(l̂)) = σ t+1(l). On the other hand, if t is odd, we have σ−t (−k) > 0 > σ t (l),
and hence σ−t−1(−k) = −σ−t (−k) ∼π −σ t (l) = σ t+1(l) since π is symmetric.
Thus, −k ∼π l implies σ−t (−k) ∼π σ t (l) for every integer t ≥ 0 by induction on t .
Similarly, assuming −k ∼π −l, we get σ t (−k) ∼π σ t (−l) for all t ≥ 0. ��
Remark 12 The results regarding the polynomials pπ and pσ−1◦π being zero can be
restated in terms of the graphs Gπ and �Gπ from Sect. 3.1. For instance, in the following
propositionwe show that the polynomial pσ−1◦π is zero for a given symmetric partition
π ∈ P(±2m)withm = m1 +m2 if and only if one of the following conditions for the
directed graph �Gπ , where Ft denotes the edge E2m1+t for t = 1, 2, . . . , 2m2, holds:

(1) m1 = m2 and there is an integer 1 ≤ l ≤ m2 so that the graph �Gπ can be represented
as

F2l-1
E1

F2l-2
E2

F2l-2m1+1
E2m1-1

F2l-2m1

E2m1
. . .

(2) m1 = m2 and there is an integer 1 ≤ l ≤ m2 so that the graph �Gπ can be represented
as

F2l

E1

F2l-1

E2

F2l-2m1+1

E2m1-1

F2l-2m1

E2m1. . .

(3) �Gπ is the disjoint union of �Gπ1 and �Gπ2 , there is an integer 1 ≤ k ≤ 2m1 so that
�Gπ1 can be represented as
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Ek-1
Ek+1

E2k-2
Ek+2

Ek-m1+1
Ek+m1-1Ek Ek+m1

and there is an integer 2m1 + 1 ≤ l ≤ 2m1 + 2m2 so that �Gπ2 can be represented
as

Fl-1
Fl+1

Fl-2
Fl+2

Fl-m2+1
Fl+m2-1Fl Fl+m2

(4) m1 and m2 are odd integers, the graph �Gπ is the disjoint union of �Gπ1 and �Gπ2 , the
graph �Gπ1 can be represented asE1 E2

Em1+1 Em1+2 E2m1

Em1

and the graph �Gπ2 can be represented asF1 F2
Fm2+1 Fm2+2 F2m2

Fm2

(5) m2 is odd, �Gπ is the disjoint union of �Gπ1 and �Gπ2 , there is an integer 1 ≤ k ≤ 2m1

so that �Gπ1 can be represented as

Ek-1
Ek+1

E2k-2
Ek+2

Ek-m1+1
Ek+m1-1Ek Ek+m1

and the graph �Gπ2 can be represented asF1 F2
Fm2+1 Fm2+2 F2m2

Fm2

(6) m1 is odd, the graph �Gπ is the disjoint union of �Gπ1 and �Gπ2 , the graph �Gπ1 can be
represented as E1 E2

Em1+1 Em1+2 E2m1

Em1

and there is an integer 1 ≤ l ≤ 2m1 so that �Gπ2 can be represented as

Fl-1
Fl+1

Fl-2
Fl+2

Fl-m2+1
Fl+m2-1Fl Fl+m2

In the graphs above, 2 l − t , 2 l + t − 1, and k ± t are taken modulo 2m1 for t =
1, 2, . . . , 2m1 and l ± t is taken modulo 2m2 for t = 1, 2, . . . , 2m2.

123



2002 Journal of Theoretical Probability (2023) 36:1972–2039

Proposition 13 Let m = m1 + m2 for some integers m1,m2 ≥ 1, and let σ be the
permutation given by (3.11). Suppose π is a symmetric pairing partition of [±2m] and
denote byπ1 andπ2 the restrictions ofπ to [±2m1] and [±2m]\[±2m1], respectively.
Then, pσ−1◦π is the zero polynomial if and only if one of the following conditions holds:

(1) π �= π1 � π2, m1 = m2, and there are integers 1 ≤ k ≤ 2m2 and 2m1 + 1 ≤ l ≤
2m1 + 2m2 such that k + l is even and

π = {{σ t (−k), σ−t (l)} | t = 1, 2, . . . , 4m1
}
.

(2) π �= π1 � π2, m1 = m2, and there are integers 1 ≤ k ≤ 2m2 and 2m1 + 1 ≤ l ≤
2m1 + 2m2 such that k + l is odd and

π = {{σ t (−k), σ t (−l)} | t = 1, 2, . . . , 4m1
}
.

(3) π = π1 � π2 and there are integers 1 ≤ k ≤ 2m1 and 2m1 + 1 ≤ l ≤ 2m1 + 2m2
such that

π1 = {{σ t1(−k), σ−t1(k)} | t1 = 1, 2, . . . , 2m1
}

and

π2 = {{σ t2(−l), σ−t2(l)} | t2 = 1, 2, . . . , 2m2
}
.

(4) π = π1 � π2, m1 and m2 are odd integers,

π1 = {{σ t1(−1), σ t1(−m1 − 1)} | t1 = 1, . . . , 2m1
}
,

and

π2 = {{σ t2(−2m1 − 1), σ t2(−2m1 − m2 − 1)} | t2 = 1, . . . , 2m2
}
.

(5) π = π1 � π2, m2 is odd, there is an integer 1 ≤ k ≤ 2m1 such that

π1 = {{σ t1(−k), σ−t1(k)} | t1 = 1, 2, . . . , 2m1
}
,

and

π2 = {{σ t2(−2m1 − 1), σ t2(−2m1 − m2 − 1)} | t2 = 1, . . . , 2m2.
}

(6) π = π1 � π2, m1 is odd,

π1 = {{σ t1(−1), σ t1(−m1 − 1)} | t1 = 1, . . . , 2m1
}
,

and there is an integer 2m1 + 1 ≤ l ≤ 2m1 + 2m2 such that

π2 = {{σ t2(−l), σ−t2(l)} | t2 = 1, 2, . . . , 2m2
}
.

123



Journal of Theoretical Probability (2023) 36:1972–2039 2003

Proof Put π̂ = σ−1◦π . Suppose π̂ = {B1, B2, . . . , Br } and let� be the unique homo-
morphism fromZ[x−1, x1, . . . , x−2m, x2m] toZ[x1, x2, . . . , xr ] such that�(xi ) = x j

if i ∈ Bj . If condition (1) holds, then π̂ = {{σ t (−k), σ−t−2(l)} | t = 1, 2, . . . , 4m1
}

and σ t (−k) + σ−t−2(l) is odd for t = 1, 2, . . . , 4m1. Thus, since we can write

2 ·
2m∑

i=1

(−1)ix−ixi =
2m1∑

t=1

(−1)σ
2t (−k)xσ 2t (−k)xσ 2t+1(−k)

+
2m1∑

t=1

(−1)σ
−2t−2(l)xσ−(2t+1)−2(l)xσ−2t−2(l),

we get pπ̂ = �(
∑2m

i=1(−1)ix−ixi ) = 0. It follows from similar arguments that pπ̂

is the zero polynomial if (2) holds. Now, if (4) holds and we take l = 2m1 + 1,
we have that σ t (−k) + σ−t−2(k) and σ t (−l) + σ t (−m2 − l) are odd and π̂ ={{σ t (−k), σ−t−2(k)}, {σ t (−l), σ t (−m2 − l)} | t ≥ 0

}
. Thus, since we can write

2m∑

i=1

(−1)ix−ixi =1

2

2m1∑

t=1

(−1)σ
2t (−k)xσ 2t (−k)xσ 2t+1(−k)

+ 1

2

2m1∑

t=1

(−1)σ
−2t−2(k)xσ−(2t+1)−2(k)xσ−2t−2(k)

+
m2∑

t=1

(−1)σ
2t (−l)xσ 2t (−l)xσ 2t+1(−l)

+
m2∑

t=1

(−1)σ
2t (−m2−l)xσ 2t (−m2−l)xσ 2t+1(−m2−l)

,
we get pπ̂ = 0. Similar arguments show that if either (3), (5), or (6) holds, then pπ̂

is the zero polynomial.
Suppose now pπ̂ is the zero polynomial and let π̂1 and π̂2 be the restrictions of π̂

to [±2m1] and [±(2m1 + 2m2)]\[±2m1], respectively. We will consider two cases
π̂ �= π̂1 � π̂2 and π̂ = π̂1 � π̂2. Assume first π̂ �= π̂1 � π̂2. By Proposition 9, there
are integers 1 ≤ k ≤ 2m1 and 2m1 + 1 ≤ l ≤ 2m1 + 2m2 such that k + l is odd and
one of the following holds:

(1’) k ∼π̂ −l and −k ∼π̂ l.
(2’) k ∼π̂ l and −k ∼π̂ −l.

Suppose (2’) holds. Then, −k = −σ(−k) ∼π −σ(−l) = −l, and by Lemma
11, we have that σ t (−k) ∼π σ t (−l) for every integer t ≥ 0. Moreover, since −k =
σ 4m1(−k),σ 4m1(−k) ∼π σ 4m1(−l), andπ is a pairing,wemust have−l = σ 4m1(−l).
But, the equation −l = σ t (−l) holds only if t is an integer multiple of 4m2, and
hence, 4m1 is a multiple of 4m2. Similarly, 4m2 is a multiple of 4m1, and therefore,
4m1 = 4m2, and the partition π̂ satisfies condition (2). A similar argument shows
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that π̂ satisfies condition (1) if we suppose (1’) holds. Assume now π̂ = π̂1 � π̂2. By
Proposition 9, there is an integer 1 < k̂ ≤ 2m1 satisfying one of the following:

(a) 1 ∼π̂ k̂, −1 ∼π̂ −k̂, and 1 + k̂ is odd.
(b) 1 ∼π̂ −k̂, −1 ∼π̂ k̂, and 1 + k̂ is odd.

and there is an integer 2m1 + 1 < l̂ ≤ 2m1 + 2m2 satisfying one of the following:

(A) 2m1 + 1 ∼π̂ l̂, −2m1 − 1 ∼π̂ −l̂, and 2m1 + 1 + l̂ is odd.
(B) 2m1 + 1 ∼π̂ −l̂, −2m1 − 1 ∼π̂ l̂, and 2m1 + 1 + l̂ is odd.

If (a) holds, we know that σ t (−1) ∼π σ t (−k̂) for every integer t ≥ 0 by Lemma 11.

But then, since −k̂ = σ 2k̂−2(−1), σ 2k̂−2(−1) ∼π σ 2k̂−2(−k̂), and π is a pairing, we

must have σ 2k̂−2(−k̂) = −1, or, equivalently, 4k̂ − 4 is a multiple of 4m1. Therefore,
m1 = k̂ − 1 is odd, and σ t1(−1) ∼π̂ σ t1(−m1 − 1), and hence,

π1 = {{σ t1(−1), σ t1(−m1 − 1)} | t1 = 1, 2, . . . , 4m1
}

On the other hand, if (b) holds, it follows from Lemma 11 that σ t (1) ∼π σ−t (−k̂′)
for every integer t ≥ 0. Moreover, since k̂′ has the same parity as 1 + k̂, we have
k̂′ = 2k−1 for some integer k ≥ 1. But then, since k = σ 2k−2(1) = −σ 2−2k(2k−1)
and σ 2k−2(1) ∼π σ 2−2k(2k − 1), we have k ∼π −k, and therefore,

π1 = {{σ t1(k),−σ−t1(−k)} | t1 = 1, 2, . . . , 2m1
}

Similar arguments show that if (A) holds, then m2 is odd and

π2 = {{σ t2(−2m1 − 1), σ t2(−2m1 − m2 − 1)} | t2 = 1, 2, . . . , 4m2
}
,

and if (B) holds, then there is an integer l such that

π2 = {{σ t2(l), σ−t2(−l)} | t2 = 1, 2, . . . , 2m2
}

This completes the proof that if pπ̂ is the zero polynomial, then π̂ must satisfy either
(1), (2), (3), (4), (5), or (6). ��

4 The Bounded Cumulants Property

In this section, we first prove Lemma 3, and then, before we can apply it to get
the conclusion in Theorem 4, we need to establish the relations between the notion of
asymptotic free independence, the bounded cumulants property, and linear functionals
on an algebra of non-commutative polynomials.

Proof of Lemma 3 Put Vk = U∗
N ,ik

UN ,iγ (k) for k = 1, 2, . . . ,m and note that

Tr (Yk) = Tr
(
Am′

k+1Vm′
k+1Am′

k+2Vm′
k+2 · · · Am′

k+mk
Vm′

k+mk

)
.
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Now, letting a(j), v1(j), v2(j), . . . , vn(j) be given by

a(j) =
m∏

k=1

Ak( j−k, jk) and vk(j) =
m′
k+mk∏

l=m′
k+1

Vl( jl , j−γ (l)) for k = 1, 2, . . . , n

for each function j : [±m] → [N ], we have that

cn [Tr (Y1) , . . . ,Tr (Yn)] =
∑

j:[±m]→[N ]
a(j)cn [v1(j), v2(j), . . . , vn(j)] (4.1)

since the matrices Ak are deterministic and the classical cumulants are multi-linear.
By hypothesis, the family of random matrices {Vl}ml=1 is distribution-invariant under
conjugation by signed permutation matrices, thus given a function j : [±m] → [N ]
we have

cn [v1(j), . . . , vn(j)] =
m∏

k=1

εσ( jk )εσ( j−k )cn [v1(σ ◦ j), . . . , vn(σ ◦ j)]

for all signs ε1, ε2, . . . , εN ∈ {±1} and permutations σ ∈ Sym(N ). This implies that

cn [v1(j), . . . , vn(j)] = 0

whenever ker (j) contains at least one block of odd size, and

cn [v1(j), . . . , vn(j)] = cn
[
v1(j′), . . . , vn(j′)

]

provided a function j′ : [±m] → [N ] satisfies ker (j′) = ker (j). Thus, letting cn [π ]
denote the common value cn [v1(j), . . . , vn(j)] among all those functions j : [±m] →
[N ] satisfying ker (j) = π , Equation (4.1) becomes

cn [Tr (Y1) , . . . ,Tr (Yn)] =
∑

π∈Peven(±m)

cn [π ]
∑

j:[±m]→[N ]
ker(j)=π

a(j). (4.2)

Moreover, the Möbius inversion formula in (2.3) implies

∑

j:[±m]→[N ]
ker(j)=π

a(j) =
∑

θ∈P(±m)
θ≥π

μ(π, θ)
∑

j:[±m]→[N ]
ker(j)≥θ

a(j)

since for all partitions θ ∈ P(±m) we have the relation

∑

j:[±m]→[N ]
ker(j)≥θ

a(j) =
∑

π∈P(±m)
π≥θ

∑

j:[±m]→[N ]
ker(j)=π

a(j).
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Hence, we get

cn [Tr (Y1) , . . . ,Tr (Yn)] =
∑

π∈Peven(±m)

∑

θ∈Peven(±m)
θ≥π

cn [π ]μ(π, θ)
∑

j:[±m]→[N ]
ker(j)≥θ

a(j)

(4.3)

Note that if a partition θ ∈ P(±m) has a block of the form {k,−k}, then
∑

j:[±m]→[N ]
ker(j)≥θ

a(j) = Tr (Ak) (�)

where (�) is a sum excluding the entries of Ak . Therefore, since each Ak is assumed
to be of trace zero, we have

cn [Tr (Y1) , . . . ,Tr (Yn)] =
∑

π∈Peven(±m)

∑

θ∈Pχ (±m)
θ≥π

cn [π ]μ(π, θ)
∑

j:[±m]→[N ]
ker(j)≥θ

a(j)

(4.4)

where Pχ (±m) denotes the set of all partitions in Peven(±m) with no blocks of the
form {k,−k}.

Now, for a partition θ ∈ Pχ (±m), each connected component of the graph Gθ , con-
structed as in Sect. 3.1, has at least two edges, and hence, Gθ has at most m

2 connected
components. Thus, from Theorem 5, Proposition 6, and the equality in (4.4), we get

|cn [Tr (Y1) , . . . ,Tr (Yn)]| ≤
∑

π∈Peven(±m)

∑

θ∈Pχ (±m)
θ≥π

|cn [π ]| |μ(π, θ)| N m
2

m∏

k=1

‖Ak‖ .

Since the sums above are over the finite sets Peven(±m) and Pχ (±m), our proof will
be complete if we show that there is a constant Cn independent from N such that

|cn [v1(j), . . . , vn(j)]| ≤ CnN
−m

2

for all functions j : [±m] → [N ]. Let j : [±m] → [N ] be arbitrary. By Hölder’s
inequality, letting mB :=∑k∈B mk for any given subset B of [n], we have

∥∥∥∥∥

∏

k∈B
vk(j)

∥∥∥∥∥
1

=
∥∥∥∥∥
∥

∏

k∈B

m′
k+mk∏

l=m′
k+1

Vl( jl , j−γ (l))

∥∥∥∥∥
∥
1

≤
∏

k∈B

m′
k+mk∏

l=m′
k+1

∥∥Vl( jl , j−γ (l))
∥∥
mB

.
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But, by hypothesis, the p-norms of the entries of
√
NVl are uniformly bounded, i.e.,

there are constants Cp = maxmk=1 Cp(ik, iγ (k)) with p = 1, 2, . . . ,m such that

∥∥Vl( jl , j−γ (l))
∥∥
p ≤ Cp(il , iγ (l))N

− 1
2 ≤ CpN

− 1
2

for all integers 1 ≤ jl , j−γ (l) ≤ N and l = 1, 2, . . . ,m, and hence, we get

∥∥∥∥∥

∏

k∈B
vk(j)

∥∥∥∥∥
1

≤
∏

k∈B

m′
k+mk∏

l=m′
k+1

CmB N
− 1

2 =
(
CmB N

− 1
2

)mB
.

Now, the moment–cumulants relation in (2.4) implies

|cn [v1(j), . . . , vn(j)]| ≤
∑

π∈P(n)

|μ(π, 1n)|
∏

B∈π

∥∥∥
∥∥

∏

k∈B
vk(j)

∥∥∥
∥∥
1

,

so it follows that

|cn [v1(j), . . . , vn(j)]| ≤
∑

π∈P(n)

|μ(π, 1n)|
∏

B∈π

(
CmB N

− 1
2

)mB

=N−m
2
∑

π∈P(n)

|μ(π, 1n)|
∏

B∈π

(
CmB

)mB .

And the proof of Lemma 3 is now complete. ��
Now, asymptotic free independence and the bounded cumulants property can be

stated in terms of some linear functionals, and, by doing so, we can show the bounded
cumulants property is actually equivalent to a condition that is a consequence of
Lemma 3, see Proposition 15 and Corollary 16. Thus, to prove Theorem 4, we
first examine the relations between the notion of asymptotic free independence, the
bounded cumulants property, and linear functionals on an algebra of non-commutative
polynomials first.

Multi-linear Functionals on Non-commutative Polynomials and Notions from Free
Probability

Let I be a non-empty set. Let A denote the algebra of non-commutative polynomials
C 〈xi | i ∈ I 〉, and letAi ⊂ A denote the algebra of polynomialsC [xi ] for each index
i ∈ I . Suppose we are given random matrix ensembles {XN ,i }∞N=1 with i ∈ I where
each XN ,i is a N -by-N random matrix and consider the sequence of unital linear
functional {ϕN : A → C}∞N=1 where each ϕN is defined by

ϕN
[
p
] := E

[
tr
(
p
({XN ,i }i∈I

))] ∀p ∈ A. (4.5)
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Note that the two conditions necessary for the random matrix ensembles {XN ,i }∞N=1
with i ∈ I to be asymptotically freely independent, namely (AF.1) and (AF.2) from
Definition 1, can be stated in terms of the linear functionals ϕN as

(AF.1) lim
N→∞ ϕN

[
p
]
exists for every p ∈ Ai and every i ∈ I , and

(AF.2) lim
N→∞ ϕN

[
(p1 − ϕN

[
p1
]
)(p2 − ϕN

[
p2
]
) · · · (pm − ϕN

[
pm
]
)
] = 0 whenever

pk ∈ Aik with i1 �= i2, i2 �= i3, . . . , im−1 �= im

Moreover, assuming that (AF.1) holds,we can replace eachϕN
[
pk
]
appearing in (AF.2)

by ϕ
[
pk
] := limN→∞ ϕN

[
pk
]
; more concretely, we have the following.

Proposition 14 Suppose each ensemble {XN ,i }∞N=1 has a limiting distribution, namely
ϕ
[
p
] := limN→∞ ϕN

[
p
]
exists for every p ∈ Ai and every i ∈ I . Then the ensembles

{XN ,i }∞N=1 with i ∈ I are asymptotically freely independent if and only if the following
holds:

(AF.2’) lim
N→∞ ϕN

[
(p1 − ϕ

[
p1
]
)(p2 − ϕ

[
p2
]
) · · · (pm − ϕ

[
pm
]
)
] = 0 whenever pk ∈

Aik with i1 �= i2, i2 �= i3, . . . , im−1 �= im

Moreover, if either (AF.2) or (AF.2’) holds, then limN→∞ ϕN
[
p
]
exists for every

p ∈ A.

Proof Let J be the set of all positive integers m satisfying the following property:
if p1 ∈ Ai1 , p2 ∈ Ai2 , . . ., pm ∈ Aim with i1, i2, . . . , im ∈ I and i1 �= i2, i2 �=
i3, . . . , im−1 �= im , then limN→∞ ϕN

[
p1p2 · · · pm

]
exists. Since the algebrasAi with

i ∈ I generate A and each ϕN is linear, limN→∞ ϕN
[
p
]
exists for every p ∈ A if

the set J contains every positive integer. Now, by hypothesis, 1 belongs to J , so let us
assume 1, 2, . . . ,m − 1 belong to J and suppose p1, p2, . . . , pm are as above. Thus,
if S = {k1 < k2 < · · · < k|S|} is a strict subset of [m], the limits

lim
N→∞(−1)|Sc |

∏

k∈Sc
ϕN
[
pk
]
ϕN

[
�∏

k∈S
pk

]

and lim
N→∞(−1)|Sc |

∏

k∈Sc
ϕ
[
pk
]
ϕN

[
�∏

k∈S
pk

]

,

where Sc denotes the complement of S in the set [m] and |Sc| denotes the cardinality
of Sc, exist. Moreover, if (AF.2) holds, the equality

ϕN
[
(p1 − ϕN

[
p1
]
) · · · (pm − ϕN

[
pm
]
)
] = ϕN

[
p1 · · · pm

]

+
∑

S�[m]
(−1)|Sc |

∏

k∈Sc
ϕN
[
pk
]
ϕN

[
�∏

k∈S
pk

]

,

implies limN→∞ ϕN
[
p1 · · · pm

]
exists. And therefore, J contains every positive inte-

ger by induction onm. Similarly, if (AF.2’) holds, then limN→∞ ϕN
[
p1 · · · pm

]
exists,

and hence J contains every positive integer, since each ϕN
[
pk
]
in the equality above

can be replaced by ϕ
[
pk
]
.

Let us now show that (AF.2) and (AF.2’) are equivalent. Suppose p1 ∈ Ai1, p2 ∈
Ai2 , . . . , pm ∈ Aim with i1, i2, . . . , im ∈ I and i1 �= i2, i2 �= i3, . . . , im−1 �= im and
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take qk = pk − ϕ
[
pk
]
for k = 1, 2, . . . ,m. We then have limN→∞ ϕN

[
qk
] = 0 and

the equality

ϕN
[
(p1 − ϕN

[
p1
]
) · · · (pm − ϕN

[
pm
]
)
]

= ϕN
[
q1 · · · qm

]+
∑

S�[m]
(−1)|Sc|

∏

k∈Sc
ϕN
[
qk
]
ϕN

[
�∏

k∈S
qk

]

= ϕN
[
(q1 − ϕN

[
q1
]
) · · · (qm − ϕN

[
qm
]
)
]

Thus, if condition (AF.2’) holds, then limN→∞ ϕN
[
p
]
exists for every p ∈ A, and

hence,

0 = lim
N→∞(−1)|Sc|

∏

k∈Sc
ϕN
[
qk
]
ϕN

[
�∏

k∈S
qk

]

∀S � [m];

additionally, we have limN→∞ ϕN
[
(p1 − ϕ

[
p1
]
) · · · (pm − ϕ

[
pm
]
)
] = limN→∞ ϕN[

q1 · · · qm
] = 0, and thus

lim
N→∞ ϕN

[
(p1 − ϕN

[
p1
]
) · · · (pm − ϕN

[
pm
]
)
] = 0.

This shows that (AF.2’) implies (AF.2). Similarly, (AF.2) implies (AF.2’). ��
In the literature, however, themost commondefinition of asymptotic free independence
for randommatrix ensembles in terms of the linear functionalsϕN defined by (4.5) goes
as follows: {XN ,i }∞N=1 with i ∈ I are asymptotically freely independent if they have a
joint limiting (algebraic) distribution, i.e., limN→∞ ϕN

[
p
]
exist for every polynomial

p ∈ A, and letting ϕ := limN→∞ ϕN , we have

ϕ
[
(p1 − ϕ

[
p1
]
)(p2 − ϕ

[
p2
]
) · · · (pm − ϕ

[
pm
]
)
] = 0

whenever pk ∈ Aik with i1 �= i2, i2 �= i3, . . . , im−1 �= im . The previous proposition
shows equivalence between the common definition of asymptotic free independence
and the one given in the introduction of this paper.

Now, the bounded cumulants property for the random matrix ensemble
{{XN ,i }i∈I }∞N=1 can also be established in terms of multi-linear functionals. If for
each integer n ≥ 1, we consider the n-linear map ρN : A × · · · × A → C defined by

ρN
[
p1, p2, . . . , pn

] = cn
[
Tr
(
p1({XN ,i }i∈I )

)
, . . . ,Tr

(
pn({XN ,i }i∈I )

)]
(4.6)

for all p1, p2, . . . , pn ∈ A and where cn[·, . . . , ·] denotes the classical cumulant,
from Sect. 2.1, the random matrix ensemble {{XN ,i }i∈I }∞N=1 has then the bounded
cumulants property if only if

sup
N

∣∣ρN
[
p1, p2, . . . , pn

]∣∣ < ∞ (4.7)

123



2010 Journal of Theoretical Probability (2023) 36:1972–2039

for all p1, p2, . . . , pn ∈ A and all integers n ≥ 1. Moreover, under some mild assump-
tions, each polynomial pk appearing in (4.7) can be replaced by

(p(k)
1 − ϕN [p(k)

1 ])(p(k)
2 − ϕN [p(k)

2 ]) · · · (p(k)
mk

− ϕN [p(k)
mk

])

for some polynomials p(k)
1 ∈ A

i (k)1
, p(k)

2 ∈ A
i (k)2

, . . . , p(k)
mk ∈ A

i (k)mk
and still get the

bounded cumulants property.

Proposition 15 Suppose ϕN : A → C is a unital linear functional and ρN : A×· · ·×
A → C is an n-linear functional for each integer N ≥ 1. If the limits limN→∞ ϕN

[
p
]

and limN→∞ ρN
[
p1, p2, . . . , pn

]
exist for all p ∈ A, p1 ∈ Ai1 , p2 ∈ Ai2 , . . . , pn ∈

Ain with i1, i2, . . . , in ∈ I , then the following are equivalent:

(1) sup
N

∣∣ρN
[
p1, p2, . . . , pn

]∣∣ < ∞ for all p1, p2, . . . , pn ∈ A
(2) sup

N

∣∣ρN
[
q1, q2, . . . , qn

]∣∣ < ∞ if each qk is of the form

qk = p(k)
1 p(k)

2 · · · p(k)
mk

with p(k)
j ∈ A

i (k)j
and i (k)1 �= i (k)2 , i (k)2 �= i (k)3 , . . . , i (k)mk−1 �= i (k)mk

(3) sup
N

∣∣ρN
[
qN ,1, qN ,2, . . . , qN ,n

]∣∣ < ∞ if each qN ,k is of the form

qN ,k = (p(k)
1 − ϕN [p(k)

1 ])(p(k)
2 − ϕN [p(k)

2 ]) · · · (p(k)
mk

− ϕN [p(k)
mk

])

with p(k)
j ∈ A

i (k)j
and i (k)1 �= i (k)2 , i (k)2 �= i (k)3 , . . . , i (k)mk−1 �= i (k)mk

Proof Conditions (1) and (2) are equivalent since each ρN is n-linear and the algebra
A is generated by the sub-algebras {Ai }i∈I . We only need to prove that (1) implies
(3) and (3) implies (2).

Suppose (1) holds and let qN ,k is as in (3) for k = 1, 2, . . . , n. Then, by multi-
linearity, we have

ρN
[
qN ,1, . . . , qN ,n

]

=
∑

J1⊂[m1],...,Jn⊂[mn ]

⎛

⎝
n∏

k=1

∏

j∈J ck

(−1)|J ck |ϕN [p(k)
j ]
⎞

⎠ · ρN

⎡

⎣ �∏
j∈J1

p(1)
j , . . . ,

�∏
j∈Jn

p(k)
j

⎤

⎦

The sum above is a finite sum, and, by hypothesis, each of its elements is uniformly
bounded with respect to N . Hence, (3) follows.

Let us assume now (3) holds, and let J be the set of all positive integers m satis-
fying the following property: If m = m1 + m2 + · · · + mn for some positive integers
m1,m2, . . . ,mn , and p(k)

j ∈ A
i (k)j

for j = 1, 2, . . . ,mk and i (k)1 �= i (k)2 , i (k)2 �=
i (k)3 , . . . , i (k)mk−1 �= i (k)mk for k = 1, 2, . . . , n, then sup

N
|ρN (q1, q2, . . . , qn)| < ∞
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where each qk is given by qk = p(k)
1 p(k)

2 · · · p(k)
mk . Note that we are done if we show

that J = {n, n + 1, n + 2, . . .}. By hypothesis, n belongs to J , so let us assume
n, n + 1, . . . ,m − 1 belong to J and let p(k)

j , qN ,k and qk as above. Consider the
equality

ρN
[
qN ,1, . . . , qN ,n

]− ρN
[
q1, . . . , qn

]

=
∑

J1⊂[m1],...,Jn⊂[mn ]∪n
k J

c
k �=∅

⎛

⎝
n∏

k=1

∏

j∈J ck

(−1)|J ck |ϕN [p(k)
i ]
⎞

⎠ · ρN

⎡

⎣ �∏
j∈J1

p(1)
j , . . . ,

�∏
j∈Jn

p(k)
j

⎤

⎦ .

given by n-linearity of ρN . Now, since (3) holds, ρN (qN ,1, . . . , qN ,n) is uniformly
bounded with respect to N and, by induction hypothesis, so is ρN [ �∏

j∈J1p
(k)
j , . . . ,

�∏
j∈Jnp

(k)
j ] if at least one Jk is not [mk]. Thus, ρN (q1, . . . , qn) is also uniformly

bounded with respect to N , and hence, m belongs to J . ��
The multi-linear functionals ρN : A × · · · × A → C given by (4.6) are tracial in

each entry, i.e., for ever integer k ∈ [n] and polynomials q0, q1, . . . , qn ∈ A, we have

ρN [q1, . . . , qk−1, q0qk, qk+1, . . . , qn] = ρN [q1, . . . , qk−1, qkq0, qk+1, . . . , qn].

This traciality allows us to impose the condition that i (k)mk �= i (k)1 in (2) and (3) from
Proposition 15 and still get uniform boundedness of ρN

[
p1, p2, . . . , pn

]
with respect

to N .

Corollary 16 Suppose A, Ai , ϕN , and ρN are as in Proposition 15. If ρN is tracial in
each entry, then condition (1) fromProposition 15 is equivalent to any of the following:

(2’) sup
N

∣∣[q1, q2, . . . , qn
]∣∣ < ∞ if each qk is of the form qk = p(k)

1 p(k)
2 · · · p(k)

mk with

p(k)
j ∈ A

i (k)j
and i (k)1 �= i (k)2 , i (k)2 �= i (k)3 , . . . , i (k)mk−1 �= i (k)mk , and i

(k)
mk �= i (k)1

(3’) sup
N

∣∣ρN
[
qN ,1, qN ,2, . . . , qN ,n

]∣∣ < ∞ if each qN ,k is of the form

qN ,k = (p(k)
1 − ϕN [p(k)

1 ])(p(k)
2 − ϕN [p(k)

2 ]) · · · (p(k)
mk

− ϕN [p(k)
mk

])

with p(k)
j ∈ A

i (k)j
and i (k)1 �= i (k)2 , i (k)2 �= i (k)3 , . . . , i (k)mk−1 �= i (k)mk , and i

(k)
mk �= i (k)1

Proof Note that while condition (2) from Proposition 15 allows the indexes i k1 and
i kmk

to be possibly the same, condition (2’) above explicitly prohibits this. Thus, by
traciality of ρN in each entry, we have that (2’) and (2) are equivalent, and hence, it
only remains to show that (3’) above implies (3) from Proposition 15.

Assume (3’) holds and let J be the set of all positive integersm satisfying the follow-
ing property: if m = m1 +m2 + · · ·+mn for some positive integers m1,m2, . . . ,mn ,
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and p(k)
j ∈ A

i (k)j
for j = 1, 2, . . . ,mk and i (k)1 �= i (k)2 , i (k)2 �= i (k)3 , . . . , i (k)mk−1 �= i (k)mk

for k = 1, 2, . . . , n, then

sup
N

∣∣ρN
[
qN ,1, qN ,2, . . . , qN ,n

]∣∣ < ∞ (4.8)

where each qN ,k as above. By hypothesis, n belongs to J , so let us assume n, n +
1, . . . ,m − 1 belong to J and let p(k)

j , qN ,k and qk as above. Thus, if i
(k)
mk �= i (k)1 for

k = 1, 2, . . . , n, Inequality (4.8) holds. On the other hand, if i (k)mk = i (k)1 for some
k ∈ {1, 2, . . . , n}, let us consider polynomials p̃N ,k and r̃N ,k given by

p̃N ,k =(p(k)
mk

− ϕN [p(k)
mk

])(p(k)
1 − ϕN [p(k)

1 ])
r̃N ,k =(p(k)

2 − ϕN [p(k)
2 ])(p(k)

3 − ϕN [p(k)
3 ]) · · · (p(k)

mk−1 − ϕN [p(k)
mk−1])

By traciality of ρN in the k-th entry, we have

ρN
[
qN ,1, . . . , qN ,k, . . . , qN ,n

] =ρN
[
qN ,1, . . . , p̃N ,k̃rN ,k, . . . , qN ,n

] ;

moreover, from the relation

p̃N ,k = (p(k)
mk

p(k)
1 − ϕN [p(k)

mk
p(k)
1 ]) + ϕN [p(k)

mk
p(k)
1 ] − ϕN [p(k)

mk
]ϕN [p(k)

1 ]
− ϕN [p(k)

mk
](p(k)

1 − ϕN [p(k)
1 ]) − ϕN [p(k)

1 ](p(k)
mk

− ϕN [p(k)
mk

])

we get the equality

ρN [qN ,1, . . . , qN ,n] =ρN [qN ,1, . . . , (p
(k)
mk

p(k)
1 − ϕN [p(k)

mk
p(k)
1 ])̃rN ,k, . . . , qN ,n]

+ ϕN [p(k)
mk

p(k)
1 ]ρN [qN ,1, . . . , r̃N ,k, . . . , qN ,n]

− ϕN [p(k)
mk

]ϕN [p(k)
1 ]ρN [qN ,1, . . . , r̃N ,k, . . . , qN ,n]

− ϕN [p(k)
1 ]ρN [qN ,1, . . . , (p

(k)
mk

− ϕN [p(k)
mk

])̃rN ,k, . . . , qN ,n]
− ϕN [p(k)

mk
]ρN [qN ,1, . . . , (p

(k)
1 − ϕN [p(k)

1 ])̃rN ,k, . . . , qN ,n]

by linearity of ρN in the k-th entry. But then, by induction hypothesis, every element
in the right-hand side of the equality above is uniformly bounded with respect to N ,
and therefore, so is ρN [qN ,1, . . . , qN ,n]. ��
Having proved Proposition 14 and Corollary 16, we can now show that, under
the hypothesis of Theorem 4, the family of random matrix ensembles {{UN ,i DN ,i
U∗

N ,i }∞N=1}i∈I has the bounded cumulants property.

Proof of Theorem 4 Let A denote the algebra of non-commutative polynomials
C 〈xi | i ∈ I 〉, and let Ai ⊂ A denote the algebra C [xi ] for each index i ∈ I .
For each integer N ≥ 1, take XN ,i = UN ,i DN ,iU

∗
N ,i for every index i ∈ I and

let ϕN : A → C be the unital linear map defined by (4.5). Note that if p ∈ A j
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for some j ∈ I , then p
({XN ,i }i∈I

) = UN , jp(DN , j )U
∗
N , j , and hence, the limit

limN→∞ ϕN [p] exists for every p ∈ Ai and every i ∈ I . Now, suppose we are
given polynomials p1 ∈ Ai1 , p2 ∈ Ai2 , . . . , pm ∈ Aim with i1, i2, . . . , im ∈ I and
i1 �= i2, i2 �= i3, . . . , im−1 �= im , and im �= i1. Note that

NϕN
[
(p1 − ϕN

[
p1
]
)(p2 − ϕN

[
p2
]
) · · · (pm − ϕN

[
pm
]
)
] = E [Tr (YN )]

where

YN = (UN ,i1
AN ,i1

U∗
N ,i1

)(
UN ,i2

AN ,i2
U∗

N ,i2

) · · · (UN ,im
AN ,im

U∗
N ,im

)

and each AN ,i j
is of trace zero and given by

AN ,i j
= U∗

N ,i j

(
p j (XN ,i j ) − E[tr(p j (XN ,i j ))]IN

)
UN ,i j

= p j (DN ,i j ) − tr(p j (DN ,i j ))IN .

Thus, by Lemma 3, there is a constant C depending only on the indexes i j such that

∣∣NϕN
[
(p1 − ϕN

[
p1
]
)(p2 − ϕN

[
p2
]
) · · · (pm − ϕN

[
pm
]
)
]∣∣ ≤ C

m∏

j=1

∥
∥∥AN ,i j

∥
∥∥ .

But then, since supN
∥∥DN ,i

∥∥ < ∞ and limN→∞ tr(Dk
N ,i ) exists for every k ≥ 1 and

any i ∈ I , we have supN

∥∥
∥AN ,i j

∥∥
∥ < ∞, and therefore,

lim
N→∞ ϕN

[
(p1 − ϕN

[
p1
]
)(p2 − ϕN

[
p2
]
) · · · (pm − ϕN

[
pm
]
)
] = 0. (4.9)

Each linear functional ϕN is tracial, i.e., ϕN [pq] = ϕN [qp] for all p, q ∈ A, and thus,
following similar arguments to those in the proof of Corollary 16, we can remove the
condition im �= i1 and still get (4.9). Therefore, by Proposition 14, the random matrix
ensembles {UN ,i DN ,iU

∗
N ,i }∞N=1 with i ∈ I are asymptotically free, limN→∞ ϕN [p]

exists for every p ∈ A, and (1.15) holds for n = 1.
Fix now an arbitrary integer n ≥ 2 and let ρN : A × · · · × A → C be the n-linear

map given by (4.6) for every integer N ≥ 1. Note that

ρN (p1, p2, . . . , pn) = cn
[
Tr
(
p1(DN ,i1)

)
, . . . ,Tr

(
pn(DN ,in )

)] = 0

if p1 ∈ Ai1 , p2 ∈ Ai2 , . . . , pn ∈ Ain for some i1, i2, . . . , in ∈ I . Thus, since n is arbi-
trary, the family of ensembles {{UN ,i DN ,iU

∗
N ,i }∞N=1}i∈I has the bounded cumulants

property if the multi-linear functional ρN satisfies (3’) from Corollary 16, namely

sup
N

∣∣ρN
[
qN ,1, qN ,2, . . . , qN ,n

]∣∣ < ∞
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whenever each qN ,k is of the form

qN ,k = (p(k)
1 − ϕN [p(k)

1 ])(p(k)
2 − ϕN [p(k)

2 ]) · · · (p(k)
mk

− ϕN [p(k)
mk

])

with p(k)
j ∈ A

i (k)j
and i (k)1 �= i (k)2 , i (k)2 �= i (k)3 , . . . , i (k)mk−1 �= i (k)mk , and i (k)mk �= i (k)1 .

Suppose i (k)j , p(k)
j , and qN ,k are as above and take YN ,k = qN ,k

({XN ,i }i∈I
)
for k =

1, 2, . . . , n. Then, we have

ρN
[
qN ,1, qN ,2, . . . , qN ,n

] = cn
[
Tr
(
YN ,1

)
,Tr

(
YN ,2

)
, . . . ,Tr

(
YN ,n

)]
.

Moreover, letting A
N ,i (k)j

= p(k)
j (D

N ,i (k)j
)− tr(p(k)

j (D
N ,i (k)j

))IN for each i (k)j and every

N ≥ 1, we get A
N ,i (k)j

is of trace zero, supN

∥∥∥∥AN ,i (k)j

∥∥∥∥ < ∞, and

YN ,k = (U
N ,i (k)1

A
N ,i (k)1

U∗
N ,i (k)1

)(
U

N ,i (k)2
A
N ,i (k)2

U∗
N ,i (k)2

) · · · (U
N ,i (k)mk

A
N ,i (k)mk

U∗
N ,i (k)mk

)
.

Therefore, by Lemma 3, there is a constant C depending only on the indexes i (k)j such
that

∣∣ρN
[
qN ,1, qN ,2, . . . , qN ,n

]∣∣ ≤ C
n∏

k=1

mk∏

j=1

∥∥∥
∥AN ,i (k)j

∥∥∥
∥ < ∞.

��

5 FluctuationMoments

The proofs of Theorems 1 and 2 are very similar, and thus, in order to avoid redun-
dancies, this section is devoted to prove only Theorem 1; nonetheless, what has to be
modified to obtain the conclusions from Theorem 2 is pointed out in the next section.

Let XN ,1 and XN ,2 be as in Theorem 1. Assume YN = YN ,1YN ,2 · · · YN ,2m1

and ZN = ZN ,1ZN ,2 · · · ZN ,2m2 where YN ,k and ZN ,l are given by (1.5) for some
polynomials p1, p2, . . . , p2m1 , q1, q2, . . . , q2m2 ∈ C[x] and some indexes i1, i2, . . . ,
i2m1

, j1, j2, . . . , j2m2
∈ {1, 2} satisfying i1 = j1 and (1.6). Note that

YN = (UN ,i1 AN ,1U
∗
N ,i1

)(
UN ,i2 AN ,2U

∗
N ,i2

) · · · (UN ,i2m1
AN ,2m1

U∗
N ,i2m1

)

and

ZN = (UN , j1BN ,1U
∗
N , j1

)(
UN , j2BN ,2U

∗
N , j2

) · · · (UN , j2m2
BN ,2m2

U∗
N , j2m2

)

with AN ,k and BN ,l defined as in (1.11); moreover, we have i2k−1 = j2 l−1 = i1 �=
i2 = i2k = j2 l . Thus, following similar arguments to those in the proof of Lemma 3,
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we obtain

Cov [Tr(YN ),Tr(ZN )] =
∑

θ∈Pχ (±2m)

⎛

⎜⎜
⎝

∑

π∈Peven(±2m)
π≤θ

c2 [π ]μ(π, θ)

⎞

⎟⎟
⎠

∑

j:[±2m]→[N ]
ker(j)≥θ

a(j)

(5.1)

where Pχ (±2m) denotes the set of all even partitions of [±2m] with no blocks of the
form {k,−k}, μ : P(±2m) × P(±2m) → C is the Möbius inversion function, a(j)
is given by

a(j) =
2m1∏

k=1

AN ,k( j−k, j+k) ·
2m2∏

l=1

BN ,l( j−2m2−l , j+2m2+l),

for function each j : [±2m] → [N ], and if j : [±2m] → [N ] satisfies ker (j) = π ,
then

c2 [π ] = cov

⎡

⎣
2m1∏

k=1

Vk( jσ(−k), jσ(k)),

2m1+2m2∏

k=2m1+1

Vk( jσ(−k), jσ(k))

⎤

⎦ (5.2)

with V2k−1 = V ∗
2k = U∗

N ,i1
UN ,i2

for k = 1, 2, . . . ,m and σ ∈ Sym(±2m) is the
cyclic permutation given by

σ =(−1, 1,−2, 2, . . . ,−2m1, 2m1)

(−2m1 − 1, 2m1 + 1, . . . ,−2m1 − 2m2, 2m1 + 2m2).

It turns out that (5.1) becomes

Cov [Tr(YN ),Tr(ZN )] =
∑

θ∈Pχχ (±2m)

⎛

⎜⎜
⎝

∑

π∈Peven(±2m)
π≤θ

c2 [π ]μ(π, θ)

⎞

⎟⎟
⎠

∑

j:[±2m]→[N ]
ker(j)≥θ

a(j) + O(N−1) (5.3)

where Pχχ (±2m) denotes the set of all partitions θ ∈ Pχ (±2m) such that the graph
sum exponent τθ , defined in Sect. 3.1, equalsm. Indeed, if we are given partitions π ∈
Peven(±2m) and θ ∈ Pχ (±2m) satisfying θ ≥ π , then Theorem 5 and Proposition 6
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imply

∣∣∣
∣∣∣∣∣

c2 [π ]μ(π, θ)
∑

j:[±2m]→[N ]
ker(j)≥θ

a(j)

∣∣∣
∣∣∣∣∣

≤ |c2 [π ]| |μ(π, θ)| N τθ

2m1∏

k=1

∥∥AN ,k
∥∥
2m2∏

l=1

∥∥BN ,l
∥∥

(5.4)

where τθ is the number of connected components of the graph Gθ . Now, by hypothesis,
supN

∥∥DN ,i
∥∥ < ∞ and limN→∞ tr(Dk

N ,i ) exists for every k ≥ 1 and any i ∈ {1, 2},
so we have

sup
N

2m1∏

k=1

∥
∥AN ,k

∥
∥
2m2∏

l=1

∥
∥BN ,l

∥
∥ < ∞.

Moreover, every connected component of Gθ contains at least two edges since θ is
even and has no blocks of the form {−k, k}, and hence, the graph sum exponent τθ

satisfies

τθ ≤ m.

Additionally, since the unitary ensemble {{UN ,1,UN ,2}}∞N=1 satisfies (II) fromLemma
3, it follows from the proof of Lemma 3 that there is a constant C2 independent from
N satisfying

|c2 [π ]| ≤ C2N
−m .

Therefore, from (5.4) we obtain

c2 [π ]μ(π, θ)
∑

j:[±2m]→[N ]
ker(j)≥θ

a(j) = O(N−1) (5.5)

unless the graph sum exponent τθ = m, and, consequently, we get (5.3).
Note that the condition τθ = m, for an even partition θ ∈ P(±2m) with no blocks

of the form {+k,−k}, forces each component of the undirected graph Gθ to have
exactly two edges. Thus, for any partition θ ∈ Pχχ (±2m), each component of the
directed graph �Gθ has one of the following forms:

El
Ek El

Ek Ek El
And therefore, as illustrated at the end of Sect. 3.1, each graph sum

∑
ker(j)≥θ a(j)

appearing in (5.3) can be written as a product of traces of matrices where each trace is
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of the following forms: Tr(CN ,kCN ,l), Tr(CN ,kC
T
N ,l), or Tr(CN ,k ◦ CN ,l)whereCN ,k

andCN ,l belong to the set {AN ,1, . . . , AN ,2m1 , BN ,1, . . . , BN ,2m2}. Hence, letting c[π ]
be given by (5.2) for each partition π ∈ P(±2m), the conclusions in Theorem 1 will
follow from (5.3) once we determine the order of

∑

π∈Peven(±2m)
θ≥π

c2 [π ]μ(π, θ). (5.6)

Now, recall the values ofMöbius inversion function are determined by (2.1), and given
explicitly by (2.2). Thus, to determine the order of (5.6), it is enough to compute c2[π ]
for even partitions π ∈ P(±2m) satisfying π ≤ θ for some other partition θ in the set
Pχχ (±2m).

Proposition 17 Suppose θ is a partition in Pχχ (±2m). If π is an even partition such
that π ≤ θ and c2[π ] is given by (5.2), then the following holds:

(1) for U∗
N ,i1

UN ,i2
= 1√

N
W ∗HW, we have

Nmc2[π ] =

⎧
⎪⎪⎨

⎪⎪⎩

1 + O
(
N−1

)
if there is a symmetric pairing partition
θ̂ ≤ π satisfying either (1) or
(2) from Proposition 13

O
(
N−1/2

)
otherwise.

(2) for U∗
N ,i1

UN ,i2
= 1√

N
W ∗XHW, we obtain

Nmc2[π ] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + O
(
N−1

)
if there is a symmetric pairing partition
θ̂ ≤ π satisfying (1) from Proposition13

1 + O
(
N−1

)
if there is a symmetric pairing partition
θ̂ ≤ π satisfying (2) from Proposition 13 and the
graph Gπ has only double loops as components

O
(
N−1/2

)
otherwise.

(3) for U∗
N ,i1

UN ,i2
= 1

N W ∗H∗XHW, we get

Nmc2[π ] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + O
(
N−1

)
if m1 = m2 and there are integers
1 ≤ k ≤ 2m1 < l ≤ 2m1 + 2m2 so
that σ t (−k) ∼π σ−t (l) for every integer t ≥ 0

2 + O
(
N−1

)
if there are integers 1 ≤ k ≤ 2m1 < l ≤ 2m1 + 2m2
so that for eachinteger t ≥ 0 we have
σ−t (k) ∼π σ t+1(k) and σ−t (l) ∼π σ t+1(l)

O
(
N−1/2

)
otherwise.

The proof of Proposition 17 is based on the expected value of products of entries from
X and W , see relations (2.5) and (2.6), and the results on graph sums of the discrete
Fourier transform from Sect. 3.2; however, it requires some technical intermediate
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steps, so we will omit it for now and leave it to the end of this section. Nonetheless,
the computation of (5.6) up to a term of order N−m−1/2 is quite simple assuming that
Proposition 17 holds.

Lemma 18 Suppose θ is a partition in Pχχ (±2m) and let c[π ] be given by (5.2) for
each partition π ∈ P(±2m). Then, the following holds:

(1) for U∗
N ,i1

UN ,i2
= 1√

N
W ∗HW, we have

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ)

=
⎧
⎨

⎩

1 + O
(
N−1/2

)
if θ is a pairing partition satisfying either (1) or
(2) from Proposition 13,

O
(
N−1/2

)
otherwise

(2) for U∗
N ,i1

UN ,i2
= 1√

N
W ∗XHW ∗, we obtain

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + O
(
N−1/2

)
if θ is a pairing partition satisfying(1)from Pro-
position13,

1 + O
(
N−1/2

)
if there exists a pairing partition θ̂ ≤ θ satisfying
(2) from Proposition13 and θ has only blocks of
the form {k,−k, l,−l},

O
(
N−1/2

)
otherwise

(3) for U∗
N ,i1

UN ,i2
= 1

N W ∗H∗XHW , we get

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + O
(
N−1/2

)
if m1 = m2 and there is an integer
2m1 + 1 ≤ l ≤ 2m1 + 2m2 such that
θ = {σ t (−1), σ−t−1(−l)} | t ≥ 0},

2 + O
(
N−1/2

)
if there are integers 1 ≤ l1 ≤ 2m1 and
2m1 + 1 ≤ l2 ≤ 2m1 + 2m2 so that θ = θ1 � θ2
where θ1 = {{σ t (−l1), σ−t−1(−l1)} | t ≥ 0}
θ2 = {{σ t (−l2), σ−t−1(−l2)} | t ≥ 0},

O
(
N−1/2

)
otherwise.
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Proof Suppose U∗
N ,i1

UN ,i2
= W ∗XHW/

√
N . Propositions 13 and 17 imply that

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ) = O
(
N−1/2

)

unless there are integers 1 ≤ k ≤ 2m1 < l ≤ 2m1 + 2m2 satisfying one of the
following:

(i) k + l is even and σ t (−k) ∼θ σ−t (l) for all integers t ≥ 0 or
(ii) k + l is odd, σ t (−k) ∼θ σ t (−l) for all integers t ≥ 0 and Gθ has only double

loops as components

Assuming that (i) aboveholds, consider the pairingpartition θ̂ = {{σ t (−k), σ−t (l)} |
t ≥ 0} and note that Proposition 17 implies that

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ) =
∑

π∈Peven(±2m)

θ̂≤π≤θ

Nmc2 [π ]μ(π, θ) + O
(
N−1/2

)
.

(5.7)

Moreover, since Nmc2 [π ] = 1 + O(N−1) for any partition π satisfying θ̂ ≤ π ≤ θ ,
we get

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ) =
∑

π∈Peven(±2m)

θ̂≤π≤θ

μ(π, θ) + O(N−1/2)

=
{
1 + O

(
N−1/2

)
if θ̂ = θ

O
(
N−1/2

)
if θ̂ < θ

from equations in (2.1) defining the Möbius inversion function. On the other hand, if
(ii) above holds, consider θ̂ = {{σ t (−k), σ t (−l)} | t ≥ 0} instead and note that (5.7)
above holds also in this case. Hence, since Nmc2 [θ ] = 1+ O(N−1) and Nmc2 [π ] =
O(N−1/2) for any partition θ̂ ≤ π < θ , we obtain

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ) = Nmc2 [θ ]μ(θ, θ)

+
∑

π∈Peven(±2m)

θ̂≤π<θ

Nmc2 [π ]μ(π, θ) = 1 + O(N−1/2)

Theother cases, namelyU∗
N ,i1

UN ,i2
= W ∗HW/

√
N andU∗

N ,i1
UN ,i2

= W ∗H∗XHW/N ,

are proved in the same way, one chooses a suitable pairing partition θ̂ such that (5.7)
holds, and then the corresponding conclusion follows from Proposition 17 and the
equations in (2.1) defining the Möbius function. ��
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As mentioned earlier, the proof of Theorem 1 is complete once we apply Lemma
18 to the relation (5.3). For instance, suppose U∗

N ,i1
UN ,i2

= W ∗H∗XHW /N . Then,
Theorem 5, Lemma 18, and (5.3) imply that

Cov [Tr(YN ),Tr(ZN )] =δm1,m2

∑

θ∈P1

∑

j:[±2m]→[N ]
ker(j)≥θ

a(j)

+
∑

θ∈P2

2
∑

j:[±2m]→[N ]
ker(j)≥θ

a(j) + O
(
N− 1

2

)
(5.8)

where P1 and P2 are subsets of Pχχ (±2m) given by

P1 = {{{σ t (−1), σ−t−1(−l)} | t = 0, 1, 2, . . . , 4m} | l ∈ [2m] \ [2m1]}

and

P2 = {{{σ t (−l1), σ
−t−1(−l1)}, {σ t (−l2), σ

−t−1(l2)} | t ≥ 0} | l1
∈ [2m1], l2 ∈ [2m] \ [2m1]}.

Now, note the set P1 has cardinality 2m1 provided m1 = m2. Moreover, m1 = m2
implies that a partition θ ∈ P(±2m) belongs to the set P1 if and only if for some
integer 1 ≤ l ≤ 2m1 the directed graph �Gθ can be represented as

F2l-
1-

F2lE
1E

F2lEm-+-
1Em- l-

F2lEm-

1Em-
. . .

where Fk denotes the edge E2m1+k and l − k is taken module 2m1 for k =
1, 2, . . . , 2m1. Thus, for each integer 1 ≤ l ≤ 2m1, there exists a unique θ ∈ P1
so that

∑

j:[±m]→[N ]
ker(j)≥θ

a(j) =
2m1∏

k=1

Tr
(
AN ,k BN ,l−k

)
,

and hence, we obtain

Cov [Tr(YN ),Tr(ZN )] = δm1,m2

2m1∑

l=1

(2m1∏

k=1

tr
(
AN ,k BN ,l−k

)
)

+
∑

θ∈P2

2
∑

j:[±2m]→[N ]
ker(j)≥θ

a(j) + O
(
N− 1

2

)
.
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On the other hand, the set P2 has cardinality m1 · m2 since

{{σ t (−l1), σ
−t−1(−l1)} | t ≥ 0} = {{σ t (−m1 − l1), σ

−t−1(−m1 − l1)} | t ≥ 0}

and

{{σ t (−l2), σ
−t−1(−l2)} | t ≥ 0} = {{σ t (−m2 − l2), σ

−t−1(−m2 − l2)} | t ≥ 0}

for l1 = 1, 2, . . . ,m1 and l2 = 1, 2, . . . ,m2. Moreover, a partition θ ∈ P(±2m)

belongs to the set P2 if and only if for some integers 1 ≤ l ≤ m1 and 1 ≤ l2 ≤ m2
the directed graph �Gθ can be represented as

F2l -l
F2l 1 E l -lF2l F2l 1 l

F2l -m F2l -E l +2m-l
+2m1 E m-l+2m +2m1 l

+2m-m +2m-E m

where l1 − k1 and l2 − k2 are taken modulo 2m1 and 2m2, respectively, for k1 =
1, 2, . . . ,m1 and k2 = 1, 2, . . . ,m2. Thus, for each partition θ ∈ P2 there are integers
1 ≤ l1 ≤ m1 and 1 ≤ l2 ≤ m2 satisfying

∑

j:[±m]→[N ]
ker(j)≥θ

a(j) =
m1∏

k1=1

Tr
(
AN ,l1+k1−1AN ,l1−k1

) ·
m2∏

k2=1

Tr
(
BN ,l2+k2−1BN ,l2−k2

)
.

Therefore, we have

Cov [Tr(YN ),Tr(ZN )] =2
m1∑

l1=1

m2∑

l2=1

m1∏

k1=1

tr
(
AN ,l1+k1−1AN ,l1−k1

)

m2∏

k2=1

tr
(
BN ,l2+k2−1BN ,l2−k2

)

+ δm1,m2

2m1∑

l=1

(2m1∏

k=1

tr
(
AN ,k BN ,l−k

)
)

+ O(N−1/2).

Theother cases, namelyU∗
N ,i1

UN ,i2
= W ∗HW/

√
N andU∗

N ,i1
UN ,i2

= W ∗XHW/N ,
are proved in the same way, applying Lemma 18 to the relation (5.3) we obtain similar
relations to that in (5.8) that lead to (1) and (2) in Theorem 1.

The remaining of this section is devoted to the proof of Proposition 17. For clarity,
we have considered two cases: U∗

N ,i1
UN ,i2

= W ∗H∗XHW/N and U∗
N ,i1

UN ,i2
=

W ∗Y HW/
√
N where Y is either the identity matrix IN or an N -by-N uniformly

distributed signature matrix X . But first, let us introduce some more notation for
partitions.

Given a partition π ∈ P(±2m), we let πeven and πodd denote the restriction of
π to the sets {k ∈ [±2m] | k is even} and {k ∈ [±2m] | k is odd}, respectively.
Moreover, we let πeven and πodd denote the partitions of {k ∈ [±4m] | k is even }
and {k ∈ [±4m] | k is odd}, respectively, given by πeven = {{2k | k ∈ B} | B ∈ π}
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and πodd = {{2k − sign(k) | k ∈ B} | B ∈ π} where sign(k) = 1, if k is positive, and
sign(k) = −1, otherwise. For instance, if π is the partition in P(±6) given by

π = {{−1, 4}, {1,−3}, {−2, 3}, {2,−4}}

then

πeven ={{4}, {−2}, {2,−4}}, πodd = {{−1}, {1,−3}, {3}},
πeven ={{−2, 8}, {2,−6}, {−4, 6}, {4,−8}}, and

πodd ={{−1, 7}, {1,−5}, {−3, 5}, {3,−7}}.

CaseU∗
N,i1

UN,i2
= 1√

N
W∗YHW

Let Y be an N -by-N diagonal random matrix independent from W . Given a function
i : [±2m] → [N ], we let

h(i) = h1(i)h2(i) and y(i) = y1(i)y2(i)

where h1(i), h2(i), y1(i), and y2(i) are given by

h1(i) =
m1∏

k=1

H(i−2k+1, i2k−1)H
∗(i−2k, i2k),

h2(i) =
m1+m2∏

k=m1+1

H(i−2k+1, i2k−1)H
∗(i−2k, i2k),

y1(i) =
m1∏

k=1

Y (i−2k+1, i−2k+1)Y (i2k−1, i2k−1),

y2(i) =
m1+m2∏

k=m1+1

Y (i−2k+1, i−2k+1)Y (i2k−1, i2k−1);

additionally, if we are given a function j : [±2m] → [N ], we put

w(i, j) = w1(i, j)w2(i, j)

where w1(i, j) and w2(i, j) are given by

w1(i, j) =
2m1∏

k=1

W (ik, jk)W (i−k, j−k)

and w2(i, j) =
2m1+2m2∏

k=2m1+1

W (ik, jk)W (i−k, j−k).
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Now, for every partition π ∈ P(±2m) and any function j : [±2m] → [N ] satisfying
ker (j) = π , we define C2 [π ] by

∑

i:[±2m]→[N ]
ker(i)=π

h(i ◦ σ )E [w(i, j)]E
[
y(i)
]

−
∑

i:[±2m]→[N ]
ker(i)=π1�π2

h(i ◦ σ )E [w1(i, j)]E [w2(i, j)]E
[
y1(i)

]
E
[
y2(i)

]

= C2 [π ] (5.9)

where π1 and π2 denote the restrictions of π to [±2m1] and [±2m]\[±2m1], respec-
tively, and σ ∈ Sym(±2m) is the cycle permutation given by

σ =(−1, 1,−2, 2, . . . ,−2m1, 2m1)

(−2m1 − 1, 2m1 + 1, . . . ,−2m1 − 2m2, 2m1 + 2m2).

Proposition 19 Let π be an even partition in P(±2m). Suppose U∗
N ,i1

UN ,i2
=

W ∗Y HW/
√
N where Y is an N-by-N diagonal matrix independent from W so that

each entry Y (i, i) takes values in the set {−1, 1}. If c2[π ] and C2 [π ] are given by (5.2)
and (5.9), respectively, then

Nmc2 [π ] = C2 [π ] + O(N−1) (5.10)

Proof Fix a function j : [±2m] → [N ] satisfying ker (j) = π . Note that the
( j−2k+1, j2k−1)-entry ofU∗

N ,i1
UN ,i2

and the ( j−2k, j2k)-entry ofU∗
N ,i2

UN ,i1
are given

by

N∑

i−2k+1,i2k+1=1

1√
N
W ∗( j−2k+1, i−2k+1)Y (i−2k+1, i−2k+1)H (i−2k+1, i2k−1)W (i2k−1, j2k−1)

and

N∑

i−2k ,i2k=1

1√
N
W ∗( j−2k, i−2k)

H∗(i−2k, i2k)Y (i2k, i2k)W (i2k, j2k),

respectively. Thus, from (5.2) and the linearity of the covariance, we have that

Nmc2 [π ] =
∑

i:[±2m]→[N ]
h(i) · cov[w1(i, j ◦ σ ) · y1(i),w2(i, j ◦ σ ) · y2(i)

]
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where h(i), w1(i, j), w2(i, j), y1(i), y2(i), and σ are defined as above. But, for every
function i : [±2m] → [N ], we have that

wk(i, j) = wk(i ◦ σ , j ◦ σ ) and yk(i) = yk(i ◦ σ ) for k = 1, 2,

so we obtain

Nmc2 [π ] =
∑

i:[±2m]→[N ]
h(i ◦ σ ) · cov [w1(i, j) · y1(i),w2(i, j) · y2(i)

]
. (5.11)

Moreover, from (2.6) we get that

E [w1(i, j)w2(i, j)] = 0 and E [w1(i, j)]E [w2(i, j)] = 0

provided ker (i) �= π and ker (i) � π1�π2, respectively. And hence, equality in (5.11)
becomes

Nmc2 [π ] =
∑

i:[±2m]→[N ]
ker(i)=π

h(i ◦ σ )E [w1(i, j)w2(i, j)]E
[
y1(i)y2(i)

]

−
∑

θ∈P(±2m)
θ≥π1�π2

∑

i:[±2m]→[N ]
ker(i)=θ

h(i ◦ σ )E [w1(i, j)]E [w2(i, j)]

E
[
y1(i)

]
E
[
y2(i)

]
.

To obtain (5.10), it only remains to show that for θ � π1 � π2, i.e., θ ≥ π1 � π2 but
θ �= π1 � π2, implies

∑

i:[±2m]→[N ]
ker(i)=θ

h(i ◦ σ )E [w1(i, j)]E [w2(i, j)]E
[
y1(i)

]
E
[
y2(i)

] = O
(
N−1

)
.

Suppose θ ∈ P(±2m) satisfies θ � π1�π2. Then, wemust have #(θ) < #(π1�π2) =
#(π1) + #(π2), or, equivalently,

#(θ) − #(π1) − #(π2) ≤ −1.

Now, h(i ◦ σ ) has absolute value 1 for any function i : [±2m] → [N ] and∣
∣E
[
y1(i)

]
E
[
y2(i)

]∣∣ ≤ 1, so (2.6) implies

∣∣∣
∣∣∣∣∣

∑

i:[±2m]→[N ]
ker(i)=θ

h(i ◦ σ )E [w1(i, j)]E [w2(i, j)]E
[
y1(i)

]
E
[
y2(i)

]

∣∣∣
∣∣∣∣∣
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≤ (N − #(π1))!
N ! · (N − #(π2))!

N ! ·

∣∣
∣∣∣∣∣∣

∑

i:[±2m]→[N ]
ker(i)=θ

h(i ◦ σ )

∣∣
∣∣∣∣∣∣

= O
(
N−#(π1)−#(π2)+#(θ)

)
= O

(
N−1

)
.

��
Proof of (1) from Proposition 17 Let Y be the identity matrix IN . By Proposition 19,
we only need to show that

C2[π ] =

⎧
⎪⎪⎨

⎪⎪⎩

1 + O
(
N−1

)
if there is a symmetric pairing partition
θ̂ ≤ π satisfying either (1) or (2)
from Proposition 13,

O
(
N−1/2

)
otherwise.

where C2 [π ] is given by (5.9). Note that from (2.6) and (5.9) we obtain the inequality

|C2[π ]| ≤ (N − #(π))!
N !

∣∣
∣∣∣∣∣
∣

∑

i:[±2m]→[N ]
ker(i)=π

h(i ◦ σ )

∣∣
∣∣∣∣∣
∣

+ (N − #(π1))!
N !

(N − #(π2))!
N !

∣∣∣∣∣∣
∣∣

∑

i:[±2m]→[N ]
ker(i)=π1�π2

h(i ◦ σ )

∣∣∣∣∣∣
∣∣

.

But then, if pσ−1◦π is a nonzero polynomial, so is pσ−1◦π1�π2
by Proposition 10, and

therefore, the last inequality and Corollary 8 would imply C2 [π ] = O(N−1/2). And
so, we can assume pσ−1◦π is the zero polynomial without loss of generality.

Now, for every function i : [±2m] → [N ] satisfying ker (i) = π we have h(i◦σ ) =
1 since pσ−1◦π is the zero polynomial; additionally, (2.6) givesE [w(i, j)] = (N−#(π))!

N !
since π is an even partition. Thus, from (5.9) we obtain

C2[π ] = 1 −
∑

i:[±2m]→[N ]
ker(i)=π1�π2

h(i ◦ σ )E [w1(i, j)]E [w2(i, j)] . (5.12)

Moreover, by Proposition 10, there is a symmetric pairing partition θ̂ ≤ π such that
p
σ−1◦θ̂

is also the zero polynomial, and hence, the partition θ̂ must satisfy one of the

conditions (1)-(6) from Proposition 13. Notice θ̂ = θ̂1 � θ̂2, where θ̂1 and θ̂2 denote
the restrictions of θ̂ to [±2m1] and [±2m]\[±2m1], respectively, implies

C2[π ] = 1 − (N − #(π1))!
N ! · (N − #(π2))!

N ! · N !
(N − #(π1 � π2))! = O

(
N−1

)
.

(5.13)

123



2026 Journal of Theoretical Probability (2023) 36:1972–2039

Indeed, if θ̂ = θ̂1 � θ̂2, then θ̂1 and θ̂2 must be even partitions, and so are π1 and π2
since θ̂ ≤ π implies θ̂1 ≤ π1 and θ̂2 ≤ π2, so (2.6) gives

E [w1(i, j)] = (N − #(π1))!
N ! and E [w2(i, j)] = (N − #(π2))!

N !
for every function i : [±2m] → [N ] satisfying ker (i) = π1 � π2; moreover, Proposi-
tion 10 implies the polynomial pσ−1◦π1�π2

is also zero since θ̂ = θ̂1 � θ̂2 ≤ π1 � π2,
and thus, we obtain

h(i ◦ σ ) = 1.

Hence, (5.13) follows from (5.12) provided θ̂ satisfies either (3), (4), (5), or (6) from
Proposition 13.

Assume now θ̂ satisfies either (1) or (2) from Proposition 13. Then, either π1 � π2
contains some singletons, if {k, l} ∈ π or {k,−l} ∈ π for some integers 1 ≤ k ≤
2m1 < l ≤ 2m1 + 2m2, or π1 � π2 = {{−k, k} | k ∈ [±2m]}, otherwise. In any
case, the graph �Gπ1�π2 satisfies none of the conditions (1)-(6) from Remark 12 since
m1 + m2 > 2, and hence, the polynomial pσ−1◦π1�π2

is nonzero. Thus, by (2.6) and
Corollary 8, we have

∣∣
∣∣∣∣∣∣

∑

i:[±2m]→[N ]
ker(i)=π1�π2

h(i ◦ σ )E [w1(i, j)]E [w2(i, j)]

∣∣
∣∣∣∣∣∣

≤ CN #(π1�π2)− 1
2 · (N − #(π1))!

N ! · (N − #(π2))!
N ! (5.14)

for some constant C > 0 independent from N . Therefore, from (5.12) we get that

C2[π ] = 1 + O(N−1/2).

��
Proof of (2) from Proposition 17 Let Y be a random N -by-N signature matrix inde-
pendent from W . Similar to the previous case, U∗

N ,i1
UN ,i2

= W ∗HW/
√
N , we can

assume pσ−1◦π is the zero polynomial and it suffices to show that

C2[π ] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + O
(
N−1

)
if there is a symmetric pairing partition
θ̂ ≤ π satisfying (1) from Proposition 13,

1 + O
(
N−1

)
if there is a symmetric pairing partition θ̂ ≤ π

satisfying (2) from Proposition 13 and the graph
Gπ has only double loops as components,

O
(
N−1/2

)
otherwise.

Letπodd,1 andπodd,2 denote the restrictions ofπodd to [±2m1] and [±2m]\[±2m1],
respectively. Note that if πodd is not an even partition, then either πodd,1 or πodd,2 is not
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even, and hence, we obtain C2[π ] = 0 since (2.5) would imply E
[
y1(i)

]
E
[
y2(i)

] =
E
[
y(i)
] = 0 for every function i : [±2m] → [N ] satisfying ker (i) = π . Thus, we

can further assume πodd is even. It then follows from (2.5) and (2.6) that

h(i ◦ σ ) = 1, E
[
y(i)
] = 1 and E [w(i, j)] = (N − #(π))!

N !
for i : [±2m] → [N ] satisfying ker (i) = π , and hence, we obtain

C2[π ] = 1 −
∑

i:[±2m]→[N ]
ker(i)=π1�π2

h(i ◦ σ )E
[
y1(i)

]
E
[
y2(i)

]
E [w1(i, j)]E [w2(i, j)] .

(5.15)

By Proposition 10, there is a symmetric pairing partition θ̂ ≤ π such that p
σ−1◦θ̂

is

also the zero polynomial, and thus, the partition θ̂ must satisfy one of the conditions
(1)-(6) from Proposition 13. However, if θ̂ satisfies either (3), (4), (5), or (6), then

C2[π ] = 1 − N !
(N − #(π1 � π2))! · (N − #(π1))!

N ! · (N − #(π2))!
N ! = O

(
N−1

)
.

(5.16)

Indeed, suppose θ̂ satisfies either (3), (4), (5), or (6) from Proposition 13, let θ̂1 and
θ̂2 denote the restrictions of θ̂ to [±2m1] and [±2m]\[±2m1], respectively, and let
i : [±2m] → [N ] be a function satisfying ker (i) = π1 � π2. Note that θ̂ = θ̂1 � θ̂2 ≤
π1 � π2 since θ̂ ≤ π implies θ̂1 ≤ π1 and θ̂2 ≤ π2, and thus, by Proposition 10, the
polynomial pσ−1◦π1�π2

is zero, and hence, we get

h(i ◦ σ ) = 1.

Moreover, π1 and π2 are even partitions since θ̂ is even and θ̂ = θ̂1 � θ̂2 ≤ π , so, from
(2.6), we get

E [w1(i, j)] = (N − #(π1))!
N ! and E [w2(i, j)] = (N − #(π2))!

N ! .

The partitions πodd,1 and πodd,2 are also even since θ̂odd is even and θ̂ = θ̂1 � θ̂2 ≤ π

implies θ̂odd = θ̂odd,1 � θ̂odd,2, θ̂odd,1 ≤ πodd,1, and θ̂odd,2 ≤ πodd,2 where θ̂odd,1 and
θ̂odd,2 denote the restrictions of θ̂odd to [±2m1] and [±2m]\[±2m1], respectively.
Thus, from (2.5), we have

E
[
y1(i)

]
E
[
y2(i)

] = 1.

Consequently, we obtain (5.16) from (5.15). Now, similar to the case U∗
N ,i1

UN ,i2
=

W ∗HW/
√
N , if θ̂ satisfies either (1) or (2) from Proposition 13, then pσ−1◦π1�π2

is a
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nonzero polynomial and (5.14) holds, so, from (5.15), we obtain

C2[π ] = 1 + O(N−1/2)

since we have
∣∣E
[
y1(i)

]
E
[
y2(i)

] = 1
∣∣ ≤ 1 for any function i : [±2m] → [N ].

It only remains to show that the undirected graphGπ must have only double loops as
connected components if θ̂ satisfies (2) from Proposition 13. So, suppose θ̂ satisfies (2)
from Proposition 13. Note that if π has a block of the form {k, l}, then k+ l is odd, and
hence, we must have either {k} or {l} is a block of πodd, contradicting the assumption
that πodd is an even partition. Thus, π has only blocks of the form {k, l,−k,−l}, or,
equivalently, the undirected graphGπ has only double loops as connected components.

��

CaseU∗
N,i1

UN,i2
= 1

NW∗H∗XHW

For each function i : [±4m] → [N ], we let ĥ(i), ĝ(i), x̂1(i), and x̂2(i) be given by

ĥ(i) =
2m∏

k=1

H∗(i−2k+1, i2k−1)H(i−2k, i2k),

ĝ(i) =
2m∏

k=1

H∗(i−2k+1, i−2k)H(i2k, i2k−1),

x̂1(i) =
2m1∏

k=1

X(i−2k, i2k), and

x̂2(i) =
2m1+2m2∏

k=2m1+1

X(i−2k, i2k);

additionally, if we are given a function j : [±2m] → [N ], we take

t = (t−1, t1, t−3, t3, . . . , t4m1+4m2−1) = ( j−1, j1, j−2, j2, . . . , j−2m, j2m) (5.17)

and let ŵ1(i, t) and ŵ2(i, t), also denoted ŵ1(i) and ŵ2(i), respectively, be defined by

ŵ1(i, t) =
2m1∏

k=1

W (i2k−1, t2k−1)W (i−2k+1, t−2k+1) and

ŵ2(i, t) =
2m1+2m2∏

k=2m1+1

W (i2k+1, t2k+1)W (i−2k+1, t−2k+1).
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Now, given partitionsπ ∈ P(±2m) andα ∈ P2(2m) and a function j : [±2m] → [N ]
satisfying ker (j) = π , we define C2 [π, α] by

∑

i:[±4m]→[N ]
ker(i)=α̂�πodd

ĥ(i ◦ σ̂ )E [ŵ(i)]E [̂x(i)]

−
∑

i:[±4m]→[N ]
ker(i)=α̂�πodd

1 �πodd
2

ĥ(i ◦ σ̂ )E [ŵ1(i)]E [ŵ2(i)]E [̂x1(i)]E [̂x2(i)]

= NmC2 [π, α] (5.18)

where πodd
1 and πodd

2 denote the restrictions of πodd to the sets [±4m1] and [±(4m1 +
4m2)] \ [±4m1], respectively, α̂ is the partition given by α̂ = {{−2k, 2k,−2l, 2l} |
{k, l} ∈ α}, and σ̂ ∈ Sym(±4m) is the permutation with cycle decomposition

σ̂ =(−1, 1,−2, 2, . . . ,−4m1, 4m1)

(−4m1 − 1, 4m1 + 1,−4m2 − 2, . . . , 4m1 + 4m2).

Proposition 20 Let π be an even partition in P(±2m). Suppose U∗
N ,i1

UN ,i2
=

W ∗H∗XHW/N. If c2 [π ] is given by (5.2) and C2 [π, α] is given by (5.18) for every
pairing partition α ∈ P2(2m), then

N 2mc2 [π ] =
⎛

⎝
∑

α∈P2(2m)

C2 [π, α]

⎞

⎠+ O
(
Nm−1

)
(5.19)

Proof Fix a function j : [±2m] → [N ] satisfying ker (j) = π and let t be as in (5.17).
The ( j−k, jk)-entry of U∗

N ,i1
UN ,i2

is then given by the sum

N∑

i−2k+1,i2k+1,i−2k ,i2k=1

W ∗(t−2k+1, i−2k+1)H
∗(i−2k+1, i−2k)X(i−2k, i2k)

H (i2k, i2k−1)W (i2k−1, t2k−1),

and hence, by Equation (5.2) and the linearity of the covariance, we get

N 2mc2 [π ] =
∑

i:[±4m]→[N ]
ĝ(i) · cov[ŵ1(i, t ◦ σ̃ ) · x̂1(i),w2(i, t ◦ σ̃ ) · x̂2(i)

]
(5.20)

where ĝ(i), ŵ1(i, t), ŵ2(i, t), x̂1(i), and x̂2(i) are defined as above and σ̃ ∈ Sym(±4m)

is the permutation with cycle decomposition

σ̃ =(−1, 1,−3, 3, . . . ,−4m1 + 1, 4m1 − 1)
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(−4m1 − 1, 4m1 + 1, . . . , 4m1 + 4m2 − 1).

Note that for every function i : [±4m] → [N ] we have

ĥ(i ◦ σ̂ ) = ĝ(i ◦ σ̃ ), ŵk(i, t) = ŵk(i ◦ σ̃ , t ◦ σ̃ ), and x̂k(i) = x̂k(i ◦ σ̃ )

for k = 1, 2, so we get

N 2mc2 [π ] =
∑

i:[±4m]→[N ]
ĥ(i ◦ σ̂ ) · cov [ŵ1(i, t) · x̂1(i),w2(i, t) · x̂2(i)] .

Now, suppose θ = ker (i) for a function i : [±4m] → [N ]. Since πodd = ker (t),
from (2.6) we have that

E [ŵ1(i, t)ŵ2(i, t)] = 0 and E [ŵ1(i, t)]E [ŵ2(i, t)] = 0

provided θodd �= πodd and θodd � (π1�π2)
odd = πodd

1 �πodd
2 , respectively; moreover,

(2.5) implies that

E [̂x1(i)̂x2(i)] = E [̂x1(i)]E [̂x2(i)] = 0

if θeven is not an even partition, θeven has a block of the form {2k,−2k}, or 2k �θ −2k
for some k ∈ [2m]. Thus, we obtain

N 2mc2 [π ] =
∑

θ∈P̃π (±4m)

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )E [ŵ1(i, t)ŵ2(i, t)]E [̂x1(i)̂x2(i)]

−
∑

θ∈P̃π1�π2 (±4m)

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )E [ŵ1(i, t)]E [ŵ2(i, t)]

E [̂x1(i)]E [̂x2(i)]

where P̃β(±4m) denotes the set of all partitions θ ∈ P(±4m) such that θodd ≥ βodd

and for every integer k ∈ [2m] there exists l ∈ [2m]\{k} such that 2k ∼θ −2k ∼θ

−2 l ∼θ 2 l.
Now, letting P̂β(±4m) denote the set of partitions θ ∈ P̃β(±4m) so that θ =

θeven � θodd, θodd = βodd, and every block of θeven is of the form {2k,−2k, 2l,−2l}
with k, l ∈ [2m] and k �= l, note the mapping

α �→ α̂ � βodd

with α̂ = {{2k,−2k, 2 l,−2 l} | {k, l} ∈ α} gives a bijection between the set of pairing
partitions P2(2m) and the set P̂β(±4m) for any partition β ∈ P(±2m). Thus, to get
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(5.19), it only remains to show that

N 2mc2 [π ] =
∑

θ∈P̂π (±4m)

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )E [ŵ(i, t)]E [̂x(i)]

−
∑

θ∈P̂π1�π2 (±4m)

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )E [ŵ1(i, t)]E [ŵ2(i, t)]

E [̂x1(i)]E [̂x2(i)] + O
(
Nm−1

)
.

Suppose θ ∈ P̃π1�π2(±4m). Then, since θodd ≥ (π1 �π2)
odd = πodd

1 �πodd
2 and each

block of θeven has at least 4 elements, we get the inequality

#(θ) ≤ #(θodd) + #(θeven) ≤ #(π1) + #(π2) + m

with equality only if θ = θeven � θodd, θodd = πodd
1 �πodd

2 , and each block of θeven has
exactly 4 elements, i.e., θ ∈ P̂π1�π2(±4m); moreover, (2.5) and (2.6) imply that

∣∣
∣∣
∣∣
∣∣

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )E [ŵ1(i, t)]E [ŵ2(i, t)]E [̂x1(i)]E [̂x2(i)]

∣∣
∣∣
∣∣
∣∣

≤ (N − #(π1))!
N ! · (N − #(π2))!

N ! ·

∣∣
∣∣
∣∣
∣∣

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )

∣∣
∣∣
∣∣
∣∣

= O
(
N−#(π1)−#(π2)+#(θ)

)
.

Hence, if θ ∈ P̃π1�π2(±4m)\P̂π1�π2(±4m), we have

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )E [ŵ1(i, t)]E [ŵ2(i, t)]E [̂x1(i)]E [̂x2(i)] = O
(
Nm−1

)
.

Similar arguments show that #(θ) ≤ m + #(π) for every partition θ ∈ P̃π(±4m) with
equality only if θ ∈ P̂π (±4m), and hence, we get

∑

i:[±4m]→[N ]
ker(i)=θ

ĥ(i ◦ σ̂ )E [ŵ(i, t)]E [̂x(i)] = O
(
Nm−1

)

for any θ ∈ P̃π(±4m)\P̂π (±4m). ��
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Proposition 21 Suppose π ∈ P(±2m) and α ∈ P2(2m) and let α1 and α2 denote the
restrictions of α to the sets [2m1] and [2m1 + 2m2]\[2m1], respectively. If C2[π, α]
is given by (5.18), then

C2[π, α] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + O
(
N−1

)
if there is a symmetric pairing η ∈ P(±4m)

satisfying (1) from Proposition 13 and such that η ≤ α̂ � πodd,

1 + O
(
N−1

)
if α �= α1 � α2 and there is a symmetric pairing
η ∈ P(±4m) satisfying(3) from Proposition 13
with k and l even and such that η ≤ α̂ � πodd,

O(N− 1
2 ) otherwise.

Proof Note that if the polynomial pσ̂−1◦(̂α�πodd) is nonzero, then C2[π, α] =
O(N−1/2). Indeed, if pσ̂−1◦(̂α�πodd) is a nonzero polynomial, so is pσ̂−1◦(̂α�πodd

1 �πodd
2 )

by Proposition 10, and thus, Corollary 8 implies there is a constant C independent
from N such that

∣∣∣
∣∣∣∣∣∣

∑

i:[±4m]→[N ]
ker(i)=σ̂−1◦(̂α�βodd)

ĥ(i)

∣∣∣
∣∣∣∣∣∣

=

∣∣∣
∣∣∣∣∣∣

∑

i:[±4m]→[N ]
ker(i)=α̂�βodd

ĥ(i ◦ σ̂ )

∣∣∣
∣∣∣∣∣∣

≤ CNm+#(β)− 1
2

for β = π and β = π1 � π2. But then, we get that C2[π, α] = O(N−1/2) since from
(2.5), (2.6), and (5.18) we have

|C2[π, α]| ≤ C · (N − #(π))!
N ! · N #(π)− 1

2

+ C · (N − #(π1))!
N ! · (N − #(π2))!

N ! · N #(π1)+#(π2)− 1
2 .

Assume pσ̂−1◦(̂α�πodd) is the zero polynomial. Then, by Proposition 10, there is a
symmetric pairing partition η ≤ α̂�πodd such that pσ̂−1◦η is also the zero polynomial,
and hence, the partition η must satisfy one of the conditions (1)-(6) from Proposition
13. However, we have η = ηodd�ηeven, since η ≤ α̂�πodd, and neither 2m1 or 2m2 is
odd, so conditions (2) and (4)-(6) cannot hold. Now, note that if pσ̂−1◦(̂α�βodd) is zero
polynomial for some partition β ∈ P(±2m), then

∑

i:[±4m]→[N ]
ker(i)=α̂�βodd

ĥ(i ◦ σ̂ ) = N !
(N − #(̂α � βodd) + 1)! = N !

(N − m − #(β) + 1)!

since we would have ĥ(i ◦ σ̂ ) = 1 for any function i : [±4m] → [N ] satisfying
ker (i) = α̂ � βodd. Hence, if α1, α2, π1, and π2 are all even partitions and the
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polynomial pσ−1◦α̂�πodd
1 �πodd

2
is zero, from (2.5), (2.6), and (5.18), we obtain

(N − #(π))!
N ! ·

∑

i:[±4m]→[N ]
ker(i)=α̂�πodd

ĥ(i ◦ σ̂ ) − (N − #(π1))!
N ! ·

(N − #(π2))!
N ! ·

∑

i:[±4m]→[N ]
ker(i)=α̂�πodd

1 �πodd
2

ĥ(i ◦ σ̂ )

= NmC2[π, α] = O
(
Nm−1

)
(5.21)

On the other hand, if either α1 or α2 is not an even partition, from (2.5) and (5.18), we
get

C2[π, α] = 1

Nm
· (N − #(π))!

N ! ·
∑

i:[±4m]→[N ]
ker(i)=α̂�πodd

ĥ(i ◦ σ̂ ) = 1 + O
(
N−1

)
. (5.22)

Suppose η satisfies (3) from Proposition 13 and let 1 ≤ k ≤ 4m1 and 4m1 + 1 ≤
l ≤ 4m1 + 4m2 such that η = {{̂σ t1(−k), σ̂−t1(k)}, {̂σ t2(−l), σ̂−t2(l)} | t2, t2 ≥ 0

}
.

We need to consider three cases: k and l are both odd, k + l is odd, and k and l
are both even. First, if k and l are both odd, then pσ−1◦α̂�πodd

1 �πodd
2

is also the zero
polynomial, π1 and π2 are both even partitions, and α = α1 � α2, so (5.21) holds.
Second, if k + l is odd, then α = α1 � α2 and π = π1 � π2, but then (5.21) holds
too. Third, if k and l are both even, then π = π1 � π2 and either α = α1 � α2 or
α �= α1 � α2. However, if α = α1 � α2, we already know that C2[π, α] = O(N−1)

from (5.21), and if α �= α1 � α2, then α1 and α2 are not even partitions, so (5.22)
holds. Finally, if η satisfies (1) from Proposition 13, we must have α �= α1 � α2, so
we obtain C2[π, α] = 1 + O

(
N−1

)
. ��

Proof of (3) from Proposition 17 Fix an even partition π ∈ P(±2m) such that π ≤ θ

for some partition θ ∈ Pχχ (±2m) and let C2[π, α] be given by (5.18) for each pairing
partition α ∈ P2(2m). By Proposition 21, we have that

∑

α∈P2(2m)

C2 [π, α] = |Eπ | + |Fπ | − |Eπ ∩ Fπ | + O(N−1/2)

where Eπ and Fπ are the subsets of P2(2m) given by

Eπ =
{
α ∈ P2(2m)

∣∣∣
∣
η ≤ α̂ � πodd for some symmetric pairing η ∈ P(±4m)

satisfying (1) from Proposition 13

}

and

Fπ =
{
α ∈ P2(2m)

∣∣
∣∣

α �= α1 � α2 and η ≤ α̂ � πodd for some symmetric pairing
η ∈ P(±4m) satisfying (3) from Proposition 13 with k and l even

}
.
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Thus, by Proposition 20, we only need to show that Eπ �= ∅ implies |Eπ | = 1, Fπ �= ∅
implies |Fπ | = 2, and Eπ ∩ Fπ is empty.

Let α and β be pairing partitions in P2(2m) and suppose there are symmetric
pairings ηα, ηβ ∈ P(±4m) satisfying (1) from Proposition 13, ηα ≤ α̂ � πodd, and
ηβ ≤ β̂ � πodd. Then, there are integers 2m1 + 1 ≤ lα, lβ ≤ 2m1 + 2m2 so that

σ̂−t (2lα − 1) ∼ηα σ̂ t (−1) ∼ηβ σ̂−t (2lβ − 1) ∀t ≥ 0

where σ̂ is the permutation given by

σ̂ = (−1, 1,−2, 2, . . . ,−4m1, 4m1)

(−4m1 − 1, 4m1 + 1,−4m1 − 2, . . . ,−4m1 − 4m2, 4m1 + 4m2).

But then, we must have

σ̂−t (2lα − 1) ∼α̂�πodd σ̂ t (−1) ∼β̂�πodd σ̂−t (2lβ − 1) ∀t ≥ 0 (5.23)

since ηα ≤ α̂ � πodd and ηβ ≤ β̂ � πodd, and thus, we get that

σ−t (lα) ∼π σ t (−1) ∼π σ−t (lβ) ∀t ≥ 0

where σ is the permutation given by

σ = (−1, 1,−2, 2, . . . ,−2m1, 2m1)

(−2m1 − 1, 2m1 + 1,−2m1 − 2, . . . ,−2m1 − 2m2, 2m1 + 2m2).

In particular, for t = 0, we obtain lα ∼π −1 ∼π lβ , and thus, we have lα = lβ since
π is an even partition with only blocks of the form {−k,+k,−l, l} and {+k,−l}.
Therefore, it follows from (5.23) that α̂ = β̂, or, equivalently, α = β. This shows that
Eπ �= ∅ implies |Eπ | = 1.

Suppose now there are symmetric pairings ηα, ηβ ∈ P(±4m) satisfying (3) from
Proposition 13 with k and l even, ηα ≤ α̂ � πodd, and ηβ ≤ β̂ � πodd. Then, there
exist integers 1 ≤ kα ≤ kβ ≤ 2m1 so that

σ̂ t (−2kα) ∼ηα σ̂−t (2kα) and σ̂ t (−2kβ) ∼ηβ σ̂−t (2kβ) ∀t ≥ 0,

and hence, we get

σ̂ t (−2kα) ∼α̂�πodd σ̂−t (2kα) and σ̂ t (−2kβ) ∼β̂�πodd σ̂−t (2kβ) ∀t ≥ 0 (5.24)

since ηα ≤ α̂ � πodd and ηβ ≤ β̂ � πodd; in particular, we must have

σ̂ 4t (2kα) ∼α̂ σ̂−4t (−2kα) and σ̂ 4t (2kβ) ∼β̂ σ̂−4t (−2kβ) ∀t ≥ 0.
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Now, sinceα andβ are pairingpartitions of [2m1+2m2], α̂ = {{+2k,−2k,+2 l,−2 l} |
{k, l} ∈ α}, and β̂ = {{+2k,−2k,+2 l,−2 l} | {k, l} ∈ β}, we get

σ 2t (kα) ∼α σ−2t (kα) and σ 2t (kβ) ∼β σ−2t (kβ) ∀t ≥ 0,

where σ is the permutation defined above; hence, we obtain

α1 = {{kα}, {kα + 1, kα − 1}, . . . , {kα + m1 − 1, kα − m1 + 1}, {kα + m1}}

and

β1 = {{kβ}, {kβ + 1, kβ − 1}, . . . , {kβ + m1 − 1, kβ − m1 + 1}, {kβ + m1}}

where α1 and β1 denote the restrictions of α and β, respectively, to the set [±2m1].
Let us show that α1 = β1. From (5.24), we also have that

σ̂ 4t (−2kα − 1) ∼πodd σ̂−4t (2kα − 1), σ̂ 4t (2kα + 1) ∼πodd σ̂−4t (−2kα + 1),

σ̂ 4t (−2kβ − 1) ∼πodd σ̂−4t (2kβ − 1), and σ̂ 4t (2kβ + 1) ∼πodd σ̂−4t (−2kβ + 1)

for every integer t ≥ 0, and thus, since πodd = {{2k − sign(k) | k ∈ B} | B ∈ π}},
we obtain

σ t+1(kα) = σ t (−kα − 1) ∼π σ−t (kα) and

σ t+1(kβ) = σ t (−kβ − 1) ∼π σ−t (kβ) ∀t ≥ 0.

Let t = kβ − kα and note that

σ 2t (kα) ∼π σ−2t+1(kα) ∼π σ 2t+1(kα)

since

kβ = σ 2t (kα) ∼π σ−2t+1(kα) and σ 2t+1(kα) = σ (kβ) ∼π kβ;

moreover, since σ 2t (kα) > 0, σ−2t+1(kα), σ 2t+1(kα) < 0, and π is a partition with
only blocks of the form {−k,+k,−l, l} and {+k,−l} with k, l > 0, we must have

σ 2t (kα) = −σ−2t+1(kα), σ 2t (kα) = −σ 2t+1(kα), or σ−2t+1(kα) = σ 2t+1(kα),

or, equivalently,

σ 4t−2(kα) = kα, σ−2(kα) = kα, or σ−4t (kα) = kα.

But the equality σ s(kα) = kα holds if only if s ≡ 0 mod 4m1, so only σ−4t (kα) = kα

can hold, and thus, we get kα = kβ or kβ = kα +m1 since 0 ≤ t = kβ −kα ≤ 2m1−1.

123



2036 Journal of Theoretical Probability (2023) 36:1972–2039

Therefore, α1 = β1 and there is an integer 1 ≤ k = kα ≤ 2m1 so that

α1 = {{k}, {k + 1, k − 1}, . . . , {k + m1 − 1, k − m1 + 1}, {k + m1}} = β1

= {{σ 2t (k), σ−2t (k)} | 0 ≤ t ≤ m1}.

Similarly, letting α2 and β2 denote the restrictions of α and β, respectively, to the set
[±(2m1 + 2m2)]\[±2m1], we have α2 = β2 and there is an integer 2m1 + 1 ≤ l ≤
2m1 + 2m2 so that

α2 = {{l}, {l + 1, l − 1}, . . . , {l + m2 − 1, l − m2 + 1}, {l + m2}} = β2

= {{σ 2t (l), σ−2t (l)} | 0 ≤ t ≤ m2}.

This shows that |Fπ | = 2 provided Fπ �= ∅ since γ ∈ Fπ implies

γ = {{k, l}, {k + m1, l + m2}} ∪ α̃ or γ = {{k, l + m2}, {k + m1, l}} ∪ α̃

where α̃ = {{σ 2t (k), σ−2t (k)} | 1 ≤ t ≤ m1 − 1} ∪ {{σ 2t (l), σ−2t (l)} | 1 ≤ t ≤
m2 − 1}.

Finally, Eπ ∩ Fπ is empty since Eπ �= ∅ implies π �= π1 � π2, and, on the other
hand, Fπ �= ∅ implies π = π1 � π2. ��

6 Concluding Remarks

(1) The exponent −1/2 in the remainder terms O(N−1/2) essentially comes from the
−1/2 in Proposition 7 and can be upgraded to −1 as follows. One first shows
that for all partitions π = {B1, . . . , Br } appearing in (5.3) and having at least one
through block—i.e., a block intersecting both [±2m1] and [±2m]\[±2m1]- the
polynomial pσ−1◦π (x1, . . . , xr ) = ∑

1≤t≤s≤r at,sxtxs satisfies exactly one of the
following:

(a) pσ−1◦π is the zero polynomial, or
(b) there exists t ∈ [r ] so that at,t = 0 and at,s �= 0 or as,t �= 0 for some s ∈ [r ].
For polynomials pσ−1◦π satisfying (b) above, the last part of Proposition 7’s proof
shows that

∣∣∣
∣∣∣

N−1∑

j1, j2,..., jr=0

e− 2π
√−1
N p

σ−1◦π
( j1, j2,..., jr )

∣∣∣
∣∣∣
≤ Cp

σ−1◦π
Nr−1 (6.1)

for some constantCp
σ−1◦π

independent of N . Then, carefully carrying the−1 from
(6.1) through the computations of C2[π ] and C2[π, α], one can replace −1/2 by
−1 in the remainder terms O(N−1/2), first in Proposition 17 and Lemma 18, and
then in Theorems 1 and 2.
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(2) The random matrix ensemble {WN ,1, HNWN ,2}∞N=1 satisfies the hypothesis in
Lemma 3, and hence, Theorem 2 is proved once we show (1.14) holds. To that
end, we first define appropriate versions of the functions w(i, j), w1(i, j), w2(i, j)
and show that (5.10) still holds in this case. Then, following similar steps to
those in the proof of Proposition 17 and Lemma 18 and letting U∗

N ,i1
UN ,i2

=
1√
N
W ∗

N ,1HNWN ,2, we conclude

∑

π∈Peven(±2m)
π≤θ

Nmc2 [π ]μ(π, θ)

=
⎧
⎨

⎩

1 + O
(
N−1/2

)
if θ is a pairing partition satisfying (1)
from Proposition 13,

O
(
N−1/2

)
otherwise.

(3) One can replace the discrete Fourier transform HN in the unitary random matrix
ensemble {WN , HNWN/

√
N , XN HNWN/

√
N }∞N=1 by any Hadamardmatrix H ′

N
and still get an asymptotically liberating ensemble, see [1]. Moreover, key equa-
tions in this paper involving HN still hold when we replace HN by a general
Hadamard matrix H ′

N , for instance, (3.8), (3.10), and (3.12). Thus, to determine
the corresponding induced fluctuations moments, one needs to compute graph
sums of H ′

N and obtain similar results to those from Sect. 3.2. However, the results
for graph sums of HN were possible thanks to the reciprocity theorem for gener-
alized Gauss sums and it is not immediate what tools could be used for a general
H ′
N .

(4) Although Proposition 15 and Corollary 16 give equivalent conditions only for
point-wise uniform boundedness, similar statements and proofs provide us with
corresponding conditions for the point-wise convergence of a sequence of multi-
linear functionals. These conditions together with bounds for graph sums can be
exploited to study higher-order moments. In particular, the relations (4.4) and (5.3)
can be used to determine the higher-order moments induced by Haar-unitary and
Haar-orthogonal via the Weingarten Calculus from [4] and [5].
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