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Abstract
Using the differential operator �s := s I − x d

dx , s > 0, we build a new class of
infinitely divisible distributions on the half-line. For this class, we give a stochastic
interpretation and we provide several monotonicity properties for the associated sub-
ordinators. As an application, we solve a problem raised separately by Sendov and
Shan in (J Theor Probab 28:1689–1725, 2015) and by Simon in (Math Nachr 285(4):
497–506, 2012) on the distribution of the stable subordinators. Finally, we provide a
new complete monotonicity property for the Mittag-Leffler function.
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1 Introduction

Let CM denote the class of completely monotone functions, i.e., of those infinitely
differentiable functions f : (0,∞) → (0,∞) satisfying (−1)n f (n) ≥ 0 for all integer
n = 0, 1, 2, . . . Bernstein showed that the class CM corresponds to the Laplace
transforms of measures on [0,∞). That is f ∈ CM if, and only if,

f (λ) = Lν(λ) :=
∫

[0,∞)

e−λxν(dx), λ > 0, for some Radon measureν on[0,∞).

Let CF denote the class of cumulant functions,

CF := {ϕZ (λ) = − logE[e−λZ ], s.t . λ ≥ 0, whereZ ≥ 0 is a random variable}.(1)

Let ϕZ be the cumulant function of a non-negative random variable Z . Adapting [12,
Theorem 2.1] (by looking at the Laplace transform of Z as the Mellin transform of
e−Z ), we see that

ϕZ (λ)

λ
decreases to inf{x ≥ 0, s.t. P(Z ≤ x) > 0}, as λ increases to ∞. (2)

As a consequence of (1) and (2), one observes that any ϕ ∈ CF is infinitely
differentiable on (0,∞), satisfies ϕ(0) = 0,

d := lim
x→∞

ϕ(x)

x
∈ [0,∞) and ϕ(λ) − dλ ≥ 0, for all λ ≥ 0. (3)

An application ofHölder’s inequality shows that cumulant functions are concave.More
generally, elementary considerations show that every concave function ϕ : [0,∞) →
[0,∞), differentiable on (0,∞), satisfies

d := lim
x→∞

ϕ(x)

x
= lim

x→∞ ϕ′(x) ∈ [0,∞). (4)

Indeed, being concave and differentiable ϕ has non-increasing derivative and satisfies
ϕ(x) ≤ ϕ(y) + ϕ′(y)(x − y) for all x, y > 0. Divide both sides by y and take limit
infimum as y approach infinity. Then, divide both sides by x and take limit superior
as x approaches infinity. Combine the two resulting inequalities to conclude. Observe
that (2) provides the following property

ϕ ∈ CF �⇒ 0 ≤ xϕ′(x) ≤ ϕ(x), ∀x > 0 �⇒ lim
x→0+ xϕ′(x) = 0. (5)

The class of Bernstein functions, usually denoted BF , consists of those functions

φ : [0,∞) → [0,∞), satisfying φ′ ∈ CM.
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Every Bernstein function can be represented, see the book by Schilling, Song and
Vondraček [15, Eqs. (3.2), (3.3)], by

φ(λ) = q + dλ +
∫

(0,∞)

(1 − e−λx )μ(dx) = q + λ

[
d +

∫ ∞

0
e−λxμ(x,∞)dx

]
, λ ≥ 0, (6)

where q, d ≥ 0 are called the killing rate and the drift term, respectively. The so-called
Lévy measure μ satisfies the integrability condition

∫
(0,∞)

(1 ∧ x)μ(dx) < ∞. (7)

The classes CM and BF are closed under pointwise limits and form closed con-
vex cones. The former is also closed under multiplication, while the latter under
composition. From (6), one also has the implication

φ(λ) ∈ BF �⇒ φ(λ)

λ
∈ CM. (8)

For justification of these facts, see [15, Corollarys 1.6 and 3.8]. Bernstein functions
(with no killing rate) are in one-to-one correspondence with infinitely divisible non-
negative random variables, see [15, Lemma 5.8]: If X ≥ 0 has cumulant function ϕX ,
then the distribution of X is infinitely divisible if, and only ifϕX is a Bernstein function.
In this case, X is embedded into a subordinator (Xt )t≥0. That means that (Xt )t≥0 is
an increasing Lévy process starting from zero, and the celebrated Lévy–Khintchine
formula holds:

X
d= X1 and E[e−λXt ] = e−tϕX (λ), λ ≥ 0.

Let φ = q + ϕX be the Bernstein function obtained by adding to ϕX a killing rate
q > 0. This Bernstein function is then associated by the Lévy–Khintchine formula to
the killed process (X (q)

t )t≥0 defined by

X (q)
t :=

{
Xt if t < eq,
∞ otherwise,

where eq is an independent exponential random variable with parameter q. Bernstein
and completely monotone functions are also connected by the relationship

φ ∈ BF ⇐⇒ e−tφ ∈ CM, for all t > 0,

as shown in [15, Theorem 3.7]. Other good references for these classes of functions
and their properties are the books by Steutel and van Harn [17] and Bertoin [2]. Define

εt (ϕ)(λ) := 1 − e−tϕ(λ), ϕ ∈ CF,
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and observe that if ϕ(0) = 0, then

ϕ ∈ CF ⇐⇒ e−ϕ ∈ CM ⇐⇒ 1 − e−ϕ ∈ BF ⇐⇒ εn(ϕ) ∈ BF , for all n = 1, 2, . . .

(9)

(To see the necessity in the last implication, differentiate εn(ϕ) and use the facts
that e−ϕ and e−ϕϕ′ are both completely monotone and that product of completely
monotone functions is completely monotone.) Since

{φ ∈ BF, s.t . φ(0) = 0} ⊂ CF, (10)

we also observe that

φ ∈ BF ⇐⇒ t (φ − φ(0)) ∈ CF, for all t > 0 (11)

⇐⇒ εt (φ − φ(0)) ∈ BF, for all t > 0.

Finally, observe that any Bernstein function satisfies (3), (4), and (5) too.
In [7], Hansen introduced what he called the class of reverse s-self-decomposable

distributions, as follows:

Definition 1.1 (Hansen, Definition 3.1 [7].) Let X be real-valued infinitely divisible
random variable and s > 0. The distribution of X is called reverse s-self-
decomposable, if its characteristic function �X is such that

� ′
X(u) exists for u �= 0, lim

u→0
u � ′

X(u) = 0 (12)

and, for every c ∈ (0, 1), there exists a characteristic function �c such that

�X(u) = �cs

X (u/c) �c(u), u ∈ R. (13)

Taking into account properties (3) of cumulant functions and motivated by (13), we
introduce for c > 0 and s > 0, the difference operator ωc,s defined, for functions
ϕ : [0,∞) → [0,∞), differentiable on (0,∞), such that the limit

d := lim
x→∞

ϕ(x)

x
exists and is in [0,∞), and lim

x→0+ xϕ′(x) = 0. (14)

Let

ϕ�(λ) := ϕ(λ) − ϕ(0) − dλ, (15)

and note that ϕ�(λ) = ϕ(λ) − dλ ≥ 0, whenever ϕ ∈ CF . Define

ωc,s(ϕ)(λ) := ϕ�(cλ) − csϕ�(λ), λ ≥ 0, (16)
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and note that

ωc,s(ϕ)(λ) = ωc,s(ϕ�)(λ) = ϕ(cλ) − csϕ(λ) − (1 − cs) ϕ(0) − (c − cs) d λ.

Next, observe that

ϕ ∈ CF ∪ BF �⇒ ωc,s(ϕ)(0) = 0 and lim
x→∞

ωc,s(ϕ)(x)

x
= 0. (17)

By analogy toDefinition 1.1,we have the following one in terms of cumulant functions.

Definition 1.2 Let s > 0. We say that a non-negative random variable X has a dis-
tributions in the class RSDs, and we denote X ∼ RSDs, if its cumulant function ϕX

is such that for every c ∈ (0, 1), there exists a non-negative random variable Yc such
that

e−ωc,s (ϕX )(λ) = E[e−λYc ], λ ≥ 0. (18)

In other words, X ∼ RSDs if ωc,s(ϕX) ∈ CF , for every c ∈ (0, 1).

Remark 1.3 (i) Note that condition (18) is analogous to (13) obtained by replacing
the characteristic function of X with the normalized cumulant function ϕX (λ) −
dλ. Conditions similar to (12) are not needed in Definition 1.2, since, by (3), it
is immediate that ϕX satisfy

ϕ′
X(λ) − d ∈ (0,∞), for all λ > 0, and lim

x→0+ x (ϕ′
X(x) − d) = 0.

(ii) Theorem 2.6 below shows several important implications of (18). That is, if X
∼ RSDs, then

• The cumulant function ϕX is a Bernstein function, that is X is infinitely
divisible;

• The cumulant function ωc,s(ϕX) is a Bernstein function, for every c ∈ (0, 1),
that is, Yc is infinitely divisible.

Wewill see that the difference operatorωc,s is tightly linked to the differential operator
�s, s > 0, defined for functions ϕ : [0,∞) → [0,∞), differentiable on (0,∞) and
satisfying (14), by

�s(ϕ)(λ) := s ϕ�(λ) − λϕ′�(λ), λ > 0, �s(ϕ)(0) = 0. (19)

where ϕ� is given by (15). Note that

�s(ϕ)(λ) = �s(ϕ�)(λ) = s
(
ϕ(λ) − ϕ(0)

) − λϕ′(λ) − (s − 1) d λ,

�s(ϕ) ≡ 0 ⇐⇒ ϕ(λ) = q + d λ + cλs, for some q, d, c ≥ 0.
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Fig. 1 Dependencies between the main results

Analogously to (17), we have:

ϕ ∈ CF ∪ BF �⇒ lim
x→∞

�s(ϕ)(x)

x
= 0.

AdoptingHansen’s terminology, keeping (11) andDefinition 1.2 inmind,we introduce
the following subclasses of CF and BF . Recall the definition of φ�, given in (15).

Definition 1.4 For any s > 0, define

(i) CF s := {ϕ ∈ CF, s.t . ωc,s(ϕ) ∈ CF, ∀ c ∈ (0, 1)};
(ii) BFs := {φ ∈ BF, s.t . �s(φ) ∈ BF};
(iii) BF∗

s := {φ ∈ BF, s.t . 1 − e−tφ� ∈ BFs, ∀t > 0}.

Note that the class BF1 has already been investigated by the first two authors in [1,
Sect. 5]. The goal of this work is to develop a comprehensive probabilistic theory of the
classes BFs and BF∗

s , and to complete Hansen’s results and those of [1]. This allows
us, in Sect. 6, to answer a conjecture stated in [14, Open Problem 4.1] that is related
to a problem previously raised by Simon [16]. To help the reader navigate through the
results in this paper, we include Fig. 1, showing the dependencies between the main
results.

Section 2 deals with several analytic properties of the classBFs . Theorem 2.6 below
shows that

CF s = BFs ∩ {φ ∈ BF, s.t . φ(0) = 0}.

The former also shows that our extension of Hansen’s classes to RSDs, s > 0,
corresponds to the cumulant functions in the class BFs . A full characterization of this
class is given in Theorem 2.1.

Sections 3 and 4 give various stochastic interpretations for the class RSDs. For
instance, Corollary 3.1 provides the decomposability of the distributions of the asso-
ciated subordinators: if X is a non-negative infinitely divisible random variable, with
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Bernstein function ϕX , and is embedded into the subordinator (Xt )t≥0, then

ϕX ∈ BFs ⇐⇒ c Xt
d= Xcs t + d (c − cs) t + c Zc,s

t , for all t > 0, c ∈ (0, 1),

(20)

where in the last identities, d is the drift term and Zc,s
t is a non-negative randomvariable

whose distribution is necessarily infinitely divisible. This decomposition explains the
name of reverse self-decomposability and produces a self-similar temporal property
which mimics the one of the classical and well-known class of self-decomposable
distributions and self-similar processes. To explain this resemblance, we remind that
a random variable X is self-decomposable if it satisfies the identities in law

X
d= cX + Zc, for all c ∈ (0, 1),

where Zc is a random variable independent of X , necessarily infinitely divisible. By
[13, Theorem 16.1], we know that for such X , and for any γ > 0, there exists a
self-similar process with independent increments (Xt )t≥0, i.e., a process satisfying

(a Xt )t≥0
d= (Xaγ t )t≥0, for any a ≥ 0, (21)

and Xtn − Xtn−1 , . . . , Xt2 − Xt1 are independent for any tn > · · · > t1 ≥ 0, such that
X1 and X have the same distribution.

In Sect. 4, we will see that the concept of reverse self-decomposability is intimately
connected to the concept of generalized unimodality which is defined as follows:

Definition 1.5 [Olshen and Savage [11]] Let s > 0. A real-valued random variable Z
is s-star unimodal, if it is of the form

Z
d= U

1/s V ,

where U is uniformly distributed on (0, 1) and independent of V .

LetDF be the collection of distribution functions of non-negative randomvariables:

DF := {FZ(x) = P(Z ≤ x), s.t . x ≥ 0, Z ≥ 0}.

Proposition 4.1 below asserts, among other things, that if Z is a positive random
variable with distribution function FZ and cumulant function ϕZ , then

1 − e−ϕZ ∈ BFs ⇐⇒ 1

Z
is s − star unimodal (22)

⇐⇒ ωc,s(FZ) ∈ DF, ∀c ∈ (0, 1) (23)

⇐⇒ Z has a probability density function
ps(x)

xs+1 , x > 0,

where ps(x) is non-decreasing and right-continuous. (24)
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In Sect. 5 we show thatBF∗
s is a strict subclass ofBFs . Corollary 5.2 shows thatBF∗

s
corresponds to the subset of stabilizers of BFs with respect to composition, namely

BF∗
s := {φ ∈ BFs, s.t . ψ ◦ φ� ∈ BFs for all ψ ∈ BF}. (25)

There, we also show that if X is a non-negative infinitely divisible random variable,
with Bernstein function ϕX , with drift term d, and X is embedded into the subordinator
(Xt )t≥0, then ϕX ∈ BF∗

s if, and only if, the r.v. X (�)
t := Xt − d t satisfies any of

conditions (22), (23) or (24) for all t > 0. The interest of characterization (25) of
BF∗

s is that φ ∈ BF∗
s , if, and only if, decomposition (20), applied to the subordinator

(X (�)
t )t≥0, is preserved by subordination:

φ ∈ BF∗
s ⇐⇒ the subordinated process,(X (�)

ηt
)
t≥0

, also decomposes as in(20),

for arbitrary subordinators (ηt )t≥0, independent of (X (�)
t )t≥0. We stress that Sendov

and Shan [14] were the first to introduce the class BF∗
1 (and also BF1) without making

use of the identities in law (43) and (44) and density shapes (31) and (49) below. The
above discussion illustrates to what extent the classes BFs and BF∗

s are rich from a
stochastic point of view.

Finally, in Sects. 6 and 7, we draw attention to Simon’s work [16], who focused
on positive stable distributions, namely those associated with the Bernstein functions
φα(λ) := λα, α ∈ (0, 1). With a different approach and with techniques restricted to
this special case, Simon studied the range of values s > 0, for which φα ∈ BFs . We
emphasize that, for the function φα , we have, see (87):

φα ∈ BF∗
s ⇐⇒ �s(1 − e−φα ) ∈ BF .

Then, the problem becomes to find the values of s > 0 for which�s(1− e−φα ) ∈ BF .
This simple looking, but in our opinion non-trivial, question is completely answered in
Theorem6.3.As a consequence,Corollary 7.1 illustrateswhen the usualMittag-Leffler
function Eα is such that

λ �→ 1 − r �(1 − α) λ Eα(−λ), r > 0,

is completely monotone, or at least is non-negative.

Sections 1 and 1 consist of two appendices that clarify the structure of Lévy
exponents and Bernstein functions.

2 The ClassesBFs for s > 0

We start this section with an additional account on several interesting subclasses of
Bernstein and completely monotone functions that will be needed in the sequel. The
subclass of complete Bernstein functions, CBF , consists of those Bernstein functions
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that have associated Lévy measure of the form

μ(dx) = m(x) dx, x > 0, where m(x) ∈ CM. (26)

Similarly, the class of Stieltjes functions, S, consists of those completely monotone
functions having a representation measure that satisfies (26), i.e., a double Laplace
transform, also known as a Stieltjes transform. The class CBF is intimately related to
the class S via the equivalences, see [15, Theorem 6.2, Proposition 7.1, Theorem 7.3
and (7.3)],

φ(λ) ∈ CBF ⇐⇒ φ(λ)

λ
∈ S ⇐⇒ φ

(
1

λ

)
∈ S ⇐⇒ 1

φ(λ)
∈ S.

If in (26) we have x m(x) ∈ CM, then we have a Thorin Bernstein function, and we
denote φ ∈ T BF . The following equivalence is [15, Theorem 8.2]

φ ∈ T BF ⇐⇒ φ ≥ 0 and φ′ ∈ S. (27)

See Sect. 1 for the integral representations of the functions in these subclasses. The
corresponding classes of infinitely divisible distributions are, respectively, the famous
Bondesson class and the class of generalized Gamma convolutions popularized by
Bondesson [3], see also [8, 15, 17] for more information.

Sendov and Shan [14] focused on another proper subclass of BF , namely those φ

such that in (6) the Lévy measure μ has an harmonically concave tail, that is

x �→ x μ(x,∞), x > 0, is concave .

The latter is equivalent to φ ∈ BF1. After some analytical effort, the equivalence

φ ∈ BF1 ⇐⇒ μ(dx) = p(x)

x2
dx,

wherep(x) is a measurable, non-decreasing function,

was shown in [1]. The class BFs , introduced in Definition 1.4, is not void and extends
BF1. Indeed, consider the Bernstein function ϕα(λ) = λα, 0 ≤ α ≤ 1, associated
with the positive stable distribution, cf. (75) below. We have

ϕα ∈ BFs ⇐⇒ �s(ϕα)(λ) = (s − α)λα ∈ BF ⇐⇒ s ≥ α. (28)

The characterization of BFs , for all s > 0, is obtained by the following theorem.
Recall notation (14), (15), (19), and define

as := lim
λ→∞

φ�(λ)

λs
. (29)

(The next theorem gives conditions under which as exists.)
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Theorem 2.1 Let s > 0 and let φ : [0,∞) → [0,∞) be a differentiable function on
(0,∞). Then, the following assertions hold.

(1) If �1(φ) ∈ BF , then d exists and is finite, φ� ≥ 0 and

lim
λ→∞

�1(φ)(λ)

λ
= 0;

(2) Assume that d exists and is finite. Assume φ� ≥ 0 and �s(φ) ∈ BF . Then,

(i) φ�(λ)/λs ∈ CM;
(ii) φ ∈ BFs (in particular φ ∈ BF), limits (14), and (29) exist, and φ has the

representation

φ(λ) = φ(0) + d λ + as λs +
∫ ∞

1

�s(φ)(λx)

xs+1 dx, (30)

where d ≥ 0, as ∈ [0,∞), if s < 1, and as = 0, if s ≥ 1.

(3) The following conditions are equivalent:

(i) φ ∈ BFs ;
(ii) φ ∈ BF and the Lévy measure μ of φ is of the form

μ(dx) = ps(x)

xs+1 dx, x > 0, (31)

for some non-decreasing, right-continuous, function ps : (0,∞) → [0,∞),
such that ∫ 1

0

ps(x)

xs
dx +

∫ ∞

1

ps(x)

xs+1 dx < ∞, (32)

and ps(0+) = 0, if s ≥ 1;
(iv) φ has the representation

φ(λ) = φ(0) + d λ + as λs +
∫ ∞

1

ϕs(λx)

xs+1 dx, λ ≥ 0, (33)

where d ≥ 0, as ∈ [0,∞), if s < 1, and as = 0, if s ≥ 1, and ϕs ∈ BF has
no killing term nor drift term.

(4) The coefficient as can be expressed as as = ps(0+)�(1 − s)/s, whenever s < 1.
(5) BFs ⊆ BFr , for all r > s > 0.

Proof (1) By the definition of �1 and the assumption �1(φ) ∈ BF , we see that φ is
twice differentiable and −φ′′(λ) = �1(φ)′(λ)/λ ≥ 0. Thus, φ is concave and by (4),
we conclude that, as λ approaches infinity, φ′(λ) decreases to d ∈ [0,∞) and

lim
λ→∞

�1(φ)(λ)

λ
= lim

λ→∞

(φ(λ) − φ(0)

λ
− φ′(λ)

)
= 0.
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The inequality φ�(λ) = �1(φ)(λ) + λ
(
φ′(λ) − d

) ≥ 0 follows.
(2) (i): Since�s(φ�) = �s(φ) is infinitely often differentiable, then so is φ�. Observe
that

− d

dλ

(
φ�(λ)

λs

)
= 1

λs

�s(φ�)(λ)

λ
, λ > 0 (34)

is a product of two completely monotone functions, hence is completely monotone,
see (8). Then, since φ� is non-negative, conclude that φ�(λ)/λs ∈ CM.

(2) (i i): We first discuss the conditions on as . Since φ�(λ)/λs ∈ CM, then neces-
sarily as ∈ [0,∞). On the one hand, since the limit d is assumed to exist, by (29) we
see that a1 = 0. The assumption �s(φ�) ∈ BF implies that

lim
λ→∞

�s(φ�)(λ)

λ
= s a1 − lim

λ→∞ φ′�(λ) = − lim
λ→∞ φ′�(λ) ∈ [0,∞).

On the other hand, if s > 1, then

0 = lim
λ→∞

�s(φ�)(λ)

λs
= s as − lim

λ→∞ λ1−sφ′�(λ) = s as,

hence as = 0. Next, integrating (34), we obtain

φ(λ) = φ(0) + d λ + φ�(λ) = φ(0) + d λ + λs
(
as +

∫ ∞

λ

�s(φ�)(y)

ys+1 dy

)
, λ ≥ 0.

Then,making the change of variable y = λx , we arrive at (30). Observe thatλs ∈ BF if
s < 1 and if s ≥ 1, then as = 0. Since BF is a closed convex cone, see the comments
above (8), formula (30) shows that φ ∈ BF . Finally, the assumption �s(φ) ∈ BF
implies that φ ∈ BFs .
(3) (i) �⇒ (i i): By the definition of the class BFs , we have that φ and �s(φ)(λ) are
both in BF . By representation (6) of φ, it follows that

�s(φ)(λ) = λ

∫
(0,∞)

e−λx[s μ(x,∞)dx − x μ(dx)
] ∈ BF .

Thus, necessarily

s μ(x,∞) dx − x μ(dx) = νs(x,∞) dx, for some Lévy measureνs .

We deduce that μ is absolutely continuous and could be written in form (31) with
some non-negative function ps . Further,

νs(x,∞) = s
∫ ∞

x

ps(u)

us+1 du − ps(x)

xs
(35)

is non-increasing, i.e., νs(dx) = −d(νs(x,∞)) = dps(x)/xs is a positive measure,
or in other words, ps(x) is a non-decreasing function. Since the integral is continuous
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in x and νs(x,∞) is right-continuous, then so is ps(x). For later use, we record that
in this case, �s(φ) = �s(φ�) is represented by

�s(φ)(λ) =
∫

(0,∞)

(1 − e−λx )
dps(x)

xs
, λ ≥ 0. (36)

Integrability condition (32) on ps(x) is a reformulation of (7). It is clear that since ps

is non-decreasing and right continuous, then ps(0+) ∈ [0,∞). For the last assertion,
note that the integrability of ps(x)/xs on (0, 1) implies that

lim
x→0+ xps(x)/xs = lim

x→0+ ps(x)/xs−1 = 0,

hence p(0+) = 0, if s ≥ 1.
(3) (i i) �⇒ (i): is obtained by reading the arguments in (i) �⇒ (i i) in reverse.
(3) (i) �⇒ (i i i): is true with ϕs = �s(φ) in (30).
(3) (i i i) �⇒ (i): Change the variable under the integral y = λx in (33) and then
differentiate with respect to λ to get �s(φ) = ϕs . This implies that �s(φ) ∈ BF and
by part 2) (i i), we conclude that φ ∈ BFs .
(4) For s < 1, we have

as = lim
λ→∞

φ�(λ)

λs
= ps(0+)

�(1 − s)

s
+ lim

λ→∞
1

λs

∫ ∞

0
(1 − e−λx )

ps(x) − ps(0+)

xs+1 dx

and

lim
λ→∞

1

λs

∫ ∞

0
(1 − e−λx )

ps(x) − ps(0+)

xs+1 dx

= lim
λ→∞

∫ ∞

0
(1 − e−y)

ps(y/λ) − ps(0+)

ys+1 dy = 0,

follows from (32), from the monotonicity of ps , and from the dominated convergence
theorem.
(5) Use the fact that

φ ∈ BFs ⇐⇒ φ ∈ BF and �s(φ) ∈ BF
�⇒ φ ∈ BF and �r (φ) = (r − s)φ� + �s(φ) ∈ BF
⇐⇒ φ ∈ BFr .

This concludes the proof of the theorem. ��
Remark 2.2 Note that the set BFs is closed under pointwise limits and forms a closed
convex cone. This is immediate from its definition with the help of [15, Corollary 3.9].
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Theorem 6.2 in [15] states that the operator � defined by

�φ(λ) := λ2
∫

(0,∞)

e−λxφ(x) dx, φ ∈ BF,

is a bijection from BF onto CBF . Let BFTs, s > 0, be the class of Bernstein functions
ϕ represented by

ϕ(λ) = q + dλ +
∫

(0,∞)

λ

λ + u

ps(u)

us
du, λ ≥ 0, (37)

where q, d ≥ 0 and ps satisfies conditions 3(ii) of Theorem2.1. By (104), one sees that
BFT 1 = TBF . The following extension of this bijection gives an additional interest
to the class BFs .

Proposition 2.3 The operator � is a bijection fromBFs ontoBFTs . Moreover,BFTs ⊆
BFTr if s < r .

Proof If φ ∈ BFs , then, by Theorem 2.1, there exist q, d ≥ 0 and a non-decreasing
function ps such that

φ(λ) = q + dλ +
∫

(0,∞)

(1 − e−λu)
ps(u)

us+1 du, λ ≥ 0,

and elementary computation shows that�φ(λ) is given by the right-hand side of (37).
The surjectivity is obtained by reversing the calculus. The inclusion BFTs ⊆ BFTr is
obvious since

ps(u)

us+1 = ur−s ps(u)

ur+1 ,

and u �→ ur−s ps(u) remains non-decreasing. ��
Remark 2.4 In [3, (9.5.1), pp. 150] and [15, Definition 8.9], a particular class of
Bernstein functions was introduced. In [15], it is denoted by T BF s, s > 0, and
it corresponds to those Bernstein functions such that the corresponding Lévy measure
μ in (6) has a density of the form

μ(dx) = m(x) dx and x �→ x2−s m(x) ∈ CM.

It is not difficult to show that

s ≥ 1 �⇒ BFT s ⊂ T BF s .

To check the latter, use point 3(ii) in Theorem 2.1, and the fact that ps(0+) = 0 if
s ≥ 1, to obtain that any function ϕ ∈ BFT s , with s ≥ 1, is represented by (37), hence
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has the form

ϕ(λ) = q + dλ +
∫ ∞

0
(1 − e−λx ) ms(x) dx,

and the function

x �→ x2−s ms(x) = x2−s
∫ ∞

0
u1−s ps(u) e−ux du

=
∫

(0,∞)

(∫ ∞

vx
u1−s e−u du

)
dps(v)

is completely monotone.

Point 3 in next proposition shows a nice sufficient condition for a function to be in
BFs .

Proposition 2.5 Let s > 0 and let φ ∈ BF have drift term d. Then, the following hold.

(1) If φ ∈ BFs , then φα(λ) := φ(λα) ∈ BFs, for every α ∈ (0,min(1, s)]. In the
case when d = 0, the implication holds for every α ∈ (0, 1].

(2) If φ ∈ BFs, s ≥ 1, then

ψa,s(λ) := a s
(
φ(λ) − φ(0) − d λ

) − λ
(
φ(λ + a) − φ(λ) − a d

) ∈ BF, for everya > 0.

(38)

(3) If φ satisfies (38) for some s > 0, then φ ∈ BFs .

Proof (1) It suffices to use that d := limx→∞ φ(x)/x ∈ [0,∞) implies

lim
x→∞ φα(x)/x = 0

and to write

�s(φα)(λ) = s
(
φ(λα) − φ(0)

) − α λα φ′(λα)

= α
(

s
(
φ(λα) − φ(0)

) − λα φ′(λα) − (s − 1) d λα
)

+ s (1 − α)
(
φ(λα) − φ(0) − d λα

) + (s − α) d λα

= α �s(φ)(λα) + s (1 − α) φ�(λα) + (s − α) d λα,

then, use that non-negative linear combinations and compositions of Bernstein func-
tions are Bernstein. In the case when d = 0, the last term above disappears, leaving
non-negative linear combination of Bernstein functions for every α ∈ (0, 1].

(2) There is no loss of generality to assume that φ has zero killing rate and drift
term, and by Theorem 2.1 the Lévy measure of φ is given by (31). For x > 0, define

ε(x) := 1 − e−x

x
and la,s(x) := s

∫ ∞

x

ps(u)

us+1 du − ε(ax)
ps(x)

xs
. (39)
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Observe that 0 < ε(x) < 1 and that

κs(x) := s
(
1 − ε(x)

) + x ε′(x) ≥ κ1(x) ≥ 0.

Then, using (35), it is clear that

la,s(x) ≥ s
∫ ∞

x

ps(u)

us+1 − ps(x)

xs
≥ 0.

Integrating by parts, using that ε(ax) is a continuous function and [4, Theorem 6.2.2],
gives

∫ ∞

x
ε(au)

dps(u)

us
= −ε(ax)

ps(x)

xs
−

∫ ∞

x

ps(u)

us+1 (auε′(au) − sε(au)) du

= −ε(ax)
ps(x)

xs
−

∫ ∞

x

ps(u)

us+1 (κs(au) − s) du

= la,s(x) −
∫ ∞

x

ps(u)

us+1 κs(au) du.

(In the first equality, use (32) to conclude that ps(x)/xs+1 approaches zero at infinity.)
This expresses la,s as the right tail of a positive measure:

la,s(x) =
∫

[x,∞)

(
κs(au)

ps(u)

us+1 du + ε(au)
dps(u)

us

)
,

implying that la,s is non-increasing. It is also right-continuous, because ps(x) is. The
fact that

νa,s(du) := κs(au)
ps(u)

us+1 du + ε(au)
dps(u)

us

is a Lévy measure, follows from (39). Using both representations of φ in (6), one can
see that

λ �→ ψa,s(λ) = a
∫ ∞

0
(1 − e−λx ) νa,s(dx) ∈ BF .

(3) Use the fact that BF is closed under taking point wise limits and notice that
�s(φ) = lima→0+ ψa,s/a. ��

Recall the difference operators ωc,s introduced in (16). It is easy to verify that we
have

ωcn+1,s(φ)(λ) = ωc,s(φ)(cnλ) + csωcn ,s(φ)(λ), n = 1, 2, . . .

123



16 Journal of Theoretical Probability (2024) 37:1–42

and by an induction, that

ωc,s(φ) ∈ BF �⇒ ωcn ,s(φ) ∈ BF, for all n = 1, 2, . . . (40)

Further ωc,s is tightly linked to the differential operator �s given in (19). Indeed, if
φ : [0,∞) → [0,∞) is differentiable on (0,∞), then

ωc,s(φ)(λ) = cs
∫ 1

c

�s(φ)(λx)

xs+1 dx, c ∈ (0, 1), (41)

�s(φ) = lim
c→1−

ωc,s(φ)

1 − c
= lim

c→1−
1 − e−ωc,s (φ)

1 − c
. (42)

Indeed, to see (41), one needs to integrate by parts the second term in the middle of
(19), while formula (42) follows from L’Hôpital’s rule. These observations lead to the
following result.

Theorem 2.6 Let s > 0 and φ be a cumulant function.

(1) If ωc,s(φ) ∈ BF for some c ∈ (0, 1) and s ≥ 1, then φ ∈ BF .
(2) The following conditions are equivalent.

(i) φ ∈ BFs ;
(ii) ωcn ,s(φ) ∈ CF for some sequence cn ∈ (0, 1), such that limn→∞ cn = 1;

(iii) ωc,s(φ) ∈ BF for all c ∈ (0, 1).

(3) If r > s > 0 and X ∼ RSDs, then X ∼ RSDr.

Proof (1) Recall that the class BF is a convex cone, closed under taking point-wise
limits. If ωc,s(φ) ∈ BF , then (40) implies ωcn ,s(φ) ∈ BF for all n = 1, 2, . . .. Thus,
φ(0) = 0, s ≥ 1 and (16) yield

lim
n→∞ ωcn ,s(φ)

(
λ

cn

)
= lim

n→∞

(
φ(λ) − cnsφ

(
λ

cn

)
− (cn − cns)d

λ

cn

)

= φ(λ) − 1ls=1 dλ ∈ BF .

Therefore, we conclude that φ ∈ BF .
(2) We use again, the fact that BF is closed under taking point-wise limits.

(i) �⇒ (i i): If φ ∈ BFs , then by definition �s(φ) ∈ BF . By (41), we obtain that
ωc,s(φ) ∈ BF for every c ∈ (0, 1). Then, (11) andωc,s(φ)(0) = 0 imply thatωc,s(φ) ∈
CF for every c ∈ (0, 1).
(i i) �⇒ (i): The assumption and (9) imply that 1 − e−ωcn ,s (φ) ∈ BF for all n. Now
the second equality in (42) shows that �s(φ) ∈ BF and together with Theorem 2.1,
part 2), we conclude that φ ∈ BFs as well.
(i) ⇐⇒ (i i i): The necessity is done in (i) �⇒ (i i). The sufficiency is similar to
(i i) �⇒ (i), using the first equality in (42).

(3) The assertion is an immediate consequence of point 5 in Theorem 2.1, the
definition of the class RSDs and the above equivalence 2)(i) ⇐⇒ 2)(i i) of this
theorem. ��
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3 Timescale Decomposability and Jurek–Vervaat-Type Stochastic
Integral Representation for Subordinators Associated with the
ClassBFs

We will focus on the stochastic interpretation of the classes BFs, s > 0 under several
aspects. In Theorem 2.1, we have seen that for a cumulant function φ, �s(φ) ∈ BF
yields φ ∈ BF . Thus, using representations (6) and (31), we retrieve for any function
φ ∈ BFs and c ∈ (0, 1), the following representation of ωc,s(φ):

ωc,s(φ)(λ) = cλ
∫ ∞

0
e−cλxμ(x,∞) dx − csλ

∫ ∞

0
e−λxμ(x,∞) dx

= λ

∫ ∞

0
e−λx

[∫ ∞

x/c

ps(u)

us+1 du − cs
∫ ∞

x

ps(u)

us+1 du

]
dx

= csλ

∫ ∞

0
e−λx

∫ ∞

x

ps(u/c) − ps(u)

us+1 du dx,

where in the last equality we performed the changes of variables u �→ u/c. With
Theorem 2.6, we deduce the following stochastic interpretation.

Corollary 3.1 Let s > 0. Let φ ∈ BF , φ(0) = 0, be associated to the subordina-
tor (Xt )t≥0. Under the notation of Theorem 2.1, the following two conditions are
equivalent.

(1) φ ∈ BFs ;
(2) For all c ∈ (0, 1), there exists a subordinator (Z (c,s)

t )t≥0, such that we have the
identity in law

c Xt
d= Xcs t + d (c − cs) t + Z (c,s)

t , (43)

where (Xcs t )t≥0 and (Z (c,s)
t )t≥0 are assumed to be independent, and the Bernstein

function of Z (c,s) equals ωc,s(φ).

Under the two conditions above, let (Y (s)
t )t≥0 be the subordinator with Bernstein

function φY (λ) := φ(λ) − dλ − as λs , let (S(s)
t )t≥0, s ∈ (0, 1), be a s−standard

stable subordinator (c.f. (75) below), independent of (Y (s)
t )t≥0 and recall that as = 0

for s > 1. Then, we have the identities in law:

Xt
d= d t + (as)

1/s S(s)
t + Y (s)

t and c Y (s)
t

d= Y (s)
cs t + Z (c,s)

t , (44)

where the random variables Y (s)
cs t and Z (c,s)

t are supposed to be independent.

Proof The assumptions φ ∈ BF and φ(0) = 0 imply that φ is a cumulant function,
cf. (10). By Theorem 2.6, we equivalently have φ ∈ BFs or ωc,s(φ) ∈ BF for all
c ∈ (0, 1). Identity (43) is justified by the decomposition

φ(cλ) = cs φ(λ) + d (c − cs) λ + ωc,s(φ).
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The first identity in (44) is a consequence of representation (33), while the second one
is obtained by the decomposition

φY (c λ) = cs φY (λ) + ωc,s(φ),

completing the proof. ��
As already noticed before (21), identities (43) and (44) resemble the proper self-

similarity property. The latter suggests conducting a deeper investigation into the
stochastic interpretation of the class BFs ; this is the main subject of the next section.

At this stage, we can propose the following Jurek-Vervaat-type stochastic inte-
gral representation associated with the class the class BFs . Recall the notations of
Theorem 2.1 and of Corollary 3.1.

Theorem 3.2 Let s > 0 and let φ be Bernstein function, with φ(0) = 0, associated
with a positive and infinitely divisible random variable X. Then, φ ∈ BFs , if, and only
if, the law of X is defined by the stochastic integral

X
d= d + a1/s

s S(s)
1 +

∫ 1

0
u−1/sd Z (s)

u , (45)

where S(s)
1 has the standard positive stable distribution (c.f. (76) below) if 0 < s < 1,

independent of the subordinator Z (s). The term as , the Bernstein function φZ (s) and
the Lévy measure νs of Z (s) are given by

as = ps(0+)
�(1 − s)

s
1ls<1, φZ (s) = �s(φ)

s
, and νs(dx) = dps(x)

s xs
, (46)

where ps is a non-decreasing, right-continuous function, satisfying integrability
conditions (32).

Proof By Theorem 2.1, φ ∈ BFs is equivalent to representation (33):

φ(λ) = dλ + as λs + 1

s

∫ 1

0
ϕs

(
λ

u1/s

)
du, λ ≥ 0. (47)

for some Bernstein function ϕs which, by (30), necessarily equals to �s(φ). Observe
that representation (47) of φ fits perfectly the injective one in [15, Lemma 10.1], when
taking the θ -function there equal to θ(u) = u−1/s, u ∈ (0, 1), and then the Bernstein
function of Z (s) is �s(φ)/s. By (36), the Lévy measure of Z (s) is necessarily given
by (46). This shows that (47) implies (45) and (46).

For the opposite direction, note that conditions (10.13) and (10.14) in [15, Propo-
sition 10.4] are satisfied since the Bernstein function �s(φ)/s has no drift nor killing
terms. We now check that νs satisfies integrability condition (10.15) in [15, Proposi-
tion 10.4]. After taking ϑ(y) := −(θ−1)′ = s/ys+1, when y > 1, and ϑ(y) := 0
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otherwise, the integrability condition is translated as follows:

Is :=
∫ ∞

0

(∫ 1/x

0
y ϑ(y) dy

)
νs(x,∞)dx

=
∫ 1

0

(∫ 1/x

1
y ϑ(y) dy

)
νs(x,∞)dx

=
∫ 1

0

∫ ∞

x

(∫ 1/x

1
y ϑ(y) dy

)
νs(du) dx

=
∫ ∞

0

(∫ 1∧u

0

∫ 1/x

1
y ϑ(y) dy dx

)
νs(du)

=
∫ ∞

0
ηs(u)

dps(u)

us
< ∞, (48)

where

ηs(u) :=
∫ 1∧u

0

∫ 1/x

1

1

ys
dy dx =

∫ ∞

1

∫ (1/y)∧(1∧u)

0

1

ys
dx dy =

∫ ∞

1

(uy) ∧ 1

ys+1 dy.

Now, observe that Js := ∫ ∞
0 (x ∧1)x−(s+1)dx < ∞ if s < 1, and recall that ps(0+) =

0 if s ≥ 1. Then, using Tonelli-Fubini’s theorem and a change of variable, express the
terms in (32) as

∫ 1

0

ps(x)

xs
dx +

∫ ∞

1

ps(x)

xs+1 dx =
∫ ∞

0

x ∧ 1

xs+1

(
ps(0+) +

∫
(0,x]

dps(u)

)
dx

= ps(0+) Js 1ls<1 +
∫

(0,∞]

(∫ ∞

u

x ∧ 1

xs+1 dx

)
dps(u)

= ps(0+) Js 1ls<1 +
∫

(0,∞]
ηs(u)

dps(u)

us
.

Thus, conditions (32) and (48) are equivalent and condition (10.15) in [15,
Proposition 10.4] holds. Proposition and [15, Lemma 10.1] imply that λ �→
s−1

∫ 1
0 �s(φ)(λu−1/s)du is a Bernstein function that is the cumulant function of∫ 1

0 u−1/sd Z (s)
u . Representation (47) follows. ��

4 The ClassesBFs and Generalized Unimodality

Here, we provide another justification for the introduction of the class BFs and also a
stochastic interpretation for Hansen’s result [7, Lemma 2.3, case n = 1].

Proposition 4.1 Let s > 0. Let the random variable U be uniformly distributed on
(0, 1) and let G be exponentially distributed with parameter 1. Let Z be a positive
random variable with cumulant function ϕ and distribution function F. Then, the
following conditions are equivalent.
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(1) 1 − e−ϕ ∈ BFs ;
(2) Z has a probability density function of the form

f (x) = ps(x)

xs+1 , x > 0, where ps(x) is non-decreasing and right-continuous;
(49)

(3) For all c ∈ (0, 1),

Fc(x) := F(x/c) − cs F(x)

1 − cs
, x ≥ 0, (50)

is the distribution function of some positive (continuous) random variable Zc.
(4) 1/Z is s-star unimodal in the sense of Definition 1.5, i.e., there exists a positive

random variable Vs such that

Z
d= Vs

U1/s
d= eG/s Vs, whereU andG are independent ofVs; (51)

(5) For any positive random variable Y independent of Z, the quotient Y/Zs has a
non-increasing probability density function;

(6) For any positive random variable Y independent of Z, λ �→ λE[e−λY/Zs ] ∈ BF;
(7) λ �→ λE

[
e−λ/Zs ] ∈ BF;

(8) λ �→ λE
[
Zs/(λ + Zs)

]
is a Thorin Bernstein function in the sense of (27).

Proof We start with this observation: since

1 − e−ϕ(0) = 0 and lim
λ→∞(1 − e−ϕ(λ))/λ = 0,

then (1 − e−ϕ(λ))� = 1 − e−ϕ(λ). Thus, by part 2)(i i) of Theorem 2.1, we have

�s(1 − e−ϕ) ∈ BF ⇐⇒ 1 − e−ϕ ∈ BFs �⇒ 1 − e−ϕ ∈ BF �⇒ 1 − e−ϕ ∈ CF .

(52)

(1) ⇐⇒ (2): This is an application of the equivalence between (3i) and (3ii) in
Theorem 2.1, applied to 1 − e−ϕ with μ(dx) = d F(x), after noticing that

1 − e−ϕ(λ) = E[1 − e−λZ ] =
∫ ∞

0
(1 − e−λx ) d F(x).

(1) ⇐⇒ (3): Recall the operator ωc,s is defined in (16). The implication is obtained
by writing

ωc,s(1 − e−ϕ)(λ)

1 − cs
= E[1 − e−cλZ ] − csE[1 − e−λZ ]

1 − cs
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= λ

1 − cs

∫ ∞

0
e−λx(P(cZ > x) − csP(Z > x)

)
dx

= λ

∫ ∞

0
e−λx(1 − Fc(x)

)
dx (53)

=
∫ ∞

0
e−x(1 − Fc(x/λ)

)
dx . (54)

By definition, Fc ≥ 0, since F is non-decreasing. Now, using (52), and Theorem 2.6,
we get equivalences

1 − e−ϕ ∈ BFs ⇐⇒ ωc,s(1 − e−ϕ) ∈ BF, ∀c ∈ (0, 1)

⇐⇒ Fc ≤ 1 and is non-decreasing, ∀c ∈ (0, 1),

while the second equivalence follows from representations (6) and (53). Since Z is a
positive random variable, we have Fc(0) = F(0) = 0. Then, we use the dominated
convergence theorem together with (54) and the fact that ωc,s(1 − e−ϕ)(0) = 0, to
obtain that limx→∞ Fc(x) = 1. All this shows that Fc is the distribution function of a
positive random variable for all c ∈ (0, 1).

(2) �⇒ (4): Observe that if a positive random variable V is independent of U, then
the probability density function of the product U V is expressed by

fUV (x) = E

[
fU(x/V )

V

]
=

∫
(0,∞)

1

v
1l{ x

v
∈(0,1)}

P(V ∈ dv)

v
=

∫
(x,∞)

P(V ∈ dv)

v
.

(55)

By assumption, the probability density function of Z has form (49); thus, the one of
Z−s is expressed by

fZ−s (x) =
f
(

x− 1
s

)

s x1+ 1
s

=
ps

(
x− 1

s

)

s
, x > 0. (56)

Then, fZ−s is a non-increasing function of form (55), i.e., Z
d= U

−1/s Vs for some
positive random variable Vs independent of U. The last identity in (51) is trivial.

(4) �⇒ (5): This is simply seen by Y/Zs d= U (Y /V s
s ) and referring to formula

(55).
(5) �⇒ (6): If qs is the non-increasing probability density function of Y/Zs , then

λE[e−λY/Zs ] = λ

∫ ∞

0
e−λx qs(x)dx,

complies with the second representation of a Bernstein function in (6).
(6) �⇒ (7): Take Y = 1.
(7) �⇒ (2): Compare with the second representation in (6) to conclude that the

Bernstein function λ �→ λE[e−λ/Zs ] needs to have killing rate and drift term zero.
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Then, one sees that Z−s has a non-increasing, right-continuous probability density
function and we conclude by using the first equality in (56).

(2) �⇒ (8): Since Z−s has a probability density function of form (49) we have

E

[
λZs

λ + Zs

]
=

∫ ∞

0

λxs

λ + xs

ps(x)

xs+1 dx,

then making the change of variable x = y1/s , we obtain that

E

[
λZs

λ + Zs

]
= 1

s

∫ ∞

0

λ

λ + y

ps(y
1
s )

y
dy,

meets form (104) in Appendix, of a Thorin Bernstein function.
(8)�⇒ (2): By the uniqueness of representation (104), we see that the Thorin Bern-

stein function λ �→ E[λZs/(λ + Zs)] has no killing nor drift terms (q = d = 0) and
that the probability density function of Zs has the form fZs (z) = σ

(
(0, z])/z2, z > 0,

for some positive measure σ . Since

fZs (z) = 1

s
z
1
s −1 f

(
z
1
s

)
,

then, with the change of variable x := z1/s , we obtain

f (x) = s xs−1 fZs (xs) = s
σ
(
(0, xs])
xs+1 , x > 0.

This gives us (49) with ps(x) := s σ
(
(0, xs]). ��

Remark 4.2 (i) Observe that the equivalent conditions in Proposition 4.1 do not hold
if Z has degenerate distribution, that is if it has cumulant function of the form d λ,
for d > 0. Indeed, for s > 0, we have

�s(1 − e−dλ)(λ) = s − e−dλ(s + d λ) /∈ BF,

as can be verified by taking successive derivatives. Thus, 1 − e−d λ /∈ BF∗
s .

(ii) The integrability of f in (49) on (0, 1) implies that

lim
x→0+ x f (x) = lim

x→0+ ps(x)/xs = 0.

This is an improvement on the similar observation that one can make from the first
integral in (32).

Example If Z
d= eG/s , then its probability density function is f (x) = s/xs+1, x > 1,

and we have

1 − e−ϕ(λ) = E[1 − e−λZ ] = 1 − s λs
∫ ∞

λ

e−u

us+1 du.
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Thus, we obtain

�s
(
1 − e−ϕ

)
(λ) = s (1 − e−λ), λ ≥ 0.

Let ω̃c,s , ω̂c,s , and �̃s stand for the following modifications of the operators ωc,s

and �s :

ω̃c,s(h)(λ) := ωc,s(h)(λ)

1 − cs
, for c ∈ (0, 1)

�̃s(h)(x) := s h(x) + x h′(x).

The introduction of the operator ω̃c,s is justified by forms (53). The next result
completes Proposition 4.1 by giving more information on the probability density
function fc (respectively, f ) of the continuous random variable Zc (respectively, Z )
in Proposition 4.1.

Proposition 4.3 Under the notation and the conditions of Proposition 4.1, we have
the following assertions.

(1) The density of Z satisfies

f (x) = s E[V s
s 1l(Vs≤x)]
xs+1 , for Lebesgue almost everyx > 0; (57)

(2) The function f is almost everywhere differentiable, and we have the representation

�s(1 − e−ϕ)(λ) = s
∫ ∞

0
(1 − e−λx ) f̃s(x) dx, λ ≥ 0, (58)

where

f̃s(x) := 1

s
�̃s+1( f )(x) = p′

s(x)

s xs
is a probability density function;

(3) The functions ω̃c,s(1 − e−ϕ) and fc, for c ∈ (0, 1), are represented by

ω̃c,s(1 − e−ϕ)(λ) =
∫ ∞

0
(1 − e−λx ) fc(x)dx, λ ≥ 0, (59)

fc(x) = cs

1 − cs

∫ 1

c

�̃s+1( f )(x/u)

us+2 du, x > 0. (60)

(4) We have the identities in law

c Z
d= Bc,s Z + (1 − Bc,s)Zc, for all c ∈ (0, 1), (61)

where Bc,s has the Bernoulli distribution with parameter cs and the random vari-

ables Bc,s, Z , Zc are assumed to be independent. Furthermore, Zc
d−→ Z, as

c → 1−.
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(5) We have the identities in law

Zc
d= Z̃s Wc,s, where Wc,s

d= Law
(
c eG/s | c eG/s < 1

)
, for all c ∈ (0, 1),

(62)

and Z̃s is a positive random variable (independent of Wc,s ) with probability density
function f̃s .

Proof (1) The relationship is obtained by the change of variable x := u−1/s Vs and
then exchanging the order of integration in:

E[1 − e−λZ ] = E[1 − e−λU−1/s Vs ] = E

[∫ 1

0

(
1 − e−λu−1/s Vs

)
du

]

=
∫ ∞

0
(1 − e−λx )

s E
[
V s

s 1l(Vs≤x)

]
xs+1 dx .

(2) By (49), since ps is non-decreasing, the function f is almost everywhere differ-
entiable on (0,∞). The claim that f̃s(x) is a probability density function on [0,∞)

can be checked directly by integration by parts, utilizing (i i) in Remark 4.2. Using the
fact that �s(1− e−ϕ)(0) = 0 and an integration by parts, representation (58) follows
from

�s(1 − e−ϕ)(λ) = �s
(
u �→ E[1 − e−u Z ])(λ)

= �s

(
u �→

∫ ∞

0
(1 − e−ux ) f (x) dx

)
(λ)

=
∫ ∞

0
�s(u �→ 1 − e−ux ) f (x) dx

=
∫ ∞

0

(
s (1 − e−λx ) − λxe−λx) f (x) dx

=
∫ ∞

0

(
s (1 − e−λx ) f (x) − e−λx (

x f ′(x) + f (x)
)

dx

= s −
∫ ∞

0
e−λx (

(s + 1) f (x) + x f ′(x)
)

dx

= s −
∫ ∞

0
e−λx �̃s+1( f )(x) dx = s

∫ ∞

0
(1 − e−λx ) f̃s(x) dx .

Finally, use (49) to observe that

�̃s+1( f )(x) = (s + 1) f (x) + x f ′(x) (63)

= (s + 1)
ps(x)

xs+1 + x

(
p′

s(x)

xs+1 − (s + 1)
ps(x)

xs+2

)
= p′

s(x)

xs
.
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(3) Using (6) and (53), we obtain

ω̃c,s(1 − e−ϕ)(λ) = λ

∫ ∞

0
e−λx(1 − Fc(x)

)
dx =

∫ ∞

0
(1 − e−λx ) fc(x)dx .

In order to derive (60), we differentiate (50) and use (49), to find

fc(x) = cs

(1 − cs)xs+1 [ps(x/c) − ps(x)] = cs

(1 − cs)xs+1

∫ x/c

x
p′

s(y) dy

= cs

(1 − cs)xs

∫ 1

c

p′
s(x/u)

u2 du,

where we made the change of variable y = x/u. Finally, expressing p′
s(x) from (63)

and substituting it in the latter integral, we conclude

fc(x) = cs

(1 − cs)xs

∫ 1

c

(x/u)s�̃s+1( f )(x/u)

u2 du

= cs

(1 − cs)

∫ 1

c

�̃s+1( f )(x/u)

us+2 du.

(4) Noting that F(x/c) = P(cZ ≤ x) and differentiating (50), we obtain

fcZ (x) = cs f (x) + (1 − cs) fc(x), x > 0,

which immediately proves identity (61).
(5) Expressing (60) in the form

fc(x) = s
cs

1 − cs

∫ 1

c

f̃s(x/u)

u

du

us+1 ,

and using the formula for the density of the product of two independent random vari-
ables, gives that the probability density function ofWc,s is s cs (1−cs)−1 u−s−1, c <

u < 1. It is identified in (62) by the expression

P(c eG/s ≤ u | c eG/s < 1) = P(G ≤ s log(c/u))

P(G ≤ s log c)
= 1 − (c/u)s

1 − cs
, c < u < 1,

after differentiating with respect to u. ��
Remark 4.4 Note that (59) can be re-written as

ω̃c,s(1 − e−ϕ)(λ) = 1 − e−ϕc(λ),

where ϕc is the cumulant function of the non-negative random variable Zc with
probability density function fc.
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5 The ClassBF∗
s and Generalized Unimodality

Let s > 0. Let φ be a Bernstein function with killing term q = φ(0) and drift term
in d. The Bernstein function φ − q corresponds to a non-killed subordinator (Xt )t≥0,
whereasφ�(λ) = φ(λ)−dλ−q is theBernstein function of subordinator (Xt −d t)t≥0.
Observing that the function

εt (φ)(λ) = 1 − e−tφ(λ) = 1 − e−tq + e−tq
∫

(0,∞)

(1 − e−λx )P(Xt ∈ dx)

is also a Bernstein function for every t > 0, it is natural to introduce the class

BF∗
s := {φ ∈ BF, s.t . �s

(
εt (φ�)

) ∈ BF, ∀t > 0}, (64)

as was done in Definition 1.4. Since lim
x→∞(1− e−tφ�(x))/x = 0, we have (εt (φ�))� =

εt (φ�) ≥ 0, and Theorem 2.1 guarantees that Definition (64) is equivalent to

BF∗
s = {φ ∈ BF, s.t . εt (φ�) ∈ BFs, ∀t > 0}.

Using the fact that the class BF is closed under pointwise limits and the fact that

lim
t→0+

�s(εt (φ�))
t

= �s(φ�),

we see that BF∗
s ⊂ BFs . The inclusion could be strict. Indeed, if φ(λ) = λ0.9, then

�1(φ)(λ) = 0.1 λ0.9 ∈ BF, �1(1 − e−φ)(λ) = 1 − e−λ0.9(1 + 0.9 λ0.9) /∈ BF .

Therefore, we have

φ ∈ BF1 \ BF∗
1 .

The fact that 1−e−λ0.9(1+0.9 λ0.9) /∈ BF is checked by the sign change of its second
derivative. By definition of the classes BF∗

s , and by the relation

�r (εt (φ�)) = �s(εt (φ�)) + (r − s) εt (φ�),

we have that

BF∗
s ⊂ BF∗

r ⇐⇒ 0 < s < r .

We now present a simple characterization of the functions in BF∗
s . Due to the

representation

�s
(
εt (φ�)

)
(λ) = s εt (φ�)(λ) − λεt (φ�)′(λ) = s − e−tφ�(λ)

(
s + tλφ′�(λ)

)
, (65)
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we see that if φ ∈ BF∗
s , then both functions �s

(
εt (φ�)

)
and s − �s

(
εt (φ�)

)
are

non-negative, and by (9), we obtain that

λ �→ ϕs,t (λ) := s − �s
(
εt (φ�)

)
(λ) = e−tφ�(λ)

(
s + tλφ′�(λ)

) ∈ CM, ∀t > 0.(66)

Conversely, assume (66) holds and φ ∈ BF , the latter implies that φ� ∈ BF . Since
limλ→0+ λφ′�(λ) = 0, see for example (2.11) in [14], the non-increasing function ϕs,t

is bounded by s, thus �s
(
εt (φ�)) = s − ϕs,t ∈ BF , we have the equivalences

φ ∈ BF∗
s ⇐⇒ φ ∈ BF and λ �→ s − �s

(
εt (φ�(λ))

)
= e−tφ�(s + tλφ′�(λ)

) ∈ CM, ∀t > 0. (67)

Remark 5.1 We now show that BF∗
s is not void. Consider the Bernstein function

ϕ(λ) := √
λ − log(1 + √

λ) ∈ BF and let φ be such that

φ(0) = lim
x→∞

φ(x)

x
= 0, φ ∈ BFs, and λ �→ (

λφ′(λ)
)2 ∈ BF .

For instance, one can take φ(λ) = λα, α ∈ (0, 1/2], s ≥ α. We show that φ ∈ BF∗
s .

Indeed, observing that

λ �→ log s + tφ(λ) − log
(
s + tλφ′(λ)

) = t

s
�s(φ) + ϕ

(
(t λ φ′(λ)/s)2

) ∈ BF , ∀t > 0,

we conclude that

λ �→ e−(tφ(λ)−log(s+tλφ′(λ))) = e−tφ(λ)
(
s + tλφ′(λ)

) ∈ CM, ∀t > 0.

As a consequence of Proposition 4.1, we connect the class BF∗
s to generalized

unimodality, a relation that reads on the level of the subordinators.

Corollary 5.2 Let s > 0 and let φ be a Bernstein function, such that φ� is not identically
equal to 0. Let (X (�)

t )t≥0 be the subordinator corresponding to φ�. Then, the following
conditions are equivalent.

(1) φ ∈ BF∗
s ;

(2) ψ(φ�) ∈ BFs, for all ψ ∈ BF;
(3) for every t > 0, the random variable Z := X (�)

t satisfies any of the equivalent
conditions of Proposition 4.1.

Proof Take ϕ = tφ� in Proposition 4.1, for t > 0, and deduce the equivalence
between parts (1) and (3). To see the equivalence of parts (1) and (2), we use the
representation

ψ(φ�(λ)) = qψ + dψφ�(λ) +
∫

(0,∞)

εt (φ�)(λ) μψ(dt).
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The facts that BFs is a closed convex cone and that the integral is a limit of a sequence
of Bernstein functions, ensure that we can use the linearity of the operator �s to
exchange it with the integral, see [15, Corollary 3.9]. ��
Remark 5.3 Let φ be Bernstein function associated with the subordinator (Xt )t≥0.

(i) With the observation

lim
t→0+

�s(εt (φ))

t
= �s(φ) + (s − 1) dλ,

we deduce that, if s ≤ 1 and �s
(
εt (φ)

) ∈ BF , for all t > 0, then φ ∈ BFs .
(ii) One can notice that

for s > 0 :�s
(
ψ(φ)

) ∈ BF , for all ψ ∈ BF �⇒ �s
(
εt (φ)

) ∈ BF , for all t > 0;
for s ∈ (0, 1] :�s

(
ψ(φ)

) ∈ BF , for all ψ ∈ BF ⇐� �s
(
εt (φ)

) ∈ BF , for all t > 0.

Indeed, for the first implication take ψ(λ) = 1− e−tλ, while the second uses the
same argument as in the proof of Corollary 5.2 and part (i) of this remark.

(iii) The harmonic and potential harmonic measures are given, in the vague sense,
by

U (dx) =
∫ ∞

0
P(Xt ∈ dx) dt and H(dx) =

∫ ∞

0
P(Xt ∈ dx)

dt

t
,

respectively. They are linked to φ via

1

φ(λ)
=

∫
[0,∞)

e−λ x U (dx) and
φ′(λ)

φ(λ)
=

∫
[0,∞)

e−λ x x H(dx), λ > 0.

(68)

Thus, due to the shape of the distribution of P(X (�)

t ∈ dx) provided by Corol-
lary 5.2 in conjunction with (49), it is immediate that if φ ∈ BF∗

s , then the
harmonic and potential harmonic measure, associated with φ�, have form (31),
i.e.,

U�(dx) = u(x)

xs+1 dx and H�(dx) = h(x)

xs+1 dx,

where both u and h are non-decreasing functions. Writing,

ψ�(λ) := s

φ�(λ)
+ λ

φ′�(λ)

φ2�(λ)
= s

φ�(λ)
− λ

(
1

φ�(λ)

)′

= s
∫ ∞

0
e−λx u(x)

xs+1 dx − λ

∫ ∞

0
e−λx u(x)

xs
dx
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= λ

∫ ∞

0
e−λxv(x) dx =

∫
(0,∞)

e−λx dv(x), λ > 0,

where v is the non-decreasing function

v(x) := s
∫ x

0

u(y)

ys+1 dy − u(x)

xs
,

we retrieve that ψ� is a completely monotone function. Further, by an evident
change of variable, wemay use second representation (68) for φ� and affirm that

λ �→ φ′�(λ)

λs−1 φ�(λ)
=

∫
(0,∞)

e−x h(x/λ)

xs
dx is non-increasing.

6 A Solution to a Conjecture by Sendov, Shan and its Relationship to
a Result by Simon

In this section, we give an answer to a conjecture stated by Sendov and Shan [14, Open
Problem 4.1], that has a strong connection with stable laws. The authors proved that
if λα0 ∈ BF∗

1 , then λα ∈ BF∗
1 , for all α ≤ α0. Thus, it is natural to ask

what is the largest value of α0 ∈ (0, 1), such that λα ∈ BF∗
1 , for allα ≤ α0?

(69)

It is shown in [14] that (69) holds forα0 ≤ 2/3 andwas conjectured that α0 = 1/
√
2 =

0.70710678118. In this section we will find the exact optimal value, which turns out
to be larger. We do this by resolving the more general problem of

finding all pairs (s, α) ∈ (0,∞) × (0, 1), such that λα ∈ BF∗
s ? (70)

According to (65), this is equivalent to

finding all pairs (s, α) ∈ (0,∞) × (0, 1),

such that s − e−tλα

(s + tαλα) ∈ BF, for all t > 0.

Since a function φ(λ) is a Bernstein function, if and only if φ(tλ) ∈ BF for all t > 0,
the problem simplifies to the equivalent one of

finding all pairs (s, α) ∈ (0,∞) × (0, 1), such that s − e−λα

(s + αλα) ∈ BF .

(71)

By (67), the problem is also equivalent to

finding all pairs (s, α) ∈ (0,∞) × (0, 1), such that e−λα

(s + αλα) ∈ CM. (72)
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This problem has been previously raised by Simon [16]. He showed that there exists
an increasing function R : [0, 1] → [0,∞], such that

e−λα

(s + αλα) ∈ CM ⇐⇒ α ≤ 1

2
or s ≥ R(α), (73)

where the function R satisfies

R(α) = α if α ∈ [0, 1/2] and 1

4(1 − α)
≤ R(α) ≤ α

sin2(πα)
if α ∈ [1/2, 1]. (74)

In particular, taking s = 1, it is clear that (73), hence (69), holds true whenever
α ∈ [0, 1/2] or whenever α ∈ [1/2, 1] and 1 ≥ α/ sin2(πα). Due to the inclusion
BF∗

s ⊂ BFs and due to (28), we see that a pair (s, α) does not satisfy (70) if s < α.
The importance of problems (69) and (70) is highlighted by the fact that φ(λ) = λα ,

for 0 < α < 1, is the Thorin Bernstein function associatedwith the stable subordinator
(S(α)

t )t≥0 through the following representations:

λα =
∫ ∞

0
(1 − e−λx )

cα

xα+1 dx, cα := α

�(1 − α)
= �(α + 1)

sin(πα)

π
,

(75)

e−tλα = E
[
e−λS(α)

t )
] =

∫ ∞

0
e−λs ft,α(s) ds, t > 0, (76)

where ft,α is the probability density function of the positive stable random variable
S(α)

t . The so-called scaling property for stable processes could be noticed from (76)
and gives

S(α)
t

d= t1/αSα, where we denote from now on, Sα := S(α)
1 .

Notice that the probability density function fα := f1,α of Sα is explicit only for the
value α = 1/2 and

f1/2(x) = e−1/4x

2
√

πx3/2
, x > 0,

corresponds to the inverse-Gaussian distribution, whereas in general, it is only
evaluated by the series expansion given by [18, formula (2.4.8), p. 90]:

fα(x) = 1

π

∞∑
n=1

(−1)n−1 �(nα + 1)

�(n + 1)
sin(πn α) x−(nα+1). (77)

The Mellin transform of Sα is given by

E[S−λ
α ] = �(1 + λ

α
)

�(1 + λ)
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= exp

{
β

α
ψ(1)λ +

∫ ∞

0
(e−λx − 1 + λx)

e−αx (1 − e−βx )

x(1 − e−x )(1 − e−αx )
dx

}
,

(78)

where the Digamma function is defined by ψ(u) = �′(u)/�(u), u > 0. The stable
random variable Sα is also linked to the Mittag-Leffler function via

Eα(x) :=
∑
k≥0

xk

�(kα + 1)
= E

[
ex/(Sα)α

]
, x ∈ C. (79)

An important and known fact is that when we take two independent and identically
distributed random variables S′

α, Sα , then Tα := S
′
α/Sα has the explicit probability

density function, see [5, (4.23.3)]:

fTα
(x) = sin(πα)

π

xα−1

x2α + 2 cos(πα)xα + 1
(80)

= 1

�(α)�(1 − α)

xα−1

(
xα + cos(πα)

)2 + sin2(πα)
, x > 0.

Hence, using (76), one has the representation

Eα(−λα) = E
[
e−λα/(Sα)α

]
= E

[
E

[
e−λS′

α/Sα |Sα

]] = E
[
e−λS′

α/Sα

]
(81)

=
∫ ∞

0
e−λx fTα

(x)dx, λ ≥ 0.

In Sect. 7 below we will show that there is much more consistent links between stable
distributions and theMittag-Leffler functions. If one takesG exponentially distributed,
with scale parameter 1, and independent from Sα , then we have the well-known, see
[5, (4.21.2)], identity

G
d=

(
G

Sα

)α

. (82)

In order to state the main result of this section, we need the following technical lemma.

Lemma 6.1 For α ∈ (0, 1), β = 1 − α, s ≥ 0 and x > 0, let

as(x) := ex − 1

1 + e−sx (ex − 1)
and A(s) := inf

x>0

log (1 + as(x))

x
, (83)

rα(x) := log
(1 − e−αx )(1 − e−x )

(1 − e−βx )
and R(α) := α + max

x>0

rα(x)

x
, (84)

eα,s(x) := e−αx (1 − e−βx )

(1 − e−x )(1 − e−αx )
− e−sx . (85)
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Then,

(1) Function A is an increasing homeomorphism from [0,∞] onto [0, 1], with inverse
R. Together with eα,s , they satisfy

α ≤ A(s) ⇐⇒ s ≥ R(α) ⇐⇒ eα,s ≥ 0;

(2) We have A(s) ≤ min(s, 1) and A(s) = s if s ≤ 1/2.

Proof (1) The function A is non-decreasing since s �→ as is such. Since a0(x) =
1 − e−x is increasing and a0(x)/x is decreasing, then the product function

x �→ log(1 + a0(x))

x
= log(1 + a0(x))

a0(x)

a0(x)

x

decreases to its limit at infinity which is 0 = A(0). Clearly, A(∞) = 1 because
a∞(x) = ex − 1 and then log(1 + a∞(x))/x = 1. We deduce that A(s) ∈ [0, 1], for
all s ≥ 0.

The continuity of A is justified as follows: suppose that the function A is not
continuous at s, where s is a fixed finite non-negative number. We have that either
A(s−) < A(s) or A(s+) > A(s).

(a) Assume A(s−) < A(s) and choose any α ∈ (
A(s−), A(s)

)
. Since α < A(s),

we have eαx < 1 + as(x) for all x > 0. Substituting the expression for as(x)

and solving the inequality for e−sx we arrive at the equivalent eα,s(x) > 0 for all
x > 0. In fact, these arguments show that α ≤ A(s) if, and only if eα,s(x) ≥ 0 for
all x > 0. Next, since α > A(s − 1/n), for every n = 1, 2, . . ., one may build a
sequence xn > 0, such that eα,s−1/n(xn) < 0. Putting the two together, we have

eα,s(xn) ≥ 0 and eα,s−1/n(xn) < 0.

By continuity of the function s �→ eα,s(x) for all x > 0, we deduce that there
exists a sequence sn ∈ (s − 1/n, s] such that eα,sn (xn) = 0. It is clear that
limn→∞ sn = s. We are going to show now that as n → ∞, xn converges to ∞.
If that is not the case, then, taking a subsequence, if necessary, we may assume
that xn converges to a finite limit x∗ which satisfies

eα,s(x∗) = 1

eαx∗ − 1
− 1

ex∗ − 1
− 1

esx∗ = 0 �⇒ esx∗ = (ex∗ − 1)(eαx∗ − 1)

ex∗ − eαx∗ .

Substituting esx∗ into as(x∗), we obtain

log(1 + as(x∗)) = log(eαx∗) = αx∗ �⇒ A(s) ≤ α.

This leads to the contradiction α < A(s) ≤ α, confirming that limn→∞ xn = ∞.
Finally, let yn := e−xn and from eα,sn (xn) = 0, we obtain

1

y−α
n − 1

− 1

yn
−1 − 1

− ysn
n
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= 0 �⇒ sn = α + 1

log(yn)
log

(
1 − y1−α

n

(1 − yn)(1 − yα
n )

)
.

Using limn→∞ yn = 0 and α ≤ 1 (recall that α < A(s)), one can see that the
right-hand side approaches α, while the left-hand side approaches s, hence s = α.
But s is fixed, while we can choose α freely in the interval (A(s−), A(s)), a
contradiction.

(b) Assume A(s) < A(s+) and choose any α ∈ (A(s), A(s+)). Then for any ε > 0,
α < A(s + ε) implies that eα,s+ε(x) ≥ 0 for all x > 0. In other words, for any
fixed x > 0, we have eα,s+ε(x) ≥ 0 for all ε > 0. Taking the limit as ε goes to 0
gives eα,s(x) ≥ 0 for all x > 0. In other words, α ≤ A(s), a contradiction.

By representation (85) of eα,s , it is also readily seen that

eα,s(x) ≥ 0, ∀x > 0 ⇐⇒ s ≥ R(α) and eα,s(x) > 0, ∀x > 0 ⇐⇒ s > R(α).

Thus, we have

α ≤ A(s) ⇐⇒ s ≥ R(α) and α < A(s) ⇐⇒ s > R(α).

Hence, R is the inverse of A. The continuity of R and the strict monotonicity of A
follow.

(2) If α ≤ 1/2, then rα ≤ 0, implying that R(α) = α, which yields A(s) = s. If
α > 1/2, then rα has sign changes, implying that R(α) ≥ α, which yields A(s) ≤ s.

��
We now straightforwardly retrieve the following preliminary observation.

Proposition 6.2 The function λα belongs to BF∗
α , if and only if, α ≤ 1/2. In this case,

λα ∈ BF∗
s for all s ≥ α.

Proof By the equivalence between (70) and (71), we know that λα ∈ BF∗
α , if and

only if, 1 − e−λα
(1 + λα) ∈ BF . Since e−λα

(1 + λα) ≤ 1, the latter is equivalent
to e−λα

(1 + λα) ∈ CM. By (73), the latter holds, if and only if, α ≤ 1/2 or α ≥
R(α). Using (74), we see that if α > 1/2 then α < 1/(4(1 − α)) ≤ R(α). Thus,
e−λα

(1 + λα) ∈ CM, if and only if, α ≤ 1/2. The last claim is obtained by part 5 of
Theorem 2.1. ��

We can now improve Proposition 6.2 by solving Sendov and Shans’s problem [14]
stated in (69) and expliciting the homeomorphism R in Simon’s result [16] described
in (73).

Theorem 6.3 Let U denote a random variable with uniform distribution on (0, 1)
and let A, R be given by (83) and (84), respectively. Then, following statements are
equivalent.

(1) There exists a real-valued random variable Ws, independent of U, such that the
following factorization in law holds:

1

Sα

d= U
1/s eWs ; (86)
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(2) λα ∈ BF∗
s ;

(3) α ≤ A(s) or equivalently s ≥ R(α);
(4) The probability density function of the random variable 1/Ss

α ,

f1/Ss
α
(x) := 1

sπ

∞∑
n=1

(−1)n−1 �(nα + 1)

�(n + 1)
sin(πn α) x

αn
s −1, x > 0,

is non-increasing.

In particular, the random variable Ws is infinitely divisible. Finally, λα ∈ BF∗
1 if, and

only if, α ≤ A(1) ≈ 0.717461058844.

Proof (1) ⇐⇒ (2): In (71), we have already noticed that

λα ∈ BF∗
s ⇐⇒ �s(x �→ 1 − e−xα

) ∈ BF, (87)

and by (76), λα is the cumulant function of the positive random variable Sα . Thus,
by the equivalence between (1) and (4) in Proposition 4.1, there is a positive random

variable Vs , independent of U, such that Sα
d= Vs/U

1/s . Thus, 1/Sα
d= U

1/s/Vs and
the result follows by letting Ws := − log(Vs).

(1) ⇐⇒ (3): Using Mellin transform (78) and the Frullani representation of the
logarithm,

log

(
1 + λ

s

)
=

∫ ∞

0
(1 − e−λx )

e−sx

x
dx, λ ≥ 0, s > 0,

we get E[Uλ/s] = (
1 + λ

s

)−1
and then,

E[S−λ
α ]

E[Uλ/s] = exp

{∫ ∞

0
(1 − e−λx )

e−sx

x
dx + β

α
ψ(1)λ

+
∫ ∞

0
(e−λx − 1 + λx)

e−αx (1 − e−βx )

x(1 − e−x )(1 − e−αx )
dx

}

= exp

{
γα,s λ +

∫ ∞

0
(e−λx − 1 + λx)

eα,s(x)

x
dx

}
, λ ≥ 0, (88)

where γα,s = (
β
α
ψ(1) + 1

s ) and eα,s is given by (85). Observe that the expression in
the last exponent is of form (99), given in Appendix 1. Suppose that eα,s takes strictly
negative values. Decompose eα,s , in a standard way, into the difference of two non-
negative functions eα,s = e+ − e−. Then, the measures μ+(dx) := e+(x) dx/x and
μ−(dx) := e−(x) dx/x are Lévymeasures, that is, they satisfy integrability condition
(7), because they are both dominated by the Lévy measure

(
e−αx (1 − e−βx )

(1 − e−x )(1 − e−αx )
+ e−sx

)
dx

x
.
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Moreover, for the same reason the measures μ+(dx) and μ−(dx) satisfy integrability
conditions (100). Thus, by the discussion at the end ofAppendix 1 and (102), there exist
two independent random variables X+ and X−, with infinitely divisible distributions
of the spectrally negative type, associated with the Lévy measures are μ+ and μ−,
and such that we have

E[S−λ
α ]

E[Uλ/s] = E[eλ(X+−X−)], λ ≥ 0.

Choosing X+ and X− to be independent of Sα and U, the last identity becomes

E

[(
eX−

Sα

)λ]
= E[(U1/seX+

)λ], λ ≥ 0,

giving an identity in law of the form

eX−

Sα

d= U
1/s eX+

.

Last identity can be simplified to form (86), if, and only if, eα,s is non-negative.
By Lemma 6.1, the non-negativity condition is equivalent to (3). Finally, thanks to
representations (99) and (101), we see that the exponent in the right-hand side of
(88) corresponds to the (bilateral) Laplace transform of a random variable Ws , whose
distribution is necessarily infinitely divisible of a spectrally negative Lévy type. The
latter is equivalent to the factorization in law (86).

(2)⇐⇒ (4): Since λα is the cumulant function of Sα , then (87) and the equivalence
between parts 1 and 2 in Proposition 4.1, show that λα ∈ BF∗

s if, and only if, the
probability density function, fα(x), of Sα has the form fα(x) = ps(x)/xs+1 for some
non-decreasing and right-continuous ps(x). That is, λα ∈ BF∗

s is equivalent to

xs+1 fα(x) = 1

π

∞∑
n=1

(−1)n−1 �(nα + 1)

�(n + 1)
sin(πn α) xs−nα is non-decreasing.

It is simple to verify that f1/Ss
α
(x) = s−1 x−1−1/s fα(x−1/s) = s−1 ps(x−1/s),

showing that λα ∈ BF∗
s is equivalent to f1/Ss

α
(x) being a non-increasing function.

Infinite divisibility of Ws is shown at the end of the proof of 1) ⇐⇒ 3). The last
assertion is evident and the evaluation of A(1), using formula (83), was done byMaple.

��
Remark 6.4 By (77), for every α < 1, we have

fα(x) ∼ cα

xα+1 , as x → ∞,

where cα is defined by (75). Since limx→0+ xα+1 fα(x) = 0 (see [9], for instance), the
function xα+1 fα(x) has a continuous extension to [0,∞). For α ≤ 1/2, we know that
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λα ∈ BF∗
α . The last inclusion is equivalent to xα+1 fα(x)/cα being non-decreasing.

Since it is positive and converging to one as x → ∞, we discover the remarkable fact
that for α ≤ 1/2, xα+1 fα(x)/cα is a cumulative distribution function. By (87), (57)
and (76), we deduce that

xα+1

cα

fα(x) = �(1 − α)E
[
V α

α 1l(Vα≤x)

]
, x ≥ 0, (89)

where comparing (51) and (86) we see that Vα = e−Wα for an infinitely divisible
random variable Ws . In particular, letting x approach infinity in (89), we see that
E

[
V α

α

] = 1/�(1 − α).

7 TheMittag-Leffler Function and the ClassBF∗
s

Proposition 6.2 and Theorem 6.3 illustrate the extent to which the case α > 1/2 is
more intricate than the case α ≤ 1/2. The explicitness of the probability density func-
tion fTα

, given in (80), will be helpful for problem (69). Recall (87), that λα ∈ BF∗
s

precisely when 1 − e−λα ∈ BFs . Since, λα is the cumulant function of the positive
random variable Sα , we can use the equivalence between parts (1) and (5) in Propo-
sition 4.1. More precisely, applying part (5) in Proposition 4.1 with Y = S

′
α , that is

independent from, but identically distributed with Sα , we conclude that the probability
density function fTs

α
is non-increasing. Thus, after an elementary calculation using

(80), we see that

fTs
α
(xs/α) = sin(πα)

s π

x (α−s)/α

x2 + 2 cos(πα)x + 1
is non-increasing in x ∈ (0,∞).

The derivative of − fTs
α
(xs/α) has the same sign as

(s + α)x2 + 2s cos(πα)x + s − α.

We deduce that

λα ∈ BF∗
s �⇒ (s + α)x2 + 2s cos(πα)x + s − α ≥ 0, ∀x > 0 ⇐⇒ α ≤ s sin(πα),

and in particular

λα ∈ BF∗
1 �⇒ α < sin(πα) ⇐⇒ α ≤ α1 := 0.736484448242.

The inequality A(1) < α1 comforts the last assertion of Theorem 6.3. As a conse-
quence of Theorem 6.3, we can state the following result which improves Lemma 2.3
in [16].
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Corollary 7.1 For r > 0 and α ∈ (0, 1), let

ηα,r (x) := 1 − r �(1 − α) x Eα(−x) and φα,r (λ) := λα − log(1 + rλα), x, λ ≥ 0. (90)

Recall that Eα stands for the Mittag-Leffler function given in (79).

(1) The following assertions are equivalent.

(i) α ≤ 1/2;
(ii) λα ∈ BF∗

α ;
(iii) x Eα(−x) ∈ BF;
(iv) ηα,1 ≥ 0;
(v) ηα,r ∈ CM, for all r ≤ 1;
(vi) φα,r ∈ TBF, for all r ≤ 1.

(2) More generally, below we have (i) ⇒ (i i) ⇔ (i i i) ⇒ (iv).

(i) r ≤ sin2(πα);
(ii) ηα,r ≥ 0;
(iii) φα,r ∈ BF;
(iv) λα ∈ BF∗

α/r .

Remark 7.2 Let α2 ≈ 0.688483504697 be the zero of the function x �→ sin2(πx)− x
in (1/2, 1). For α ∈ (1/2, α2), we have sin2(πα) ≥ α. So, taking r = sin2(πα) and
applying of point (2) of last corollary, we obtain λα ∈ BF∗

α/r ⊂ BF∗
1 . Of course, this

is not optimal compared to what we obtained in Theorem 6.3.

Proof Recall β = 1 − α. With the help of the asymptotic [6, (3.4.15)], observe first
that

ηα,r = 1 − r + r ηα,1 and lim
x→∞ ηα,1(x) = lim

x→∞
(
1 − �(β) x Eα(−x)

) = 0. (91)

Thus, the inequality ηα,r ≥ 0 fails for r > 1. Second, since

φ′
α,r (λ) = d

dλ

(
λα − log(1 + r λα)

) = α cα,r (λ), (92)

where

cα,r (λ) := 1

λβ
− r λα−1

1 + r λα
,

and thanks to (75), we obtain the representation

cα,r (λ) = 1

λβ
− 1

λ

(
1 − 1

1 + r λα

)
= 1

�(β)

∫ ∞

0

e−λx

xα
dx − 1

λ

(
1 − E

[
e−λαr G

])
.

Then, taking S
′
α to be an independent copy of Sα , both independent from the expo-

nentially distributed r.v. G, and using (76) followed by the identity in law for positive
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stable distributions (82), we obtain

1 − E
[
e−λαr G

] = 1 − E
[
e−λSα(r G)1/α

] = 1 − E
[
e−λG r1/α (Sα/S′

α)
]

= λ

∫ ∞

0
e−λx P

(
G >

x S
′
α

r1/α Sα

)
dx .

Replacing in cα,r , we arrive at the simplified expression

cα,r (λ) =
∫ ∞

0
e−λxρα,r (x)dx, (93)

where by Mittag-Leffler function representation (79),

ρα,r (x) := 1

�(β)xα
− P

(
G >

x S
′
α

r1/α Sα

)
= 1

�(β)xα
− E

[
e−x S

′
α/(r1/α Sα)

]

= 1

�(β)xα
− E

[
e−xα/(r S

α
α)

]

= 1 − �(β) xα Eα(−xα/r)

�(β)xα
= ηα,r (xα/r)

�(β)xα
, x > 0. (94)

Finally, integrating (92) between 0 and λ, and using (93) and (94), we obtain the
following representation for φα,r , valid for all r > 0, λ ≥ 0;

φα,r (λ) = α

∫ λ

0
cα,r (u)du =

∫ ∞

0
(1 − e−λx )

ρα,r (x)

x
dx

= α

�(β)

∫ ∞

0
(1 − e−λx )

ηα,r (xα/r)

xα+1 dx . (95)

At this point, thanks to the equivalence between (70) and (72), we have found that for
fixed r ∈ (0, 1],

ηα,r ≥ 0 ⇐⇒ φα,r ∈ BF �⇒ α

r
e−φα,r (λ) = e−λα

(α

r
+ αλα

)
∈ CM ⇐⇒ λα ∈ BF∗

α/r , (96)

and, by (95), that

x �→ ηα,r (xα)/xα ∈ CM ⇐⇒ φα,r has form(103) of a Thorin Bernstein function. (97)

Further, due to (91), we have

λEα(−λ) ∈ BF ⇐⇒ ηα,1(λ) = 1 − �(β) λ Eα(−λ) ∈ CM
⇐⇒ ηα,r (λ) = 1 − r + r ηα,1(λ) ∈ CM, for all r ≤ 1. (98)
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(1) By Proposition 6.2, part (7) of Proposition 4.1, (91), (96), (97) and (98), we obtain
the equivalences between (i), . . . , (vi), via the following scheme

α ≤ 1

2
⇐⇒ λα ∈ BF∗

α ⇐⇒ λα ∈ BF∗
α/r , ∀r ≤ 1 ⇐� ηα,1 ≥ 0

⇐⇒ �⇒

λE[e−λ/Sα
α ] = λEα(−λ) ∈ BF ⇐⇒ ηα,r ∈ CM, ∀r ≤ 1

�⇒ ηα,r (xα)/xα ∈ CM, ∀r ≤ 1

⇐⇒ φα,r ∈ T BF, ∀r ≤ 1

�⇒ λα ∈ BF∗
α/r , ∀r ≤ 1.

(2) The implications (i i) ⇔ (i i i) ⇒ (iv) are given in (96). For the implication
(i) ⇒ (i i), if α ≤ 1/2, then by Proposition 6.2, we have λα ∈ BF∗

s and we are done
by part (1). Thus, it is enough to check the claim for 1/2 < α < 1, where it holds that
α ≤ α2 ⇐⇒ α ≤ sin2(πα). Using representation (80) and (81), then performing the
change of variable v = xu/r1/α , we arrive at

ηα,r (xα/r) = 1 − �(β) xα Eα(−xα/r) = 1 − �(β) xα

∫ ∞

0
e−xu/r1/α fTα

(u)du

= 1 − r
∫ ∞

0
gα(r1/α v/x) e−v vα−1

�(α)
dv

= 1 − rE[gα(r1/α Gα/x)],

where

gα(w) := 1(
wα + cos(πα)

)2 + sin2(πα)
,

and Gα has the Gamma distribution with shape parameter α and rate parameter 1.
Observing that

gα ≤ 1

sin2(πα)
�⇒ ηα,r (xα/r) ≥ 1 − r

sin2(πα)
, for all x > 0,

completes the proof. ��
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Appendix 1: Spectrally Negative Lévy Processes and Lévy–Laplace
Exponents

A Lévy–Laplace exponent � is a function represented by

�(λ) = a + bλ + cλ2 +
∫

(0,∞)

(
e−λx − 1 + λh(x)

)
μ(dx), λ ≥ 0, (99)

where a, c ≥ 0, b ∈ R, and h is a truncation function, i.e., any bounded function such
limx→0+(h(x) − x)/x exists, and the Lévy measure ν satisfies

∫
(0,∞)

(
x2 ∧ 1

)
ν(dx) < ∞, or

∫
(0,∞)

(
x2 ∧ x

)
ν(dx) < ∞, (100)

if the integral in (99) is finite when we take h(x) = x . The Lévy–Laplace expo-
nents have the following stochastic interpretation: there is a bijection between the
class of (non-killed) of the spectrally negative Lévy processes, i.e., processes Z =
(Zt )t≥0, Z0 = 0, with stationary and independent increments and non-positive
jumps satisfying E[Z1] ≥ 0, and the class of Lévy–Laplace exponents �, with
a = �(0) = 0, via the Lévy–Khintchine formula:

E[eλZt ] = et�(λ), for t ≥ 0, λ ≥ 0, (101)

where � is represented by (99). In fact, the distributions of Zt , t > 0, are entirely
determined by the infinitely divisible random variable Z1. In (99), it is customary to
label, as in (6), the quantity b the drift term and c the Brownian coefficient and killing
the process Z , amounts to adding the killing rate a in �, cf. the beginning of [10,
Sect. 8.1]. Observe that splitting μ into the sum of two Lévy measures μ = μ′ + μ′′
amounts to split � into the sum of two Lévy–Laplace exponent � = � ′ + � ′′.
Equivalently, the random variable X := Z1 splits into the sum of two independent
random variables with infinitely divisible distributions:

X = X ′ + X ′′, (102)

where the Lévy measures associated with X ′ and X ′′ are μ′, μ′′, respectively.
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Appendix 2: Complete Bernstein Functions (CBF ) and Thorin Bern-
stein Functions (TBF )

The set CBF of complete Bernstein functions [15, p. 69] corresponds to those functions
φ ∈ BF represented by

φ(λ) = q + d λ +
∫

(0,∞)

λ

λ + u
�(du) = q + d λ +

∫
(0,∞)

(1 − e−λx ) L�(x) dx, λ ≥ 0,

for some constants q, d ≥ 0, where �(du)/u, u > 0, is necessarily a Lévy measure,
andL� stands for the Laplace transform of�. The class of Stieltjes functions consists
of those of the form

f (λ) = d + q

λ
+

∫
(0,∞)

1

λ + u
�(du), λ > 0,

where d, q ≥ 0 are constants and
∫
(0,∞)

(1 + u)−1 �(du) < ∞. The set TBF is the
subclass of CBF formed by those functions φ of the form

φ(λ) = q + d λ +
∫
(0,∞)

log
(
1 + λ

u

)
σ(du) = q + d λ +

∫
(0,∞)

(1 − e−λx )
Lσ (x)

x
dx

(103)

= q + d λ +
∫
(0,∞)

λ

λ + u

σ(0, u]
u

du, (104)

for some measure σ on (0,∞), such that

∫
(0,∞)

σ (0, u]
u(1 + u)

du < ∞.

See [15, Theorem 8.2].
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