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Abstract

Independent Haar-unitary random matrices and independent Haar-orthogonal random
matrices are known to be asymptotically liberating ensembles, and they give rise
to asymptotic free independence when used for conjugation of constant matrices.
G. Anderson and B. Farrel showed that a certain family of discrete random unitary
matrices can actually be used to the same end. In this paper, we investigate fluctuation
moments and higher-order moments induced on constant matrices by conjugation with
asymptotically liberating ensembles. We show for the first time that the fluctuation
moments associated with second-order free independence can be obtained from con-
jugation with an ensemble consisting of signed permutation matrices and the discrete
Fourier transform matrix. We also determine fluctuation moments induced by various
related ensembles where we do not get known expressions but others related to traffic
free independence.

Keywords Free probability - Random matrices - Fluctuation moments - Discrete
Fourier transform matrix

Mathematics Subject Classification (2020) 46154 - 60B20 - 15B52

1 Introduction
1.1 Background

Random matrices are matrix-valued random variables that were first investigated in
mathematical statistics [29] and then in nuclear physics [28]. Over the years, its study

B Josue Vazquez-Becerra
13jdvbl @queensu.ca

1 Department of Mathematics and Statistics, Queen’s University, Jeffery Hall, Kingston, ON K7L 3N6,
Canada

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-023-01246-9&domain=pdf
http://orcid.org/0000-0001-7409-6867

Journal of Theoretical Probability (2023) 36:1972-2039 1973

has evolved into a theory with applications to pure and applied sciences such as
numerical analysis [6], analytic number theory [10], and wireless communications
[24].

One of the main topics in random matrix theory is the study of limiting, or asymp-
totic, properties of random matrix ensembles. The term random matrix ensemble is
used in the literature to refer to a sequence of random matrices { X }%;_,, or a sequence
of families of random matrices {{Xy ;}icr }]"V":l, where the considered random matri-
ces increase in size with respect to N. Their limiting properties are those arising
from letting N go to infinity. Joint eigenvalue distributions, eigenvalues spacing, con-
centration inequalities, large deviation principles, maximal eigenvalues, and central
limit theorems are some examples of limiting properties, for an introduction on these
subjects one can consult [2].

Now, introduced by D. Voiculescu in his research on von Neumann algebras in [25],
free probability theory has played a key role in the study of random matrices when
multiple ensembles need to be considered. A main notion from free probability is that
of asymptotic free independence.

Definition 1 Let / be a non-empty set. Suppose {X v ;}37_; is arandom matrix ensem-
bleforeachi € I whereeach Xy ; isa N-by-N random matrix. We say that {X x ; }1"\,021
with i € I are asymptotically freely independent if the following two conditions
hold:

(AF.1) for each index i € [ and every integer m > 1 the limit

lim E [tr (X',Gl)] ,

N—o0

where tr () denotes the normalized trace %Tr (), exists and

(AE.2) for all integers m > 1, all indexes iy, i2,...,i,; € [ satisfying i; #
i2,i0 # 03, ...y im—2 # Im—1,Im—1 7 im, and i, # i1 and all polynomi-
als py, p2, - - - , pm in the algebra C[x], we have

Jim B[ (Vs V)] =0

where Yy r = pk (XN,ik) —E [tr (pk (XN,ik))] Iy.

The first connection between free probability and random matrices was established
by D. Voiculescu when he showed in [26] that independent Gaussian unitary ensembles
converge to free semicircular random variables, a result which generalizes Wigner’s
semicircular law and entails the asymptotic free independence of independent Gaus-
sian unitary ensembles. The list of random matrix ensembles exhibiting asymptotic
free independence has been extended since then, and it now includes: independent
Wishart ensembles, independent Gaussian orthogonal ensembles, independent Haar-
unitary distributed ensembles, independent Haar-orthogonal distributed ensembles,
among others. The monograph [27] and the book [20] are standard introductions to
free probability, and the recent monograph [18] is an excellent source presenting mul-
tiples directions in which the relation between free probability and random matrices
has been extended.

@ Springer



1974 Journal of Theoretical Probability (2023) 36:1972-2039

Another result due to D. Voiculescu in [26], and subsequently generalized by other
authors, states that conjugation by independent Haar-unitary distributed random matri-
ces gives rise to asymptotic free independence. More concretely, assume Dy ; is a
self-adjoint N-by-N deterministic matrix for each index i € I and each integer N > 1
and suppose that

sup || Dyill <oo and  lim tr(Df{} ;) exists (1.1)
NeN N—o00 ’

for alli € I and m > 1; the random matrix ensembles {Dl\,’i}?\?:1 with i € I might
or might not be asymptotically freely independent; however, if {Uy ;}ics is a family
of independent N-by-N Haar-unitary distributed random matrices for each N > 1,
then {Uy ; Dy ; U]’f,’ %= withi € I are asymptotically freely independent. The same
conclusion holds if each Uy ; is Haar-orthogonal distributed, see [13].

Aiming to enclose all of those unitary random matrix ensembles that give rise to
asymptotic free independence when used for conjugation, B. Farrell and G. Anderson
introduced in [1] the notion of asymptotically liberating random matrix ensembles.

Definition 2 Suppose Uy ; is an N-by-N unitary random matrix for each index i €
and each integer N > 1. The unitary random matrix ensemble {{U N.i }l.E I }7\/0:1 is

asymptotically liberating if for all indexes iy, i2,...,i, € [ with i{ # iy, i» #
i3, ..., im—1 7 im, and i, # i1 there exists a constant C > 0 depending only on the
indexes iy, i2, ..., i;; such that

E [Tr (UN,ilAN,lU;:l,il UN,izAN,zU;:l,iz T UN,imAN,mU;t’,i,,,)]
< ClAval [Anz] - [Avm]

for all integers N > 1 and all matrices Ay 1, An2, ..., Ay.m € Maty(C) each of
trace zero.

It follows immediately from the above definition that asymptotically liberating
ensembles gives rise to asymptotic free independence when used for conjugation.
Indeed, suppose {{Un i }ier}3_; is an asymptotically liberating ensemble and assume
{DN,i}?VO=1 with i € I satisfy (1.1). Letting Xy ,; = UN’iDN’iU;:,’i, we have (1.1)
implies (AF.1) from Definition 1; moreover, if each Yy ; is as in (AF.2) from Definition
1, then

YNiYn2 - YNm = (UN,i1 AN,IUITI,i] )(UN,izAN,zU;:/,iz) T (UN,imAN,mU;},i,,,)

where Ay ; denotes the matrix of trace zero pi(D )y ik) — tr(pr(Dy ik))IN’ but (1.1)

also implies that supy HA Nk ” < 00, and hence, (AF.2) holds. As it was intended,

independent Haar-unitary random matrix ensembles and independent Haar-orthogonal
random matrix ensembles are among those unitary random matrix ensembles shown
to be asymptotically liberating, see Theorem 2.8 in [1] or Lemma 3.
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A key feature of asymptotic free independence is that it provides us with universal
rules to compute limiting mixed moments out of individual ones. A limiting mixed
moment of the ensembles {Xy ;}%_; with i € I is a limit of the form

Jim B[t (X Xy, Xy ,)] (1.2)
where at least two of the indexes iy, i2, . .., i, € I aredistinctand none of them depend

on N. For instance, if {Xy ;}3_; withi € I are asymptotically free independent and
i1, 1y € I are distinct, one can show that

llm ]E [tr (XN l]XN IZXN llXIZV,i2>] - aéll)a4(112)a§lz) + aéZZ)agll) (ll)

N—o00

agil)a‘(‘iz)aéil)aéiz)

where oz ) denotes Iimpy_s 00 E[tr(Xm )] and is called the m-th limiting individual
moment of {Xy;}5 N—1- The relation above and any other derived from asymptotic
free independence to compute mixed moments, is called universal since it does not
depend on any particular choice of i; and i and it only requires {Xy ; }37_, and
{XnN.i,}}—, to be asymptotically freely independent.

At this point, one might wonder if there are universal rules for computing limiting
mixed moments of higher order out of individual ones. A limiting moment of n-th
order of the ensembles {Xy ;}37_, withi € [ is defined to be a limit of the form

lim N" ¢, [Tr(Xn,1). Tr(Xn2). ... Tr(Xy )] (1.3)
N—o00
where ¢,[-, ..., -] denotes the n-th classical cumulant and each X N .k 1s of the form
XNk = XN,ifk)XN,iék) Xy i)
for some inte > 1 and d 0 ) ; (0 i
ger my > 1 and someindexesi, ',iy ,...,im, € I notdependingonN.

The choice of the normalization factor N"~ ? appearing in (1.3) is due to what has been
observed for the behavior of (1.3) when each X ; is a Gaussian unitary ensemble.
Since the limiting moment (1.3) is just a generalization of (1.2), we call it mixed if
at least two of the indexes 1(1) R ,(,,11), 1(2), R i,(nzz), R 1("), . z,(,ﬁl) are distinct,
and individual, otherwise.

The most studied moments of higher order are moments of second order, also known
as fluctuation moments. A fluctuation moment of the ensembles {X y ;}37_; withi € [
is then a limit of the form

lim Cov[Tr(Xn i XNy -+ XN.i, )s TOXN i 1 XN iy 2 XN iy )] (14)
N—o0

for someintegersmy, my > landindexesii, iz, ..., Imy,s imy+1, imy425 - -« 5 imy4my €
1. A common practice in free probability theory to determine combinatorially (1.3), or
(1.4), is that of calculating limiting moments of products of cyclically alternating and
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centered random matrices, as in (AF.2) from Definition 1. For fluctuation moments,
this means one must consider limits of the form

lim Cov[Tr(Yn YNz YNm) - Tr(ZN1ZN2  ZNomy)]
N—o0
where Yy i and Zy ; are given by

Yvi =pk (Xn.ir) —E[tr (px (Xn.i,))] Iv and

Znr = (Xn.ji) —Eftr (@ (Xn.5))] In (1.5)
for all polynomials p1, p2, . .., Pm;> 91, 92, - - - » Qmy, € Clx]and allindexesiy, iz, ...,
im1 s 1y J2s e jm2 € I satisfying the condition

i by # 03y 1 F sy 0L E P # Tyt sy # 1
(1.6)

Analyzing the fluctuation moments of complex Gaussian and complex Wishart ran-
dom matrix ensembles, J. Mingo and R. Speicher found a relation between individual
and mixed moments of first and second order and introduced in [16] the notion of
asymptotic free independence of second order.

Definition 3 We say that the random matrix ensembles {Xy ;}%_, with i € I are
asymptotically freely independent of second order if they are asymptotically freely
independent and the following three conditions are satisfied:

(ASOF.1) for eachindex i € I and all integers m, n > 1 the limit

zvli—r>noo Cov [Tr(Xy ). Tr(X} )]

exists,

(ASOF.2) for all integers m1, my > 1, all indexes iy, iz, ...,iml,jl, J2, ...,jm2 el
satisfying (1.6), and all polynomials py, p2, ..., Pm;> 91,92, - - - » Qm, in the
algebra C[x], if we take

YN =YNi1YN2 - YNm and Zy =Zn1ZNnpoZNm,

with Yy x and Zy; given by (1.5) for 1 <k <mjand 1 <[ < ma, we
have

my mp
Jlim_Cov [Tr(Yy), TH(Z)] = Sy m, /&Enw;ﬂE[tr(YN,kZN,l_k)] 1.7)

where [ — k is taken modulo m,, and
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(ASOF.3) foreveryintegern > 3, all polynomials py, p2, . .., p, inthe algebra of non-
commutative polynomials C (x; | i € I),letting Yy x = pr ({Xn,i}ier), we
have

lim ¢, [Tr (Yn1).Tr (Yn2),....Tr (Yn,)] =0

N—o0

Similar to asymptotic free independence, asymptotic free independence of second
order provides us with universal rules, via the conditions (ASOF.1 ) and (ASOF.2) above,
to calculate limiting mixed fluctuation moments out of individual ones. Moreover,
independent Gaussian unitary ensembles are asymptotically freely independent of
second order and conjugation by independent Haar-unitary random matrix ensembles
leads to asymptotic free independence of second order, see [16] and [15], respectively.

However, in contrast to moments of first order, fluctuation moments induced by
Haar-unitary random matrix ensembles and those induced by Haar-orthogonal random
matrix ensembles differ. Investigating fluctuation moments of independent Gaussian
orthogonal ensembles, E. Redelmeier proved in [21] that if each {Xy ;};c; forms a
family of independent Gaussian orthogonal ensembles for every N > 1, then the
ensembles {XN,i}%zl with i € [ satisfy (ASOF.1) and (ASOF.3) from Definition 3
but (ASOF.2) has to be replaced by the following:

(ASOF.2’) for all integers my, my > 1, all indexes iy, i2, ..., iml s J1s J2s e ey ij S
I satisfying (1.6), and all polynomials p1,p2, ..., Pm,» 91,925 - - - » Qmy i1
the algebra C[x], if we take

Yn=Yn1Ynp2 - YNm and Zy =ZN1ZN2 - ZNm,

with Yy  and Zy ; given by (1.5) for | <k <mjand 1 <1 < my, we
then have

mi my
Jim _Cov [Tr(Yn), Tr(Z)] = by my Jim l;‘ le Eltr(Yy « Zn.1-1)]

my
+]1 E[tr(YN,kZIT\;,l+k)]> (1.8)

k=1

where | — k and | + k are taken modulo m>.

Asymptotically freely independent ensembles satisfying (ASOF.1), (ASOF.2’), and
(ASOF.3) are called asymptotically freely independent of second order in the real sense.
Generalizing the findings of E. Redelmeier in [21], it was shown by J. Mingo and M.
Popa in [13] that independent orthogonally invariant ensembles are asymptotically
freely independent of second order in the real sense, and therefore, the fluctuation
moments induced by Haar-orthogonal ensembles are not described by (1.7) but (1.8)
instead.
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1.2 Objectives and Main Results

The aim of this paper is to investigate the behavior of the fluctuation moments,
and higher-order moments, resulting from conjugation by asymptotically liberating
ensembles. Since independent Haar-unitary and independent Haar-orthogonal are both
asymptotically liberating but the fluctuation moments each of them induces are dis-
tinct, we already know that the induced fluctuation moments depend on the specific
liberating ensemble used for conjugation. However, it might well be the case that
the relations in (1.7) and (1.8) cover all possible behaviors for fluctuation moments
induced by liberating ensembles; our first result shows that this is actually not the
case, adding even more evidence that fluctuation moments are more intricate than its
first-order counterpart.

It is illustrative and good for comparison to restate what the relations in (1.7)
and in (1.8) yield when Haar-unitary ensembles and Haar-orthogonal ensembles
are used of conjugation. So, let us assume Xy | = U]\,’IDN’IU]*\‘,,l and Xyo =
UN,ZDN,2U;\F/,2 for each integer N > 1 where each sequence {DI\,J}?\,":1 satisfies
(1.1)and {Uy 1, U N,2}§>VO:1 is an asymptotically liberating ensemble. Note that if the
random matrices Yy and Zy are as in (ASOF.2) from Definition 3, then we can write

YN = (UN,ilAN,lU;t/,il)(UN,izAN,ZU;\},iz) e (UN,izml AN,Zml U]T/,iz,,,]) (19)
and

— * * *
Zy = (Uy,;, By Uy, ;) Uy, j, By 2UR ) (U/v,jz,,,2 BN,ZszN,jz,,,z) (1.10)
where A, and B, ; are deterministic matrices of trace zero given by

Ank =pi (Dn,ir) —tr (pk (Dn,i)) In  and By =q; (Dy,j) —tr (@ (Dn.j;)) In
(1.11)

for 1 <k <2mjpand 1 <[ < 2m,. For simplicity, and without loss of generality, let
us assume i1 = ji. Now, if Uy 1 and Uy > are independent Haar-unitary ensembles,
it follows from (AF.2) in Definition 1 and the relation in (1.7) that the covariance
Cov [Tr(Yy), Tr(Zn)] converges to

my 2my

NILIHOO Sy ma Z l—[ tr (Ank BN, 2i—k) (1.12)
I=1 k=1

as N goes to infinity. On the other hand, if Uy, and Uy are independent
Haar-orthogonal ensembles, then (AF.2) and (1.8) imply that Cov [Tr(Yy), Tr(Zy)]
converges to

my  [2my 2my
. T
ngréo(sml,mZE <| [tr(AnaBy i)+ ][]t (ANYkBN’ZH,{)) (1.13)

=1 \k=1 k=1
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Table 1 The rules for Cov [Tr(YN), Tr(ZN)] with Yy and Zpy as in (1.9) and (1.10), respectively, and
Up.1 and Uy > independent and uniformly distributed on the classical compact groups

Conjugation type Value of Cov [Tr(Y N), Tr(Z N)]

Un,1 and Uy 7 independent Z;”:l Hizl tr (AN,k BN,ZZ—k)
Haar-unitary

. 2 2
Un,1 and Uy 5 independent Y70 TR tr (An kB 21-k) + 20m; T2 0 (Ay 1 B 5140
Haar-orthogonal

1 m 2m 1 m—1 2m T
O _tr(Ay B + 12 _tr(Ay B
Uy.y and Uy independent % 215 =1 A i By on0) % 3 2y Ty AN By )
Haar-symplectic 2 1_[k=1 tr(AN,kBN,Zm )

For simplicity, we only display the case m| = m9

as N goes to infinity. Note that (1.1) alone guarantees the existence of each of the
limits above if each matrix Dy ; equals its transpose, regardless of what Uy | and
Un  are.

Another ensemble shown to be asymptotically liberating, see Corollary 3.2
in [1], and a main focus in this paper, is the unitary random matrix ensemble
(Wy, HyWy /N, Xy HyWy/~/N} where Wy is a random N-by-N signed per-
mutation matrix, Xy is a random N-by-N signature matrix independent from
Wy, and Hy is the N-by-N discrete Fourier transform matrix. Our first result
shows that if we take pairs of distinct unitary matrices Uy, and Uy from
{Wy, Hy WN/\/N, XyHy WN/\/N} and use them for conjugation, then the resulting
fluctuation moments vary with each pair and differ from those in (1.12) and in (1.13).

Theorem 1 Let Dy.1 and Dy be N-by-N self-adjoint matrices for each integer
N > 1 so that each {DI\,J.}]OVOZ1 satisfies (1.1).
Suppose Xn,1 = UN’IDN’ZU;\‘,’1 and Xnp = UN,2DN,2U1T/,2 where Uy 1 and

Uy » are distinct matrices from {Wy, Hy WN/\/N, XnHy WN/\/N}.

IfYnand Zy aregivenby Yy = Yn1YNo - YNnomandZy = ZNAZN2 -+ ZN 2m,
where Yy i and Z | are defined as in (1.5) for some polynomials p1, p2, . .., P2my 41,
Q, ..., Qm, € C[x] and some indexes iy, iy, ..., i2m1 s 1y J2y e j2m2 € {1, 2} sat-
isfying (1.6) and i1 = j1, then the following holds:

(1) Uy.1 = Wy and Uy » = HyWy /~/N implies

Cov[Tr(Yy), Tr(Zy)]

my  [/2m 2m
= Smy.my Z (l_[ tr (An kBN 2i-k) + 1_[ tr (AN,kB]Y\;,Zch—l))
=1 \k=1 k=1
+0 (N—%)
(2) Uy.1 =Wy and Uy o = Xy HyWy //N implies

Cov [Tr(Yy), Tr(Zn)]
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mi 2m 2m
= Smy,my Z (H tr (An i Bn2i—k) + H tr (Ank o BN,21+k—1))

=1 \k=1 k=1
10 (N*%)

(3) Un.1 = HyWy/~/N and Uy » = Xy Hy Wy /~/N implies

2my 2my my

Cov[Tr(Yy), Tr(Zwm1 = D Y [ o (Avuk—1AN0-k)
Li=1h=1k=1
my

l_[ tr (BN,12+k2—1BN,lz—kz)
ko=1

2my  [2m 1
+8mim; Z (1_[ tr (AN,kBN,l—k)> +0 (fo)

=1 \k=1

with Ay x and By j defined as in (1.11), 2l —k, 2l +k — 1,11 +k; — 1, [y — k1, and
| — k interpreted modulo 2m, and lo + ky — 1 and Iy + ko interpreted module 2m.

The discovery of second-order behaviors deviating from second-order free inde-
pendence, and second-order free independence in the real sense, is not new. From
a more algebraic setting, the authors of [8] and [9] analyze fluctuation moments of
matrices with entries from a possibly non-commutative unital algebra and obtain dif-
ferent relations from those mentioned above. Additionally, the fluctuation moments
of symplectically invariant random matrices have been fully determined in [22]. In
particular, the relations (1.12) and (1.13) must be replaced by

5 my 2my mi—12my
lim —-=2 (Z Htr(AN,kBN,Zl—k) + Z ntr(AN,kBZY\;,Zch)

N 4
e =1 k=1 =1 k=1

2my
T
-2 1_[ tr(AN,kBN,2m1+k))
k=1

when considering conjugation by independent Haar-symplectic random matrix ensem-
bles. Werecap in Table 1 the fluctuation moments induced by conjugation with matrices
uniformly distributed on classical compact groups and in Table 2 the fluctuation
moments induced by conjugation with the matrices considered in this paper.

Notice (1.1) alone is not enough to guarantee the existence of limiting second-
order behaviors in Theorem 1, in contrast to (1.12) and (1.13). For instance, if
we want to take the limit as N goes to infinity in (3) from Theorem 1, we need
{Dn.1}}_; and {Dy 2}%7_, to have a joint limiting distribution, i.e., we need that the
limit limpy— oo tr(DNyl.1 DN,I.2 S DN’im) exists for all integers m > 1 and all indexes
i1,12,...,im € {1, 2}. This shows we cannot expect a classification for universal prod-
ucts of second order, in the spirit of [19] or [23], encompassing all of the second-order
behaviors exhibited by random matrices.
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Table 2 The rules for Cov [Tr(YN), Tr(ZN)] with Yy and Zy as in (1.9) and (1.10), respectively, when
Up.1 and Uy » are as in the left column

Conjugation type Value of Cov [Tr(YN), Tr(Z N)]
Wy and H%N payi ]‘[i’il (AN kBN 2i-k) + 2y Hﬁ’ﬁl wANKBY 27451
Wy and % Y T (An ke By2i—k) + X0y Ty tr (Ank 0 By 214k—1)
HyWy 04 XnHyWy lezl Hizl tr (AN kBNi—k) +

VN VN i et Ty (AN 1y k=1 AN 1 =) -t (BN 1y +k—1 BN 1, —k)
W1 and % Y Hi’il tr (AN kBN, 21—k)

The first three rules in this table are distinct from the rules in Table 1
We only display the case m| = my for simplicity

It would be desirable to have a master theorem encompassing all three cases in The-
orem 1. However, in our analysis of fluctuation moments, we arrive to combinatorics
that seem already too intricate when we consider each case separately. On this regard,
although we make no explicit use of the theory of traffic free independence of C.
Male, see [11], it is likely that our results will find a nice expression in terms of traffic
algebras. Tools from traffic algebras have been already used in [12] to describe joint
fluctuation moments of Wigner random matrices and deterministic matrices and their
lack of second-order independence. Finally, it is pointed out in [7] that traffic algebras
are closely related to .A-tracial algebras, with both notions generalizing classical and
free independence. We hope to describe the results in this paper in terms of traffic or
A-tracial algebras in a future work.

Despite the fact that no pair of distinct unitary matrices Uy 1 and Uy > from the
ensemble {Wy, HyWy/ VN, X NHyWyN/ VN }1"\,": | leads to asymptotic free inde-
pendence of second order when used for conjugation, it turns out not much more is
needed to achieve this end, at least, partially. More concretely, if Uy, = Wy, and
Uny = HyWn 2/ /N where Wy .1 and Wy » are independent N-by-N uniformly
distributed signed permutation matrices, then the fluctuation moments induced by
{Un.1, Un2}%5_, are the same as if Uy 1 and Uy > were independent Haar-unitary,
i.e., the induced fluctuation moments are described by (1.12). Thus, we can think of
{(Wn.a, HvWy 2/ VN }¥—, as an asymptotically liberating ensemble of second order.

Theorem 2 Let Dy 1 and Dy be N-by-N self-adjoint matrices for each integer
N > 1 so that each {Dl\,’i}‘[’\,":1 satisfies (1.1). Suppose Xy.1 = UN,IDN,zUX/,l and
Xna = Uy ,Dy, Uk, where Uy = Wy, and Uy, = HyWy2/~/'N. Then,
{XN1IR%2, and {Xn2)3_, are asymptotically freely independent and they satisfy
(ASOF.1) and (ASOF.2) from Definition 3. In particular, if Yy, Zyn, ANk, and By |
are given as in the previous theorem, then

mi 2mi
1
Cov [Tr(Yn). Te(ZW)] =8mymy P | [ ] tr (Aw By .2i-4) +0<N‘7) (1.14)

=1 \k=l1
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The main result in [1] gives sufficient conditions on a unitary random matrix ensem-
ble to be asymptotically liberating. Using a different approach than the one of [1], we
have been able to prove that, under the same conditions, a unitary random matrix
ensemble not only is asymptotically liberating but also satisfies a natural generaliza-
tion of the boundedness condition in Definition 2 to cumulants of any order. More
concretely, we have the following lemma.

Lemma3 Let Uy ; be an N-by-N unitary random matrix for each index i € I and
each integer N > 1.

Suppose the unitary random matrix ensemble U = {{Un ;}ic1}y_, satisfies the
following two conditions:

(1) the families of random matrices {U;\‘,’i1 UN,iz}il irel and {W*U;\‘,’i1 UNJZW},-1 nel
are equal in distribution for every N-by-N signed permutation matrix W, and

() for each positive integer m and indexes i1, iy € I with i1 # i> there is a constant
Cp (i, i2) independent from N such that

< Cpl(i1,in)N~'/2

H (U;\},”UN,,‘Z) (J.I, J2)

m

for all integers ji, j» € {1,2,..., N}.

Now, given positive integers my, ma, ..., m,, take m}( = m;ﬁ] +my_ fork =
2,3,...,nwithm)| = 0and consider the permutationy = (1,2, ..., m\+my)(m},+
Lomy+2,...,mh+ma)---(m,+1,...,m),+my).If someindexesiy, iz, ..., im €1
are such that iy # i) fork =1,2,...,m where m = my +m + --- + my, then
there exists a constant C (i1, ia, ..., i) such that for

— . *
YN = (UN,lm/+|Am}(+lUN,im/ %Y iy 12 Amit2UNi, . o)

(UN lm/ +my Am,’(+mk UN iyt +mk)

with Ay, Az, ..., Ay € My (C) each of trace zero, we have
len [Tr (Y1), Tr (Yn2) s T (Yaa)]| < Clrsia, ooy im) 1AL IA2] - ([ Al

The fact that a unitary random matrix ensemble {{Uy ;};c 1}10\,0: | satisfying (I) and
(IT) above is asymptotically liberating can now be seen as a particular case of the
previous lemma. Moreover, if Uy ;, and Uy ;, are independent Haar-unitary (resp.
Haar-orthogonal), then U ;\‘, Uy ;, s also Haar-unitary (resp. Haar-orthogonal), and
hence, U Ny Uy i satisfies (I) and (IT) above. Therefore, independent Haar-unitary
(Haar-orthogonal) random matrix ensembles are asymptotically liberating.

The customary definition of asymptotic free independence for random matrix
ensembles involves the convergence of a sequence of linear functionals on non-
commutative polynomials, see Proposition 14 and the comment right after its proof. In
a similar way, multi-linear functionals on non-commutative polynomials can be used
to analyze the behavior of moments of higher order, allowing us to show that unitary

@ Springer



Journal of Theoretical Probability (2023) 36:1972-2039 1983

random matrix ensembles satisfying (I) and (II) above induce the bounded cumulants
property when used for conjugation.

Theorem 4 Let Dy be a self-adjoint N-by-N deterministic matrix, and let Uy ;
be an N-by-N unitary random matrix for each index i € I and each integer
N > 1. Suppose the unitary random matrix ensemble {{UN,i},'E[}%:l satis-
fies (I) and (1) from the previous lemma and (1.1) holds. Then, the ensemble
{Uy Dy ; U;\“,’i Yier}3—, has the bounded cumulants property; namely, for all poly-
nomials p1, p2, P3, - - - in the algebra of non-commutative polynomials C (x; | i € I)
taking Yn x = pk({UN,iDN,iU;\},i}iEI) we have

sup |¢, [Tr (YNJ) , It (YN’z) R by (YN,,,)] < 00 (1.15)
N

for every integer n > 1.

The term bounded cumulants property is borrowed from [14] where it is used to
prove several results concerning the limiting behavior of unitarily invariant random
matrix ensembles and some other random matrix ensemble with this property.

A few technical comments are worth before we present the organization of the
paper. Bounds of graph sums of square matrices, see [17] or Sect. 3, and the relations
(4.4) and (5.3) are some key components to our results. In particular, (4.4) reveals the
n-th cumulant from Lemma 3 can be written a sum where each term is a product of a
cumulant ¢, [7r] of the random variables (U;{‘,J.1 U N’iz)( J1, j2) and a graph sum of the
deterministic matrices A;. Sharp bounds for graph sums are provided in Theorem 5, so
the behavior and existence of higher-order moments depend largely on the cumulants
¢, [r], at least, in our approach. Estimates of ¢, [7] up to terms of order N —m=1/2 gre
enough for Theorems 1 and 2 and constitute some of our main technical results, see
Proposition 17. The sharpness of our estimates for ¢, [ ]—and, consequently, of the
terms of order N ~!/2 appearing in Theorems 1 and 2—is addressed in the last section.
For higher-order moments with n > 3, a finer description of ¢, [ ] than the one given
here is required. A full description of ¢, [r] for the unitary matrices from Theorems 1
and 2 would mean to write graph sums of the discrete Fourier transform as a power
series in N'1/2, such expression for arbitrary 7 and arbitrary N is unknown to us at
the moment. For Haar-unitary and Haar-orthogonal ensembles, a full description of
¢, [r] as a power series in N~ is already available via the Weingarten Calculus from
[4] and [5], so higher-order moments might be computed using (4.4) in this case.

1.3 Organization of this Paper

The rest of this paper is organized as follows. In Sect.2, we introduce the main
definitions and the main notation for partitions, classical cumulants, matrices, and
non-commutative polynomials; we also establish the distribution of random signed
permutation matrices and random signature matrices. In Sect. 3, we review and prove
multiple results on graph sums of square matrices. Roughly speaking, a graph sum of
square matrices is a sum of products of entries of square matrices with the constraint
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that some of the entries from distinct matrices are indexed by the same summation
variable. Then, Sects. 4 and 5 are devoted to the proofs of our main results; concretely,
Lemma 3 and Theorem 4 are proved in Sect. 4, whereas Theorems 1 and 2 are proved in
Sect. 5. Finally, in Sect. 6, we give some concluding remarks including open questions
and further research projects.

2 Preliminaries
2.1 Set Partitions, the Mobius Inversion Function, and Classical Cumulants

A partition of a non-empty set S is a set of non-empty and pair-wise disjoint subsets
of S whose union is S, i.e., a set 7 is a partition of S if B C S and B # 0 for every
B € 7, BNB' # @implies B = B forall B, B’ € w,and Ugc; B = S. The elements
of a partition are called blocks, a block is said to be even if it has even cardinality, and
similarly, a block is said to be odd if it has odd cardinality. A partition containing only
even blocks is called even, but if all of its blocks have exactly two elements, we refer
to it as a pairing. The total number of block in partition 7 is denoted by #(7) and we
let P(S), Peven(S), and P>(S) denote the set of all partitions of S, the set of all even
partitions of S, and the set of all pairing partitions of S, respectively.

Example The sets 6; = {{—1, =3, —2,2}, {1, 3}}, 6, = {{—1, =2}, {2}, {1, =3, 3}},
and 03 = {{—1, =3}, {1, 3}, {—2, 2}} are all partitions of {—1, 1,2, —2, —3, 3}. The
partitions 0; and 03 are both even, but while 63 is a pairing, 61 is not. The partition 6,
is neither even nor odd since it contains two odd blocks, {2} and {1, —3, 3}, and one
even block, {—1, 2}.

Welet[m] and [£m] denote the sets of integers {1, 2, ..., m}and {—1, 1, =2,2, ...,
—m, m}, respectively. The sets [m] and [£m] are used extensively in this paper, so
we will omit the square brackets when referring to any of their sets of partitions.
Thus, for instance, we write Peyen(Em) instead of Peyen([£m]). Having fixed inte-
gers m1, my > 1 and a partition & € P(%(m| + m>)), we denote by 71 and 7, the
restrictions of 7 to [£m ] and [£(m| + m2)]\[Em ], respectively.

Every partition 7 € P(S) defines an equivalence relation, denoted by ~, that has
the blocks of 7 as equivalence classes. Thus, given elements k, [ € S, we write k ~ [
only if k and / belong to the same block of r. With this notation in mind, a partition
w € P(xm) is called symmetric if k ~, [ implies —k ~, —I.

The set of partitions P (S) becomes a partially ordered set with the partial order <
defined as follows: given partitions 7 and 6 in P(S), we write ¥ < 0, and say that
7 is a refinement of 0, if every block of 7 is contained in some block of 6. Note that
m < 6 if and only if k ~, [ implies k ~¢ [ for all k,[ € S. In the previous example,
the partition 73 is a refinement of 771, and there is no other refinement between 71, 72,
and 3.

Consider now the function ¢ : P(S) x P(S) — {1, 0} defined by

1if6 <n
0 otherwise.

§(9»n)={
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This function is called the zeta function of P(S). It turns out that if S is a finite set,
then the system of equations

> o mpr.0) = forn, 0 € P(S) 2.1

n<m=<0

lifn=20
0 otherwise

determines a function u : P(S) x P(S) — Z called the Mobius function of P(S)
which can be explicitly computed, but first, let us establish the convention that
whenever we write n = {B;,, Bj,, ..., B;, } for a partition 7, it is always assumed
that blocks B;, and B;, are the same only if iy = i;. Suppose now we are given
partitions 7w and 6 in P(S). If = < 6, we can write & = {Bjy, Ba,..., B;} and
w={B11,B12,....Bim,---» Bym, } with By = U?Z1Bk,l for each k, and, in this
case, we have

nw,0) = [T om =t 22)

k=1

On the other hand, if 7 is not a refinement of 6, we have u(, 8) = 0. The Mobius
inversion formula states that given arbitrary functions f, g : P(S) — C, we have the
relation

Vo ePS) fO) = Y glr) <= VreP(S) gm)= Y u@@0)f®)

TeP(S) OeP(S)
>0 O>m

(2.3)

The computation of M&bius function, Eq. (2.2), and the Mdbius inversion formula,
Eq. (2.3), is well known, and their proofs can be found in [20, Lecture 10].

Let (2, F, P) be a classical probability space, and let L~°°(€2, F, P) denote the
set of complex-valued random variables on (€2, F, P) with finite moments of all
orders. The classical n-th cumulant on L~°°(2, F, P) is the n-linear functional ¢, :
L™(Q,F,P) x - x L™®(Q, F, P) — C defined by

calxi, X2, 23, .ox )= Y pGr 1) [[E []‘[ xbi| (2.4)

weP(n) Berm beB
for random variables x1, x», x3, ..., x, € L™°°(Q, F, P) and where E[-] denotes the

corresponding expected value. Note that if xi is a constant for some k € [n]andn > 2,
then ¢, [x1, x2, ..., x,] =0.

2.2 The Kernel Notation, Tuples, and Permutations

Let S and S, be non-empty sets. We make the convention that for a function j : S| —
S>, we put jr = j(k) forevery k € Sy;additionally, if S| = [£m] for some integer m >
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1, we identify the function j : S; — S» with the tuple (j_1, j1, j—2, - j—m> Jm)-
Moreover, the kernel of a function j : S| — S,, denoted by ker (j), is defined as the
partition of S; whose blocks are all of the non-empty pre-images of j, i.e.,

ker () = (i7" () £ |seS)={keS | jx=s]#0|s €S
The group of all permutations on a non-empty set S is denoted by Sym(S); however,
if § = [m] or § = [£m] for some positive integer m, we simply write Sym(m)
and Sym(%m), respectively. Given permutations o; € Sym(S;) for [ = 1,2, we let

jooi1:S1 = S2and oy 0j: S — S2 denote the usual composition of functions, so
we have

Jooi1(k) = joyy and o20jk) =02(jx) Vke€S.
Example The function j : [£3] — [4] given by
iEH=j@=j3 =4, j)=j=3)=1, and j(-2) =3,
or, equivalently, (j_1, j1, j—2, j2, j—3, J3) = (4, 1, 3,4, 1, 4), has kernel
ker (j) = {{—1, 2, 3}, {1, =3}, {—2}}.
Additionally, if o1 € Sym(+£3) is given o1(k) = —k for every k € [£3] and

o2 € Sym(4) is the cyclic permutation (1,2, 3,4),thenjoo| = (1,4,4,3,4,1) and
or0j=(1,2,4,1,2,1).

Given a permutation o € Sym(S) and a partition 7 € P(S), we let o o 7 be the
partition in P(S) given by

con={o(B)|Ben)={{ok) |keB}|Benr)

The map 7 +— o o 7 is a poset automorphism; in particular, it is order-preserving, so
for all partitions 7, 8 € P(S) we get

T <60 <+ oom<o0o06.
Remark Note thata partitionw € P(S1)andafunctionj : S| — S; satisfyw < ker (j)
if only if the function j is constant when restricted to each of the blocks of 7, i.e.,
Jkx = Jji whenever k, [ € B for some block B € .

Moreover, for any permutations o; € Sym(S;) with [ = 1,2, we have that
ker(joo) = 01_1 o ker (j) and ker (j) = ker (02 o).

2.3 Some Random Matrices and the Joint Distribution of their Entries

Let I be a non-empty set. Suppose {X;}ic; and {Y;}ic; are two families of N-by-
N random matrices defined on the same probability space. We say that {X;};c; and
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{Yi}ics are equal in distribution if we have

E []‘[ Xiy (s m} =E [1‘[ Y (ko jk)]

k=1 k=1
for all integers m > 1, indexes iy, i2, ..., i, € I, and functions j : [£m] — [N].
A matrix X € Maty(C) is a signature matrix if there exist signs €1,...,€ex €

{—1, 1} such that

.o e ifi=j
X, Jj) = { 0 otherwise .
An N-by-N random matrix X is a uniformly distributed signature matrix if it is
uniformly distributed on the set of N-by-N signature matrices; in this case, for all
functions i, j : § — [N] we have

.. 1, ifi = jand ker (i) is an even partition
E |:1_[ X ik ]k):| - { 0 othervgise v ’ (2:5)
keS ’

A matrix W € Maty(C) is a signed permutation matrix if there exist signs
€1,...,€ny € {—1, 1} and a permutation o € Sym(N) such that

SN o e ifi=o0())
WG, Jj) = €ibio() = { 0 otherwise
An N-by-N random matrix W is a uniformly distributed signed permutation matrix
if it is uniformly distributed on the set of N-by-N signed permutation matrices; if that
is the case, for all functions i, j : S — [N] we get

WA i 7 = ker (i) = ker (j) € Peven(S)
P — N! > even
E |:H W, ]S):| { 0, otherwise 26)

seS

Remark Suppose {V;}ic; isafamily of N-by-N random matrices distribution-invariant
under conjugation by signed permutation matrices, i.e., the families {V;};c; and
{W*V; W} are equal in distribution for every signed permutation matrix W. Then,
for all integers m > 1, indexes iy, i, ..., I, € I, and functions j : [m] — [N], we
have

E []‘[ Vie Gk jk)} =[] eGveuoE []‘[ Vig (0 (j—t), a(jk»] 2.7
k=1

k=1 k=1

for all signs €1, ..., ey € {—1, 1} and permutations o € Sym(N).
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2.4 Non-commutative Polynomials and their Evaluation on Families of Random
Matrices

Let I be a non-empty set. We denote by C (x; | i € I) the algebra of non-commutative
polynomials on the family of variables {x; | i € I}. Let us recall that C(x; | i € I) is
the algebra over C with a basis consisting of all the words in the alphabet {x; | i € I},
including the empty word which acts as multiplicative identity, and the product of two
basis elements is given by concatenation. Thus, a basis element is a word of the form
Xi Xip =+ Xi,
for some integer » > 0 and some indexes i1, i2,...,i, € I, and if XX}, --- X}, is
another basis element, we have
(X Xiy = X, ) (Rjy Xy = X o) = Xig Xy = o X0, Xy Xjp « o Xy
Given polynomials py, p2, ..., pm in the algebra C(x; | i € I) and aset S = {k; <
ky < --- < k,} C[m], welet

Hpk "= PkiPky ** * Phy - (2.8)
keS

Suppose we are given random matrix ensembles {Xy ;}}7_, with i € I where
each Xy ; is a N-by-N random matrix. For each non-commutative polynomial
p € C(x; | i € I), we denote by

p ({Xn.i}ier)
the random matrix obtained from replacing each x; appearing in the polynomial p with
the random matrix X ; for every i € I and the constant term of p, say o, with the

scalar multiple of the identity matrix « Iy . For instance, if p(x1, X2) = X1X2 — x% +4,
then

PUXnw,itien1,2) = XN XN — X12\,’2 +4ly.

3 Graph Sums of Square Matrices

In this section, we review and prove some useful results on graph sums of square

matrices. A graph sum of given matrices Ay, A, ..., A, € Maty (C) is a sum of the
form
m
Yo Ao A2 ) An G ) = Y [ ] ARGk o)
ji[m]—[N] jilEm]—[N] k=1
ker(j)>n ker(j)>n
3.1
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for some partition 7 € P(£m). Note that the condition ker (j) > s in the sum above
is simply a restatement of a set of equalities between the indexes ji,. For example, if
we let m = {{1, =2}, {2, =3}, ..., {m — 1, —m}, {m, —1}}, then ker (j) > 7 only if
J1=J-2.J2=J=3:---: jm—1 = j-m,and j, = j_1, and thus, we get

m
> 1Ak ) =Tr(A1Az-- Ay).

ji[Em]—[N]k=1
ker(j)>n

It is worth mentioning that although the labeling of the entries of Ay in (3.1) is not
customary, it has proven to be suitable for many of our calculations; moreover, for a
bijection o : [m] — §, the relation

m m
S TTA o o) = > [lAGrk i) Y2eP®) (32
j:S—[N]k=1 jilEm]—[N] k=1
ker(j)>7 ker(j)=o ~'ost

provides the link between the labeling of the entries of Ay in (3.1) and any other
labeling. For instance, if o : [£m] — [2m] is given by o(—k) = 2k — 1 and
o(k) =2k for1 <k < m, then

m m
> [T AGu-1 ) =Tr(ADTr(A2) - Tr(A) = Y [] A i)
j:[2m]—[N] k=1 ji[Em]—[N]k=1
ker(j)=7 ker(j)>m

where # = {{1,2},{3,4},....,2m—1,2m}}and 7 =o' o7t = {{—1, 1}, {—2,2},
..., {—m,m}}. The type of sums above are named graph sums because they can be
associated with certain graphs that, as we will see next, help us analyze the corre-
sponding sums.

3.1 Bounds of Graph Sums of General Square Matrices

The main result in [17] concerns more general graph sums, allowing the matrices Ay in
(3.1) to be rectangular and not necessarily square. For graph sums of square matrices,
however, the result takes the following form.

Theorem 5 Suppose w is a partition in P(£m). Then, there exists a rational number
r € {1, % 2, ...} depending only on the partition v such that for every integer N > 1
the following two conditions hold:

(a) for all matrices Ay, Aa, ..., A, € Maty (C), we have

m

Yo ITAG-k o] = N7 TTlAxl

ji[Em]—[N]k=1 k=1
ker(j)>n

@ Springer



1990 Journal of Theoretical Probability (2023) 36:1972-2039

(b) there are some nonzero matrices By, By, ..., By, € Maty (C) satisfying

m m
> T1BeGr o= N"[TIBl
k=1

ji[£m]—[N]k=1
ker(j)>n

Note that T is uniquely determined by (a) and (b). We call t; the graph sum exponent
of m.
It is also shown in [17] that the graph sum exponent 7, can be algorithmically

computed analyzing the two-edge connectedness of a graph associated with . For
the reader’s convenience, we recount such algorithm next.

Step 1. Given a partition ¥ € P(%m), consider the undirected graph G, resulting
from, first, taking edges E1, E3, ..., E, with endpoints —1, +1, =2, +2,
..., —m,+m, respectively, and, then, identifying endpoints when they
belong to the same block of .

Step 2. Identify the cutting edges and the two-edge connected components of G .

Recall that a cutting edge of a graph, also known as a bridge, is an edge
whose removal increases the number of connected components.
Moreover, a graph is two-edge connected if it is connected and has no cutting
edges, and, consequently, a two-edge connected component of a graph is a
subgraph that is maximal, under the usual graph inclusion, in the set of all
two-edge connected subgraphs

Step 3. Letting F denote the graph with vertex set given by the set of all two-edge
connected components of G, and edge set given by the set of all cutting
edges of G, the graph sum exponent 7, is given by

% if deg(v) =1,
Ty = Z [(v) where [(v):= 1 1 if deg(v) =0, 3.3)
v vertex in Fr 0 otherwise.
and deg(v) denotes the degree of the vertex v in the graph 7.
Example The undirected graph G, associated with the partition
v (=3}, {43, +1, =2}, {5, =1, =7, =4}, {+7}, {+2, +4}, {+6},
€ P(£12)

can be represented as

{3} {+3+1,-2} +73 {-10,+12}

(-11,411,-9}

(+2,4+4} 3

Eq
{+6} {-6,+5,+8} {-8} {+10,-12} {+9}
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Hence, the cutting edges of G, are E3, E5, Eg, E7, Es, and Eg; moreover, the
two-edge connected components of G, are exactly what remains of G, after removing
all of its cutting edges. The graph F;; can be obtained from G, by shrinking each of
the two-edge connected components of G, to a vertex, and thus, if we represent the
cutting edges of G, with dashed lines, we obtain

Ei

1/2
o--E-3-- E, —E;_,o 172 _2/‘;.
O = 7
E, E; 1
E, Epo Eqp 1
Es 1

Eq

]
&5

&
e
[
@ = =g
[\S)

H
:
.
?
1
1
-
1
1
)

where F; is the graph on the right and next to each of its vertices we have placed the
corresponding contribution [(v) to the graph sum exponent 7,;. Therefore, we have
T = 4.

Having described the algorithm to compute 7,;, we can now show that graph sum
exponents of even partitions can be easily calculated.

Proposition 6 If m € P(£m) is an even partition, then the graph sum exponent T,
equals the number of connected components of G.

Proof By Equation (3.3), it suffices to show that the graph G, has no cutting edges.
Suppose G, has a cutting edge. If we remove such cutting edge, we get two disjoint
graphs, each of which has one single vertex of odd degree and the other vertices of
even degree. But, this contradicts the handshaking lemma that in any graph the sum of
degrees over all its vertices must be even. Thus, G, has no cutting edges, and hence,
all its connected components are two-edge connected. O

Now, resulting from endowing each edge Ej in the graph G, with the direction
that goes from +k to —k, the directed graph G, can sometimes be used to describe
the corresponding graph sum. In particular, a graph sum factors as a product of traces
of matrices when all connected components of G, are bouquets, to which we refer as
multiple loops, or cycles, each connected component gives rise to a trace. For example,
for the partition

T = {{17 _6}7 {67 5}7 {_57 7}, {_7ﬂ _17 }7 {_27 3}7 {_3ﬂ 2}5 {_49 4}}

and given matrices A, Ay, ..., A7 € Maty (C), we have the graph sum

7
S [T AcGw ) =Tr (44647 AT ) Tr (4,45) Tr (4,0 45) - (B.4)
J£7]—[N] k=1
ker(j)>n

where the right-hand side can be deduced from analyzing the directed graph én as
follows:
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(1) The corresponding directed graph Qﬂ has exactly three connected components,
two cycles and one double-loop, and can be represented as

{+1,-6}

{-2,+3}
E; Eq
E, E,
713 {+6,+5} {gig
E; Eq
E; Eg
{+7,-5} (+2-3}

Each cycle and each one multiple-loop gives rise to a trace in the right-hand side
of (3.4). .

(2) If a connected component of G, is a cycle, we unfold it to obtain a horizontal line
and replace each edge Ej by the matrix Ay if the direction of Ej} goes from right
to left in the horizontal line; otherwise, we replace Ey by AZ, the transpose of A.
We then put the matrices Ay or AkT in a trace Tr (-) as they appear when we read
the resulting horizontal line from left to right. For instance, the longest cycle of

G gives
E; E; E¢ Eg A7 A Ag Af
{(+7) o> < < > {-5) —D < < D>

{-7,-1} {+1,-6} {+6,+5}

And so, we obtain the trace Tr (AT A; A¢AT') in (3.4). Note that Tr (A, A,AT AT)
and Tr (A2A3) do not depend on how the cycles in Qn are unfolded since for any
matrices A, B € Maty (C) we have Tr (AB) = Tr (BA), Tr (A) = Tr (A”), and
(AB)T = BT AT.

(3) On the other hand, a multiple-loop in g} with edges Ey,, Ex,, ..., Ej, yields the
trace of the Hadamard productof Ay, , Ax,, ..., Ag,. This way, we get Tr (A4 o Ag)
in (3.4).

Thus, if 7 is now given by
7 = {{—1,+6}, {+1, =6}, {2, =T}, {+2, +7}, {3, +3, =5, +5}, {—4, +4}},

the corresponding directed graph én can be represented as

(+1:6) CEl (2:7) 3’52 Ews ©E4
-1,+6 +2,+7
E, {-1+6} B { }

{-3,+3,-5,+5} (4,44}

and hence, we obtain

7
S T1 AU jo0 = Tr (A1 46 Tr (4,47 ) Tr (4 0 A5) Tr (4,)
J:[X71—=[N1k=1
ker(j)=>n
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3.2 Bounds of Graph Sums of The Discrete Fourier Transform Matrix

Although the bound for graph sums given by Theorem 5 is optimal in the set of all
square matrices, it might not be optimal for some graph sums involving the discrete
Fourier transform matrix. Let us recall that the N-by-N discrete Fourier transform
matrix is the symmetric matrix H with entries given by

H(jt. jo) = o1~ D0270 (3.5)
where w = exp(—%”«/—l) is a primitive N-th root of unity. Now, letting h(j) be
given by

m

hG) = [ HG-2x10 joe—0) H* (-2t jok) 3.6)
k=1

for each function j : [£2m] — [N], Theorem 5 gives us that

m m
> nG| = NTJTIHIT]|H| =Nt (3.7)
ji[£2m]—[N] k=1 k=1
ker(j)>n

for any partition m € P(%2m); on the other hand, since h(j) has absolute value 1, we
also obtain

> hp| = > 1 = N (3.8)

j:[£2m]—[N] ji[£2m]—[N]
ker(j)>n ker(j)>n

Thus, if 7 is the partition {{2k — 1, —2k + 1,2k, =2k} | k = 1,2, ..., m}, then the
graph sum exponent 7, equals m, and hence, 7, +m = 2m, but also #(r) = m, so
(3.8) is a sharper bound than (3.7) in this case. In general, we prefer (3.8) over (3.7)

since (3.8) is invariant under re-labeling of the entries of H and H* in (3.6); namely,
given a permutation o € Sym(%2m) and letting

m
hGjoo) = [ [ HUo2x41): Jok—1)H* (o (~20)+ Jo2k)
k=1

for any function j : [£2m] — [N], the inequality in (3.8) implies

Z h(joo)| < Nt o) _ pgrt()

j:[£2m]—[N]
ker(j)>n
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since we have the relation

Z h(joo) = Z h(j). (3.9)

ji[E2m]—[N] J:i[£2m]—[N]
ker(j)>m ker(j)>o ~lom

Moreover, in the proof of Theorem 1, we will need to consider sums of the form

> h(oo) = > k() (3.10)
j:[E2m]—[N] j:[E2m]—[N]
ker(j)=n ker(j)=o "o

where m = mj + my for some integers mi,my > 1 and 0 € Sym(£2m) is the
permutation with cycle decomposition given by

o= (-1,1,-2,2,...,—2mq, 2my)
(—2my—1,2m; +1,...,—2m — 2mo, 2m1 + 2m»). (3.11)

Although the sum in (3.10) is not a graph sum, it can be determined up to a term of
order N*7 =1 analyzing (3.9) since for every partition 7 € P(+2m) we have

> hG = > hGh - Y Y ohG. (12

ji[£2m]—[N] ji[£2m]—[N] 0eP(£2m) j:[£2m]—[N]
ker(j)=n ker(j)>n 0>m ker(j)=6

The rest of this section is devoted to find and classify partitions 7 such that (3.8)
becomes an equality. To do that, let us first associate a polynomial to each partition
T € P(£2m).

The polynomial p,. Given a partition 7 = {Bj, B2, ..., B;} € P(£2m), we let
pr (X1, X2, . .., X;), or simply py, be the polynomial obtained from the expression

—X_1X1] + X_2X2 — X_3X3 + - - + X_2mXom (3.13)

after replacing each variable x; by x; whenever k belongs to the block B;. For instance,
ifr ={B1 ={-1,3}, B, ={-3, 1}, B3 = {-2,2}, B4 = {—4, 4}}, then

Pr (X1, X2, X3, X4) = —X[X2 + X3X3 — X2X| + X4X4.
Equivalently, the polynomial p, (X1, X2, . . . , X,-) is the image of (3.13) under the unique
homomorphism from Z [x_l, X1y ooy X2ms xzm] to Z[X1, X2, ..., X, ] such that x; +—>
x; whenever k € B;. Note that p, (X1, X2, . .., X;-) has degree either 0 or 2 and can also
be explicitly defined as
Pr(XI X2 Xp) = ) drgXiXs (3.14)
1<t<s<r
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where
an; = Z (=D* and a5 = Z =Dk + Z (-D! fort #s;
ke[2m] ke[2m] le[2m]
—k,keB; —keB;,keBg leB;,—l€Bg
(3.15)
moreover, py (X1, X2, . . ., X;) satisfies the relation
N—1
271\/7
Z h(j) = Z e P (1o j2seenn i) (3.16)
J:[£2m]—[N] J1sJ2sees Jjr=0
ker(j)>n
Therefore, (3.8) becomes an equality precisely when py (X1, X2, ..., X,) is the zero
polynomial. On the other hand, if p, (X1, X2, . . ., X;-) is a nonzero polynomial, we can

then find a sharper bound than (3.8) via the reciprocity theorem for generalized Gauss
sums, see [3, Section 1.2] for a proof of this theorem.

The reciprocity theorem for generalized Gauss sums Suppose a, b, ¢ are integers

with a, ¢ # 0 and ac + b even. Then,

le|-1  lal-1
S(a b c) . Z enra/ 24bj _ ”Flaﬂac[7 Z gﬂr LJ (3.17)
j=0

a

Proposition 7 If p(x1, X2, ..., X;) is a nonzero polynomial of degree at most 2 in
Z[X1,X2, ..., X1, then there exists a constant Cp, independent of N such that

N—1
Z e znrp(]ls]Z ------ Jr) < C Nr_’ .
J15J2es jr=0

Proof Suppose p(X1,...,X;) € Z[X],...,X,] is a nonzero polynomial of degree
at most 2. Without loss of generality, we can assume that there is a nonzero linear
polynomial q;(Xq, ..., X;) = a1X] + ®X2 + - -+ + o, X, € Z[X1,X2,...,X,] and a
polynomial q2 (X2, ..., X,) € Z[X2, X3, ..., X, ] of degree at most 2 such that

P(X1, .. X)) = X1q1 (X1, -0y X)) + Q2(X2, 1L X)),
Since we have the inequality
N-1 N-1 |N-1

o= ZHPU o) | < » Ze—z”ﬁjlql(jl,jz,...,jr)
Jtsj2see jr=0 J2s-0Jr=0 ] j1=0
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we only need to show that there is a constant Cp independent from N such that

N—-1 N—-1
274/—1 PR .
Y e G | < CoNTE
J2sejr=0 | 1=0

Suppose o1 # 0. Then, we have that

J1=0 Jj1=0
.
=5 (—20:1, =2 o, N)
k=2

where S(a, b, c) denotes the generalized Gauss quadratic sum as in (3.17). Thus, by
the reciprocity theorem for generalized Gauss sums, we get

,
S (—20:1, —2) o, N)
k=2

and therefore, we obtain

1
2 1
|—2a1| = 201N |2,

S —_
—2a

N-1 N—-1
YO o EX G| < 2ay 2 NTE

Now, suppose «; = 0. Recall that

N-—1 . . . .
> o= E haiGrzedn — [ N- QG ) = Y @i =0 mod N
0, otherwise

J1=0
So, we have
N—1 |N—1
Yy o= ZF i G i)
J2seeJr=0 | j1=0
R
:N.#{(jz,...,j,) €0, N—11":) aji=0 mod N .
=2
But, since the polynomial q (x1, ..., X;) = ¢1X] + - - - + @, X, iS nonzero, we must

have o # O for some k # 1, and hence, the equation

X+ =0 mod N

@ Springer



Journal of Theoretical Probability (2023) 36:1972-2039 1997

has at most |a| solutions in the set {0, 1, ..., N — 1} for any given integer 8. Thus,
we have

.
#3(2nod) €0 N =11 aji+ Y rji=0 mod Nt < lax| N2,
2t
and therefore, we get

N—-1 N—-1
N P . _
E E e~ N NG j2sejr) < |ax| N" L
J2see jr=0 ] j1=0

]

As an immediate consequence from (3.12), (3.16), and Proposition 7, we have the
following.

Corollary 8 If py (X1, X2, ..., X;) is a nonzero polynomial for some partition 1 =
{B1, Bz, ..., By} € P(£2m), then there is a constant C independent from N so that

S hG)| = N
ji[£2m]—[N]
ker(j)=n

The next two propositions establish necessary and sufficient conditions for
pr (X1, X2, ...,X,) to be the zero polynomial. Roughly speaking, the polynomial
pr (X1, X2, . .., X,) is zero if only and if the blocks of the partition 7t group the elements
of the set [+2m] in such a way that the positive and negative signs appearing in (3.13)
cancel each other out.

Proposition9 Suppose 1 = {B1, B2, ..., By} is a pairing partition in P(+2m).
Then the polynomial py (X1, X2, ...,X2m) is zero if and only if w is a symmetric
partition such that k ~5 1 implies k + [ odd for all integers k,1 € [£2m].

Proof Suppose pr (X1, X2, . .., X2,) is the zero polynomial and take a; ¢ as (3.15) for
1 <t <s <2m. To prove r is a symmetric partition such that k ~ [ implies k + [
odd for all integers k, [ € [+2m], it suffices to show that for every integer k € [2m]
there exists an integer ! € [2 m] such that k 4/ is odd and either k ~, [ and —k ~, —I
ork ~; —l and —k ~ [. Fix k € [2m] and let ¢/, s’ € [2m] such that k € B;» and
—k € By. Since pr(X1,...,X2m) = Zl<t<s<r ar sX:Xs is the zero polynomial, we

must have ay ¢ = 0. Now, if ' # s/, from (3.15) we get that

ary =D+ > D'+ > (=1 =0, (3.18)
le[2m]\{k} le[2m]
leB,s,—leBy —leB,,leBy
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which implies there exists [ € [2 m] such that (— ¥+ (=1)! is zero and either [ € By
and —/ € By or —[ € By andl € By . But this is equivalent to the desired conclusion.
A similar argument works for the case s = 7.

Now, if the partition 7 is a symmetric pairing in P (42m) such that k ~; [ implies
k4l oddforallintegersk, ! € [£2m],wecanwriter = {B1, B2, ..., By} with B] =
{—ki, =i}, B = tki, i}, B3 = {—ka, =2}, By = {ko, o}, ..., Bom = {km, l2m}
andky, l1, ko, o, ..., Iy € [£2m]satisfying k; +1; oddfori = 1, 2, ..., m.Moreover,
since Ulzzml B; = [£2m] and (—= ¥ = (=1)~* for k € [£2m], we have

m
—X_1X] + X_2X2 — X_3X3 + -+ + X2 Xom = Z[(_l)kix*kixki + (=Dlix_yx, 1.
i=1

Therefore, from the definition of p; (X1, X2, .. ., X2,,) and the fact that k; 4 /; is odd
fori =1,2,...,m, we get

m
P (X1, X2, -, Xom) = Y [(= DM xai1xai + (= D'ixai1%2] = 0.

i=1
O

Proposition 10 Let m1 = {Bi, B>, ..., B,} be a partition in P(£2m). If there is a
partition 0 € P(£2m) such that 0 < 1 and py is the zero polynomial, then py is also
the zero polynomial. Conversely, if pr is the zero polynomial, then there is a symmetric
pairing partition 6 < 1 such that pg is the zero polynomial.

Proof Suppose < m and pg is the zero polynomial. Write 0 = {Bj 1, B1 2, ..., Bim,,
. Bum,) with B; = U By ; fori = 1,2.....n. Take A = Z[xl,x_l,...,

X2 m» x,zm],B =Z[X1,1:X1.2, « -+ » X1my» - - - » Xnm,, ), and C = Z[X1, X2, ..., X, ] and
letd: A — Band V¥ : B — C be the unique homomorphisms such that ® (x;) = x; ;
ifk € B; j and W(x; ;) = x;. Note that (W o ®)(xx) = x; only if k € By, and thus, by
definition of p, and pg, we have that

pr=Wod (Z(—l)kx—m> =V (py).

k=1

Hence, if pg is the zero polynomial, so is py.

Suppose now py is the zero polynomial and let 6 be a minimal element of the set
{T € P(£2m) : T < 7 and ps = 0} endowed with the partial order inherited from
P(£2m). Since py is the zero polynomial, it follows from the first part of Proposition
9’s proof that for every integer k € [2m] there exists an integer [ € [2m] such that
k + 1 is odd and either k ~¢ [ and —k ~9 —I or k ~¢9 —[ and —k ~y [. Therefore, 6
lacks singletons and either 6 is a pairing partition or 6 has a block with at least three
elements. Letus assume § = {C, C, ..., C,}hasablock with at least three elements,
say C,. The previous property of 6—borrowed from the first part of Proposition 9’s
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proof—implies there are integers k, ! € [2m] such that k + [ is odd and at least one
of the following conditions holds:

(1) +k,+1 € C, and —k ~y —I
) +k, -1 € C, and —k ~y +I
(3) —k,—1 € C, and +k ~yp +I
@) —k,+l € C, and +k ~¢ —I

Assume (1) holds. Then Cp\{k, [} is not empty, and hence, letting C, = C;
forz=12 n—lCn=C\{kl}andC,H_l:{kl}wehave@—

{61 62, ... n+1} is a partition of [+2 m] such that & <0,ie,0 > Hbuto * 9. Let
us show that ps must be the zero polynomial, contradicting the minimality of 6. Take
A= Z[xl,x Ly ovvs Xy X_ m] B= Z[xl,xz,.. Xnl, and B = Z[X1, X2, « s Xp+1]

andlet ® : A — Band ® : A — B be the unigue homomorphisms such that
®(x;) = x;if i € C; and <I>(x,) = x; if i € Cj. Since ®(x;) = <I>(x,) for
i € [X2m]\{k,1}, we have

2m 2m
Z( DO (x_)D(x;) = Z( DD () D(x;).
t;ﬁkl l;ékl

Moreover, since —k ~g —I, we have ®(x_;) = ®(x_;) = 5(x_k) = 5(x_1), So we
get

0= (—D*Ox_)®xp) + (=D dx_)P(x))
= (DB x_p)D(xx) + (=) Dx_)D(x))

since k +1 is odd, ® (x) = (x;) = X,, and $(xk) = 6(){1) = Xp+1. Thus, we obtain

2m 2m

pp= (—D'OE D) =D (=1 P(x_)P(x;) =py =0

i=1 i=1

But then, 6 is not minimal, and therefore, (1) does not hold. Similar arguments show
that neither (2), nor (3), nor (4) hold. Therefore, the partition & must be a pairing, and,
in fact, a symmetric pairing by Proposition 9. O

As mentioned earlier, in proving Theorem 1, we need to consider sums as in (3.10).
Note that if p,-1,, is the zero polynomial for some permutation o € Sym(£2m),
then h(j) = 1 for any function j : [£2m] — [N] satisfying ker (j) > o Vom, and
hence, we would get

N!
h(joo) = hGj) = ——.
2 WGeo) = ) WD) = mey
ji[E2m]—[N] jilE2m]—[N]
ker(j)=m ker(j)=0"lom
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On the other hand, if the polynomial p,-1., is nonzero, we have that (3.10) is of
order N#(")=1/2 by Corollary 8. We will now use the previous results to classify all
symmetric pairing partitions so that p,-1, is the zero polynomial.

Lemma 11 Let m = mi + my for some integers my,my > 1, and let o be the
permutation given by (3.11). Suppose k and [ are integers in [2m] and 1 is a symmetric
pairing partition in P(£2m) such that p,-1,, is the zero polynomial. If —k ~ 1,
then o= (—=k) ~, o'(l) for every integer t > 0. On the other hand, if —k ~, —I,
then o' (—k) ~5 o' (=) for every integer t > 0.

Proof Note that k ~n I implieso(—a’l(lg)) ~n o(—a’l(lA)). Indeed, by Proposition
10, the partition o~ o 7 is symmetric since p,-1,, is the zero polynomial, and
hence, —0_1(12) ~o—lox —o_l(f) provided k ~r i, but in that case we must have
6(—0‘1(12)) ~p o(—o! (i)). Note also that for every integer ke [£2m] we have

i o) itk >0
o(=o (k) = {0—1(12) ith <0
since for 1 < k < 2m we have o~ (k) = —k, —o~!(—k) < 0, and o (—k) = k.
Now, suppose o~ !(—k) ~, o'(l) for some integer + > 0. If ¢ is even, then
k = o7'(—k) < 0 < o'(l) = [, and hence 0" (=k) = o(—o~' (k) ~x
o(—o~1(0)) = o'*1(1). On the other hand, if ¢ is odd, we have o~/ (—k) > 0 > o' (I),
and hence 0 '~ (—k) = —o1(=k) ~; —o'(l) = o'T!(]) since 7 is symmetric.
Thus, —k ~ [ implies 0 =/ (—k) ~5 o'(l) for every integer t > 0 by induction on ¢.
Similarly, assuming —k ~, —I, we get o’ (—k) ~; o'(=I) forall t > 0. O

Remark 12 The results regarding the polynomials p, and p,-1,, being zero can be
restated in terms of the graphs G, and én from Sect. 3.1. For instance, in the following
proposition we show that the polynomial p, -1, is zero for a given symmetric partition
7w € P(£2m) wjth m = m1 +my if and only if one of the following conditions for the
directed graph G, where F; denotes the edge E2,, 4+, fort = 1,2, ..., 2m>, holds:

(1) m; = myandthereis aninteger 1 <[ < my so thatthe graph Qﬂ can be represented

as
E, i E, z Eom1 Eom,
Fa1 F Fa2m,

21-2 Falom 1

(2) m; = mp andthereisaninteger 1 <[ < mj sothatthe graph _C'jn can be represented

as
El E E2 Z EQm‘—I E2ml E
Fy F F21—2[m+1 Forom L

21-1

3) Qn is the disjoint union of énl and Q’nz, there is an integer 1 < k < 2m so that
Gr, can be represented as
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Ek@ Ek+1 i Ek+2 [j m;-1 : m@
Eiq Ezkz Eimt1
and there is an integer 2m| + 1 <[ < 2m + 2m> so that an can be represented
OS> <& &> 0
Fip

l:l m,+1
(4) mp and m; are odd integers, the graph én is the disjoint union of -C;m and Qﬂz, the
graph G, can be represented as

<> <> <>

m1+1 m1+Z

Ey, Es

Fi,

and the graph gn, can be represented as

(5) mpisodd, én is the disjoint union of gﬂl and gﬂz, there is an integer 1 < k < 2m

so that G, can be represented as
Ek[: Eii1 [j Eiiz [j Eiym1 m, [:
Eiq Eoxz

and the graph Qﬂz can be represented as

(6) m is odd, the graph gn is the disjoint union of gm and an, the graph Q',,, can be

represented as
m +1 m +2

and there is an integer 1 <[ < 2m so that g,,z can be represented as

Fl[j Fiy [j Fiip [j Fiim1 [j Fip

l m,+1

Ee

Ek m;+1

In the graphs above, 21 — ¢, 21 +t — 1, and k &+ ¢ are taken modulo 2m for t =

1,2,...,2mq and [ £ ¢ is taken modulo 2my fort = 1,2, ...,2m>.
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Proposition 13 Let m = m| + my for some integers mi, my > 1, and let o be the
permutation given by (3.11). Suppose w is a symmetric pairing partition of [£2m] and
denote by w1 and 1y the restrictions of w to [£2m1] and [£2 m]\[£2m ], respectively.
Then, p, -1, is the zero polynomial if and only if one of the following conditions holds:

(1) @ # m Ump, my = ma, and there are integers 1 <k <2moand?2m;+1 <1 <
2m1 + 2my such that k + [ is even and

m={{c"(=k), oD}t =1,2,....4m}.

(2) m # m Umy, my = my, and there are integers | <k <2mpand?2m;+1 <1 <
2my + 2mo such that k + 1 is odd and

7 ={{o"(=k), 0" (=D} [t =1,2,...,4m;}.

(3) m = m Umy and there are integers | <k <2mjand2m;+1 <1 <2m1+2m
such that

m = {o"(=k), oK)} |1 =1,2,...,2m}
and
m={{c(=D, 07D} | =1,2,....2mz}.
(4) ™ = m Ump, my and my are odd integers,
o= {{e"(=D, 06" (—=mi = D} | =1,...,2m},
and
Ty = {{0’2(—2m1 — 1D, 02(=2m1 —mr— D} | =1,. ..,Zmz}.
(5) m = m Umy, my is odd, there is an integer 1 < k < 2m such that
T = {{(f’l (=k), e (k)} | 1 = 1,2,...,2m1},
and
m = {{o"(=2m) — 1), 0 (=2m; —my — D} | =1,...,2my.}
(6) T = m Uy, my is odd,
o ={o" (=D, " (—=m =D} | =1,...,2m},
and there is an integer 2m| + 1 <1 < 2m + 2m such that

m = {lo2(=), 0 2D} | n=1,2,...,2m2} .
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Proof Put# = o lor. Suppose 7 = {Bj, Ba, ..., B,}andlet ® be the unique homo-
morphism from Z[X_1, X1, ..., X_2m, Xom] 0 Z[X1, X2, .. ., X, ] such that ®(x;) = Xx;
ifi € B;.If condition (1) holds, then 7 = {{0’(—/(), o2 [t =1,2, ..., 4m1}
and o' (—k) + o '"2(l)isodd for t = 1,2, ..., 4m,. Thus, since we can write

2m

2m
; 2t
Z-Z(—l)lX—iXi = Z(—l)” ( k)xazr(—k)xazf+l(—k)
i=1 =1

2my

-2
+ Z(—I)U ' (l)xd_(21+1>—2(l)x072r72(1),
t=1

we get py = CD(Z?;"I(—D" x_;X;) = 0. It follows from similar arguments that p;

is the zero polynomial if (2) holds. Now, if (4) holds and we take | = 2m + 1,
we have that o/ (—k) 4+ o '"2(k) and o' (—I) + o'(—m> — [) are odd and # =
{{ot(—k), o2k}, (o' (=), o' (—=ma — D)} | t > 0}. Thus, since we can write

2m 1 2m 5

; t
E (—l)lX,in' =5 E (—1)0 (_k)XUZI(_k)XO.Zt+1(_k)
i=1 t=1

2m

—2t-2
+ 5 Z(_l)a (k)X07(2t+1)72(k)xo.—21—2(k)
t=1

ma
200
+ Z(—l)g ( l)XO.2t(7[)Xo.2t+l(7[)
t=1

my
2w
+Z(_1)U (=m2 I)Xazt(fmzfl)xazt'*’](7"12*[)
t=1

5

we get p; = 0. Similar arguments show that if either (3), (5), or (6) holds, then p;
is the zero polynomial.

Suppose now p; is the zero polynomial and let 77| and 77, be the restrictions of 7
to [£2m1] and [£(2m 4 2mo)]\[£2m ], respectively. We will consider two cases
T # 7 U and 7 = 71 U 7. Assume first 7 # 77 U 772. By Proposition 9, there
are integers 1 < k <2mj and 2m| + 1 <[ < 2m1 + 2m, such that k 4 [ is odd and
one of the following holds:

(1) k~4 —land —k ~; .
(2’) k ~4 land —k ~5 —I.

Suppose (2’) holds. Then, —k = —o(—k) ~r —o(—Il) = —I, and by Lemma
11, we have that o’/ (—k) ~, o'(=I) for every integer t > 0. Moreover, since —k =
oMM (=k), oM (—k) ~5 ¥ (=]),and 7 is apairing, we must have — = o dm(=]).
But, the equation —/ = o'(—I) holds only if 7 is an integer multiple of 4m,, and
hence, 4m is a multiple of 4m,. Similarly, 4m, is a multiple of 4m 1, and therefore,
4m) = 4m,, and the partition 7 satisfies condition (2). A similar argument shows

@ Springer



2004 Journal of Theoretical Probability (2023) 36:1972-2039

that 7 satisfies condition (1) if we suppose (17) holds. Assume now 7 =7 UM By
Proposition 9, there is an integer | < k < 2m satisfying one of the following:

(@ 1 ~; k —1 ~; —k andl—i—klsodd
(b) 1 ~4 —k —1~; k and 1 + k is odd.

and there is an integer 2m| + 1 < [ <2my +2m satisfying one of the following:

(A) 2my + 1~z I, =2my — 1 ~; —[, and 2m + 1 +1 is odd.
®B) 2my+1~4 —1,—2my — 1 ~; [,and 2m| + 1 4 [ is odd.

If (a) holds, we know that o/ (—1) ~ o’(—l%) for every integer + > 0 by Lemma 11.
But then, since —k = 0212’2(—1), 02’2’2(—1) ~n 02’2’2(—12), and 7 is a pairing, we
must hElVe 02]2_2(—12) = —1, or, equivalently, 4k —4isa multiple of 4m . Therefore,
my =k —1lisodd, and 6" (—1) ~4 o''(—m; — 1), and hence,

T = {{G“(—l),a“(—ml -D}n=12, ...,4m1}

On the other hand, if (b) holds, it follows from Lemma 11 that o'(1) N,,Aa_’(—ly )
for every integer 1 > 0. Moreover, since k" has the same parity as 1 + k, we have
k' = 2k — 1 for some integer k > 1. But then, since k = 02X72(1) = =272k 2k — 1)
and 6 2%=2(1) ~, 0272k(2k — 1), we have k ~, —k, and therefore,

m = {o" k), o=} [ n = 1,2,....2m}
Similar arguments show that if (A) holds, then m, is odd and

1 = {0 (=2my — 1), 0 (=2my —my — D} | =1,2,.... 4ma}
and if (B) holds, then there is an integer / such that
72 = {{o2(1), 0 (=D} | 2 =1,2,...,2m;}

This completes the proof that if p; is the zero polynomial, then 7 must satisfy either
(1), (2), (3), (4), (5), or (6). m|
4 The Bounded Cumulants Property
In this section, we first prove Lemma 3, and then, before we can apply it to get
the conclusion in Theorem 4, we need to establish the relations between the notion of

asymptotic free independence, the bounded cumulants property, and linear functionals
on an algebra of non-commutative polynomials.

Proof of Lemma 3 Put V), = Uj’f,,l.k UN,iy(k) fork =1,2, ..., m and note that
Tr (Yy) =Tr (Am;€+1 Vm§€+1Am;(+2 Vm;(+2 t Am/k+mk Vm;(+n1k) .

@ Springer



Journal of Theoretical Probability (2023) 36:1972-2039 2005

Now, letting a(j), vi(j), v2(), - - ., v4(j) be given by

m my+my
a() = [[ AcGs. o and i) = [ ViGijyay) fork=1,2,....n
k=1 I=m)+1

for each function j : [+m] — [N], we have that

GITE V), Tr()l= Y ale i@, va@. ... v®l @D

J:[Em]—[N]

since the matrices Ay are deterministic and the classical cumulants are multi-linear.
By hypothesis, the family of random matrices {V;}; | is distribution-invariant under
conjugation by signed permutation matrices, thus given a function j : [£m] — [N]
we have

¢ [viQ)s - va(D] = nea(jk)ea(j,k>cn [vi(co})),..., V(o 0j)]
k=1

for all signs €1, €2, ..., ey € {£1} and permutations o € Sym(N). This implies that

G vi@), ..., va(]=0

whenever ker (j) contains at least one block of odd size, and
G [ViG). - Va1 = ¢ [VIG). - Va ()]

provided a function j' : [+m] — [N] satisfies ker (j’) = ker (j). Thus, letting ¢, [r]
denote the common value ¢, [v{(j), ..., v, (j)] among all those functions j : [£m] —
[N] satisfying ker (j) = , Equation (4.1) becomes

ITr (V). ... Tr(Y)l= Y alrl Y. a(). 4.2)

70 € Peven(£m) J:[£m]—[N]
ker(j)=m

Moreover, the Mobius inversion formula in (2.3) implies

Yo oalh= ) u@e) Y a

j:[£m]—[N] OeP(£m) j:[£m]—[N]
ker(j)=m 0>m ker(j)>6

since for all partitions 6 € P(£m) we have the relation

Yo oah= Y > a0

j:[£m]—[N] mweP(£m) j:[£m]—[N]
ker(j)=>6 >0 ker(j)=n

@ Springer



2006 Journal of Theoretical Probability (2023) 36:1972-2039

Hence, we get

G Tr (Y, .., Tr(Y)l= Y Yoo alrlue) Y al)

77 € Peven (£m) 0 € Peyen(£m) J:[£m]—[N]
0>m ker(j)=6

4.3)

Note that if a partition 6 € P(£m) has a block of the form {k, —k}, then

> ag) =Tr(A) &)
J:[Em]—[N]
ker(j)=>6

where (%) is a sum excluding the entries of Aj. Therefore, since each Ay is assumed
to be of trace zero, we have

GITr(V), ... Tr(Y)l= Y Y alrlpEo) Y a@)

7 € Peven (£m) € Py (£m) j:[Em]—[N]
o>m ker(j)>6

4.4)

where P, (£m) denotes the set of all partitions in Peyen(d=m) with no blocks of the
form {k, —k}.

Now, for a partition § € P, (&m), each connected component of the graph Gy, con-
structed as in Sect. 3.1, has at least two edges, and hence, Gy has at most % connected
components. Thus, from Theorem 5, Proposition 6, and the equality in (4.4), we get

lea [Tr (YD), ..., Tr(YI < Y Yl lmlluGn OINT [T IA-

7€ Peyen(m) O Py (£m) k=1
0>

Since the sums above are over the finite sets Peven(£m) and P, (&=m), our proof will
be complete if we show that there is a constant C,, independent from N such that

len Vi), ..., V(D] < CnN—%

for all functions j : [m] — [N]. Let j : [Zzm] — [N] be arbitrary. By Holder’s
inequality, letting mp := ), .5 my for any given subset B of [n], we have

my +my my +my
[Twd| =|IT IT vGeivo| <IT T1 VG iyal,, -
keB 1 keB I=mj+1 1 keB I=m)+1
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But, by hypothesis, the p-norms of the entries of N V; are uniformly bounded, i.e.,
there are constants C), = maLle:l Cp(ix,iy@y) with p =1, 2, ..., m such that

.o .. _1 _1
||V1(J1,J—y(1))||p < Cpli,iyg) N2 <CpN 2
for all integers 1 < ji, j_,q) < Nandl =1,2,...,m, and hence, we get
m2+mk

<T] ] CusN %= (cmBN—%)mB.

1 keBl:m;ﬁ-]

[Tv®

keB

Now, the moment—cumulants relation in (2.4) implies

len Vi@ v @I < D e ] ]

weP(n) Bem

[Tv®

keB

1
so it follows that

en V1@ va@I = Y I I (CmBN’%)mB

weP(n) Ben
=N"% Y G T (Cna)™
weP(n) Ben
And the proof of Lemma 3 is now complete. O

Now, asymptotic free independence and the bounded cumulants property can be
stated in terms of some linear functionals, and, by doing so, we can show the bounded
cumulants property is actually equivalent to a condition that is a consequence of
Lemma 3, see Proposition 15 and Corollary 16. Thus, to prove Theorem 4, we
first examine the relations between the notion of asymptotic free independence, the
bounded cumulants property, and linear functionals on an algebra of non-commutative
polynomials first.

Multi-linear Functionals on Non-commutative Polynomials and Notions from Free
Probability

Let I be a non-empty set. Let A denote the algebra of non-commutative polynomials
C(x; | i € I),and let A; C A denote the algebra of polynomials C [x;] for each index
i € 1. Suppose we are given random matrix ensembles {Xy ;}37_; with i € I where
each Xy ; is a N-by-N random matrix and consider the sequence of unital linear
functional {¢y : A — C}37_, where each gy is defined by

on [p] :=E[tr (p ({(Xn.itier))] Vp € A (4.5)

@ Springer



2008 Journal of Theoretical Probability (2023) 36:1972-2039

Note that the two conditions necessary for the random matrix ensembles {Xy ;}57_;
with i € [ to be asymptotically freely independent, namely (AF.7) and (AF.2) from
Definition 1, can be stated in terms of the linear functionals ¢y as

(AF.1) Nlim o [p] exists for every p € A; and every i € I, and
—00
(AF2) Tim on [(1 = ¢n [P1) (2 = @n [p2]) -+ (Pm — @n [Pn])] = 0 whenever
px € Aik withi| Zi2,i0 i3, ... im—1 # im

Moreover, assuming that (AF. 1) holds, we can replace each ¢ [pk] appearingin (AF.2)
by ¢ [pk] = limy_ 00 @N [pk]; more concretely, we have the following.

Proposition 14 Suppose each ensemble {X y ;}3_, has a limiting distribution, namely
[0 [p] = limy_ o0 N [p] exists for everyp € A; and everyi € I. Then the ensembles
{XnN.,i}j_, withi € I are asymptotically freely independent if and only if the following
holds:

(AE2’) lim oy [(1 =@ [p1]P2 = ¢ [p2]) - (Pm — ¢ [pm ])] = O whenever pi. €
.A,'k With iy #i2,i2 13, ..., im—1 # im

Moreover, if either (AF.2) or (AF.2’) holds, then limy_ ~ ¢N [p] exists for every
peA

Proof Let J be the set of all positive integers m satisfying the following property:
ifp, € Ai,py € Aips ... py, € Aip, With iy, i, ... im € T and iy # iy,iy #
I35 0ees by g #i,,thenlimy_, o @y [plpg .- -pm] exists. Since the algebras A; with
i € I generate A and each ¢y is linear, limy_ oo @n [p] exists for every p € A if
the set J contains every positive integer. Now, by hypothesis, 1 belongs to J, so let us
assume 1,2, ...,m — 1 belong to J and suppose p;, p,, - - ., P,, are as above. Thus,
if § ={k; <ky <--- <kjg)} is a strict subset of [m], the limits

Jim (DS T on [pe] ow [HPJ and lim (—1)¥1 [T [pe] ow [Hpk]

keS¢ keS keS¢ keS

where S¢ denotes the complement of S in the set [m] and |S€| denotes the cardinality
of S¢, exist. Moreover, if (AF.2) holds, the equality

on [Pr—on[P1]) - ®Pm — on [P D] = on [P1 - Pm]

+ Y O ow [pe] en |:l:[Pk:|,

Sg[m] keS¢ keS

implies limy_, 00 N [p1 e pm] exists. And therefore, J contains every positive inte-
ger by induction on m. Similarly, if (AF.2’) holds, then limy _, oo @n [p1 e pm] exists,
and hence J contains every positive integer, since each ¢y [pk] in the equality above

can be replaced by ¢ [px].
Let us now show that (AF.2) and (AF.2’) are equivalent. Suppose p; € .A,-1 Py €
Aiz,...,pm € A; withiy,ia, ... i € Tand i} # iy, iy # i3, ..., 0, | # i, and
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take qx = px — @ [px] fork = 1,2, ..., m. We then have limy_ oo ¢y [qx| = 0 and
the equality

on [P —on [P1]) - Pm — on [Pn])]
=on[aran]+ D DT on [a] on [HQk]
Sg[m] keS¢ keS
=on[(@ —on[ai]) - @n—on[an]))]

Thus, if condition (AF.2’) holds, then limy_, o ¢nN [p] exists for every p € A, and
hence,

0= tim (1" [T on [a]on [qu} VS ¢ [ml;

keS¢ keS

additionally, we have limy o0 @nN [(p1 - [p1]) o (Pm— @ [pm])] = limy— o0 on
[a1- - qm] =0, and thus

]\}iinm ©N [(p1 — ¢N [Pl]) <+ (pm — N [PM])] =0.

This shows that (AF.2’) implies (AF.2). Similarly, (AF.2) implies (AF.2’). O

In the literature, however, the most common definition of asymptotic free independence
for random matrix ensembles in terms of the linear functionals ¢ defined by (4.5) goes
as follows: {Xy ;}37_, withi e I are asymptotically freely independent if they have a
joint limiting (algebraic) distribution, i.e., imy_ oo ¢N [p] exist for every polynomial

p € A, and letting ¢ := limy_ » ¢y, We have

o1 —e[piDP2—¢[p2]) - (om — ¢ [pn]] =0

whenever py € A;, with iy # iz, i # i3,...,Im—1 7 in. The previous proposition
shows equivalence between the common definition of asymptotic free independence
and the one given in the introduction of this paper.

Now, the bounded cumulants property for the random matrix ensemble
{{Xn.i}ier}%—, can also be established in terms of multi-linear functionals. If for
each integer n > 1, we consider the n-linear map py : A x --- x A — C defined by

oN [P1.P2. - Pn] = [Tr (p1({Xy ien) . - Tr (pa({Xy i Jien)]  (4.6)

for all p1,p2,...,pn € A and where ¢,[-, ..., ] denotes the classical cumulant,
from Sect. 2.1, the random matrix ensemble {{X ;}ies}3’_; has then the bounded
cumulants property if only if

SzP|PN [p1.p2, - pu]| < o0 4.7)
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forall py, p2, ..., pn € Aandall integers n > 1. Moreover, under some mild assump-
tions, each polynomial py appearing in (4.7) can be replaced by

k (k k k
@) — onlpi"DGY — onlps"D - () — e Ipik)D
for some pol ials p!*’ ) & i
polynomials p;"’ € ‘Aif")’pZ € Al.;k), .-y Pm; € A, and still get the
mg

bounded cumulants property.

Proposition 15 Suppose oy : A — Cis a unital linear functional and py : AX - - - X
A — Cis an n-linear functional for each integer N > 1. If the limits limy _, oo on [p]
and limpy_ o0 PN [pl,pz, .. .,pn] exist forallp € A,p1 € Ai,,p2 € Aip,...,Pn €
A;, withiy, iz, ..., i, € I, then the following are equivalent:

(1 szplpzv [P1.p2. ... pa]| < ooforallpipa,....pa €A
) sxp|pN [d1. 92, ... qu]| < 0o if each qi is of the form

k) (k
ae = p}"ps” - - p®)

with /" € A and if? # i 80 # i L #in)

3) sup |,0N [qN 1, qN 2y qN,n]| < oo if each qy i is of the form

avi = @V —en DO — enpsD - X — on[pE ]
with p® € Ay and i 2%, i 2P, 0 i)
J

Proof Conditions (1) and (2) are equivalent since each py is n-linear and the algebra
A is generated by the sub-algebras {A4;};c;. We only need to prove that (1) implies
(3) and (3) implies (2).

Suppose (1) holds and let qy « is as in (3) for k = 1,2, ..., n. Then, by multi-
linearity, we have

on[an.1, - AN ]

> [TTT 0" onto®1 ) -ox | TTo. .. [Tp%

JiClmil,...,JnClmp] \k=1 jeJ¢ Jje j€n

The sum above is a finite sum, and, by hypothesis, each of its elements is uniformly
bounded with respect to N. Hence, (3) follows.

Let us assume now (3) holds, and let J be the set of all positive integers m satis-
fying the following property: If m = m| 4+ my + - - - + m,, for some positive integers
mi, ma, ..., m,, and pE-k) € Ai(k) for j = 1,2,...,my; and l(k) # zék), zék) #+

J

mkl

igk), (k) 7+ z,(,fk) for k = 1,2,...,n, then sup|pn(q1,92,...,qn)| < 00
N
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where each qi is given by q;x = pgk) pgk) pm) Note that we are done if we show
that J = {n,n + 1,n + 2,...}. By hypothesis, n belongs to J, so let us assume
n,n+1,...,m — 1 belong to J and let p;k), qn.x and qx as above. Consider the
equality

v[avas - ava] = on [ai. - an]

- > [TTT0% oo |- on | [To%. .. [To¥

JiClmi],....,J,C[m,] \k=1 jeJkC Jjed JjeJIn
ULIE#0
given by n-linearity of px. Now, since (3) holds, px(qn.1, .-, qN.») 1s uniformly
bognded with respect to N and, by induction hypothesis, so is ,oN[]_[ jen p; ), cees
I—[]el p; )] if at least one Ji is not [my]. Thus, pn(q1, ..., qn) is also uniformly
bounded with respect to N, and hence, m belongs to J. O

The multi-linear functionals py : A x --- x A — C given by (4.6) are tracial in
each entry, i.e., for ever integer k € [n] and polynomials qq, qy, - . ., q, € A, we have

onlat, -, Qk—1, 90k Qk+15 - - - 9nl = on[d1, -+ Q=15 QK905 Q15 - - > Qu]-

This traciality allows us to impose the condition that l(k) * z(k) in (2) and (3) from
Proposition 15 and still get uniform boundedness of py [pl, P2y .- p,,] with respect
to N.

Corollary 16 Suppose A, A;, ¢n, and py are as in Proposition 15. If py is tracial in
each entry, then condition (1) from Proposition 15 is equivalent to any of the following:

(2°) sup |[q1, q2, .-, qn]| < oo if each qi is of the form q; = pgk)pék) pf,]fk) with

p] € .A (k) andz1 2 #= l(k> (k) #= iék) (k) #* l,(,{{k) and l,,fk) #= l(k)

mk 1
(3’) sup lon [qN 1 AN 25 - - e qN,n]| < 0o if each qy i is of the form
(k)

(k) (k)

k (k k
avi = 0 = onp{" DY — enpy D - %) — en[pE])
with pl(/. € .A (A) and l(k) #* lék), lék) #* iék), ,(fk) | F l,(,ﬁ), and l(k) #* l(k)

Proof Note that while condition (2) from Proposition 15 allows the indexes i {‘ and
z,’jl , to be possibly the same, condition (2°) above explicitly prohibits this. Thus, by
traciality of py in each entry, we have that (2’) and (2) are equivalent, and hence, it
only remains to show that (3°) above implies (3) from Proposition 15.

Assume (3’) holds and let J be the set of all positive integers m satisfying the follow-
ing property: if m = my +my + - - - + m,, for some positive integers m1, my, . .., m,,
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and p( ) e A(k) for j = 1,2,..omgand iy # i if £ 00,0 i)
fork=1,2,...,n,then

sup lov [N, AN 2, - g ]| < 00 (4.8)

where each qu x as above. By hypothesis n belongs to J, so let us assume n, n 4
1,...,m — 1 belong to J and let p , qN x and qx as above. Thus, 1fz(k) # lfk) for

k =1,2,...,n, Inequality (4.8) holds. On the other hand, if 1,(,{3{) = llk) for some

k € {1,2,...,n},let us consider polynomials p, , and Ty x given by
k k
=) — en [P DE — enlp{”D)
k k k k k k
TNk —(p< ) §0N[P( )])(p( ) wN[p( - (pink),l - wzv[p,(n,f,l])
By traciality of py in the k-th entry, we have
N [aNs AN - AN ] =oN (AN PN TN K - AN

moreover, from the relation

~ (k
By = OXpE — onp©pD + onp®p 1 — onp®1pn[p}]
—on P10 — on D — on P 10%) — on[pP])

we get the equality

PNIAN,1, - AN ] =pNIaN,T,s - (Pﬁ,]f,gpg : wN[p,(ffk)Pl DTk anal

+ <PN[P§,’,2P§ ToNIAN 1. - TN - AN
k ~
(PN[P(k)]‘PN[P(l ONIAN1s - TN ks - -5 AN ]

(k)

- <PN[p1 )]pN[QN,l, ooy (P ¢N[P(k)])rN,k, s qN ol

— onlpS1onlan.1. - - PV — onp{ Div k. - - anal

by linearity of py in the k-th entry. But then, by induction hypothesis, every element
in the right-hand side of the equality above is uniformly bounded with respect to N,
and therefore, so is py[qn,1, - ., qN ] O

Having proved Proposition 14 and Corollary 16, we can now show that, under
the hypothesis of Theorem 4, the family of random matrix ensembles {{Uy ;D ;
Uy iY¥=1}ier has the bounded cumulants property.

Proof of Theorem4 Let A denote the algebra of non-commutative polynomials

C(x; |i el), and let A; C A denote the algebra C[x;] for each index i € I.
For each integer N > 1, take Xy,; = U ~.i Dy, ;Uy ; for every index i € I and
let oy : A — C be the unital linear map defined by (4.5). Note that if p € A;
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for some j € I, then p({XN,,-},-el) = N’jp(DN,J.)U]"\‘,’j, and hence, the limit
limy— o0 @n[p] exists for every p € A; and every i € I. Now, suppose we are
given polynomials p, € .Ail,p2 € Aiz,...,pm € A; withiy, i, ..., i, € I and
iy Fly, by Figyeen, iy | F1,,and i, # i,. Note that

Non [(p1 — o~ [P1]D P2 — on [P2]) -+ (P — @ [Pm])] = E[Tr (Ya)]
where
Yn = Uy Ani Uni ) Uni,An i, Uni,) - (Un, Ani, Uni,)

and each A i is of trace zero and given by

Ay, =Uni, (py (X)) = Blte(o, (Xni DI ) Uy,
=p;(Dn.i;) —tr(p;(Dn.i))IN-

Thus, by Lemma 3, there is a constant C depending only on the indexes i j such that

[Now [1 = o [P1D®2 = o [p2]) - 0w — o [P D] = € [T [ 4w, | -
j=1

But then, since supy H Dy H < o0 and limy_s o tr(Dﬁ‘v ;) exists for every k > 1 and

any i € I, we have supy HAN ; H < 00, and therefore,
)

Jim on [(p1 —on [P1D®2 = ¢n [P2]) - P —n [Pn]] =0 (49

Each linear functional ¢y is tracial, i.e., oy [pg] = ¢n[gp]forall p, g € A, and thus,
following similar arguments to those in the proof of Corollary 16, we can remove the
condition i, # i1 and still get (4.9). Therefore, by Proposition 14, the random matrix
ensembles {Uy ;D ; U;}‘i}%zl with i € I are asymptotically free, limy_, o @n[p]
exists for every p € A, and (1.15) holds for n = 1.

Fix now an arbitrary integer n > 2 and let py : A x --- x A — C be the n-linear
map given by (4.6) for every integer N > 1. Note that

PNPL. P2 -2 Pn) = & [T (p1(Dy ;) + - Tr (pu(Dy ;)] =0

ifp1 € Ai.p2 € Aiy, ..., pn € Aj, forsomeiy, iz, ..., i, € I. Thus, since n is arbi-
trary, the family of ensembles {{Uy ;D ;U 1’\‘, Y%= ier has the bounded cumulants
property if the multi-linear functional py satisfies (3°) from Corollary 16, namely

Szp |,0N [CIN,la qn.2s - s QN,n]| <00
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whenever each qy j is of the form

k (k k k
avi = 0 = onp{ DY — enpy D - ) — en[pE])
with p(.k) € A.(k) andl 7& lék),lék) #* igk), V('fk) | F z,ka), and l(k) * 1(k).

Suppose z @ pj , and qu x are as above and take Yy x = qn .« ({XN,I-},-GI) fork =
1,2, ... n Then, we have

N [qN,l’ qn,2, -« > ClN,n] =t [Tr (YN,l) Tr (YN,Z) veeen It (YN,n)] .

. k k . (k
Moreover, letting AN’I.;k) = pg- )(DN’i}k)) - tr(p§ )(DN,i;.k>))IN for each z](. ) and every

N > 1, we get AN’I.;]() is of trace zero, supy < 00, and

A
i

Yvi=(U A ur U A ur (U A U
Nk (N,if"> NP N <k>)( NP AN o N»ék)) (N oA ® N’gfz)

'"k s mA

Therefore, by Lemma 3, there is a constant C depending only on the indexes i;k) such
that
n
|,0N[q1v,1,qN,2,~~-,an|<Cl_[1_[ Ni® <00
k=1 j=1 o

5 Fluctuation Moments

The proofs of Theorems 1 and 2 are very similar, and thus, in order to avoid redun-
dancies, this section is devoted to prove only Theorem 1; nonetheless, what has to be
modified to obtain the conclusions from Theorem 2 is pointed out in the next section.

Let Xy,1 and Xy 2 be as in Theorem 1. Assume Yy = Yy 1 Yn2: YN om,
and Zy = ZN1ZN2 - - ZN2m, Where Yy i and Zy ; are given by (1.5) for some
polynomials py, p2, ..., P2m;»> Q1. Q2 - - - » Q2m, € C[x] and some indexes iy, iz, ...,

i2m1,j1, J2, . ..,jzmz € {1, 2} satisfying i1 = ji and (1.6). Note that

YN = (Un.i, AN UNi ) Un iy An 2UR i) -+ (Un gy AN 2 U i)
and

Zy = (Uy,;, BN1UR. ;) Uy j, By 2Un ) -+ (UN,jz,,,z By om, U]t’,jz,,,z)

with Ay x and By ; defined as in (1.11); moreover, we have ixx—1 = joj—1 = i1 #
i» = iox = jo;. Thus, following similar arguments to those in the proof of Lemma 3,
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we obtain
Cov[Tr(Yy), Tr(Zy) = ) Yo alrlp@o | D> a@)
0€ Py (£2m) \ 7€ Peyen(£2m) j:i[E2m]—[N]
T<60 ker(j)=>6

(5.1

where P, (+2m) denotes the set of all even partitions of [4=2m] with no blocks of the
form {k, —k}, u : P(£2m) x P(£2m) — C is the Mobius inversion function, a(j)
is given by

2my 2my

a() = [ [ Av Gt i) - [ | BNaGiama—ts jamyto)s
k=1 =1

for function each j : [£2m] — [N], and if j : [£2m] — [N] satisfies ker (j) = n,
then

2m 2my+2mo
alrl=cov | [[VeUotydow): [] ValUois o) (5.2)
k=1 k=2m;+1
with V,, | = Vz*k = U1>‘\</,i1UN,i2 fork = 1,2,...,m and 0 € Sym(£2m) is the

cyclic permutation given by

o=(—1,1,-2,2,..., —2my, 2m)
(—2my—1,2m; +1,...,—2m1 — 2mo, 2m1 + 2m»).

It turns out that (5.1) becomes

Cov[Tr(Yn), Tr(Zy)l= Y Y alrlur6)
O0€ Py (£2m) \ 7€ Peyen(£2m)
<6
Y a@+ow™h (5.3)
ji[£2m]—[N]
ker(j)=6

where P, , (£2m) denotes the set of all partitions 6 € P, (£2m) such that the graph
sum exponent 7g, defined in Sect. 3.1, equals m. Indeed, if we are given partitions = €
Peyen(£2m) and 6 € P, (£2m) satisfying 6 > m, then Theorem 5 and Proposition 6
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imply
2m 2my
olripe,) Y aQ)| <lalrllue, OIN® [T [Av| ] B
Ji[£2m]—[N] k=1 =1

ker(j)>6
5.4

where 7y is the number of connected components of the graph Gg. Now, by hypothesis,
sup || Dy || < oo and limy_s o tr(D’,‘\,’i) exists for every k > 1 and any i € {1, 2},
so we have

2m1 2m2

sup [ Tl Aw [Tl Bwa]l < oo.
N k=1 =1

Moreover, every connected component of Gy contains at least two edges since 0 is
even and has no blocks of the form {—k, k}, and hence, the graph sum exponent 7y
satisfies

T9p < m.

Additionally, since the unitary ensemble {{Un 1, Uy 2}} %, satisfies (I) from Lemma
3, it follows from the proof of Lemma 3 that there is a constant C independent from
N satisfying

lea []] < CoNT™.

Therefore, from (5.4) we obtain

olrlp@ e Y. al=0W™" (5.5)

ji[E2m]—[N]
ker(j)>60

unless the graph sum exponent g = m, and, consequently, we get (5.3).

Note that the condition 1y = m, for an even partition 0 € P(£2m) with no blocks
of the form {+k, —k}, forces each component of the undirected graph Gy to have
exactly two edges. Thus, for any partition 6 € P,,(&2m), each component of the

directed graph (_39 has one of the following forms:

Ey Ey Ey

And therefore, as illustrated at the end of Sect. 3.1, each graph sum } ;. j)>¢ a(j)
appearing in (5.3) can be written as a product of traces of matrices where each trace is
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of the following forms: Tr(Cn «Cn 1), Tr(CN’kC[(,’l), or Tr(Cn x o Cy,;) where Cy
and Cy ;belongtotheset{An 1, ..., AN 2m;> BN,1, ..., Bn,2m,}. Hence, letting ¢[ ]
be given by (5.2) for each partition ¥ € P(£2m), the conclusions in Theorem 1 will
follow from (5.3) once we determine the order of

Y alrlumo. (5.6)

7 € Peyen (£2m)
o0>m

Now, recall the values of Mobius inversion function are determined by (2.1), and given
explicitly by (2.2). Thus, to determine the order of (5.6), it is enough to compute ¢ [ ]
for even partitions 7 € P (32m) satisfying w < 0 for some other partition € in the set
Py (£2m).

Proposition 17 Suppose 6 is a partition in Py, (£2m). If 7 is an even partition such
that m < 0 and cy[7] is given by (5.2), then the following holds:

(1) for Uy Uy, = \/I—NW*HW, we have

1+ 0 (N_l) if there is a symmetric pairing partition
0<m satisfying either (1) or

(2) from Proposition 13
o (N_l/z) otherwise.

N"¢[r]

@) for U ; Uy ;, = 7z W*XHW, we obtain
1+ 0 (N _1) if there is a symmetric pairing partition
6<m satisfying (1) from Proposition13
1+ 0 (N_l) if there is a symmetric pairing partition
0 < & satisfying (2) from Proposition 13 and the

graph G has only double loops as components
0 (N_l/z) otherwise.

N"e[n] =

() for Uy ; Uy, = ¥ W*H*XHW, we get

14+ 0 (N_l) if m1 = my and there are integers
1<k <2m <l <2mi+2mjy so
that o' (—k) ~5 o' (l) for every integert > 0
N"o[r]l=12+0 (N_l) if there are integers 1 <k <2my <l <2my +2my
so that for eachinteger t > 0 we have
o~ (k) ~r o (k) and o7 (1) ~5 o' (1)
0 (N’]/z) otherwise.

The proof of Proposition 17 is based on the expected value of products of entries from
X and W, see relations (2.5) and (2.6), and the results on graph sums of the discrete
Fourier transform from Sect.3.2; however, it requires some technical intermediate
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steps, so we will omit it for now and leave it to the end of this section. Nonetheless,
the computation of (5.6) up to a term of order N ~"~1/2 is quite simple assuming that
Proposition 17 holds.

Lemma 18 Suppose 0 is a partition in Py, (£2m) and let c[n] be given by (5.2) for
each partition m € P(£2m). Then, the following holds:

(1) for U ; Uy i, = 7= W*HW, we have

Y. N"elrlu6)

70 € Peyen (£2m)
<6

1+ 0 (N_l/z) if 0 is a pairing partition satisfying either (1) or
= (2) from Proposition 13,
o (N’l/z) otherwise

(2) for Uy Uy i, = 75 W*XHW?*, we obtain

Y. N'alrlu6)
€ Poyen(£2m)
<0
1+ 0 (N‘l/z) if 0 is a pairing partition satisfying(1)from Pro-
positionl3,
1+0 (N_l/z) if there exists a pairing partition 6<6 satisfying
(2) from Proposition13 and 0 has only blocks of
the form {k, —k, 1, -1},
o (N’l/z) otherwise

(3) for U, Uy, = yW*H*XHW, we get

Y. N"lrlur6)

T E Poyen (£2m)
<0

1+ 0 (N‘l/z) if m| = my and there is an integer
2my + 1 <1 < 2my + 2my such that
0 =1{o'(=1), 07" (=D} | 1 =0},

24+ 0 (N’1/2) if there are integers 1 <1lj < 2m and
2m1+ 1<l <2m; +2my sothat® = 6; U6,
where 0 = {{o" (=1}), 0 7"} (=1} | t > 0}
02 ={{o"(=h), 07" (=)} | t = 0},

(0] (N_l/z) otherwise.
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Proof Suppose Uy ; Uy ;, = W*X HW /+/N. Propositions 13 and 17 imply that

Z N™c [ﬂ]M(n,e)zo(N—l/z)

T € Peyen (£2m)
<6

unless there are integers 1 < k < 2m; < [ < 2mp + 2m, satisfying one of the
following:

(1) k +1isevenand o’ (—k) ~g o~'(I) for all integers ¢ > O or
(i) k + [ is odd, o’ (—k) ~g o' (1) for all integers ¢+ > 0 and Gy has only double
loops as components

Assuming that (i) above holds, consider the pairing partition 0= {{o!(=k), o)} |
t > 0} and note that Proposition 17 implies that

> Nelra@o = Y N'alrlaee)+ o (NT12).
7 € Peyen (£2m) 7 € Peyen (£2m)
<0 f<m=<6

5.7

Moreover, since N"¢y [r] =1+ O(N _1) for any partition 7 satisfying 0 <7 <0,
we get

Y. Nablu@® = Y @)+ 0N
7T € Peven (£2m) 7 € Peyen (£2m)
n=f b<m<6
_J1+o(WNT?)ifo =0
|l o(nT?) iftd <o

from equations in (2.1) defining the M&bius inversion function. On the other hand, if
(ii) above holds, consider & = {{o"(—k), o' (=)} | # > 0} instead and note that (5.7)
above holds also in this case. Hence, since N"¢; [#] = 1 + O(N~') and N"¢; [7] =
O(N_l/z) for any partition 0 < < 6, we obtain

Y. N"olrlu(r6) = N"o[6]u6.0)
7T € Peyen (£2m)
T<6
+ Y, N'ablame) =1+0WN""?
7T € Peyen (£2m)
é§n<9

The other cases, namely Uy, ; Uy ., = W*HW /</Nand U}, ; Uy .. = W*H*XHW/N,
are proved in the same way, one chooses a suitable pairing partition 6 such that (5.7)
holds, and then the corresponding conclusion follows from Proposition 17 and the

equations in (2.1) defining the Mobius function. O
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As mentioned earlier, the proof of Theorem 1 is complete once we apply Lemma
18 to the relation (5.3). For instance, suppose U1>I\<’,i1 Uy, = W*H*XHW /N. Then,
Theorem 5, Lemma 18, and (5.3) imply that

Cov [Tr(Yy), Tr(ZN)] =6y, my Z Z al)

0€P j:[£2m]—[N]
ker(j)>6

+Y2 ¥ a(j)+0(N—%) (5.8)

6ePr  j:[E2m]—[N]
ker(j)>60

where P and P, are subsets of Py, (&2m) given by
Pr={{{o"(=D),o """ (=D} |t =0.1.2,....4m} | ] € [2m] \ [2m ]}
and

Py = {{{o" (1), o TN =D} o' (—h), o T )Y £ = 0} | [
€ [2mi], Iy € [2m] \ [2m ]}

Now, note the set P has cardinality 2m provided m; = mjy. Moreover, m|; = my

implies that a partition 6 € P(+2m) belongs to the set P; if and only if for some
integer 1 <1 < 2m the directed graph Gy can be represented as

1. 1E 1Em,]— 1Em,
FZ- FZE FZ Em.+- FZ Em.

where Fy denotes the edge E», 4+« and [ — k is taken module 2m; for k =

1,2,...,2m. Thus, for each integer 1 < [/ < 2m, there exists a unique 6 € P
so that
2mi
> a@) =]]Tr(AviBri).
jilEml—[N] k=1
ker(j)=>6

and hence, we obtain

2my /2my
Cov [Tr(Yn). Te(ZN)] = Smymy ) (1"[ r (AN,kBN,z_k)>

=1 \k=1

1
+Y2 ¥ a(i)—l—O(N‘f).
0eP, jilE2m]—[N]
ker(j)=>6
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On the other hand, the set P, has cardinality m - m, since

o' (1), o (=1} [ £ = 0} = {{o" (=m1 — 1), 07" " (=m; — 1))} | t > 0}
and

{o' (). o M=} | 1 = 0} = {{o' (=my — ). o " (=my — )} | 1 = 0}

forly = 1,2,...,myand [, = 1,2, ..., my. Moreover, a partition & € P(£2m)
belongs to the set 732 if and only if for some integers | <! <mjand 1 <l < my
the directed graph Gy can be represented as

Fani

Fai Faom Fa, a0 Hom He,

where /1 — ky and I, — kp are taken modulo 2m; and 2m,, respectively, for k; =
1,2,...,myandky = 1,2, ..., my. Thus, for each partition 6 € P, there are integers
1 <l <mpand 1 <1, < mj satisfying

mj mp
Y a@ =[] Tr(Avnik-1Avn ) ] T (BN btk 1By ty) -
J:i[Em]—[N] ki=1 k=1
ker(j)=>6

Therefore, we have

myp ma mj

Cov[Tr(Yy), Tr(Zw)1 =2 Y Y ] v (Avnsni—1An 11,

h=1h=1k=1

myp
[t (By.ntko1By.t,)
ky=1

2my /2mq
+ Smymy Y (H tr (AN,kBN,lk)> +OWN').

=1 \k=l1

The other cases, namely Uy, ; Uy ;) = W*HW /+/N and Uy Uni, =W XHW/N,
are proved in the same way, applying Lemma 18 to the relation (5.3) we obtain similar
relations to that in (5.8) that lead to (1) and (2) in Theorem 1.

The remaining of this section is devoted to the proof of Proposition 17. For clarity,
we have considered two cases: U;(,’l.l Uy, = W*H*XHW /N and U;t,’l.lUN’i2 =
W*YHW //N where Y is either the identity matrix Iy or an N-by-N uniformly
distributed signature matrix X. But first, let us introduce some more notation for
partitions.

Given a partition w7 € P(£2m), we let meyen and mogq denote the restriction of
7 to the sets {k € [£2m] | kiseven} and {k € [£2m] | k is odd}, respectively.
Moreover, we let 7¢¥°" and 7°% denote the partitions of {k € [£4m] | k is even }
and {k € [£4m] | k is odd}, respectively, given by 7" = {{2k | k € B} | B € «}
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and 7°%4 = {{2k —sign(k) | k € B} | B € 7} where sign(k) = 1, if k is positive, and
sign(k) = —1, otherwise. For instance, if 7 is the partition in P(%6) given by

m={{=14},{1,=3},{=2,3}, {2, —4}}

then
Teven ={{4}, (=2}, {2, =4}},  7oaa = {{—1}, {1, =3}, {3}},
7V ={{=2, 8}, {2, —6}, {—4, 6}, {4, —8}}, and
JTOdd Z{{_lv 7}» {1’ _5}’ {_3’ 5}’ {3’ _7}}

CaseUy , Uy, = A/LNW*YHW

Let Y be an N-by-N diagonal random matrix independent from W. Given a function
i:[+2m] — [N], we let

h(i) = hi()h2(i) and y@) = y1({Dy2(i)

where hy (i), ha (i), y1 (i), and y2 (i) are given by

mj

hi@) = [ [ H G akr, i) H* Gk, i21),
k=1
mi+my

ho()= [] HG o1 i) H* ook, i),
k=mi+1

mi

Vi@ =[] YG 2k i2ks)Y Gk ize1),
k=1
mi+my

o= [] Yl ot i)Y u 1. i)
k=mi+1
additionally, if we are given a function j : [£2m] — [N], we put
w(i, j) = wi(i, jwa(i, )

where wi (i, j) and w; (i, j) are given by

2m
wi ) =[] W oWk ji)
k=1
2mi14+2my
and  wa(i,j) = H Wik, )Wk, j—k)-
k=2m1+1
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Now, for every partition w € P(£2m) and any function j : [£2m] — [N] satisfying
ker (j) = m, we define &; [7r] by

> hoo)E[w(. )IE[yd)]

i:[£2m]—[N]
ker(i)=m

— Y h(oo)E[wi G DIEWGDIE[yi0)]E[y2(0)]

i:[2m]—[N]
ker(i)=m Uy

= &[] (5.9)

where 1 and 7; denote the restrictions of 7 to [£2m ] and [£2 m]\[£2m ], respec-
tively, and o € Sym(=£2m) is the cycle permutation given by

o=(—1,1,-2,2,...,—2mq,2my)
(—2my —1,2my+1,..., =2my; — 2my, 2m + 2m»).

Proposition 19 Let 7 be an even partition in P(£2m). Suppose Uy, WUni, =

W*YHW /+/N where Y is an N-by-N diagonal matrix independent from W so that
eachentry Y (i, i) takes values in the set {—1, 1}. If ca[7r ] and & [7] are given by (5.2)
and (5.9), respectively, then

N"c 7] = [x]+ ON"Y (5.10)

Proof Fix a function j : [£2m] — [N] satisfying ker (j) = m. Note that the
(j—2k+1, Jok—1)-entry of U;:/J'l Uy ;, and the (j_ok, jor)-entry of U;\‘,J.2 Uy ;, are given
by

N
Z ——=W*(2kt15 i—2k+ DY G2kr1s ik 1) H (—2kq1, ink— 1) W (i2k—1, j2k—1)
= UN
i2k41502k+1=1
and
N
I .. .
Y =Wk i)
. =~ N
i—op,ink=1

H*(i—ok, iop) Y (ink, i26) W (iak, Jok),

respectively. Thus, from (5.2) and the linearity of the covariance, we have that

N"qlx] = Y he)-cov[wili,joo) yi(), wai.joo) - y2(i)]
i:[£2m]—[N]
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where h(i), wi (i, j), w2(i, j), y1(i), y2(i), and o are defined as above. But, for every
functioni : [2m] — [N], we have that

wi(i,j) =wr(ioo,joo) and yi(i) =yi(ico) for k=1,2,
so we obtain

N"o[r] = Y hGooe)-cov[wi-yid. wali) - y2(0]. (5.11)

i:[£2m]—[N]

Moreover, from (2.6) we get that
E[wi(, w23, )1 =0 and E[w;(, )IE [wa(i, j)] =0

provided ker (i) # 7 and ker (i) # 71 U7y, respectively. And hence, equality in (5.11)
becomes

N"o[r] = Y hioo)EwiG jwa DIE [yiDy20)]

i:[£2m]—[N]
ker(i)=m

_ Z Z h@io 0)E [wi (i, )] E [wa(i, j)]

0eP(£2m) i:[£2m] %[N]
O>m U ker(i)=

E[yi®]E[y:(].

To obtain (5.10), it only remains to show that for & > 71 U m», i.e., 6 > my L but
0 # m U mp, implies

> hGooEwGDIEMWG)IEMO]Ey:0] =0 (V7).

i:[£2m]—[N]
ker(i)=60

Suppose § € P(+2m) satisfies 0 > 71 Um,. Then, we must have #(0) < #(rUmp) =
#(r1) + #(m2), or, equivalently,

#(0) — #(m1) —#(m2) < -1

Now, h(i o o) has absolute value 1 for any function i : [£2m] — [N] and
|E[y1(®]E [y2(D]] < 1. so (2.6) implies

Y hGoo)E[wiDIE W, DIE [yiD]E[y20)]

i:[£2m]—[N]
ker(i)=60
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N —# ' (N —# !
UL CRINCES T IS
N! N!
i:[£2m]—[N]
ker(i)=60

-0 (N—#(m>—#(zrz)+#<0>) -0 (N_l).

O

Proof of (1) from Proposition 17 Let Y be the identity matrix /. By Proposition 19,
we only need to show that

140 (N _1) if there is a symmetric pairing partition
6<m satisfying either (1) or (2)
from Proposition 13,
O (N7'/2) otherwise.

O] =

where &, [r] is given by (5.9). Note that from (2.6) and (5.9) we obtain the inequality

N —# !
|€2[n]] < % Y>> h(oo)
’ i[+2m]—[N]
ker(i)=m
(N — #(w))! (N — #(72))! .
+ > hioo)|.
N N i:[+2m]—[N]

ker(i)=m Uy

But then, if p,-1,, is a nonzero polynomial, $0 iS py~14y,.,7, bY Proposition 10, and
therefore, the last inequality and Corollary 8 would imply ¢ [7] = O(N~'/?). And
SO, We can assume p, -1, is the zero polynomial without loss of generality.

Now, for every functioni : [£2m] — [N]satisfying ker (i) = 7 we have h(ioco) =

1 since p, -1, is the zero polynomial; additionally, (2.6) gives E [w(i, j)] = W
since 7 is an even partition. Thus, from (5.9) we obtain
Grl=1- Z h@ioo)E[wi (i, HIE [w2(i, j)]. (5.12)

i:[£2m]—[N]
ker(i)=muUmy

Moreover, by Proposition 10, there is a symmetric pairing partition 6 < 7 such that
Py-1o4 18 also the zero polynomial, and hence, the partition 6 must satisfy one of the

conditions (/)-(6) from Proposition 13. Notice 6 = 6, U 6>, where ; and 6, denote
the restrictions of 6 to [£2m ] and [£2 m]\[£2m ], respectively, implies

Gr]=1-

(N —#(m)! (N —#(m))! N! 0 (N—l) ‘
N! N! (N — #(m Um))!
(5.13)
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Indeed if) = 01 L 02, then 91 and 92 must be even partitions, and so are 7y and 7
since < m implies 61 < m and 92 < m, 50 (2.6) gives

N —#(1))! e
% and E[w(i,j)] = #

Efwi(, j)] =
for every functioni : [+2m] — [N] satisfying ker (i) = 7| Ul r2; moreover, Proposi-
tion 10 implies the polynomial p, -1 is also zero since 6 = 0; Ll 6, < my U 72,
and thus, we obtain

omUmy

hGioa) = 1.

Hence, (5.13) follows from (5.12) provided 0 satisfies either 3), (4), (5), or (6) from
Proposition 13.

Assume now 9 satisfies either (1) or (2) from Proposition 13. Then, either 7 U w3
contains some singletons, if {k, [} € 7 or {k, —I} € 7 for some integers 1 < k <
2mp <l < ZmL + 2my, or my Uy = {{—k, k} | k € [£2m]}, otherwise. In any
case, the graph Gy, ., satisfies none of the conditions (1)-(6) from Remark 12 since
m1 + my > 2, and hence, the polynomial p, is nonzero. Thus, by (2.6) and
Corollary 8, we have

*1on1un2

> hoo)E[wi(i)IE W, j)]

i:[£2m]—[N]
ker(i)=m Uy

(N —#)! (N —#(m))!

< CNHmum)—3 e . e

(5.14)

for some constant C > 0 independent from N. Therefore, from (5.12) we get that
Glrl=1+0N""?).

]

Proof of (2) from Proposition 17 Let Y be a random N-by-N signature matrix inde-
pendent from W. Similar to the previous case, U;'\‘,’l.l UNJ.2 = W*HW/«/N, we can
assume p,-1,, 18 the zero polynomial and it suffices to show that

140 (N _1) if there is a symmetric pairing partition
6<m satisfying (1) from Proposition 13,
140 (N ") if there is a symmetric pairing partition 6<m
satisfying (2) from Proposition 13 and the graph
G has only double loops as components,
o (N_l/z) otherwise.

O] =

Let 7wodd, 1 and mogq,2 denote the restrictions of wogq to [£2m ] and [£2 m]\[£2m ],
respectively. Note that if 77,4q 1S not an even partition, then either 7woqq,1 Or 7odq,2 is not
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even, and hence, we obtain ¢;[7] = 0 since (2.5) would imply E [y; ()] E [y2()] =
E [y(i)] = 0 for every function i : [£2m] — [N] satisfying ker (i) = m. Thus, we
can further assume 7,44 is even. It then follows from (2.5) and (2.6) that

(N —#(m)!

h(ioo)=1, E[y(]=1 and E[w(,j)]= N

fori: [£2m] — [N] satisfying ker (i) = , and hence, we obtain

Glrl=1- > hico)E[yi®)]E[y2()]E[wi G DIE [wa(i, j)].

i:[+£2m]—[N]
ker(i)=m Uy

(5.15)
By Proposition 10, there is a symmetric pairing partition 6 < 7 such that Py-iof 18

also the zero polynomial, and thus, the partition 6 must satisfy one of the conditions
(1)-(6) from Proposition 13. However, if 6 satisfies either (3), (4), (5), or (6), then

Sr]=1

B N! N —#m)! (N = #@)! (N—l).
(N — #(m1 Ump))! N! N!
(5.16)

Indeed, suppose 0 satisfies either (3), (4), (5), or (6) from Proposition 13, let él and
éz denote the restrictions of 6 to [£2m1] and [£2 m]\[£2m ], respectively, and let
i:[£2m] — [N] be a function satisfying ker (i) = m; Ll 2. Note that 6 = él L éz <
71 U 7y since ) < m implies él < mry and ég < 1, and thus, by Proposition 10, the
polynomial p,-1,7, ., 1S Zero, and hence, we get

hioo) = 1.

Moreover, 1 and mp are even partitions since 6 is even and 6 = 01 6> < 7, so, from
(2.6), we get

. . (N —#(m))! .. (N — #(m2))!
E[wi @, j)] = — and E[wx(i,j)] = — N

The partltlons Todd. 1 and moqq,2 are also even since Qodd is even and § = 01 L 02 <
implies fodd = Oodd,1 U Bodd 2, Godd | < Todd,1» and fodd 2 < Todd,2 Where foqq,1 and

90dd,2 denote the restrictions of GOdd to [£2m1] and [£2 m]\[£2m ], respectively.
Thus, from (2.5), we have

Elyi®]E[y200] =

Consequently, we obtain (5.16) from (5.15). Now, similar to the case U;\‘,’l.l U Niy =

W*H W/\/N, if  satisfies either (1) or (2) from Proposition 13, then p, 14,7, is @
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nonzero polynomial and (5.14) holds, so, from (5.15), we obtain
Glrl=1+0(N""7?)

since we have |IE [y1 (i)] E [yz(i)] = 1| < 1 for any function i : [£2m] — [N].

It only remains to show that the undirected graph G, must have only double loops as
connected components if 6 satisfies (2) from Proposition 13. So, suppose 6 satisfies (2)
from Proposition 13. Note that if 7 has a block of the form {k, [}, then K+ is odd, and
hence, we must have either {k} or {/} is a block of w44, contradicting the assumption
that 7oqq is an even partition. Thus, v has only blocks of the form {k, [, —k, —[}, or,
equivalently, the undirected graph G, has only double loops as connected components.

[m}
CaseU} , Uy, = yW*H*XHW
For each function i : [+4m] — [N], we let H(i),@(i), X1 (i), and X, (i) be given by
2m
h(i) = l_[ H* (i _apq1, fok—1) H (i -2k, i20)
k=1
2m
gl = l_[ H*(i apq1, i—2k) H (i, i2x-1)
k=1
2my
10 =] [ XGak. ia0), and
k=1
2mi+2my
=[] Xt iw):
k=2m1+1
additionally, if we are given a function j : [£2m] — [N], we take
t = (t_l, tlv t—37 t37 ] t4m1+4m2—1) = (j—l» jlv j—2s j2» MR j—2m, ]2m) (517)

and let Wy (i, t) and W, (i, t), also denoted W (i) and W5 (i), respectively, be defined by

2mi

Wi, t) =[] Wak-1, k)W -ak41, t-241) and
k=1
2mi+2my

Wi t)= [ W, ks DW kg1, t-2k1).
k=2m1+1
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Now, given partitionst € P(£2m)ando € P,(2m)andafunctionj : [£2m] — [N]
satisfying ker (j) = w, we define €; [, o] by

> hGo®EM®DHIE RG]
i:[£4m]—[N]
ker(i)=aLizr°d

- 2 h(i o 3)E [Wi D] E [W2 ()] E [Xi D] E [R2 ()]
i:[+4m]—[N]
ker(i)=aLl n}’ddu p ;dd

= N"& [n, o] (5.18)

where rrfdd and ni’dd denote the restrictions of 77°% to the sets [4m ] and [£(4m ;| +
4my)] \ [2£4m ], respectively, @ is the partition given by @ = {{—2k, 2k, —21, 21} |
{k,1} € a}, and ¢ € Sym(+£4m) is the permutation with cycle decomposition

o=(—1,1,-2,2,...,—4mq,4m)
(—4my — 1,4m + 1, —4my — 2, ...,4m + 4my).

Proposition 20 Let m be an even partition in P(£2m). Suppose U]T/JI Uy, =
W*H*XHW/N. If ¢; [r] is given by (5.2) and &, [1, o] is given by (5.18) for every
pairing partition « € P,(2m), then

N o= Y &lral +0(Nm—1) (5.19)
aePy(2m)

Proof Fix a function j : [£2m] — [N] satisfying ker (j) = 7 and let t be as in (5.17).
The (j_k, jix)-entry of U]f,,l.l UN’i2 is then given by the sum

N
Z W (t k1, i—2k+1) H ™ (i—2k41, i—2k) X (i—2k, i)

i 2k+1,02k+1,1—2k 12k =1

H (i, i2k—1) W (i2k—1, t2k—1),

and hence, by Equation (5.2) and the linearity of the covariance, we get

N2y [7] = Z 8(i) - cov[Wi(i, to &) Ry (i), w2(i, t 0 &) -] (5.20)
i:[24m]—[N]

where (i), Wi (i, t), Wa (i, t), X (i), and X; (i) are defined as above and 5 € Sym (£=4m)
is the permutation with cycle decomposition

oc=(—1,1,-3,3,...,—4m; + 1,4m; — 1)
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(=dmy —1,4m +1,...,4m; +4my — 1).
Note that for every function i : [4m] — [N] we have
h(iod) =8{0d), Wi(i,t) =Wi(iod,tod), and Xi(i) =Xk(iod)
for k =1, 2, so we get

N lrl= Y h(io®) cov Wi t) i), wali.t) - Ko ()].
i:[£4m]—[N]

Now, suppose 6 = ker (i) for a function i : [+4m] — [N]. Since 7°% = ker (t),
from (2.6) we have that

E[wi(i, )Wa2(i,t)] =0 and E[w;(, t)]E[W2(3, t)] =

provided O,qq # 7°%4 and O,qq * (m Lip)0dd = nfdd I_Ingdd, respectively; moreover,
(2.5) implies that

ExiHx®]=EXOIEX®0] =0

if Oeven 1S NOt an even partition, Beyen has a block of the form {2k, —2k}, or 2k ~9 —2k
for some k € [2m]. Thus, we obtain

N"olrl= ) Y o DEWIG, OWa(i, O] E X %2 ()]

0 Py (£4m) [i4m]» N]
ker(i)=

- ) > h(o®DEW G OIE WG, 1)]
fe PJ,1 Ly (F4m) 1 [igrﬂ(zl])—> [N]
E [X1 ()] E [R2(0)]

where ﬁﬂ (£4m) denotes the set of all partitions & € P (44 m) such that 6,49 > B4
and for every integer k € [2m] there exists [ € [2m]\{k} such that 2k ~¢ —2k ~
=21 ~g 21

Now, letting ﬁ,g (£4m) denote the set of partitions 6 € 17,3 (£4m) so that 8 =
Beven U Bodds Bodd = B°%9, and every block of Geyen is of the form {2k, —2k, 21, —21}
with k, [ € [2m] and k # [, note the mapping

ar—aup

witha = {{2k, —2k,21, -2 I}L{k, I} € a} gives a bijection between the set of pairing
partitions P,(2m) and the set Pg(%4m) for any partition 8 € P(£2m). Thus, to get
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(5.19), it only remains to show that

Nolrl= 3 ), hGo®ENGOIERD)

0Py (£4m) It li4mH N]
er(i)=0

- > Y hGoDE[W (. O] E[Wa(i. t)]
0€ Py, Ly (£4m) 1: [igrr?l])»[ ]

EX MIE ]+ 0 (V")

Suppose 6 € qunz (£4 m). Then, since Oyqq > (1 L 72)°% = nfdd L nfdd and each
block of Beven has at least 4 elements, we get the inequality

#(0) < #(0odd) + #(Ocven) < #(m1) +#(m2) +m

with equality only if 0 = Oeyen L 6odd» Oodd = n{’dd U ni’dd, and each block of Geye, has
exactly 4 elements, i.e., 0 € Pz, (24 m); moreover, (2.5) and (2.6) imply that

Y hGo®EWiG HIEM G OIER O]E RG]

i:[£4m]—[N]

ker(i)=0
< W #m)t (N —#Cm)t Y hGod)|=0 (N*#(ﬂl)*#(ﬂzH#(&)).
N! N!
i:[4m]—[N]
ker(i)=0

Hence, if 6 € Py, 11z, (4 m)\ Py, Lz, (4 m), we have

> RGoPEWGOIEMGOIERDIERD] =0 (N").

i:[+4m]—[N]
ker(i)=60

Similar arguments shgw that #(0) < m + #(r) for every partition 6 € }3,, (+4m) with
equality only if 6 € P;(+4m), and hence, we get

Y RGoPEWGHIERGD] =0 (Nm*‘)
i:[4m]—[N]
ker(i)=60

for any 0 € Py (+4m)\ Py (+4m). O

@ Springer



2032 Journal of Theoretical Probability (2023) 36:1972-2039

Proposition 21 Suppose m € P(£2m) and o € P>(2m) and let ay and oy denote the
restrictions of « to the sets [2m1] and [2m1 + 2m]\[2m 1], respectively. If €[, o]
is given by (5.18), then

1+ 0 (N_l) if there is a symmetric pairing n € P(£4m)
satisfying (1) from Proposition 13 and such thatn <&@ U
1+ 0 (N*l) if @ # a1 Uay and there is a symmetric pairing
n € P(£4m) satisfying(3) from Proposition 13
with k and [ even and such that n < @ LI odd
O(N™ > ) otherwise.

odd
,

Olr, o] =

Proof Note that if the polynomial ps-i,@groda) is nonzero, then &[m,a] =
O(N~'/2). Indeed, if p5-1 o(@Lireddy 18 @ nonzero polynomial, so is Po—1o@Lr L gdd)
by Proposition 10, and thus, Corollary 8 implies there is a constant C independent
from N such that

3 R =| Y hiod)| <cnNmHO
i:[+4m]—[N] i:[£4m]—[N]
ker(i)=6 ~lo(@up°dd) ker(i)=aup°%

for B = m and B = m U my. But then, we get that €[, o] = O(N_l/z) since from
(2.5), (2.6), and (5.18) we have

N = #@) -1
N!
(N —#(@m)! (N —#(m))!
' N! ' N!

&, a]l < C-

+C . NHOD )=

Assume pz-1,Gzoddy i the zero polynomial. Then, by Proposition 10, there is a
symmetric pairing partition < @ L °% such that Ps-1oy 18 also the zero polynomial,
and hence, the partition » must satisfy one of the conditions (/)-(6) from Proposition
13. However, we have 77 = 1odd LI even, since < @ L4, and neither 2m or 2ms is
odd, so conditions (2) and (4)-(6) cannot hold. Now, note that if P5-1o@upodd) is zero
polynomial for some partition 8 € P(£2m), then

N! N!

Z H(iof}'\)z(N_#(&\uléodd)_i_l)y_(N_m—#(ﬂ)+1)1
i:[4m]—[N] . .

ker(i)=aLp°dd

since we would have ﬁ(i 00) = 1 for any function i : [£4m] — [N] satisfying
ker(i) = a u ﬂOdd. Hence, if a1, a2, 71, and 7 are all even partitions and the
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polynomial Py oaum 4y gad is zero, from (2.5), (2.6), and (5.18), we obtain
N —# ! ~ N —# !
UELEIIN Sl
N! N!
i:[+4m]—[N]
ker(i)=a Uz °dd
N —# ! ~.
UELIN S
N!
i:[+4m]—[N]
ker(i):&un}’ddunfdd
= N"&lr,a] = O (N’"—l) (5.21)

On the other hand, if either | or « is not an even partition, from (2.5) and (5.18), we
get

I (N —#(m))! ~. A _1
Qg[n,a]:W~T- > h(loa)=1+0(N ) (5.22)
i:[+4m]—[N]
ker (i)=& °4d

Suppose 7 satisfies (3) from Proposition 13 and let 1 < k < 4m and 4m| + 1 <
I < 4m + 4my such that n = {{6" (—k), 5 "1 (k)}, (62(=1), 52D} | o, 12 = 0}.
We need to consider three cases: k and [ are both odd, k + [ is odd, and k and [
are both even. First, if k£ and / are both odd, then Po—T g 4 im94d is also the zero
polynomial, 7r; and my are both even partitions, and @ = o U a2, so (5.21) holds.
Second, if kK + [ is odd, then ¢« = a1 U ap and m = m U o, but then (5.21) holds
too. Third, if k and [/ are both even, then w = 7| U 7» and either ¢« = o U ap or
a # a) Uay. However, if @ = o U an, we already know that & [7, o] = O(N_l)
from (5.21), and if @ # o) U oy, then o1 and oy are not even partitions, so (5.22)
holds. Finally, if n satisfies (1) from Proposition 13, we must have o # o U a2, S0
we obtain & [, o] =1+ O (N71). o

Proof of (3) from Proposition 17 Fix an even partition 7 € P(42m) such that w7 < 6
for some partition & € Py, (£2m) and let &; [, a] be given by (5.18) for each pairing
partition « € P>(2m). By Proposition 21, we have that

Y Qlmal =|Ex| + |Fx| = |Ex 0 Fz|+ O(N™'/?)
aePr(2m)

where E; and F; are the subsets of P,(2m) given by

o~ Odd . ..
E, — {a c Py(2m) ‘ n < o U for some symmetric pairing n € P(+4m) }

satisfying (1) from Proposition 13
and

<4 odd . e
Fy = {a c P,2m) ’ ) a # o) Uag and n < o U 7°% for some symmetric pairing } .

€ P(£4m) satisfying (3) from Proposition 13 with k and / even
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Thus, by Proposition 20, we only need to show that E; # Jimplies |[E;| =1, Fz # 0
implies | F| = 2, and E; N Fy is empty.
Let o and B be pairing partitions in P>(2m) and suppose there are symmetric

palrlngs Nas Mg € P (4 m) satisfying (1) from Proposition 13, n, < @ U4 and
npg < ,3 U 7794 Then, there are integers 2m + 1 < Iy, lg < 2m; + 2m; so that
o'l —1) ~ e c'(—=1) ~np 8_’(215 —1) Vvi>0
where ¢ is the permutation given by
o=(—1,1,-2,2,...,—4my, 4my)

(—4my — 1, 4my + 1, —4my =2, ..., —4my — 4my, 4m1 + 4my).
But then, we must have

0 Q2ly — 1) ~z g0aa 0 (—1) ~ Biirodd el ’(21,3 —1) Vt>0 (5.23)

odd odd

since 1 < & L% and ng < EI.I 7%, and thus, we get that

0 "(la) ~x 0" (=1) ~z 7 (p) ¥t =0
where o is the permutation given by

o= (—1,1,-2,2,..., —2my, 2my)
(—2my —1,2m; +1,—2my —2,...,—2my — 2ma, 2my + 2my).

In particular, for r = 0, we obtain I, ~; —1 ~5 lg, and thus, we have [, = Ig since
T is an even partition with only blocks of\the form {—k, +k, —I,1} and {+k, —I}.
Therefore, it follows from (5.23) that @ = B, or, equivalently, « = 8. This shows that
E; # ¢ implies |E;| = 1.

Suppose now there are symmetric palrlngs Na, Np € P(E4m) satisfying (3) from
Proposition 13 with k and [ even, 1, < @ U 7°%, and ng < ,8 U 77°44, Then, there
existintegers 1 < ky < kg < 2m so that

o' (—2ke) ~y, 0 ' (2ky) and T (—2kp) ~ng 07" (2kp) Vi >0,
and hence, we get
G (=2kg) ~gugoa 0 ' (2ky) and G'(=2kpg) ~p 0 T ' (2kg) Vi =0 (5.24)

since ny < @ U 7°44 and ng < pu 704 in particular, we must have

Y (2ka) ~a G Y (~2ky) and G (2kp) ~5 5V (~2kp) Vi = 0.

@ Springer



Journal of Theoretical Probability (2023) 36:1972-2039 2035

Now, since o andf are pairing partitions of [2m+2m»], @ = {{+2k, —2k, +21, =21} |
{k,1} € a},and B = {{+2k, =2k, +21, =21} | {k, 1} € B}, we get

0% (ko) ~a 0 (ky) and o (k) ~p 0> (kg) Vi =0,
where o is the permutation defined above; hence, we obtain
ar = {{ka), ke + 1, kg — 1}, .. kg +m1 — 1, kg — my + 1}, {kq +m1}}
and
Br = kgl kg +1, kg — 1}, ..., tkg +m1 — 1, kg —my + 1}, {kg +m}}

where o1 and B denote the restrictions of « and , respectively, to the set [+2m].
Let us show that o1 = 1. From (5.24), we also have that

M (—2ky — 1) ~0aa 6 M (2ky — 1), TH (kg + 1) ~0aa 6 H (=2ky + 1),
GH(—2kg — 1) ~youa G M (2kg — 1), and ¥ (2kg 4 1) ~poa & ¥ (=2kg 4+ 1)

for every integer t > 0, and thus, since 704 — ((2k — sign(k) | k € B} | B € }},
we obtain

o ky) = 0" (kg — 1) ~7 0" (k) and
o' kg) = o' (kg — 1) ~5 0" (kg) Vit >0.

Lett = kg — ko and note that
0% (ko) ~x 0 2 (k) ~7 02 (ka)
since
kg =0 (k) ~z 0 (k) and o F'(ky) = o (kp) ~x kp:

moreover, since 0% (ky) > 0, 0 "2 (ky), 0% (ky) < 0, and 7 is a partition with
only blocks of the form {—k, +k, —I, [} and {+k, —I} with k, [ > 0, we must have

O.Zt(ka) — _0,721+1(ka)’ Uzt(ka) — _O.Zl+1 (ka)’ or 0.72l+1(ka) — O'2t+1(k(¥),
or, equivalently,
oM 2 ke) = ko, 0 (k) = koo or 0 Y (ko) =kq.

But the equality 0¥ (k) = ko holdsifonly if s =0 mod 4m, so only oY (ky) =k,
can hold, and thus, we getky = kg orkg = ko +mysince0 <t = kg—ky < 2m;—1.
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Therefore, oy = f; and there is an integer 1 < k = ky, < 2m so that

o=k {tk+ 1L, k—1}, ... tk+m — 1, k—my + 1}, {k+m1}} = B1
= {{o¥ k), 0 X (k)} | 0 <t < my).

Similarly, letting o> and B> denote the restrictions of o and 8, respectively, to the set

[£(2m1 + 2m2)]\[£2m 1], we have oy = B> and there is an integer 2m; + 1 <[ <
2my + 2my so that

awy={{L{+1,1—-1},....{{+my—1,1—mr+ 1}, {l + m2}} = B2
= {{o¥ (1), 07 ()} 10 <t < ma).

This shows that | F;| = 2 provided F; # @ since y € F, implies

y =k}, tk+mi, l+mua or y={{k,l+m}, {k+m,l}}Ua
where @ = ({0 (k), 072 (k)} | 1 <t <mi — U {o?D), 02D} |1 <t <
my — 1}.

Finally, E; N F; is empty since E; # (J implies 7 # 7| U 77, and, on the other
hand, F; # (@ implies 7 = 7y U 5. O

6 Concluding Remarks

(1) The exponent —1/2 in the remainder terms O (N —1/2y essentially comes from the
—1/2 in Proposition 7 and can be upgraded to —1 as follows. One first shows

that for all partitions 7 = {By, ..., B} appearing in (5.3) and having at least one
through block—i.e., a block intersecting both [+2m1] and [£2 m]\[£2m]- the
polynomial p, -1, (X1, ..., X,) = Zl<,<s<r a; ¢X¢Xs satisfies exactly one of the
following:

(a) py-1oy 1s the zero polynomial, or
(b) there exists ¢ € [r] sothata,; = 0and a; ; # 0 or as ; # 0 for some s € [r].

For polynomials p, -1, satisfying (b) above, the last part of Proposition 7’s proof

shows that
N—1
3 TN P ton Utz | < ¢ N7 ©.1)
- paflorz :
J1sJ2sees Jjr=0

for some constant Cp, _, _independent of N. Then, carefully carrying the —1 from
(6.1) through the computations of &, [x] and &, [, o], one can replace —1/2 by
—1 in the remainder terms O (N~ '/?), first in Proposition 17 and Lemma 18, and
then in Theorems 1 and 2.
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2

3)

“)

The random matrix ensemble {Wy 1, Hy Wy 2}%_, satisfies the hypothesis in
Lemma 3, and hence, Theorem 2 is proved once we show (1.14) holds. To that
end, we first define appropriate versions of the functions w(i, j), wi (i, j), w2 (i, j)
and show that (5.10) still holds in this case. Then, following similar steps to

those in the proof of Proposition 17 and Lemma 18 and letting Uy, ; Uy ;. =

\/Lﬁ ~ 1HyWn 2, we conclude

Y. N'alrlu6)

77 € Peven (£2m)
<0

14+ 0 (N_l/z) if 6 is a pairing partition satisfying (1)
= from Proposition 13,
O (N~1/2)  otherwise.

One can replace the discrete Fourier transform Hy in the unitary random matrix
ensemble {Wy, HyWy/ VN, X NHNWy/ VN }%— by any Hadamard matrix H 1/\1
and still get an asymptotically liberating ensemble, see [1]. Moreover, key equa-
tions in this paper involving Hy still hold when we replace Hy by a general
Hadamard matrix H 1/\/ for instance, (3.8), (3.10), and (3.12). Thus, to determine
the corresponding induced fluctuations moments, one needs to compute graph
sums of H J/V and obtain similar results to those from Sect. 3.2. However, the results
for graph sums of Hy were possible thanks to the reciprocity theorem for gener-
alized Gauss sums and it is not immediate what tools could be used for a general
H,.

Allrhough Proposition 15 and Corollary 16 give equivalent conditions only for
point-wise uniform boundedness, similar statements and proofs provide us with
corresponding conditions for the point-wise convergence of a sequence of multi-
linear functionals. These conditions together with bounds for graph sums can be
exploited to study higher-order moments. In particular, the relations (4.4) and (5.3)
can be used to determine the higher-order moments induced by Haar-unitary and
Haar-orthogonal via the Weingarten Calculus from [4] and [5].
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